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Abstract

We consider the problem of releasing a table containing personal records, while ensuring individ-
ual privacy and maintaining data integrity to the extent possible. One of the techniques proposed
in the literature is k-anonymization. A release is considered k-anonymous if the information corre-
sponding to any individual in the release cannot be distinguished from that of at least k − 1 other
individuals whose information also appears in the release. In order to achieve k-anonymization,
some of the entries of the table are either suppressed or generalized (e.g. an Age value of 23
could be changed to the Age range 20-25). The goal is to lose as little information as possible
while ensuring that the release is k-anonymous. This optimization problem is referred to as the
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k-Anonymity problem. We show that the k-Anonymity problem is NP-hard even when the attribute
values are ternary and we are allowed only to suppress entries. On the positive side, we provide
an O(k)-approximation algorithm for the problem. We also give improved positive results for the
interesting cases with specific values of k — in particular, we give a 1.5-approximation algorithm
for the special case of 2-Anonymity, and a 2-approximation algorithm for 3-Anonymity.

Keywords: Anonymity, Approximation Algorithms, Database Privacy

1. Introduction

There has been a tremendous growth in the amount of personal data that can be collected and
analyzed. Data mining tools are increasingly being used to infer trends and patterns. In many
scenarios, access to large amounts of personal data is essential in order for accurate inferences
to be drawn. For example, at the beginning of an epidemic, a single hospital might see only a few
isolated cases, whereas the combined patient pool of a group of hospitals might be sufficient to
infer the outbreak of an epidemic. However, the use of data containing personal information has
to be restricted in order to protect individual privacy.

One possible solution is that instead of releasing the entire database, the database owner an-
swers aggregate queries posed by medical researchers after ensuring that answers to the queries
do not reveal sensitive information. In query auditing (Kleinberg, Papadimitriou, and Raghavan,
2003; Dinur and Nissim, 2003; Kenthapadi, Mishra, and Nissim, 2005), a query is denied if the
response could reveal sensitive information and answered otherwise. On the other hand, in out-
put perturbation (Dinur and Nissim, 2003; Dwork and Nissim, 2004; Blum, Dwork, McSherry, and
Nissim, 2005), the database owner provides a perturbed answer to each query. These methods
require the researchers to formulate their queries without access to any data. In this case, one
can also use techniques from secure multi-party computation (Yao, 1986; Goldreich, Micali, and
Wigderson, 1987; Lindell and Pinkas, 2002; Aggarwal, Mishra, and Pinkas, 2004; Freedman, Nis-
sim, and Pinkas, 2004). However, many of the data-mining tasks are inherently ad hoc and the
data mining researchers need to examine the data in order to discover data aggregation queries
of interest. In such cases, query auditing, output perturbation and secure function evaluation tech-
niques do not provide an adequate solution, and we need to release an anonymized view of the
database that enables the computation of non-sensitive query aggregates, perhaps with some
error or uncertainty.

One approach to anonymization uses data sanitization techniques in order to hide the exact values
of the data (Agrawal and Srikant, 2000; Agrawal and Aggarwal, 2001; Evfimievski, Gehrke, and
Srikant, 2003; Agrawal, Srikant, and Thomas, 2005; Chawla, Dwork, McSherry, Smith, and Wee,
2005). However, this may not be suitable if one wants to draw inferences with 100% confidence.
Another approach is to suppress some of the data values, while releasing the remaining data
values exactly. We note that suppressing just the identifying attributes is not sufficient to protect
privacy. For example, consider the following table which is part of a medical database, with the
identifying attributes such as name and social security number removed.
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Age Race Gender Zip Code Diseases
47 White Male 21004 Common Cold
35 White Female 21004 Flu
27 Hispanic Female 92010 Flu
27 White Female 92010 Hypertension

By joining this table with public databases (such as a voter list), non-identifying attributes, such as
Age, Race, Gender and Zip Code in the above table, can together be used to identify individuals. In
fact, Sweeney (2000) observed that for 87% of the population in the United States, the combination
of Date of Birth, Gender and Zip Code corresponded to a unique person.

In order to ensure the protection of privacy, we adopt the k-Anonymity model that was proposed
by Samarati and Sweeney (Samarati and Sweeney, 1998; Samarati, 2001; Sweeney, 2002). Sup-
pose we have a table consisting of n tuples each having m quasi-identifying attributes (Age, Race,
Gender and Zip Code in the above table), and let k > 1 be an integer. The k-Anonymity framework
provides for generalization of entries (generalization entails replacing an entry value with a less
specific but semantically consistent value; a more formal description can be found in Section 2) in
addition to suppression. The idea is to suppress/generalize some of the entries in the table so as
to ensure that for each tuple in the modified table, there are at least k − 1 other tuples in the mod-
ified table that are identical to it along the quasi-identifying attributes. The objective is to minimize
the extent of suppression and generalization. Note that entries in the column corresponding to the
sensitive attribute (“Diseases” in the above example) are not altered. The following is an example
of a k-anonymized table for k = 2.

Age Race Gender Zip Code Diseases
* White * 21004 Common Cold
* White * 21004 Flu

27 * Female 92010 Flu
27 * Female 92010 Hypertension

A k-anonymized table protects individual privacy in the sense that, even if an adversary has ac-
cess to all the quasi-identifying attributes of all the individuals represented in the table, he would
not be able to track down an individual’s record further than a set of at least k records, in the worst
case. Thus, releasing a table after k-anonymization prevents definitive record linkages with pub-
licly available databases, and keeps each individual hidden in a crowd of k − 1 other people. The
privacy parameter k must be chosen according to the application in order to ensure the required
level of privacy.

2. Model and Results

We now formally define the problem of k-Anonymity and state our results. The input is a table
having n rows each with m quasi-identifying attributes. We view the table as consisting of n m-
dimensional vectors: x1, . . . , xn ∈ Σm.

We first define a special case of the problem called k-Anonymity with Suppression, where sup-
pression is the only permitted operation. A k-Anonymous suppression function t maps each xi to
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x̃i by replacing some components of xi by ∗ (which corresponds to hiding those components of
xi), so that every x̃i is identical to at least k − 1 other x̃js. This results in a partition of the n row
vectors into clusters of size at least k each. The cost of the suppression, c(t) is the total number
of hidden entries, or equivalently, the total number of ∗s in all the x̃is.

k-Anonymity with Suppression: Given x1,x2, . . . ,xn ∈ Σm, and an Anonymity parameter
k, obtain a k-Anonymous suppression function t so that c(t) is minimized.

Next, we define the problem of k-Anonymity with Generalization, where in addition to suppressing
entry values, we are also allowed to replace them with less specific but semantically consistent
values. For example, we can make a date less specific by omitting the day and revealing just
the month and year. We assume that for each attribute, a generalization hierarchy is specified as
part of the input (Samarati and Sweeney, 1998; Samarati, 2001). For an attribute, each level of
generalization corresponds to a partition of the attribute domain. A partition corresponding to any
given level of the generalization hierarchy is a refinement of the partition corresponding to the next
higher level. Singleton sets correspond to absence of generalization, while the partition consist-
ing of a single set containing the whole domain corresponds to the highest level of generalization.
Consider the example shown in Figure 2. The attribute “Quality” has a domain consisting of values
A+, A, A−, B+, B and B− and has two levels of generalization. In the absence of generalization,
the value of this attribute is reported exactly. The first level of generalization corresponds to the
partition {{A+, A, A−}, {B+, B, B−}}. In order to generalize an entry with value “A” to the first
level of generalization, it is replaced with the set {A+, A, A−}. The next higher level of generaliza-
tion (also the highest level in this case) corresponds to replacing the entry with the set containing
the whole domain, which is equivalent to suppressing the entry.

A+ A−A B+ B−B

{A+, A, A−, B+, B, B−}

{A+, A, A−} {B+, B, B−}

Level 2

Level 1

Figure 1: A possible generalization hierarchy for the attribute “Quality”.

Let the jth attribute have domain Dj and lj levels of generalization. Let the partition corresponding
to the hth level of generalization be Dj

h for 1 ≤ h ≤ lj , with Dj
0 = Dj . Let a value y ∈ Dj when

generalized to the hth level be denoted by gh(y), e.g., g1(A) = {A+, A, A−}. A generalization
function h is a function that maps a pair (i, j), i ≤ n, j ≤ m to a level of generalization h(i, j) ≤ lj .
Semantically, h(i, j) denotes the level to which jth component of the ith vector (or the (i, j)th

entry in the table) is generalized. Let h(xi) denote the generalized vector corresponding to xi,
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i.e. h(xi) = (gh(i,1)(xi[1]), gh(i,2)(xi[2]) . . . , gh(i,m)(xi[m])). A generalization function is said to be
k-Anonymous if for every i, h(xi) is identical to h(xj) for at least k − 1 values of j 6= i.

Consider a k-Anonymous generalization function h. It incurs a cost of r/lj whenever it generalizes
a value for the jth attribute to the rth level. The total cost incurred by the generalization function
h is defined as the sum of the costs incurred over all the entries of the table, i.e. cost(h) =∑

i

∑
j h(i, j)/lj . Now we are ready to give a formal definition of the problem.

k-Anonymity with Generalization: Given x1,x2, . . . ,xn ∈ Σm, and an Anonymity param-
eter k, obtain a k-Anonymous generalization function h such that cost(h) is minimized.

Note that the problem of k-Anonymity with Suppression is a special case of the problem of k-
Anonymity with Generalization, with only one level of generalization (corresponding to hiding the
entry completely) for every attribute.

Clearly the decision version of both of these problems is in NP, since we can verify in polynomial
time if the solution is k-Anonymous and the suppression cost less than a given value. We show
that k-Anonymity with Suppression is NP-hard even when the alphabet size |Σ| = 3. Note that this
automatically implies NP-hardness of k-Anonymity with Generalization. This improves upon the
NP-hardness result of Meyerson and Williams (2004) which required an alphabet size of n. On the
positive side, we provide an O(k)-approximation algorithm for k-Anonymity with Generalization
for arbitrary k and arbitrary alphabet size, using a graph representation. This improves upon
the previous best-known approximation guarantee of O(k log k) for k-Anonymity with Suppression
(Meyerson and Williams, 2004). We also show that it is not possible to achieve an approximation
factor better than Θ(k) using the graph representation approach. For a binary alphabet, we provide
improved approximation algorithms for k = 2 (an approximation factor of 1.5) and k = 3 (an
approximation factor of 2).

The rest of the paper is organized as follows. We establish the NP-hardness of k-Anonymity with
Suppression in Section 3. We then present an O(k)-approximation algorithm for k-Anonymity with
Generalization in Section 4. Next, in Sections 5 and 6, we provide a 1.5 approximation algorithm for
the 2-Anonymity problem with binary alphabet, and a 2-approximation algorithm for 3-Anonymity
with binary alphabet. Finally, we conclude with some future research directions in Section 7.

3. NP-hardness of k-Anonymity with Suppression

Theorem 1 k-Anonymity with Suppression is NP-hard even for a ternary alphabet, i.e., (Σ =
{0, 1, 2}).

Proof In this proof, k-Anonymity refers to the problem of k-Anonymity with Suppression. We give
a reduction from the NP-hard problem of EDGE PARTITION INTO TRIANGLES (Kann, 1994) which
is defined as follows: Given a graph G = (V,E) with |E| = 3m for some integer m, can the edges
of G be partitioned into m edge-disjoint triangles?

Given an instance of the above problem, G = (V,E) with 3m edges (since the above problem is
NP-hard even for simple graphs, we will assume that the graph G is simple), we create a prelim-
inary table T with 3m rows — one row for each edge. For each of the n vertices of G, we create
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an attribute (column). The row corresponding to edge (a, b), referred to as rab, has ones in the
positions corresponding to a and b and zeros everywhere else. Let a star with four vertices (having
one vertex of degree 3) be referred to as a 4-star.

Equivalence to edge partition into triangles and 4-stars. We first show that the cost of the
optimal 3-Anonymity solution for the table T is at most 9m if and only if E can be partitioned into a
collection of m disjoint triangles and 4-stars. First suppose that such a partition of edges is given.
Consider any triangle (with a, b, c as its vertices). By suppressing the positions a, b and c in the
rows rab, rbc and rca, we get a cluster containing three rows, with three ∗s in each modified row.
Now consider a 4-star with vertices a, b, c, d, where d is the center vertex. By suppressing the
positions a, b and c in the rows rad, rbd and rcd, we get a cluster containing three rows with three
∗s in each modified row. Thus we obtain a solution to 3-Anonymity of cost 9m.

On the other hand, suppose that there is a 3-Anonymity solution of cost at most 9m. Since G
is simple, any three rows are distinct and differ in at least 3 positions. Hence there should be at
least three ∗s in each modified row, so that the cost of the solution is at least 9m. This implies
that the solution cost is exactly 9m and each modified row has exactly three ∗s. Since any cluster
of size more than three will have at least four ∗s in each modified row, it follows that each cluster
has exactly three rows. There are exactly two possibilities: the corresponding edges form either
a triangle or a 4-star, and each modified row in a triangle has three ∗s and zeros elsewhere while
each modified row in a 4-star has three ∗s, single 1 and zeros elsewhere. Thus, the solution
corresponds to a partition of the edges of the graph into triangles and 4-stars.

Equivalence to edge partition into triangles. Since we want a reduction from EDGE PARTITION

INTO TRIANGLES, we create a table T ′ by “replicating” the columns of T so as to force the 4-stars
to pay more ∗s. Let t = dlog2(3m + 1)e. In the new table T ′, every row has t blocks, each of
which has n columns. Consider an arbitrary ordering of the edges in E and express the rank of
an edge e = (a, b), in this ordering, in binary notation as e1e2 . . . et. In the row corresponding
to edge e, each block has zeros in all positions except a and b. A block can be in one of two
configurations: conf0 has a 1 in position a and a 2 in position b while conf1 has a 2 in position a
and a 1 in position b. The ith block in the row corresponding to e has configuration confei . For
example, consider the graph shown in Figure 3. Suppose the edges (3, 4), (1, 4), (1, 2), (1, 3), (2, 3)
are ranked 1 (i.e. (001)2) through 5 (i.e. (101)2) respectively. Then, the table in Figure 3 represents
the 3-Anonymity instance corresponding to the graph, with the ith row in the table representing the
vector corresponding to the edge ranked i.

We will now show that the cost of the optimal 3-Anonymity solution on T ′ is at most 9mt if and only
if E can be partitioned into m disjoint triangles.

Suppose that E can be partitioned into m disjoint triangles. As earlier, every triangle in such a
partition corresponds to a cluster with 3t ∗s in each modified row. Thus we get a 3-Anonymity
solution of cost 9mt.

For the converse, suppose that we are given a 3-Anonymity solution of cost at most 9mt. Again,
any three rows differ in at least 3t positions so that the cost of any solution is at least 9mt. Hence
the solution cost is exactly 9mt and each modified row has exactly 3t ∗s. Thus, each cluster has
exactly three rows. We claim that the corresponding edges should form a triangle. We can see
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4 3

1 2

1

(1,2)

(3,4)
(1,4)

(1,3)

0 1 2
00 02 1 201 02 01

0 2 0 0 21 00 1

12 20 0 010 20 10

1221 0 0 0 0 00 2 1
00 00 0 012 21 2

(2,3)

Figure 2: The table shows the 3-anonymity instance corresponding to the graph on the left when
the edges (3, 4), (1, 4), (1, 2), (1, 3), (2, 3) are ranked 1 through 5 respectively.

this as follows: suppose to the contrary the three rows form a 4-star. Let the common vertex be v.
Consider the ternary digit ∈ {1, 2} assigned by each of the three edges to v in conf0 — two of the
three edges must have assigned the same digit to v. Since these two edges differ in rank, they
must have a different configuration (and therefore, a different digit in the column corresponding
to v) in at least one of the blocks. Thus, the rows corresponding to the three edges contain an
additional ∗ corresponding to vertex v in addition to the 3t ∗s corresponding to the remaining three
vertices, contradicting the fact that each row has exactly 3t ∗s.

The above proof shows that k-Anonymity is NP-hard even with a ternary alphabet for k = 3. By
reduction from EDGE PARTITION INTO r-CLIQUES (Kann, 1994), we can extend the above proof
for k =

(
r
2

)
, for r ≥ 3. By replicating the graph in the above reduction, we can further extend the

proof for k = α
(
r
2

)
for any integer α and r ≥ 3.

4. Algorithm for General k-Anonymity

In this section, we study the problem of k-Anonymity with Generalization for general k and arbi-
trary alphabet size, and give an O(k)-approximation algorithm for the problem. In this section,
k-Anonymity refers to the problem of k-Anonymity with Generalization.

Construction of Graph. Given an instance of the k-Anonymity problem, we create an edge-
weighted complete graph G = (V,E). The vertex set V contains a vertex corresponding to each
vector in the k-Anonymity problem. For two rows a and b, let the unscaled generalization cost
for the jth component, ha,b(j), refer to the lowest level of generalization for attribute j for which
the jth components of both a and b are in the same partition, i.e. the lowest level for which both
have the same generalized value. The weight, w(e), of an edge e = (a, b) is the sum over all
components j of the scaled generalization cost, i.e. w(e) =

∑
j ha,b(j)/lj (recall that the scaling

factor lj corresponds to the total number of levels of generalizations for the jth attribute). The jth

attribute is said to contribute a weight of ha,b(j)/lj to the edge e.

Limitations of the Graph Representation. As mentioned in Section 2, with this representation,
we lose some information about the structure of the problem, and cannot achieve a better than
Θ(k) approximation factor for the k-Anonymity problem. We show this by giving two instances
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(on binary alphabet) whose k-Anonymity cost differs by a factor of Θ(k), but the corresponding
graphs for both the instances are identical. Let l = 2k−2. For the first instance, take k vectors
with kl-dimensions each. The bit positions (i − 1)l + 1 to il are referred to as the ith block of a
vector. The ith vector has ones in the ith block and zeros everywhere else. The k-Anonymity cost
for this instance is k2l. For the second instance, take k vectors with 4l = 2k dimensions each. The
ith vector breaks up its 2k dimensions into 2i equal-sized blocks and has ones in the odd blocks
and zeros in the even blocks. This instance incurs a k-Anonymity cost of 4kl. Note that the graph
corresponding to both the instances is a k-clique with all the pairwise distances being 2l = 2k−1.

Definition 2 (Charge of a vertex) For any given k-Anonymity solution, define the charge of a
vertex to be the total generalization cost of the vector it represents.

Idea Behind the Algorithm. Let OPT denote the cost of an optimal k-Anonymity solution, i.e.,
OPT is the sum of the charges of all the vertices in an optimal k-Anonymity solution. Let F =
{T1, T2, . . . , Ts}, a spanning forest (i.e. a forest containing all the vertices) in which each tree Ti

has at least k vertices, be a subgraph of G. This forest describes a feasible partition for the k-
Anonymity problem. In the k-Anonymity solution as per this partition, the charge of each vertex
is no more than the weight of the tree containing the vertex; recall that the weight of a tree Ti is
given by W (Ti) = Σe∈E(Ti)w(e), where E(Ti) denotes the set of edges in tree Ti. We can see
this as follows: if attribute j has to be generalized to level r for the vertices in tree Ti (note that an
attribute is generalized to the same level for all rows in a cluster), there must exist a pair of vertices
(a, b) in the cluster which have an unscaled generalization cost ha,b(j) equal to r. Thus, attribute j
contributes a weight of at least r/lj to the length of all paths (in G) between a and b. In particular,
attribute j contributes a weight of at least r/lj to the weight of tree Ti. Next, we sum the charges
of all the vertices to get that the k-Anonymity cost of the partition corresponding to the forest F is
at most Σi|V (Ti)|W (Ti). We will refer to this as the k-Anonymity cost of the forest. Note that the
weight of a forest is simply the sum of the weights of its trees. Hence, the ratio of the k-Anonymity
cost to the weight of a forest is at most the number of vertices in the largest tree in the forest. This
implies that if we can find a forest with the size of the largest component at most L and weight at
most OPT , then we have an L-approximation algorithm. Next, we present an algorithm that finds
such a forest with L ≤ max{2k − 1, 3k − 5}.

The algorithm has the following overall structure, which is explained in more detail in the next two
subsections.

Outline of the Algorithm:

1. Create a forest G with cost at most OPT . The number of vertices in each tree is at least k.

2. Compute a decomposition of this forest (deleting edges is allowed) such that each compo-
nent has between k and max{2k − 1, 3k − 5} vertices. The decomposition is done in a way
that does not increase the sum of the costs of the edges.
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4.1 Algorithm for Producing a Forest with Trees of Size at least k

The key observation is that since each partition in a k-Anonymity solution groups a vertex with at
least k − 1 other vertices, the charge of a vertex is at least equal to its distance to its (k − 1)st

nearest neighbor. The idea is to construct a directed forest such that each vertex has at most one
outgoing edge and (−→u, v) is an edge only if v is one of the k − 1 nearest neighbors of u.

Algorithm FOREST

Invariant:

• The chosen edges do not create any cycle.
• The out-degree of each vertex is at most one.

1. Start with an empty edge set so that each vertex is in its own connected component.

2. Repeat until all components are of size at least k:

Pick any component T having size smaller than k. Let u be a vertex in T without any
outgoing edges. Since there are at most k − 2 other vertices in T , one of the k − 1
nearest neighbors of u, say v, must lie outside T . We add the edge (−→u, v) to the forest.
Observe that this step does not violate any of the invariants.

Lemma 3 The forest produced by algorithm FOREST has minimum tree size at least k and has
cost at most OPT .

Proof It is evident from the algorithm description that each component of the forest it produces
has at least k vertices.

Let the cost of an edge (−→u, v) be paid by vertex u. Note that each vertex u pays for at most one
edge to one of its k − 1 nearest neighbors. As noted earlier, this is less than the charge of this
vertex in any k-Anonymity solution. Thus, the sum of costs of all edges in the forest is less than
OPT , the total charge of all vertices in an optimal solution.

In what follows we consider the underlying undirected graph on the edges.

4.2 Algorithm to Decompose Large Components into Smaller Ones

We next show how to break any component with size greater than max{2k − 1, 3k − 5} into two
components each of size at least k. Let the size of the component we are breaking be s >
max{2k − 1, 3k − 5}.

Algorithm DECOMPOSE-COMPONENT

1. Pick any vertex u as the candidate vertex.

2. Root the tree at the candidate vertex u. Let U be the set of subtrees rooted at the children
of u. Let the size of the largest subtree of u be φ, rooted at vertex v. If s − φ ≥ k − 1, then
we do one of the following partition and terminate (see Figure 3).
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...

...

u

D

A

B

C

v

Figure 3: The decompositions corresponding to the sub-cases of the algorithm DECOMPOSE-
COMPONENT.

Steiner vertex

......

v’ u

v

Figure 4: The decomposition corresponding to case B; the left partition contains a Steiner vertex
v′ that does not contribute to its size.

A. If φ ≥ k and s− φ ≥ k, then partition the tree into the largest subtree and the rest.

B. If s − φ = k − 1, partition the tree into a component containing the subtrees rooted at
the children of v and the rest. To connect the children of v create a dummy vertex v′ to
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replace v. Note that v′ is only a Steiner vertex (see Figure 4) and does not contribute to
the size of the first component. Clearly, the sizes of both the components are at least k.

C. If φ = k−1, then partition into a component containing the subtree rooted at v along with
the vertex u and the rest. In order to connect the children of u in the second component,
we create a Steiner vertex u′.

D. Otherwise, all subtrees have size at most k − 2. In this case, we create an empty
partition and keep adding subtrees of u to it until the first time its size becomes at least
k − 1. Clearly, at this point, its size is at most 2k − 4. Put the remaining subtrees
(containing at least k − 1 vertices, since there are at least 3k − 4 vertices in all) into
the other partition. Observe that since s ≥ 2k, at most one of the partitions has size
equal to k − 1. If such a partition exists, add u to that partition, else add u to the first
partition. In order to keep the partition not containing u connected, a Steiner vertex u′

corresponding to u is placed in it.

3. Otherwise, pick the root of the largest subtree v as the new candidate vertex and go to Step
2.

Lemma 4 The above algorithm terminates.

Proof We will prove this by showing that the size of the largest component φ (in Step 2) decreases
in each iteration. Consider moving from candidate vertex u in one iteration to candidate vertex v
in the next iteration. Since the algorithm did not terminate with u, if we root the tree at v, then the
size of the subtree rooted at u is less than k − 1. When we consider the largest subtree under v,
either it is rooted at u, in which case, it is smaller than k − 1 < s− (k − 1) and the algorithm termi-
nates in this step; otherwise, the new largest subtree is a subtree of the previous largest subtree.

Theorem 5 There is a polynomial-time algorithm for the k-Anonymity problem, that achieves an
approximation ratio of max{2k − 1, 3k − 5}.

Proof First, use Algorithm FOREST to create a forest with cost at most OPT and minimum tree
size at least k. Then repeatedly apply Algorithm DECOMPOSE-COMPONENT to any component
that has size larger than max{2k− 1, 3k− 5}. Note that both these algorithms terminate in O(kn2)
time.

The above algorithm can also be used when the attributes are assigned weights and the goal is
to minimize the weighted generalization cost. In this case, the cost contributed by an attribute to
an edge in the graph G is multiplied by its weight. The rest of the algorithm proceeds as before. It
is also easy to extend the above analysis to the version of the problem where we allow an entire
row to be deleted from the published database, instead of forcing it to pair with at least k − 1
other rows. The deletion of an entire row is modeled as suppressing all the entries of that row
(or generalizing all the entries of that row to the highest level). The objective function is the same
as before: minimize the overall generalization cost. We first note that the distance between any
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two vertices is no more than the cost of deleting a vertex. Thus, if we run the same algorithm as
above, the total cost of the forest F produced by Algorithm FOREST is no more than the optimal
k-Anonymity cost (this is because the charge of any vertex in the optimal k-Anonymity solution
is still no less than its distance to its (k − 1)st nearest neighbor). The analysis for the rest of the
algorithm remains the same.

5. Improved Algorithm for 2-Anonymity

In this section, we study the special case of k = 2. The algorithm of the previous section gives a
3-approximation algorithm for this case. We improve upon this result for binary alphabet, and pro-
vide a polynomial-time 1.5-approximation algorithm for 2-Anonymity (note that for binary alphabet,
generalization is equivalent to suppression). This algorithm uses a technique that is completely
different from the previous algorithm, and could potentially be extended to get an improved ap-
proximation factor for the general case. For this algorithm, we use the minimum-weight [1, 2]-factor
of a graph constructed from the 2-Anonymity instance. A [1, 2]-factor of an edge-weighted graph G
is defined to be a spanning (i.e., containing all the vertices) subgraph F of G such that each vertex
in F has degree 1 or 2. The weight of F is the sum of the weights of the edges in F . Cornuejols
(1988) showed that a minimum-weight [1, 2]-factor of a graph can be computed in polynomial time.

Given an instance of the 2-Anonymity problem on binary alphabet, we create an edge-weighted
complete graph G = (V,E) as follows. The vertex set V contains a vertex corresponding to each
vector in the 2-Anonymity problem. The weight of an edge (a, b) is the Hamming distance between
the vectors represented by a and b (i.e., the number of positions at which they differ). First we
obtain a minimum-weight [1, 2]-factor F of G. By optimality, F is a vertex-disjoint collection of
edges and pairs of adjacent edges (if a [1, 2]-factor has a component which is either a cycle or a
path of length ≥ 3, we can obtain a [1, 2]-factor of smaller weight by removing edge(s)). We treat
each component of F as a cluster, i.e., retain the bits on which all the vectors in the cluster agree
and replace all other bits by ∗s. Clearly, this results in a 2-anonymized table.

Theorem 6 The number of ∗s introduced by the above algorithm is at most 1.5 times the number
of ∗s in an optimal 2-Anonymity solution.

Before we prove this theorem, consider three m-bit vectors x1, x2 and x3 with pairwise Hamming
distances α, β and γ as shown in Figure 5. Without loss of generality, let γ ≥ α, β. Let xmed denote
the median vector whose ith bit is the majority of the ith bits of x1, x2 and x3 and let p, q and r be
the Hamming distances to xmed from x1, x2 and x3 respectively. Let xs be the star vector obtained
by minimal suppression of x1, x2 and x3, i.e., it has the common bits where the three vectors agree
and ∗s elsewhere. Observe that α = q + r, β = r + p and γ = p + q. The other relevant distances
are shown in the figure.

Observation 7 If vertices x1, x2 and x3 (as shown in Figure 5) form a cluster in a k-Anonymity
solution, the number of ∗s in each modified vector is exactly equal to p + q + r = 1

2(α + β + γ). If
the cluster contains additional vertices, then the number of ∗s is at least 1

2(α + β + γ).

To see this, first note that since xmed is the median vertex, the attributes that contribute to p, q and
r are distinct. Therefore, the number of ∗s in each modified vector is at least p + q + r. Moreover,
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Figure 5: Three vectors and their corresponding “median” and “star” vectors

when x1, x2 and x3 are the only three vertices in the cluster, each attribute corresponding to a ∗ in
the modified vector contributes to exactly one of p, q and r.

Let cOFAC denote the weight of an optimal [1, 2]-factor, let cALG be the cost of the 2-Anonymity
solution obtained from it and let OPT denote the cost of the optimal 2-Anonymity solution respec-
tively. The optimal 2-Anonymity solution can be assumed to consist only of disjoint clusters of size
2 or 3 (as bigger clusters can be broken into such clusters without increasing the cost). We can
derive a [1, 2]-factor from this solution as follows: for each cluster of size 2, include the edge be-
tween the two vertices; for a cluster of size 3, include the two lighter edges of the triangle formed
by the three vertices. Denote the weight of this [1, 2]-factor by cFAC .

Lemma 8 cALG ≤ 3 · cOFAC

Proof Consider the optimal [1, 2]-factor and the k-Anonymity solution corresponding to it. For a
cluster of size 2, we have to suppress all the bits at which the two vectors differ so that the total
number of ∗s in the two rows is twice the Hamming distance (which is equal to the edge weight).
For a cluster of size 3, say the one in the figure, by Observation 7, the number of ∗s in each row
is exactly (α + β + γ)/2. So, the total number of stars is 3

2(α + β + γ) ≤ 3(α + β) (using triangle
inequality). The optimal [1, 2]-factor would have contained the two lighter edges of the triangle,
incurring a cost of (α + β) for this cluster. Summing over all the clusters formed by the optimal
[1, 2]-factor algorithm, we get cALG ≤ 3 · cOFAC .

Lemma 9 cFAC ≤ 1
2OPT

Proof Consider the optimal k-Anonymity solution and the [1, 2]-factor corresponding to it. For a
cluster of size 2, cost incurred by the [1, 2]-factor FAC is equal to half the cost incurred in OPT . For
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a cluster of size 3, say the one in Figure 5, cost incurred in FAC is equal to α+β ≤ 2
3(α+β +γ) =

4
3(p + q + r), where the inequality is obtained by using the fact γ ≥ α, β. Since the cost incurred in
OPT is 3(p + q + r), cost incurred in FAC is at most half the cost incurred in OPT . By summing
over all the clusters, we get cFAC ≤ OPT/2.

Since cOFAC ≤ cFAC , it follows from the above lemmas that cALG ≤ 3
2OPT , which proves Theo-

rem 6. For an arbitrary alphabet size, xmed is no longer defined. However, it can be shown that
OPT ≥ (α+β+γ) ≥ 3

2(α+β), proving cFAC ≤ 2
3OPT . Since cALG ≤ 3·cOFAC holds as before, we

get cALG ≤ 2 ·OPT . Thus, the same algorithm achieves a factor 2 approximation for 2-Anonymity
with Suppression for arbitrary alphabet size.

6. Improved Algorithm for 3-Anonymity

We now present a 2-approximation algorithm for 3-Anonymity with a binary alphabet (again gen-
eralization is equivalent to suppression in this case). The idea is similar to the algorithm for 2-
Anonymity. We construct the graph G corresponding to the 3-Anonymity instance as in the pre-
vious algorithm. A 2-factor of a graph is a spanning subgraph with each vertex having degree
2 (in other words, a collection of vertex-disjoint cycles spanning all the vertices). We first run
the polynomial-time algorithm to find a minimum-weight 2-factor F of the graph G (Cornuejols,
1988). We show that the cost of this 2-factor, say cOFAC , is at most 2/3 times the cost of the
optimal 3-Anonymity solution, say OPT . Then, we show how to transform this 2-factor F into a
3-Anonymity solution ALG of cost cALG ≤ 3 · cOFAC , giving us a factor-2 approximation algorithm
for 3-Anonymity.

Lemma 10 The cost of the optimal 2-factor, cOFAC on graph G corresponding to the vectors in the
3-Anonymity instance is at most 2

3 times the cost of the optimal 3-Anonymity solution, OPT .

Proof Consider the optimal 3-Anonymity solution. Observe that it will cluster 3, 4 or 5 vertices
together (any larger groups can be broken up into smaller groups of size at least 3, without increas-
ing the cost of the solution). Given an optimal solution to the 3-Anonymity problem, we construct a
2-factor solution as follows: for every cluster of the 3-Anonymity solution, pick the minimum-weight
cycle involving the vertices of the cluster. Next, we analyze the cost cFAC of this 2-factor. Define
the charge of a vertex to be the number of ∗s in the vector corresponding to this vertex in the
3-Anonymity solution. We consider the following three cases:

(a) If a cluster i is of size 3, the 2-factor contains a triangle on the corresponding vertices.
Let a, b and c be the lengths of the edges of the triangle. By Observation 7, we get that
(a + b + c) is twice the charge of each vertex in this cluster. Thus, OPT pays a total cost of
OPTi = 3

2(a + b + c) while FAC pays cFAC,i = a + b + c = 2
3OPTi.

(b) If a cluster i is of size 4, the 2-factor corresponds to the cheapest 4-cycle on the four vertices.
Let τ be the sum of the weights of all the

(
4
2

)
= 6 edges on these four vertices. Consider

the three 4-cycles on these vertices. As each edge appears in two 4-cycles, the average
cost of a 4-cycle is 2

3τ . By choosing the minimum weight 4-cycle, we ensure that the cost
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paid by FAC for these vertices cFAC,i ≤ 2
3τ . Also, by Observation 7, the charge of any of

these 4 vertices is at least half the cost of any triangle on (three of) these four vertices. The
cost of the most expensive triangle is at least equal to the average cost over all the

(
4
3

)
= 4

triangles, which is equal to 2
4τ (since each edge appears in two triangles). Hence the cost

paid by OPT , OPTi ≥ 4 · 1
2 ·

2
4 · τ = τ . Thus, cFAC,i ≤ 2

3OPTi.

(c) If a cluster i is of size 5, let τ be the sum of weights of all
(
5
2

)
= 10 edges on these five

vertices. By an argument similar argument to (b), FAC pays cFAC,i ≤ 5
10τ . Also, the charge

of any of these vertices is at least half the cost of any triangle on (three of) these vertices.
Since the average cost of a triangle is 3

10τ , the number of ∗s in each vertex is at least 1
2

3
10τ .

Thus, cost paid by OPT for cluster i, OPTi ≥ 5 · 1
2 ·

3
10 · τ = 3

4τ . Thus, cFAC,i ≤ 2
3OPTi.

Thus, adding up over all clusters, we get cFAC ≤ 2
3OPT . Thus, cOFAC ≤ 2

3OPT .

Lemma 11 Given a 2-factor F with cost cF , we can get a solution for 3-Anonymity of cost cALG ≤
3 · cF .

Proof To get a solution for 3-Anonymity, we make every cycle in F with size 3, 4 or 5 into a cluster.
Let len(C) denote the length of a cycle C in the 2-factor. For each cycle larger C, if len(C) = 3x
for x an integer, then we decompose it into x clusters, each containing 3 adjacent vertices of C.
Similarly, if len(C) = 3x+1, x an integer, we decompose it into x clusters: x− 1 of size 3, and one
of size 4. If len(C) = 3x + 2, x an integer, then we decompose it into x − 2 clusters of size 3, and
two clusters of size 4. In all these cases, of all the possible decompositions, we choose the one in
which the total cost of edges of the cycle within the clusters is minimized. Depending on the size
of the cycle C in the 2-factor, we can show that the 3-Anonymity solution ALG pays as follows:

(a) For a triangle, ALG pays 3 · 1
2 len(C) ≤ 3 · len(C).

(b) For a 4-cycle, ALG pays at most 4 · 1
2 len(C) ≤ 3 · len(C).

(c) For a 5-cycle, ALG pays at most 5 · 1
2 len(C) ≤ 3 · len(C).

The above inequalities follow from an observation similar to Observation 7, namely that the
vertices of a cycle C can differ in at most 1

2 len(C) attributes.

(e) For a (3x+1)-cycle, x > 1, ALG pays at most 6(x−1)+12
3x+1 · len(C) ≤ 3 · len(C). This is obtained

by considering the minimum 3-Anonymity cost over the (3x+1) possible decompositions into
clusters. Each edge e of the cycle C appears in a cluster of size 4 in three decompositions
and contributes a cost of at most 4w(e) to the k-Anonymity cost of the decomposition. In
addition, each edge appears in a cluster of size 3 in (2(x − 1)) decompositions contributing
a cost of at most 3w(e) to the k-Anonymity cost of these decompositions. Summing over all
edges, the total k-Anonymity cost of all the 3x + 1 decompositions is at most (3 · 2(x − 1) +
4 · 3) · len(C) and ALG pays no more than the average cost of a decomposition.
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(f) For a (3x+2)-cycle, x > 1, ALG pays at most 6(x−2)+24
3x+2 · len(C) ≤ 3 · len(C). This is obtained

by an analysis similar to (e) above. Note that we get a better bound on the cost by splitting
into x− 2 clusters of size 3 and two clusters of size 4, instead of x− 1 clusters of size 3 and
one clusters of size 5.

Thus, summing over all clusters, ALG pays no more than three times the total cost of all cycles,
i.e., cALG ≤ 3 · cF .

Note that the above analysis is tight, since equality can hold in case (f), when x = 2, e.g. for vectors
{0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000}, where the optimal 2-factor is a cycle through all the
vertices in the given order.

Combining the above lemmas, we obtain a factor 2 approximation for 3-Anonymity.

7. Conclusion and further research directions

We show that the k-Anonymity problem is NP-hard even when the attribute values are ternary
and we are allowed only to suppress entries. Then we gave an O(k)-approximation algorithm for
k-Anonymity with Generalization for arbitrary k and arbitrary alphabet size. For a binary alphabet,
we provided improved approximation algorithms for k = 2 (an approximation factor of 1.5) and
k = 3 (an approximation factor of 2). We also showed that for k-Anonymity, it is not possible to
achieve an approximation factor better than k/4 by using the graph representation. It would also
be interesting to see a hardness of approximation result for k-Anonymity without assuming the
graph representation.

Releasing a database after k-anonymization prevents definitive record linkages with publicly avail-
able databases (Sweeney, 2002). In particular, for each record in the public database, at least
k records in the k-anonymized database could correspond to it, which hides each individual in a
crowd of k other people. The privacy parameter k must be chosen according to the application in
order to ensure the required level of privacy. One source of concern about the k-anonymization
model is that for a given record in the public database, all the k records corresponding to it in the
anonymized database might have the same value of the sensitive attribute(s) (“Diseases” in our
examples), thus revealing the sensitive attribute(s) conclusively. To address this issue, we could
add a constraint that specifies that for each cluster in the k-anonymized database, the sensitive
attribute(s) should take at least r distinct values. Recently Machanavajjhala, Kifer, Gehrke, and
Venkitasubramaniam (2006) propose imposing additional constraints that there be a good repre-
sentation of sensitive attributes for each block of k-anonymized records.

Another interesting direction of research is to extend the basic k-Anonymity model to deal with
changes in the database. A hospital may want to periodically release an anonymized version of
its patient database. However, releasing several anonymized versions of a database might leak
enough information to enable record linkages for some of the records. It would be useful to extend
the k-Anonymity framework to handle inserts, deletes and updates to a database.
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