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ABSTRACT
The question of how to publish an anonymized search log was
brought to the forefront by a well-intentioned, but privacy-unaware
AOL search log release. Since then a series of ad-hoc techniques
have been proposed in the literature, though none are known to be
provably private. In this paper, we take a major step towards a so-
lution: we show how queries, clicks and their associated perturbed
counts can be published in a manner that rigorously preserves pri-
vacy. Our algorithm is decidedly simple to state, but non-trivial to
analyze. On the opposite side of privacy is the question of whether
the data we can safely publish is of any use. Our findings offer a
glimmer of hope: we demonstrate that a non-negligible fraction of
queries and clicks can indeed be safely published via a collection of
experiments on a real search log. In addition, we select an applica-
tion, keyword generation, and show that the keyword suggestions
generated from the perturbed data resemble those generated from
the original data.

Categories and Subject Descriptors: H.2.0 [Database Manage-
ment]: Security, integrity, and protection; H.3 [Information Storage
and Retrieval]; G.2.3 [Mathematics of Computing]; K.4 [Comput-
ers and Society];

General Terms: Algorithms, Experimentation, Human Factors,
Legal Aspects, Measurement, Performance, Security, Theory

1. INTRODUCTION
Web search logs collect queries and clicks of users as they inter-

act with a search engine. These logs have been successfully used
by search engines in order to improve the quality of search results:
for example, to fix spelling errors, suggest related searches, expand
acronyms and estimate query popularity over time.

The release of these logs to the greater public would be a great
benefit to society. Computer science researchers have been build-
ing a case for search log access [4, 25] so that they could study and
analyze new IR algorithms via a common benchmark search log, as
well as learn about user information needs and query formulation
approaches. Social scientists could investigate the use of language
in queries as well as discrepancies between user interests as re-
vealed by their queries versus as revealed by face-to-face surveys
[24]. Advertisers could use the logs to understand how users navi-
gate to their pages, gain a better understanding of their competitors,
and improve keyword advertising campaigns.
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On the other hand, the release of these logs to the greater public
would be catastrophic from a privacy perspective. Users communi-
cate with a search engine in an uninhibited manner, leaving behind
an electronic trail of confidential thoughts and painfully identifiable
information. For example, users search for their own name [17] or
the names of their friends, home address, their health concerns, as
well as names of their family and friends. Users even enter their
credit card number and social security number just to find out what
information is present on the web. It would be irresponsible for a
search engine company to release this data without modification.

The open question to date is if there even exists a way to publish
search logs in a perturbed fashion in a manner that is simultane-
ously useful and private. At first blush, the problem seems decep-
tively easy: why not just replace usernames with random identi-
fiers? This simplistic view led to an AOL data release in 2006 in
which the searches of an innocent citizen were quickly identified by
a newspaper journalist [5]. As a consequence of releasing this pri-
vate data set the CTO of AOL resigned, two employees were fired,
a class action lawsuit is pending, and the event lives on as one of
the “101 Dumbest Moments in Business” [14].

Further ad-hoc techniques have been explored in the literature.
Kumar et al [19] consider tokenizing each search query and se-
curely hashing the token into an identifier. Hashing gives only the
appearance of privacy and, indeed, the authors show that hashes
can be inverted by using token frequencies and other search logs.

An important lesson from decades of research in cryptography
is that ad-hoc methods do not work. At issue is the fact that a
data releaser does not know a priori what information an attacker
will use in concert with the released data to deduce more private
information. In the case of token-based hashing, prior search log
releases were used. In the case of NetFlix [22], anonymized user
ratings were combined with IMDb ratings to infer individuals.

1.1 Contributions
In this paper, we take a first significant step towards a solution.

Rather than producing a search log, we consider the problem of
releasing a query click graph. Rather than relying on intuition for
showing that our approach provides privacy, we utilize a formal
definition due to Dwork et al [11] that allows for an attacker with
arbitrary prior knowledge, and design an algorithm for releasing a
query-click graph that provably satisfies that definition.

Utility: We propose to publish a query click graph where the
vertices correspond to both queries and URLs and there is an edge
from a query to a URL with weight equal to the number of users
who click on that URL given they posed the query. Each query
node is labeled by the number of times this query was posed in the
log. Similarly, there is an edge from one query to another query
with weight equal to the number of users who posed one query and
reformulated to another.
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The query click graph is the basis for many uses of the search
log [8, 3]. Query suggestions can be derived using common query
reformulations. Spelling corrections can be inferred from queries
with low click through and high reformulation rates. Similar queries
can be found using common URLs clicked for those queries. Query
classification and keyword generation can also be deduced from the
query click graph [13].

Privacy: From the privacy side, we adapt the differential privacy
definition [11]. In a nutshell, the definition states that upon seeing
a published data set an attacker should gain little knowledge about
any specific individual.

The algorithm for producing a Private Query Click graph is quite
simple and can be intuitively described as “throw away tail queries”:

Queries: To determine which queries to publish, if the frequency
of the query plus some noise exceeds some threshold, we publish
the query, otherwise we do not. We also publish the number of
times the query was posed plus noise.

URLs: Given the queries that are safe to publish, the ten URLs
surfaced are also safe to publish because anyone can pose a query
to a search engine and see the top ten links. To publish the number
of users who click on a result, we compute the actual number and
add noise.

Our privacy proofs demonstrate that each of these steps indi-
vidually preserves privacy and further that the composition of the
steps also preserves privacy. In addition, we precisely characterize
the trade-off between privacy and threshold used for publishing a
query: the more stringent the privacy requirement, the higher the
threshold, and consequently the fewer the number of queries that
can be safely published.

Experiments: Given the privacy theorems, we next consider
whether what we can publish from a real search log is of any use.
We show that the fraction of distinct queries that can be published,
as well as the amount of search volume involving those queries,
is non-negligible. We then select two applications, keyword gen-
eration and studying human fears, and demonstrate that keywords
and fears obtained from our perturbed logs closely resemble those
obtained from the original unperturbed data. The experiments are
an indication that it may be possible, if only in a limited sense, to
bridge the gap between privacy and utility.

2. RELATED WORK
We describe work related to both search log anonymization and

differential privacy.

2.1 Search Log Anonymization
The AOL search log release sparked interest in the problem of

search log anonymization. In that data set, usernames were masked
with random identifiers [2] and, in a matter of days, a New York
Times reporter identified Thelma Arnold, a 62-year old widow from
Lilburn, GA as user #4417749 [5], and her queries ranging from
landscapers in her town to diseases of her friends.

Following AOL’s release, many other ad-hoc techniques have
been proposed. For example, if removing usernames is not enough,
then it is natural to wonder if removing session IDs preserves pri-
vacy. It turns out that such an approach fails since one can design
user models of approximate time that passes in between queries to
stitch together sessions via the timestamps. Beyond inferring ses-
sions, the heart of the problem lies in the fact that revealing a single
query such as a credit card number breaks privacy.

If the queries themselves are private, then it is natural to wonder
if hashing the queries preserves privacy. In fact, that too fails as
Kumar et al [19] nicely argue. They show that tokenizing a query,
hashing the tokens and publishing the hashes does not preserve pri-

vacy since an adversary who has access to another log can reverse-
engineer the tokens by utilizing the frequency with which the query
appears in the log.

Jones et al [16] study an application of simple classifiers to con-
nect a sequence of queries to the location, gender and age of the
user issuing the queries, and argue that releasing a query log poses
a privacy threat because these three characteristics of the user can
be used to create a set of candidate users who might have posed that
query. Their more recent work [17] investigates privacy leaks that
are possible even when queries from multiple users are grouped
together and no user or session identifiers are released.

In short, while many papers describe ad-hoc techniques [25, 1]
the results are, by and large, negative for privacy. Thus, the ques-
tion of how to anonymize a search log remains open.

Our work focuses on a seemingly more attainable goal of releas-
ing a private query click graph. While this graph is not as powerful
as the actual search log, many computations can still be performed
on the click graph with results similar to the actual search log, e.g.,
finding similar queries, keyword generation, and performing spell
corrections.

2.2 Differential Privacy
If there is any lesson to be drawn from decades of cryptography

and the many privacy compromises in published datasets, it is that
ad-hoc techniques do not work [9]. The way to achieve privacy
is to start with a rigorous definition and design an algorithm that
satisfies the privacy definition.

Our paper is the first to take a concrete definition of privacy,
differential privacy, and design an algorithm for producing a pri-
vate query click graph that provably satisfies that definition. We
choose differential privacy because it does not stipulate the prior
knowledge of the attacker: regardless of what the attacker knows,
releasing data that satisfies the differential privacy definition will
not substantially increase the attacker’s chance of inferring some-
thing about an individual. A formal definition appears in Section 3.

Many algorithms exist for publishing data in a differentially pri-
vate manner. The seminal work of Dwork et al [11] shows that any
function with low sensitivity can be computed privately. A func-
tion has low sensitivity if the addition or removal of one person
can only change the outcome of the function evaluation by a small
amount. We use the ideas developed in [11] for our analysis. The
aggregate statistical values reflected in our query click graph have
low sensitivity, provided that each user issues a bounded number of
queries.

Randomly sampling a data set is known to be differentially pri-
vate [7], but only under the assumption that there are few rare
values. In the web context, it is more likely that every person’s
searches are a unique fingerprint to them; thus, randomly sampling
the search log breaks privacy.

Prior to our work, no differentially private algorithm was known
for efficiently publishing a query click graph. A mechanism due
to McSherry and Talwar [20] and Blum et al [6] could be adapted
to this task in theory but is not feasible in practice, as this mecha-
nism takes time exponential in the size of the output space. More
recently, McSherry and Talwar have proposed an algorithm for re-
leasing synthetic queries [21] that holds promise for synthetic data
releases.

3. PRIVACY DEFINITION
In this section we describe the differential privacy definition that

was first conceived by Dwork et al [11]. Intuitively, a data releaser
preserves privacy if no attacker gains significant knowledge about
an individual’s private searches beyond what the attacker could
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have learned from a similar neighboring search log in which that
individual’s searches are modified or removed. To formalize this
intuition, we require that for all pairs of neighboring search logs
that differ in one user’s searches and all possible published query
click graphs, the probability that any subset of query click graphs is
published from one log is within an eε multiplicative factor of the
probability that that subset is published from the neighboring log,
plus an additive δ component.

Definition 1. A randomized algorithm A is (ε, δ)-differentially
private if for all data sets D1 and D2 differing in at most one user
and all D̂ ⊆ Range(A) : Pr[A(D1) ∈ D̂] ≤ eε · Pr[A(D2) ∈
D̂] + δ.

Differential privacy captures the desired notion of privacy that
the risk to one’s privacy should not substantially increase as a result
of participating in the dataset (e.g. as a result of using the search en-
gine), by guaranteeing that any given disclosure is almost as likely
whether or not the individual participates in the dataset. Differen-
tial privacy also does not make any assumptions about adversary’s
computational power or ability to access additional data beyond
the release. Although differential privacy is not an absolute privacy
guarantee, in the setting when we have to trade-off the benefits of
the data release with user privacy, differential privacy ensures that
the amount of additional privacy risks incurred by users is limited.

In the first definition of differential privacy [11], δ = 0. Subse-
quent work [10] relaxed the definition to include a non-zero addi-
tive component.

There are no hard and fast rules for setting ε and δ – it is generally
left to the data releaser. One consideration to take into account
when choosing δ is the number of users participating in the dataset.
Indeed, imagine that every person’s every query is private - e.g.
the log consists of searches for names and social security numbers.
Then δ > 1

number of users suggests that at least one person’s privacy
is compromised. Of course, imagining that a search log consists
of only sensitive queries is a very paranoid view of privacy but
nonetheless, the magnitude of 1

number of users is useful to keep in mind
when choosing δ.

4. ALGORITHM FOR RELEASING SEARCH
QUERIES AND CLICKS

We next describe our algorithm for generating a private query
click graph. The key components are: determining which queries
to publish, together with the number of times the query was posed
and, further, determining which URLs to publish, together with the
number of times the URL was clicked for each query. Our basic
method for accomplishing these tasks utilizes a noisy count: for
any statistic x of the data, the noisy count of x is x+ Lap(b), where
Lap(b) denotes a random variable drawn independently from the
Laplace distribution with mean zero and scale parameter b.

At a high-level, the algorithm proceeds as follows.

1. Limit User Activity: Keep only the first d queries posed by
each user and first dc URL clicks of each user (Line 2 of
Algorithm 1).

2. Queries: If the noisy count of the number of times a query
is posed exceeds a specified threshold, output the query to-
gether with its noisy count (Lines 3-5 of Algorithm 1).

3. URLs: If a query is safe to publish, then the ten URLs that
are surfaced for that query are also safe to publish since any-
one can pose the query to a search engine and see the ten re-
sults. For each query and ten surfaced URLs for that query,

we output the noisy count of the number of times each URL
was clicked for that query (Line 6 of Algorithm 1).

Some comments about the algorithm are in order.
(1) We limit user activity in order to preserve privacy: if a user can
contribute an unbounded number of queries and clicks then they
can have an unlimited influence on the set of queries that are pub-
lished (and the URLs that are clicked). In practice, a typical user
does not pose an unlimited number of queries anyway — studies
suggest that an average user poses about 34 queries per month [12].
(2) While the main idea of throwing away tail queries is quite nat-
ural and has been previously suggested in the literature [1], this pa-
per is the first to mathematically quantify exactly how to perform
this operation so as to preserve privacy with respect to a rigorous
privacy definition. Indeed, our theorems in subsequent sections es-
tablish a direct connection between the threshold used for defining
a tail query and the resulting privacy guarantees.
(3) Because our algorithm does not release any fake queries (i.e. the
queries it releases are a subset of the queries present in the original
log), it won’t satisfy differential privacy with δ = 0. For example,
in the event that a user poses a search query q in log D1 that does
not appear in the neighboring log D2, then there’s a non-zero prob-
ability that q is published when starting from log D1 and a zero
probability that q is published when starting from log D2. Hence
the former probability cannot be upper bounded by the latter prob-
ability without the extra help of a non-zero additive component δ.
(4) It is crucial to note that every time our algorithm computes the
noisy count, the noise should be generated independently from the
Laplace distribution.

Algorithm 1 Release-Data
1: Input: D - search log, d, dc - parameters that limit user ac-

tivity, b, bq, bc - noise parameters, K - threshold that defines
tail.

2: Limit-User-Activity: D ← Keep the first d queries and the
first dc URL clicks of each user.

3: For each query q, let M(q, D) = number of times q appears in
D

4: Select-Queries: Q ← {q : M(q, D) + Lap(b) > K}
5: Get-Query-Counts: For each q in Q, output 〈q, M(q, D) +

Lap(bq)〉
6: Get-Click-Counts: For each URL u in the top ten results for

q ∈ Q, output 〈q, u, number of times u was clicked when q
was posed +Lap(bc)〉.

5. PRIVACY GUARANTEES
We now state formally the (ε, δ)-differential privacy guarantees

that our algorithm provides. We then provide a sketch of the proof
that each of the individual steps preserves privacy and, further, that
their composition preserves privacy.

Let K, d, dc, b, bq, bc be the parameters of Algorithm 1 such that
K ≥ d. Define α = max(e1/b, 1 + 1

2e(K−1)/b−1
) and the mul-

tiplicative and additive privacy parameters as εalg = d · ln(α) +
d/bq + dc/bc and δalg = d

2
exp( d−K

b
).

THEOREM 1. Algorithm 1 is (εalg, δalg)-differentially private
for every pair of search logs differing in one user, where εalg and
δalg are defined as above.

5.1 Proof Overview
In order to prove Theorem 1, we will show that each step of the

algorithm is differentially private for appropriate values of ε and δ
and that their composition is also differentially private.
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Lemma 1. Select-Queries is (d · ln(α), δalg)-differentially pri-
vate if each user is limited to posing at most d queries, where α and
δalg are defined as above.

Lemma 2. Get-Query-Counts is (d/bq, 0)-differentially private.

Lemma 3. Get-Click-Counts is (dc/bc, 0)-differentially private.

Lemma 4. Suppose Select-Queries is (ε1, δ)-differentially pri-
vate, Get-Query-Counts is (ε2, 0)-differentially private, and Get-
Click-Counts is (ε3, 0)-differentially private. Then Algorithm 1 is
(ε1 + ε2 + ε3, δ)-differentially private.

Theorem 1 follows from Lemmas 1, 2, 3, and 4. We next sketch
the key ideas in the proofs of the above lemmas.

5.2 Privacy for Selecting Queries
We first prove the guarantees for Select-Queries when each user

can pose at most one query (Lemma 5) and then generalize the
proof to hold for d queries per user to obtain Lemma 1.

Privacy for Select-Queries with d = 1:

Let α = max(e1/b, 1 + 1

2e(K−1)/b−1
) and δ1 = 1

2
e

1−K
b . Denote

the Select-Queries algorithm by A.

Lemma 5. If each user can pose at most one query and K ≥ 1,
then Select-Queries satisfies (ln(α), δ1)-differential privacy.

PROOF. Let D1 and D2 be arbitrary search logs that differ in
exactly one query q∗ posed by some user such that D2 is the larger
of the two logs. Let D̂ ⊆ Range(A) denote an arbitrary set of
possible outputs. Then we need to show the following:

Pr[A(D1) ∈ D̂] ≤ αPr[A(D2) ∈ D̂] + δ1 (1)

Pr[A(D2) ∈ D̂] ≤ αPr[A(D1) ∈ D̂] + δ1 (2)

We consider two different scenarios depending on whether q∗ al-
ready appears as a query of some user in D1 or it is a new query. For
the first case, we do not need the additive parameter (i.e., δ1 = 0
works) as we can bound the ratio of the probabilities in each expres-
sion above. The key idea is to notice that q∗ has a slightly higher
probability of being released from D2 compared to D1 and to ar-
gue that the ratio of these probabilities can be bounded. However,
for the second case, q∗ can never be released from D1, and hence
we cannot bound the ratio of the probabilities. Instead, we make
use of the fact that q∗ occurs only once in D2 and use the additive
parameter δ1 to bound the probability that its noisy count exceeds
the threshold K.

Recall that our algorithm A only produces a subset of queries
contained in D1 (or D2). Hence, any set of queries O that contains
some query not present in D1 or D2 need not be considered as part
of D̂ in our analysis, as the probability that A produces O is zero,
with D1 or D2 as input. We also partition D̂ into two subsets: D̂+,
the query sets in D̂ that contain q∗ and D̂−, the query sets in D̂
that do not contain q∗.

Throughout the proof, we will utilize Observations 2, 3 and 4
described in the Appendix, which are useful tools for dealing with
properties of ratios and of the Laplace distribution.

Case 1: q∗ ∈ D1

Let M(q, D) be the number of times query q appears in the search
log D. Then, M(q∗, D1) ≥ 1, M(q∗, D2) = M(q∗, D1) + 1.

We first prove inequality (1) with α = e1/b and δ1 = 0 by upper

bounding the ratio Pr[A(D1)∈D̂]

Pr[A(D2)∈D̂]
, which we denote by R1

2.

From our partition of D̂ into D̂+ and D̂− and using observa-
tion 4,1 we have:
R1

2 = Pr[A(D1)∈D̂]

Pr[A(D2)∈D̂]
= Pr[A(D1)∈D̂+]+Pr[A(D1)∈D̂−]

Pr[A(D2)∈D̂+]+Pr[A(D2)∈D̂−]

≤ max
“

Pr[A(D1)∈D̂+]

Pr[A(D2)∈D̂+]
, Pr[A(D1)∈D̂−]

Pr[A(D2)∈D̂−]

”

Consider now the ratio Pr[A(D1)∈D̂+]

Pr[A(D2)∈D̂+]
. Recall that in our algo-

rithm, the decision to release a particular query is made indepen-
dently for each query and that D1 and D2 differ only in the number
of times that q∗ occurs in each of them. Hence, for a particular pos-
sible output O, s.t. q∗ ∈ O: Pr[A(D1)=O]

Pr[A(D2)=O]
= Pr[q∗released by A(D1)]

Pr[q∗released by A(D2)]
.

Generalizing this observation to all outputs Oi ∈ D̂+ we obtain:
Pr[A(D1)∈D̂+]

Pr[A(D2)∈D̂+]
=

P

O∈D̂+ Pr[A(D1)=O]
P

O∈D̂+ Pr[A(D2)=O]
= Pr[q∗released by A(D1)]

Pr[q∗released by A(D2)]
=

Pr[M(q∗,D1)+Lap(b)>K]
Pr[M(q∗,D2)+Lap(b)>K]

= Pr[M(q∗,D1)+Lap(b)>K]
Pr[M(q∗,D1)+1+Lap(b)>K]

By analogous reasoning with respect to D̂− we obtain:
Pr[A(D1)∈D̂−]

Pr[A(D2)∈D̂−]
= Pr[M(q∗,D1)+Lap(b)<K]

Pr[M(q∗,D2)+Lap(b)<K]
= Pr[M(q∗,D1)+Lap(b)<K]

Pr[M(q∗,D1)+1+Lap(b)<K]

From these two bounds on the ratios, we bound R1
2:

R1
2 ≤ max

“

Pr[M(q∗,D1)+Lap(b)>K]
Pr[M(q∗,D1)+1+Lap(b)>K]

, Pr[M(q∗,D1)+Lap(b)<K]
Pr[M(q∗,D1)+1+Lap(b)<K]

”

,

which by Observation 3 implies that

R1
2 =

Pr[A(D1) ∈ D̂]

Pr[A(D2) ∈ D̂]
≤ max(1, e1/b) = e1/b (3)

proving inequality (1), as desired.
A similar analysis can be performed to show that

Pr[A(D2) ∈ D̂]

Pr[A(D1) ∈ D̂]
≤ e1/b, (4)

yielding the proof of inequality (2) with α = e1/b and δ1 = 0.

Case 2: q∗ /∈ D1, q∗ ∈ D2

We now proceed to prove inequality (1) with α = 1

1−0.5 exp( 1−K
b

)

and δ1 = 0.
First consider outputs that do not contain the new query q∗. By

similar reasoning as in Case 1, the probability of obtaining an out-
put O, where O ∈ D̂− when starting from the D2 log differs from
the probability of obtaining an output O, when starting from D1

only in the choice that the algorithm has to make for query q∗.
Hence, Pr[A(D2) ∈ D̂−] = Pr[q∗ was not released byA(D2)] ·
Pr[A(D1) ∈ D̂−] and

Pr[A(D1) ∈ D̂−]

Pr[A(D2) ∈ D̂−]
=

1

Pr[q∗ 
∈ A(D2)]
(5)

=
1

Pr[1 + Lap(b) < K]
=

1

1 − 0.5 exp( 1−K
b

)
(6)

Since query q∗ is not present in D1, our algorithm would not
produce any output containing q∗ when given D1 as input, and so
Pr[A(D1) ∈ D̂+] = 0.

Using the partition of D̂ into D̂+ and D̂− we have:

Pr[A(D1) ∈ D̂]

Pr[A(D2) ∈ D̂]
=

Pr[A(D1) ∈ D̂−]

Pr[A(D2) ∈ D̂+] + Pr[A(D2) ∈ D̂−]

≤ Pr[A(D1) ∈ D̂−]

Pr[A(D2) ∈ D̂−]
≤ 1

1 − 0.5 exp( 1−K
b

)
(7)

proving inequality (1), as desired.
1Observation 4 holds only for positive denominators. In the event
that either or both the denominators are zero, it can be shown that
the differential privacy bound continues to hold.
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It remains to show that in this case, inequality (2) is satisfied with
α = 1 − 0.5 exp( 1−K

b
) and δ1 = 0.5 exp( 1−K

b
).

Observe that

Pr[A(D2) ∈ D̂+] ≤ Pr[q∗ was released] =

= Pr[M(q∗, D2) + Lap(b1) > K] = 0.5 exp(
1 − K

b
) (8)

Combining (8) and (6), we have:
Pr[A(D2)∈D̂]

Pr[A(D1)∈D̂]
= Pr[A(D2)∈D̂+]+Pr[A(D2)∈D̂−]

Pr[A(D1)∈D̂−]
= Pr[A(D2)∈D̂−]

Pr[A(D1)∈D̂−]
+

Pr[A(D2)∈D̂+]

Pr[A(D1)∈D̂−]
≤ 1 − 0.5 exp( 1−K

b
) +

0.5 exp( 1−K
b

)

Pr[A(D1)∈D̂]
,

which completes the proof of inequality (2).

Thus from the two cases, depending on whether q∗ is an addi-
tional occurrence of an element already present in D1 or it is an
entirely new element to D1, we established that our algorithm sat-
isfies the (ln(α), δ1)-differential privacy, where

α = max

„

e1/b, 1 − 0.5 exp( 1−K
b

), 1

1−0.5 exp( 1−K
b

)

«

=

= max(e1/b, 1

1−0.5 exp( 1−K
b

)
), and δ1 = 1

2
e( 1−K

b
).

Observation 1. [Need for δ1] A crucial observation made in the
proof of this lemma is that the necessity for δ1 arises only when the
extra query in D2 is a query that was not previously present in D1,

and we are attempting to upper bound the ratio of Pr[A(D2)∈D̂]

Pr[A(D1)∈D̂]
.

We will use this observation next as we generalize the proof of
privacy guarantees to the case where each user can pose at most d
queries.

Privacy for Select-Queries for arbitrary d:
We next prove Lemma 1. We first show that straight-forward gen-
eralization does not work and hence perform a tighter analysis.

Straight-forward generalization: A natural approach towards this
proof is to observe that a search log D2 that differs from D1 by at
most d queries can be obtained from D1 by adding the d queries to
it, one query at a time. This enables the repeated application of the
results of Lemma 5 to obtain:
Pr[A(D1) ∈ D̂] ≤ αPr[A(D1 + q1) ∈ D̂] + δ1

≤ α(αPr[A(D1 + q1 + q2) ∈ D̂] + δ1) + δ1 ≤ · · ·
≤ αdPr[A(D2) ∈ D̂] + δ1

αd−1
α−1

However, this approach yields δalg = δ1
αd−1
α−1

, which will quickly
exceed 1, yielding meaningless privacy guarantees. To avoid the
blow-up in the additive component of privacy guarantees, we build
on the insights of the Proof of Lemma 5, and especially, on Obser-
vation 1 in order to show better guarantees for δalg .

Tighter analysis for δalg:
As in the proof of Lemma 5, let D2 be the larger of the two search
logs, containing an additional d queries compared to D1. Denote
by x1, . . . , xnx those of the additional d queries that are already in
D1 and by y1, . . . , yny - those queries that are unique to D2. Note
that
Pnx

i=1(M(xi, D2) − M(xi, D1)) +
Pny

i=1 M(yi, D2) ≤ d and
nx + ny ≤ d

We also split the elements of D̂ into two subsets as follows: de-
note by D̂− the set of elements of D̂ which can be obtained from
both D1 and D2, and by D̂+ - the set of elements of D̂ which can
only be obtained from D2 (as before, we remove those elements of
D̂ that cannot be obtained from either D1 or D2 from consideration
wlog).

Observe that in the proof of Lemma 5, the additive component δ

arose only when considering the ratio Pr[A(D2)∈D̂]

Pr[A(D1)∈D̂]
and not when

considering the ratio Pr[A(D1)∈D̂]

Pr[A(D2)∈D̂]
. We take advantage of this ob-

servation by proving the necessary upper bounds by recursively ap-
plying Lemma 5 in one case, and by performing a more careful
analysis for the need for the additive component in the other case.

Proof of (1) with αd = αd, δalg = 0:

We first observe that Pr[A(D1)∈D̂]

Pr[A(D2)∈D̂]
can be represented as a prod-

uct of ratios of obtaining an output in D̂− when starting from
datasets differing in one element as follows:
Pr[A(D1)∈D̂]

Pr[A(D2)∈D̂]
= Pr[A(D1)∈D̂−]

Pr[A(D2)∈D̂+]+Pr[A(D2)∈D̂−]
≤ Pr[A(D1)∈D̂−]

Pr[A(D2)∈D̂−]
=

Pr[A(D1)∈D̂−]

Pr[A(D1+x1)∈D̂−]
· Pr[A(D1+x1)∈D̂−]

Pr[A(D1+x1+x2)∈D̂−]
· . . . ·

Pr[A(D1+x1+...xnx+y1+...+yny−1)∈D̂−]

Pr[A(D1+x1+...xnx+y1+...+yny )∈D̂−]

Applying the above decomposition of the ratio into a product of
ratios 2 and the results of intermediate steps (3) and (6) of Lemma 5

to each of the ratios in the product, we obtain: Pr[A(D1)∈D̂]

Pr[A(D2)∈D̂]
≤ αd,

as desired.

Proof of (2) with αd = αd, δalg = d
2

exp( d−K
b

):

By definition of D̂+ one can obtain an output in D̂+ when given
the search log D2, only if at least one of the queries in D2 which
was not present in D1 is chosen for release. Applying the union
bound we have:
Pr[A(D2) ∈ D̂+] ≤

Pny

i=1 Pr[ny was chosen for release] =
Pny

i=1 Pr[M(yi, D2) + Lap(b) > K] ≤
Pny

i=1 Pr[Lap(b) > K−M(yi, D2)] = 1
2

Pny

i=1 exp
“

M(yi,D2)−K
b

”

(applying the knowledge that ny ≤ d and M(yi, D2) ≤ d)
≤ d

2
exp

`

d−K
b

´

(9)

Decomposing the ratio of outputs being in D̂− as a product3 of
obtaining D̂− when starting with dataset differing in one element
we have:
Pr[A(D2)∈D̂−]

Pr[A(D1)∈D̂−]
= Pr[A(D1+x1)∈D̂−]

Pr[A(D1)∈D̂−]
· Pr[A(D1+x1+x2)∈D̂−]

Pr[A(D1+x1)∈D̂−]
· . . .

· Pr[A(D1+x1+...xnx+y1+...+yny )∈D̂−]

Pr[A(D1+x1+...xnx+y1+...+yny−1)∈D̂−]
≤

(applying the result of (4) to those datasets differing in a query
already present and the result of (5) to those datasets differing in a
query not yet present)
≤
Qnx

i=1 e1/b ·
Qny

i=1 max(e1/b, P r[M(yi, D2) + Lap(b) < K])
(using the value of M(yi, D2) maximizing the probability term for

each i) ≤ enx/b ·
“

max(e1/b, P r[1 + Lap(b) < K])
”ny

=

= enx/b ·
“

max(e1/b, 1 − 0.5 exp( 1−K
b

))
”ny

≤ e
nx+ny

b ≤ αd

We now use (9) and the inequality above to obtain the desired
upper bound:
Pr[A(D2)∈D̂]

Pr[A(D1)∈D̂]
= Pr[A(D2)∈D̂−]+Pr[A(D2)∈D̂+]

Pr[A(D1)∈D̂−]
= Pr[A(D2)∈D̂−]

Pr[A(D1)∈D̂−]
+

Pr[A(D2)∈D̂+]

Pr[A(D1)∈D̂−]
≤ αd +

0.5d exp( d−K
b

)

Pr[A(D1)∈D̂−]
= αd +

0.5d exp( d−K
b

)

Pr[A(D1)∈D̂]
,

hence Pr[A(D2) ∈ D̂] ≤ αdPr[A(D1) ∈ D̂]+0.5d exp( d−K
b

),
as desired.

2As long as Pr[A(D1) ∈ D̂−] 
= 0, the denominator of all the ra-
tios involved in the product is guaranteed to be non-zero; whereas,
if Pr[A(D1) ∈ D̂−] = 0, then the upper bound of αd holds for it
automatically.
3The denominator of any of the product terms is 0 only if
Pr[A(D1) ∈ D̂−] = 0, in which case the desired differential
privacy guarantees follow from (9) .
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5.3 Privacy for Noisy Counts
We next show that the steps involving noisy counts (Get-Query-

Counts and Get-Click-Counts) are differentially private. We re-
duce both these steps to the problem of releasing histograms pri-
vately [11].
Private Release of Histograms: Consider an arbitrary domain X
which has been partitioned into r disjoint bins. A histogram func-
tion, f : Xn → Zr maps the database points into these bins and
reports the number of points in each bin. The sensitivity S(f) of a
function f denotes the maximum “change” in the value of f when
the inputs differ in a single entry, i.e., S(f) = max{‖f(x) −
f(x’)‖1 : x, x′ ∈ Xn differ in a single entry }. We use the fol-
lowing result:

THEOREM 2. [11] For all f : Xn → Rr the following mecha-
nism satisfies ε-differential privacy: Sanf (x) = f(x)+(Y1, . . . , Yd),
where the Yi are drawn i.i.d. from Lap(S(f)/ε). Note that the pri-
vacy guarantees do not depend on r.

Intuitively, this result shows that the amount of noise to be added
to preserve privacy is closely related to the amount that any single
argument to f can change its output.

For Get-Query-Counts, the reduction is as follows: the domain
X (the search log) is partitioned into bins (distinct queries) accord-
ing to Q. Function f reports the number of elements in the bin
for each bin, i.e., the number of occurrences of each query. The
datasets differ in one user, who can pose at most d queries, hence
S(f) = d. Therefore, by Theorem 2 adding Lap(d/ε) noise to
each query occurrence count gives ε-differential privacy guarantee,
and Get-Query-Counts is d/bq-differentially private.

Similarly for Get-Click-Counts, each query-URL pair serves as
a partition bin (note that the top 10 URLs returned upon searching
for a given query are not private and hence the partition is known
given the set of queries Q). Hence, by Theorem 2, adding Lap(bc)
noise to the true count of the number of clicks on a URL for a query
will preserve dc/bc-differential privacy.

5.4 Privacy for Composition of Individual Steps
We have shown that steps 4–6 of the Release-Data algorithm

preserve privacy, so it remains to show that limiting the user activity
and the composition of the steps preserves privacy and to quantify
the effect of applying these algorithms in sequence on the privacy
guarantees (Lemma 4).

We note that Limit-User-Activity helps to satisfy the condition
in Lemma 1 that each user should pose at most d queries and other-
wise does not affect the privacy guarantees. To prove Lemma 4, we
note that a straight-forward composition does not work, as it would
cause the additive privacy parameter to blow up. We use a more
careful analysis, which we omit due to lack of space.

6. DISCUSSION
The algorithm and analysis leaves open much room for discus-

sion. How does a data releaser set the various parameters in the
analysis above? Is the algorithm really different from just publish-
ing queries with sufficiently large frequency (without the addition
of noise)? What frequency queries end up getting published? Why
do we recompute noise in Step 5? What happens if a count is neg-
ative after adding noise? Is it possible to release query reformula-
tions? In this section we provide answers to each of these questions
in turn.

Setting parameters. Given the numerous parameters in the the-
orems just proved, a natural question is how to set them. As men-
tioned earlier, it is up to the data releaser to choose ε, while it is

d 1 5 10 20 40 80 160
K 5.70 31.99 66.99 140.00 292.04 608.16 1264.49
b 0.43 2.17 4.34 8.69 17.37 34.74 69.49

Table 1: Optimal choices of the threshold, K and noise, b as a
function of d for fixed privacy parameters, eε = 10, δ = 10−5
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Figure 1: Probability of a query being released as a function of
its frequency, for d = 20, K = 140, and b = 8.69

advisable that δ < 1/n, where n is the number of users. What
about the remaining parameters? Lemma 1 offers answers for op-
timally setting4 the threshold K and noise b when the desired pri-
vacy parameters and the limit for the number of queries per user

are known: K = d
“

1 − ln( 2δ
d

)

ε

”

and b = d
ε
.

Table 1 shows how the optimal choices of threshold K and noise b
vary as a function of the number of queries allowed per user, d, for
fixed privacy parameters, eε = 10 and δ = 10−5.

Publishing head queries. An important and natural question
is why not just publish the queries with frequency larger than an
intuitively-pleasing large number? The answer is that any such de-
terministic algorithm is provably not differentially private [23]. Be-
yond that, how should one even select such a large number? Our
approach has the advantage that the threshold value K can be de-
termined purely from the privacy parameters, ε and δ, and d. The
values K and b are independent of the characteristics of the search
log.

Which queries are published. If the algorithm is different than
publishing the queries with sufficiently high frequency, it is reason-
able to wonder which frequency queries do get published? Con-
sider Figure 1 which shows the probability of the query being cho-
sen for release as a function of its frequency, for d = 20, K = 140,
and b = 8.69. The queries whose frequency is above 170 are virtu-
ally guaranteed to be released, the queries whose frequency is be-
low 110 are virtually guaranteed not to be released, and the queries
whose frequency is between 110 and 170 might or might not be re-
leased depending on the random choices of the algorithm. It is clear
that since b is smaller than K, Select-Queries is close to the intu-
itive sharp threshold algorithm of only releasing the “head queries”,
where the “head queries” are defined as those whose frequency is
above 170.

Fresh noise. Next we explain why we recompute the noisy query
frequency count in Step 5 of Release-Data. Technically speak-
ing, Step 5 is not necessary: instead of computing the noisy count
of M(q, D), we could release the noisy count that was computed
when deciding whether to release query q in Step 4. Re-using the
noisy count from Step 4 would lead to all released query occur-
rence counts being skewed towards the larger side; for instance,
there will be no queries whose reported number of occurrences is
less than K. On the other hand, skipping Step 5 would improve the

4Assuming we desire to minimize the noise added and that e1/b ≥
1 + 1

2e(K−1)/b−1
, which is the case for value ranges considered.
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ε in the differential privacy guarantee of the algorithm by reduc-
ing it by d/bc. It is up to the data releaser to choose the trade-off
between more evenly distributed query counts and privacy.

Negative counts. The addition of Laplace random noise might
yield lower or higher frequency counts than the true counts, in some
cases yielding negative query occurrence or query-click frequency
counts. The negative counts released where positive counts are ex-
pected are counter-intuitive but do not pose a privacy risk, rather a
usability risk. If desired, one can perform a post-processing step
replacing all negative counts with zeros without impacting privacy
(since any post-processing that does not rely on the original data
preserves privacy).

Query reformulations. Finally, we visit the issue of releasing
query reformulations, which are a valuable part of the search log,
but are not directly handled by our algorithm. In fact, query refor-
mulations can be produced in the specific case when the reformu-
lation is a click on a query suggestion. In such a case, a click on a
reformulation is treated as a click on a URL, since a surfaced sug-
gestion is as public as a surfaced URL. To ensure privacy, we could
modify Step 2, Limit User Activity to count the first d queries that
were typed and treat clicks on reformulations in the same way as
URL clicks. These reformulations would not be as powerful and
rich as actual user reformulations since they are limited to what a
search engine is already capable of suggesting.

7. EXPERIMENTAL RESULTS
There is no doubt that attempting to preserve user privacy when

performing a search log data release will take a toll on the utility of
the data released, and that an algorithm that aims to satisfy rigor-
ous privacy guarantees will not be able to release datasets that are
as useful as the ones obtained through ad-hoc approaches such as
merely replacing usernames with random identifiers. However, the
decrease in utility is offset by the ability to protect user privacy and
the ability to avoid PR disasters and retain user trust in the search
engine. In this section, we describe several simple properties of
the query and clicks data that can be released by applying our pro-
posed algorithm to the search logs of a major search engine and
characterize their dependence on the parameters of the algorithm
and other choices that need to be made by the data releaser. The
aim of the properties that we study is to serve as a proxy for the
utility of the data released, as performing full-scale evaluations of
complex algorithms on this data is beyond the scope of the paper.

Our experiments suggest that in the absence of other provably
private methods for data release, and considering that our approach
closely mimics the one that others are anecdotally considering uti-
lizing, our proposed algorithm could serve as a first step towards
the eventual goal of performing provably private and useful search
log data releases.

Experimental Setup. We obtained the full query logs from a
major search engine. The information necessary for our experi-
ments is the session information per user (in order to restrict to d
queries per user) and the issued queries together with their clicked
urls. We performed a marginal amount of cleaning of the logs by
removing special sets of characters (e.g. extra white spaces or run-
away quotes) from the queries. In our comparisons below, we con-
sidered queries to match regardless of the case in words.

7.1 Published Query Set Characteristics
In our first experiment, we seek to gain insight into the effect of

privacy guarantees desired from the algorithm on the following two
characteristics of the published query set:

Percent of distinct queries released, i.e. the ratio of the num-
ber of distinct queries released to the actual number of distinct
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Figure 2: Percent of distinct queries and impressions released
as a function of d, for fixed privacy parameters, eε = 10, δ =
10−5 and one week time period

queries for all users in the original dataset (without limitations on
how many queries the user can pose). Our goal here is to capture
how representative is the published query set of the real set in terms
of the released queries.

Percent of query impressions released, i.e. the ratio of the num-
ber of query impressions released (with each query accounted for
as many times as the released noisy count) to the actual number of
query impressions for all users in the original dataset. Our goal in
this case is to capture how much query volume is published by our
algorithm.

7.1.1 Effect of maximum queries d per user
A crucial step of our algorithm is to limit the number of queries

posed per user that we consider for the release to d. Since the op-
timal choice of d is non-obvious from the perspective of data re-
leaser, we start by studying the effect of d and fixed privacy param-
eters on the published query set characteristics when starting from
a one week log from October 2007.

We compute the percent of distinct queries and impressions re-
leased by Algorithm 1 for different values of d and for parameters
eε = 10 and δ = 10−5, choosing the threshold K and noise b as
described in Section 6. The results are shown in Figure 2. The hor-
izontal axis represents the increasing values of d, the right vertical
axis represents the percent of distinct queries released for a given
value of d and the left vertical axis shows the percent of impres-
sions for the respective d.

From Figure 2, we observe that although we can only publish
a small percent of distinct queries overall, we can cover a reason-
ably large percent of impressions. More specifically, the output of
our algorithm contains in total at most about 0.75% (for d = 1) of
the distinct queries present in the original query log. However, the
released queries correspond to about 10% – 35% of the search vol-
ume, depending on the choice of d, with a maximum of about 34%
of volume achieved by d of around 20. The distinct queries released
form a tiny fraction of the log because an overwhelming fraction of
queries are issued very few times and our algorithm throws away
such “tail queries” in order to guarantee privacy. However, we can
release all the “frequent queries” and by virtue of their frequency,
the volume of the released queries is substantial. Furthermore, al-
though the percent of distinct queries released is small, the absolute
number of the distinct queries released is large.

In Figure 2, we also observe that the percent of distinct queries
released decreases as d increases. This is due to the fact that the
threshold K increases more than linearly with d; when d increases,
our dataset may contain more distinct queries and larger counts for
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Figure 3: Percent of distinct queries released as a function of d
for different time periods, with fixed privacy parameters, eε =
10, δ = 10−5

all previously present queries, but such larger count is insufficient
to offset the required increase in K to ensure the same privacy guar-
antees. Finally, we observe that for the one week log, the percent of
impressions released initially increases with d, peaks for d around
20 and then decreases. There are two competing forces responsible
for this observation: as d gets larger, more queries (and hence im-
pressions) per user are included in the data while at the same time
the threshold K needs to be increased in order to maintain the same
privacy guarantees.

7.1.2 Effect of time-span of the log
We next study the effect of the time period of the log consid-

ered for release on the size of the released dataset. We repeated the
previous experiment with query logs extracted over different time
periods (one day, two weeks and one month from October 2007,
and also one year) and compared to the output data generated from
our log of one week. We plot the percent of released queries (dis-
tinct and impressions) in Figures 3 and 4 respectively. Figure 3
demonstrates that the percent of distinct queries released is more
or less independent of the time-span of the source query log. On
the other hand, the total number of query impressions does depend
on the time-span as shown in Figure 4. In this case, we observe
that the value of d at which the maximum percent of impressions
is achieved increases with the length of the time period. This fits
well with the intuition for sensible choices of d - as the time-span
increases, the number of queries each user is limited to should in-
crease as well.

The absolute number of queries (distinct and impressions) re-
leased increases with the increase in time-span of the source log.
For example, for d = 20, the absolute number of distinct queries
released grows 6-fold over one week, 12-fold over two weeks, 24-
fold over one month, and 184-fold over one year time-spans of the
source logs compared to that of a one day source log. Similarly
the absolute number of impressions released grows 7-fold over one
week, 15-fold over two weeks, 33-fold over one month, and 325-
fold over one year durations compared to that of a one day source
log. Thus, for the fixed choices of privacy parameters and d, it may
be desirable to start with a query log extracted over a longer period
of time, such as one year, to obtain better utility.

7.1.3 Effect of privacy parameters
We now turn to studying how the choice of multiplicative and ad-

ditive privacy parameters used in Algorithm 1 affects the size of the
released query set for fixed time period (one week) and d = 215.
5Although 21 queries per week per user seems to be a harsh restric-
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Figure 4: Percent of query impressions released as a function
of d for different time periods, with fixed privacy parameters,
eε = 10, δ = 10−5

% of distinct queries ε = ln(2) ε = ln(5) ε = ln(10)

δ = 10−6 0.03% 0.06% 0.09%
δ = 10−5 0.03% 0.07% 0.10%
δ = 10−4 0.04% 0.09% 0.12%

Table 2: Percent of distinct queries released as a function of
privacy parameters, for one week time period and d = 21

Intuitively, the percent of distinct queries released should increase
with less strict privacy requirements. More specifically, the larger
the values of ε and δ, the larger portion of the original query log we
should be able to release.

We plot the percent of distinct queries and impressions as a func-
tion of privacy requirements captured by different values of ε and
δ, in Tables 2 and 3 respectively. They show that, in general, the
percent of queries (distinct and impressions) that we can release in-
creases as δ increases, with the relative increase in the percent of
distinct queries being slightly higher for a given ε.

7.2 Utility of the Published Dataset
In this section our goal is to study the utility of the published

dataset both in terms of the utility of the queries and the utility of
the query click graph. First we give anecdotal examples of queries
that could be released and then study the usefulness of published
queries for social science research and the usefulness of the pub-
lished query click graph for an algorithmic application.

We start with the query log over one year duration (restricted to
d = 21 queries per user), and run Release-Data algorithm to ob-
tain the queries safe to release, their noisy counts, and the noisy
query-URL click counts. For each of the queries, we obtain the
top 20 most clicked URLs instead of the top 20 URLs returned by
the search engine, which is nearly equivalent as almost all users
look at only the first page of 10 results [15], and very rarely be-
yond the second page and hence these URLs get the most clicks.

tion on the amount of queries posed, it turns out that an average user
performs even fewer than 21 queries per week [12].

% of query impressions ε = ln(2) ε = ln(5) ε = ln(10)

δ = 10−6 26.79% 30.92% 32.64%
δ = 10−5 27.55% 31.67% 33.38%
δ = 10−4 28.45% 32.55% 34.23%

Table 3: Percent of query impressions released as a function of
privacy parameters, for one week time period and d = 21
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Rank Comorbidity Survey Original Log Released Queries
1. Bugs, mice, snakes Flying Flying
2. Heights Heights Heights
3. Water Snakes, spiders Public speaking
4. Public transportation Death Snakes, spiders
5. Storms Public speaking Death
6. Closed spaces Commitment Commitment
7. Tunnels and bridges Intimacy Abandonment
8. Crowds Abandonment The dark
9. Speaking in public The dark Intimacy

Table 4: Most common fears, depending on the data source

For simplicity of experiment implementation, we did not limit the
number of clicks per user, since most users click on very few re-
sults per search query anyway [12]. For determining the queries
that are safe to release, we use the privacy parameters eε = 10 and
δ = 10−5 (so that the threshold K = 147.4 and noise b = 9.1).
For click counts we use noise bc = 0.43.

Some examples of non-trivial queries released are: "girl born
with eight limbs", "cash register software", "vintage aluminum christ-
mas trees", "how to tie a windsor knot".

7.2.1 Studying Human Nature
Since users communicate with a search engine in an uninhibited

manner, posing queries containing their most private interests and
concerns, the search log could also be an invaluable source of in-
sight into human nature. We take an example proposed by Tancer
[24] of using the queries posed by users to obtain insight into hu-
man fears and compare the conclusions that can be obtained by
studying the queries of the original log vs the released queries.

Tancer [24] suspected that the insight one can gain into human
fears through search logs is different than the data obtained through
surveys. He compared the results of the National Comorbidity Sur-
vey [18], a phone survey where respondents were asked about their
fears, with all Internet searches that contained the term "fear of",
based on the theory that some people must be searching the Web
to understand their fears. He observed that after removing those
terms that are not phobia searches (such as "Fear of Clowns", a
movie), the ordering of the most frequent fears as reported in the
Comorbidity Survey differs from that obtained from searches; fur-
thermore, there are more social fears in the list of top searches than
in the list of top fears from the Comorbidity Survey.

We repeat Tancer’s experiment on the search engine data avail-
able to us and on the perturbed release of that data, and obtain the
ranking of fear frequencies that can be seen in Table 4.

The ordering of most popular fears is not fully preserved in the
queries released compared to the original searches due to the noise
added. However, the set of top nine fear searches obtained is the
same in both cases, and is noticeably different from the one re-
ported in the survey. For example, there is only one social fear
in the Comorbidity Survey top list, the fear of speaking publicly,
versus four in the "fear of" searches: public speaking, commit-
ment, intimacy, and abandonment. Both the original log and the
perturbed query click graph suggest that survey responses may not
be truly reflecting what people are afraid of, and suggest a strong
direction for further study by social scientists. Hence the published
dataset could have immense utility in identifying directions for fu-
ture study by social scientists and providing preliminary support
for hypotheses.

7.2.2 Keyword Generation
We study the utility of the released query click graph by com-

paring the performance of an important application that utilizes a

query click graph in its original and released forms. The appli-
cation we study is keyword generation: given a business that is
interested in launching an online advertising campaign around a
concept, suggest keywords relevant to it. The idea of generating
additional keywords from a seed set of keywords or URLs is pow-
erful because it enables the advertisers to expand their exposure to
users through bidding on a wider set of keywords. We use the algo-
rithm proposed by Fuxman et al [13] that exploits the query click
graph. Their algorithm takes a seed set of URLs about the concept
and uses the idea of random walks on the query click graph with
seed set URLs as absorbing states in order to generate more key-
words. Typically, random walks are highly sensitive to changes in
the graph, and hence, on one hand, it would be surprising if the key-
word generation algorithm worked well on the released perturbed
query click graph, given how much it has changed from the original
query click graph. On the other hand, we would like to understand
to what extent it still works.

We compare the keywords generated by this algorithm over the
original graph and the released graph for three different seed sets.
Each seed set consists of all URLs from the respective domains: 1)
shoes: www.shoes.com; 2) colleges: Homepage domains of the top
ten U.S. universities according to the US News Report ranking from
early 2009; 3) suicide: six domains associated with depression
and suicide (depression.com, suicide.com, and the 4 corresponding
ones from WebMD and Wikipedia). The parameters of the keyword
generation algorithm are set as in [13] (α = 0.001, γ = 0.0001).
We pruned all query-URL pairs with less than 10 clicks in both the
original and the released graphs, for efficiency of implementation.

Compared to the query click graph based on the original log, the
released private query click graph contains 9.85% of the queries
and 20.43% of the edges of the original graph. Nonetheless, as can
be seen in Table 5, we find that for all three seed sets, the absolute
number of keywords generated by the algorithm using the released
query click graph is substantial. For the shoes seed set, the number
of keywords generated on the basis of the private graph comprises
13.9% to 24.9% of the number of keywords that can be generated
using the original graph, depending on the relevance probability
threshold used. For the college seed set the number of keywords
generated is in the range of 12.9% to 16.1% of the original; and
for the suicide seed set it is 4.4% to 7.4%. Moreover, more than
78% of the keyword suggestions obtained from the released graph
were also obtained from the original graph, which is an indica-
tion of the similar level of relevance of the keywords produced in
both cases. We observe greater overlap for more focused concepts
(shoes: 93%, suicide: 99%).

We conclude that the released query click graph is still very use-
ful for keyword generation. While one cannot generate as many
keyword suggestions on the basis of the released graph as one would
on the basis of the original graph6, the volume of keyword sugges-
tions generated is still substantial.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we took a first major step towards a solution for re-

leasing search logs by proposing an algorithm for releasing queries
and clicks in a manner that guarantees user privacy according to a
rigorous privacy definition.

While we have shown that some non-trivial fraction of queries
and impressions can be privately released and the released query
6It is important to note that the keyword suggestions obtained from
the original graph that are not present among those obtained from
the released graph, are not necessarily private. Algorithm 1 is con-
servative and chooses not to release many queries, a large fraction
of which are likely not sensitive by themselves.
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Relevance probability threshold
URL seed set 0.5 0.7 0.9 0.95

colleges
released 3,667 2,403 1,337 883
original 28,346 17,103 8,287 6,373

shoes
released 2,733 1,620 448 248
original 19,669 8,418 1,800 1,047

suicide
released 175 116 50 39
original 3,945 2,517 806 525

Table 5: Number of keyword suggestions generated depending
on URL seed set and query click graph source. Relevance prob-
ability refers to the probability that the keyword belongs to the
seed set concept.

click graph can be successfully used for applications such as key-
word generation and studies of people’s fears, the question of whether
this graph would be useful for other applications or whether it could
serve as a benchmark log is far from being answered and is an in-
teresting avenue for future work.

It is worth noting that as people invent more ways to group simi-
lar queries (such as "mom" and "mother"), we could use the group-
ing techniques to improve the performance of Algorithm 1.

A separate issue is that our algorithm implicitly assumes that
users behave in an honest manner. However, there are ways for
an attacker to maliciously bring private tail queries into the head.
For instance, since K, b, d are public parameters, an attacker could
create, say, K + 5b copies of themselves and in their first d queries
issue a private query such as someone else’s credit card number.
The net effect is that the search engine would publish this private
data. We do not have a way to get around such malicious activities
and leave this too as a direction for future work.

It seems promising to try using the query click graph to generate
a synthesized search log: select a query according to the perturbed
frequency distribution that we publish, select clicks according to
the perturbed probability a document is clicked, select a reformula-
tion according to the perturbed distribution over reformulations, or
select a new query. This procedure would not generate a search log
per se, since no timestamps would be published and it is not clear
if the sessions would actually be meaningful. We leave open the
question of how best to generate a search log from the perturbed
data that we publish.

Finally, there are many other aspects to releasing search logs be-
sides the privacy of users. For instance, releasing queries and clicks
reveals at a large scale the performance of a search engine. Thus,
the log leaks queries where the search engine performs poorly, e.g.,
abandoned head queries or head queries with few clicks. As an-
other example, search data reveals queries that surface adult con-
tent when they should not. So beyond the privacy of users, there
are other factors to consider before search data is released.
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11. APPENDIX

Observation 2. [Properties of Laplace distribution] For Laplace
distribution with location parameter 0, and scale parameter b > 0,
and a random variable X , the cdf F (x) = Pr[X ≤ x] satisfies:

F (x) = 1/2 · exp(x/b), if x < 0

= 1 − 1/2 · exp(−x/b), if x ≥ 0

In this notation, increasing b flattens out the Lap(b) curve, yielding
larger expected noise magnitude and therefore, eventually, better
privacy guarantees.

Observation 3. [Properties of Laplace ratios] Let r be a ran-
dom Lap(b) noise. Then,
1 ≤ Pr[r<c+1]

Pr[r<c]
≤ e1/b and e−1/b ≤ Pr[r>c+1]

Pr[r>c]
≤ 1.

Observation 4. [Properties of ratios] For a, b ≥ 0 and c, d >
0 : a+b

c+d
≤ max(a

c
, b

d
).
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