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Abstract

In today’s digital age, online services, such as search engines and social networks, collect large

amounts of data about their users and their users’ online activities. Large-scale mining and sharing

of this data has been a key driver of innovation and improvement in the quality of these services,

but has also raised major user privacy concerns.

This thesis aims to help companies find ways to mine and share user data for the purpose of

furthering innovation while all the while protecting their users’ privacy, and to motivate and help

them reason about the privacy-utility trade-o↵s using a rigorous quantifiable definition of privacy.

To achieve this we explore examples of privacy violations, propose privacy-preserving algorithms,

and analyze the trade-o↵s between utility and privacy for several concrete algorithmic problems in

search and social network domains.

We propose and execute two novel privacy attacks on an advertising system of a social network

that lead to breaches of user privacy. The attacks take advantage of the advertising system’s use

of users’ private profile data, the powerful microtargeting capabilities provided by the system, and

the detailed ad campaign performance reports provided to advertisers, in order to infer private

information about users. The proposed attacks build a case for a need to reason about data sharing

and mining practices using a rigorous definition of privacy, elucidate the privacy and utility trade-

o↵s that may arise in advertising systems that allow fine-grained targeting based on user profile and

activity characteristics, and have contributed to changes in the social network’s advertising system

aimed at increasing the barriers to practical execution of such attacks in the future.

We propose a practical algorithm for sharing a subset of user search data consisting of queries

and clicks in a provably privacy-preserving manner. The algorithm protects privacy by limiting the

amount of each user’s data used and, non-deterministically, throwing away infrequent elements in

the data, with the specific parameters of the algorithm being determined by the privacy guarantees

desired. The proposed algorithm, and the insights gained from its analysis o↵er a systematic and
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practical approach towards sharing counts of user actions while satisfying a rigorous privacy defi-

nition, and can be applied to improve privacy in applications that rely on mining and sharing user

search data.

We then present a quantitative analysis of privacy-utility trade-o↵s in the social recommendations

and social data sharing domains using formal models of privacy and utility. For social recommen-

dations, we present a lower bound on the minimum loss in privacy for link-based recommendation

algorithms achieving good utility. For social data sharing, we present a theoretical and experimental

analysis of the relationship between visibility of connections in the social network and the di�culty

for a competing service to obtain knowledge of a large fraction of connections in the network. The

methods of analysis introduced and the harsh trade-o↵s identified can be useful for guiding privacy-

conscious development of social products and algorithms, and give a refined understanding of the

privacy-utility trade-o↵s.

Few topics today arouse as much heated discussion as issues of user privacy. This thesis focuses

on making practical and constructive strides towards understanding and providing tools for achieving

a viable balance between two seemingly opposing needs – user data-driven innovation and privacy.
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Chapter 1

Introduction

In today’s digital age, online services, such as social networks, collect large amounts of data about

their users and their users’ online activities. This data can be beneficial for innovation and improve-

ments of the user experience, but its treatment also presents challenges to individuals’ privacy. The

thesis analyzes the trade-o↵s between utility and privacy that arise when online services collect,

data-mine and share user data, and develops algorithms that can enable the services to balance

those trade-o↵s. Our study focuses on two types of online services that are at the core of how users

explore information and interact online today – search engines and social network services – and

analyzes several concrete problems faced by them.

1.1 The Benefits of Mining and Sharing User Data

While sometimes portrayed in a negative light, the data collected by search engines and social

networks regarding their users’ and their usage of the services, and the algorithms developed for

mining and sharing that data, have been a key driver of innovation and improvement in the quality

of these services.

Search engines continuously refine the quality of results presented to a particular user based on

previous actions of other users who have posed the same or similar queries. The search engines

accomplish this by varying the order and type of results presented to users and then recording and

analyzing their responses as measured by actions such as time spent on the result page, which of

the results are clicked, and whether or not the users attempt to reformulate the query [4,5,93,155].

Thus, each individual using the search engine not only benefits from its service but also contributes

1
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to its further improvement. Beyond improvements in ranking and presentation of results, the search

engines have mined and shared the data collected in order to revolutionize spell-checking, make

search query suggestions, and reinvent image search, to name only a few of the innovations.

Similarly, the analysis of data and actions of individual users of a social network makes the social

network more valuable for all of its users. For example, by studying patterns of connections between

existing social network users, the social network service can design algorithms to recommend other

users whom a user who is just joining the network may know [82, 167, 170], thereby also increasing

the new user’s engagement with the network. In addition, by analyzing the items “liked”, read or

bought by users’ friends, the social network service can recommend each user new items to look

at, read, or buy [85, 87]. Furthermore, by combining information contained in a user profile with

information about social connections and activity on the site, the social network service can present

users with more relevant advertising [89, 153], recommend job openings within one’s network and

industry [11], suggest missing connections [17], and so on.

Besides improving the services search engines and social networks o↵er directly to their end users,

the data collected about users and their activity can be used to improve products these companies

o↵er to members of their ecosystem, including advertisers and API developers. For example, search

engines report to advertisers the volume of searches for particular keywords and number of clicks on

their links, and social networks provide breakdowns of demographic and interest composition of the

audiences clicking on their ads. Such insights greatly benefit the search engines, the social networks,

and the advertisers, as they help advertisers improve their campaigns, thus bringing more relevant

ads, better user experience and higher revenue to the services [89, 90,149].

The data and its aggregate releases are also an invaluable resource for the scientific commu-

nity [76, 123] and for public service, as it can be used for large scale sociological studies. Examples

of such studies include: measurement of moods and happiness depending on season, geographic lo-

cation, and relationship status [66,72], analysis of the structure and size of human groups and reach

of social connections [15,104], study of disease epidemics [63], forecasts of economic indicators such

as travel and unemployment [183], issue analysis for political campaigns [68], and a dynamic census

of human opinions [103]. For those who have access to the data, it o↵ers a view into the structure

and communication patterns of human society, as well as activities and interests of individuals at

an unprecedented scale, granularity, and accuracy.
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1.2 Privacy Challenges when Mining and Sharing User Data

As the preceding examples illustrate, the ability to mine and share parts of user data has been instru-

mental to the improvement of online services for users and other players of the Internet ecosystem.

However, the practices needed to achieve these improvements are increasingly raising user privacy

concerns [181]. Furthermore, in many contexts, there often exists a fundamental trade-o↵ between

the utility of shared data and privacy [43,46,50,61].

As search engines and social networks aim to innovate, o↵er better products, provide better

insights to advertisers, developers, and page managers, and to share more with the scientific and

business communities, they incorporate more user data into their algorithms, share it at finer levels

of granularity, and mine it for purposes di↵erent from the context in which the data was originally

collected [84]. O↵ering more varied and relevant keyword suggestions based on user searches or

providing more detailed reports about audiences clicking on the ads or engaging with a page, creates

a competitive advantage for search engines and social networks, respectively. Presenting longer query

suggestions and exposing more profile and social graph information o↵ers a better user experience.

Sharing the results of more targeted analyses provides more scientific and sociological value. But in

the quest for improvement, the companies sometimes underestimate the e↵ects these data mining

and sharing practices can have on violating the privacy of individuals [53, 109].

The consequences of an inadvertent disclosure of a user profile or activity data as part of the

output of an internal data-mining algorithm or as a result of data sharing can be quite severe both

for the businesses of the online services, and for the individual users whose private data is disclosed.

For search engines and social network services, the trust of users in their privacy practices is a

strategic product and business advantage. Loss of such trust could lead to abandonment or decreased

usage of the service [181, 193], which in turn could lead to less data being available to improve the

service, and therefore, deterioration in the quality of the service, which would lead to further decrease

in usage, thereby creating a vicious cycle harming the business [77]. Respect for user privacy may

also be a legally binding commitment, a violation of which can lead to procedural and monetary

penalties [56, 57, 88].

From the users’ perspective, insu�cient privacy protections on the part of a service they use

and entrust with their activity, personal or sensitive information could lead to significant emotional,

financial, and physical harm. Although not all of these activities are legally permitted, a disclosure of

user search activities may potentially lead to embarrassment [22], identity theft, and discrimination

when determining insurance premiums [190]. Interest, activity, and behavioral data could be used out
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of context by prospective employers [83], in legal proceedings [8,91], to predict sensitive information

about users [95, 141, 157], or to influence people to adhere to stereotypes that society or companies

expect of them [10]. It is hard to foresee all the risks that a digital dossier consisting of detailed

profile and activity data could pose in the future, but it is not inconceivable that it could wreak

havoc on users’ lives.

Thus, although users appreciate the continual innovation and improvement in the quality of

online services, they are also becoming increasingly concerned about their privacy, and about the

ways their online identity and activity data is compiled, mined, and shared [154]. The online services,

in turn, strive to strike a balance between mining and sharing user data in order to improve their

products and user experience, further their business needs and fulfill obligations to advertisers and

partners, and the desire and need to retain user trust and protect user privacy [184].

1.3 Protecting Privacy when Mining and Sharing User Data

– Contributions and Structure

This thesis aims to help companies find ways to mine and share user data for the purpose of further-

ing innovation while all the while protecting their users’ privacy, and to motivate and help companies

reason about the privacy-utility trade-o↵s of their practices using a rigorous quantifiable definition

of privacy as a foundation. To achieve this we have explored examples of privacy violations, pro-

posed privacy-preserving algorithms, and analyzed trade-o↵s between utility and privacy for several

concrete algorithmic problems in search and social network domains.

1.3.1 Contributions

Specifically, this thesis makes three concrete contributions:

I. Proposal and execution of two novel attacks on an advertising system of a social network

that could lead to breaches of user privacy. The attacks took advantage of the advertising

system’s use of users’ private profile data, the powerful microtargeting capabilities provided

by the system, and the detailed ad campaign performance reports provided to advertisers, in

order to infer private information about users. The proposed attacks and their analysis have

presented a new example of a real-world system in which reliance on ad-hoc techniques to

preserve privacy fails to achieve that goal, elucidated the privacy and utility trade-o↵s that

may arise in advertising systems that allow fine-grained targeting based on user profile and
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activity characteristics, and through the disclosure of findings, have contributed to changes in

the social network’s advertising system aimed at increasing the barriers to practical execution

of such attacks in the future [81, 151].

II. Proposal of a practical algorithm for sharing a subset of user search data consisting of queries

and clicks in a provably privacy-preserving manner. The algorithm protects privacy by limiting

the amount of each user’s data used and, non-deterministically, throwing away infrequent

elements in the data, with the specific parameters of the algorithm being determined by the

privacy guarantees desired. The proposed algorithm, and the insights gained from its analysis

o↵er a systematic and practical approach towards sharing counts of user actions while satisfying

a rigorous privacy definition, and can be applied to improve privacy in search applications that

rely on mining and sharing user search data [105,131].

III. A quantitative analysis of privacy-utility trade-o↵s in the social recommendations and social

data sharing domains using formal models of privacy and utility. For social recommendations,

we present a lower bound on the minimum loss in privacy for link-based recommendation

algorithms achieving good utility. For social data sharing, we present a theoretical and exper-

imental analysis of the relationship between visibility of connections in the social network and

the di�culty for a competing service to obtain knowledge of a large fraction of connections in

the network. The methods of analysis introduced and the harsh trade-o↵s identified can be

useful for guiding privacy-conscious development of social network products and algorithms,

and a refined understanding of the privacy-utility trade-o↵s [55, 126].

The presentation of the work is broken up into three main parts according to the contributions.

1.3.2 Part I – A Need for Privacy by Design

In Chapter 2 we detail examples of well-intentioned approaches to privacy-preserving data sharing

and data mining that have nonetheless resulted in breaches of user privacy. In Section 2.1 we recap

breaches that have occurred as a result of data sharing by two large Internet companies (AOL

and Netflix). In Section 2.2 we describe our first contribution, two novel attacks on Facebook’s

advertising system, that illustrate that privacy breaches can occur also when companies are merely

data mining user data for their own purposes, rather than broadly sharing it.

The examples presented in Chapter 2 motivate the study of algorithms for data sharing and

mining that can be evaluated using a rigorous privacy definition, and in Chapter 3 we describe a
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well-motivated and widely adopted privacy definition, di↵erential privacy, due to Dwork et al. [49],

which we adopt for the rest of the thesis.

The preliminary version of the work presented in Section 2.2 has appeared in [109] and was a co-

winner of the 2011 PET Award for Outstanding Research in Privacy Enhancing Technologies [151]1.

The work has benefited from thoughtful feedback and constructive suggestions of Ashish Goel.

1.3.3 Part II – Algorithms for Sharing and Mining User Data Privately

In Part II we focus on algorithms enabling the search engine to mine and share subsets of user data

while preserving user privacy.

1.3.3.1 Releasing Search Queries and Clicks Privately

The question of how to publish an anonymized search log was brought to the forefront by a well-

intentioned, but privacy-unaware AOL search log release (Section 2.1.1). Since then a series of

ad-hoc techniques have been proposed in the literature (Section 2.1.1.6), though none were known

to be provably private. In Chapter 4, we describe a major step towards a solution: we show how

queries, clicks and their associated perturbed counts can be published in a manner that rigorously

preserves privacy, using the notion of privacy adopted in Chapter 3. Our algorithm is decidedly

simple to state and formalizes the intuition of protecting privacy by “throwing away tail queries”

into a practical algorithm with rigorous privacy guarantees. Our analysis of the proposed algorithm’s

privacy guarantees identifies and justifies the deviations from intuition necessary for protecting

privacy, and mathematically quantifies exactly how to choose the parameters in order to achieve a

desired level of privacy.

Relating back to the trade-o↵ between privacy and utility is the question of whether the data we

can safely publish using our proposed algorithm is of any use. Our findings o↵er a glimmer of hope:

we demonstrate that a non-negligible fraction of queries and clicks can indeed be safely published

via a collection of experiments on a real search log. In addition, we select two applications, keyword

generation and studying human fears, and show that the keyword suggestions and top fear lists

generated from the perturbed data resemble those generated from the original data. Thus, although

there are other factors besides the privacy of users to consider when publishing search log data, the

techniques we develop in Chapter 4 can be of immediate use for improving privacy protections in

1

http://petsymposium.org/2012/award.
The contents of all hyperlinks referenced in this thesis were archived in June 2012, and are available at
http://theory.stanford.edu/

⇠
korolova/Thesis/References

http://petsymposium.org/2012/award
http://theory.stanford.edu/~korolova/Thesis/References


CHAPTER 1. INTRODUCTION 7

applications that rely on mining and sharing user search data, such as search log release or search

suggestions.

The work in Chapter 4 is joint with Krishnaram Kenthapadi, Nina Mishra, and Alexandros

Ntoulas, and has also benefited from insights gained in discussions with Rakesh Agrawal and Frank

McSherry. The preliminary version of the work has appeared in the 18th International World Wide

Web Conference [110], where it was one of six nominees for the Best Paper Award2.

1.3.4 Part III – Quantifying Utility-Privacy Trade-o↵s for Social Data

In Part III we switch gears towards analyzing the privacy-utility trade-o↵s in the context of online

social networks. In both the problems we analyze, the social connections represent valuable user

data that the social network service aims to leverage in order to improve the service it provides,

while at the same time protecting privacy. In the first problem, the social network needs to protect

its users from adversaries interested in inferring private information about the users’ connections. In

the second, the social network service needs to protect itself from adversaries interested in gaining

possession of the social network graph.

1.3.4.1 Social Recommendations

The ubiquitous adoption of social networks, such as Facebook and LinkedIn, made possible new

forms of recommendations – those that rely on one’s social connections in order to make person-

alized recommendations of ads, content, products, and people. Since recommendations may use

sensitive information as part of their input, they are associated with privacy risks. In Chapter 5

we study whether personalized graph link-analysis based “social recommendations”, or recommen-

dations that are solely based on a user’s social network, can be made without disclosing previously

unknown sensitive links in the social graph to the user receiving recommendations. Our main contri-

butions are intuitive and precise trade-o↵ results between privacy and utility for a formal model of

personalized social recommendations and a formal model of privacy, di↵erential privacy. Concretely,

we prove lower bounds on the minimum loss in utility for any recommendation algorithm that is

di↵erentially private, and strengthen these bounds for two particular utility functions used in social

recommendation algorithms.

On the positive side, we show how two known methods can be adapted in order to turn any social

2

http://www2009.org/best.html

http://www2009.org/best.html
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recommendation algorithm into a privacy-preserving one. We then experimentally analyze the qual-

ity of recommendations made by privacy-preserving recommendation algorithms on two real-world

networks. Both our theoretical analysis and experimental results strongly suggest a harsh trade-o↵

between privacy and utility in this setting, implying that good private social recommendations may

be feasible only for a small subset of the users in the social network or for a lenient setting of pri-

vacy parameters. Our findings may be applicable for improving privacy protections in applications

that rely on mining private or sensitive graph links, and provide a strong motivation for a need to

develop non-algorithmic approaches to enabling social recommendations that preserve privacy, such

as design of interfaces that empower the users to control which data to exclude from being used as

an input in social recommendation algorithms.

The work in Chapter 5 is joint with Ashwin Machanavajjhala and Atish Das Sarma, and has

greatly benefited from ideas of and thought-provoking discussions with Arpita Ghosh and Tim

Roughgarden. The preliminary version of the work has appeared in [129].

1.3.4.2 Social Graph Visibility

In Chapter 6 we analyze the di�culty of obtaining a large portion of a social network when given

access to snapshots of local neighborhoods of some users in it. The question is motivated by the

trade-o↵ in the desire of a social network service, such as Facebook or LinkedIn, to enable their

users to use the service most e↵ectively to communicate and share information with people in their

extended networks and the desire to protect the social graph they have spent time and e↵ort building

from falling into the hands of competitors and malicious agents.

We introduce a notion of lookahead, which formally captures the extent to which the social

network’s interface exposes the local neighborhoods in the social network graph to its users. We

analyze, both experimentally and theoretically, the fraction of user accounts in the social network

that an attacker would need to gain access to in order to learn the structure of a large fraction of

the network, as a function of the attacker’s strategy for choosing users whose accounts are subverted

and as a function of the lookahead chosen by the social network for the user interface. The main

contribution is in helping social network services understand and quantify the privacy-utility trade-

o↵s in this setting.

The work in Chapter 6 is joint with Rajeev Motwani, Shubha U. Nabar, and Ying Xu, and the

preliminary version of it has appeared in [111].
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Chapter 2

Motivating Examples

In this chapter we detail examples of well-intentioned approaches to privacy-preserving data sharing

and data mining that have nonetheless resulted in breaches of user privacy. In Section 2.1 we recap

breaches that have occurred as a result of data sharing by two large Internet companies (AOL and

Netflix) and have been extensively covered both in the academic literature and public press. In

Section 2.2 we describe our first contribution, two novel attacks on Facebook’s advertising system,

that illustrate that privacy breaches can occur also when companies are merely data mining user

data for their own purposes, rather than broadly sharing it. In all cases, the companies in question

have made e↵orts to protect the privacy of their users, and we argue that they have failed because

they have relied on intuition, rather than rigorous analysis, for protection. These real-world privacy

breach examples build a case for the rest of the thesis work – the failures of heuristic and intuition

based approaches to protect privacy motivate the need to start with a rigorous privacy definition,

and then design and rigorously analyze algorithms for protecting privacy when mining and sharing

user data that satisfy that definition.

2.1 Privacy Breaches when Data Sharing

We present two examples of large Internet companies, AOL and Netflix, sharing an anonymized ver-

sion of their user data with the public. We describe the motivation for data sharing, the anonymiza-

tion technique each company used, and the impact of the data sharing on furthering the goals that

motivated it. We then describe the privacy breaches that have occurred as a result of the data shar-

ing, their implications for the companies and their users, as well as discuss other natural candidates

10



CHAPTER 2. MOTIVATING EXAMPLES 11

for anonymization of the shared data, and why those techniques would also likely fail to protect

privacy. The examples illustrate that protecting user privacy when sharing parts or aggregates of

user data is a challenging task.

2.1.1 AOL Search Log Release

The AOL search log release [12] announced on August 3rd, 2006 included 21 million web queries

posed by more than 500 thousand AOL users over a period of three months.

2.1.1.1 The Data

Search engines keep detailed records of user interactions with the search engine, called search logs.

They consist of all the information the search engine can conceivably record about the interactions,

such as: query-related information (what query was searched for, what results were displayed, what

results were clicked, whether the user returned to view other results after the initial clickthrough),

user-related information (the IP address and browser version of the device from which the search

originated), and performance-related information (duration of time for the search engine to display

results), etc. These logs have been successfully used by search engines in order to improve the quality

of search results (e.g., to fix spelling errors, suggest related searches, expand acronyms and estimate

query popularity over time), to measure their own performance (e.g., the average response time

to a query), to identify areas for improvement (e.g., by looking at the query abandonment rates).

Search logs are a gold mine for search engine innovation, both for designing better algorithms to find

information and for creating new tools to analyze and predict activities in the world, such as real-

time flu activity surveillance and early epidemic detection of illnesses based on search volume [63],

economic forecasts about levels of activity in purchase categories such as automobile sales [183], and

identification of political issues of interest to voters in each state [68].

2.1.1.2 Motivation for Data Release

The motivation for the AOL search log release1 was to facilitate research on search and collaboration

on such research between AOL and interested individuals. Search log data could be an invaluable

source of innovation for many. Computer science researchers have been building a case for search

log access [19, 194] so that they could study and analyze new information retrieval algorithms via

1The original post announcing the release has been removed but a screen cap and a data release announce-
ment email can be found here: http://texturbation.com/blog/aoldata.jpg, http://sifaka.cs.uiuc.edu/xshen/aol/20060803
SIG-IRListEmail.txt

http://texturbation.com/blog/aoldata.jpg
http://sifaka.cs.uiuc.edu/xshen/aol/20060803_SIG-IRListEmail.txt
http://sifaka.cs.uiuc.edu/xshen/aol/20060803_SIG-IRListEmail.txt
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a common benchmark search log, learn about user information needs and query formulation ap-

proaches, build new systems tailored for particular types of queries such as questions [76]. Social

scientists could investigate the use of language in queries as well as discrepancies between user inter-

ests as revealed by their queries versus as revealed by face-to-face surveys [178]. Advertisers could

use the logs to understand how users navigate to their pages, gain a better understanding of their

competitors, and improve keyword advertising campaigns.

2.1.1.3 Anonymization Technique

On the other hand, a release of unperturbed search logs to the greater public could be catastrophic

from a privacy perspective, as users communicate with a search engine in an uninhibited manner,

leaving behind an electronic trail of confidential thoughts and painfully identifiable information (e.g.,

their credit card numbers, decease symptoms, and names of friends or lovers).

In order to protect user privacy while sharing user data AOL had modified the raw search log

data prior to its release. They had omitted IP addresses, browser and other user information, and

for each user, published only their identifier, query, query time, the rank of the document clicked,

and the domain of the destination URL. Furthermore, although AOL searches were tied to AOL

usernames in their search logs, the user identifiers were replaced with randomly assigned numeric

identifiers prior to publication.

2.1.1.4 Impact (Utility)

Although AOL has taken down the data within days of publication due to public outcry and privacy

issues identified, the data has been downloaded, reposted2, and made searchable by a number of

sites. The release was greeted with enthusiasm by the industry and the academic research community

[70, 76, 123], with the only reservations being related to the ethics of use due to privacy concerns

related to the data [76]. The desire to access such data and potential for its productive utilization

outside of search companies is high; workshops [39,136] that granted access to a shared dataset based

on MSN Search query log under a strict no-redistribution license have garnered active participation

and contributions from the research community.

2

http://www.gregsadetsky.com/aol-data/

http://www.gregsadetsky.com/aol-data/
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2.1.1.5 Impact (Privacy)

The consequences of the data release were devastating from the privacy perspective. In a matter

of days, the identity of user #4417749 had been unmasked by the New York Times [22], and tied

to Thelma Arnold, a 62-year old widow from Lilburn, GA, revealing her entire search history and

portrait of her most private interests, from landscapers in her town to dating, her dog’s habits, and

diseases of her friends. Unmasking user #4417749 as Thelma could have been done by anyone with

access to the published AOL logs, as the search history contained full names of Thelma’s family

members, their geographic locations, and other clues helpful in inferring the identity of the user

posing the queries. Besides harm to Thelma, and other users whose names and social security

numbers were published3, the AOL search log release may have had other harmful consequences

the extent of which is di�cult to assess, such as: loss of user trust in AOL as a company, as well

as, possibly, in other search engines, increased anxiety regarding the privacy of online activities for

users, and hesitation of other companies to share their data to enable broader innovation [76]. As a

consequence of an improper release of this private data set the CTO of AOL resigned, two employees

were dismissed [196], and a class action lawsuit was filed.

2.1.1.6 Why Simple Tweaks won’t Fix It

One can argue that although AOL’s anonymization techniques were insu�cient for protecting pri-

vacy, techniques that are better thought through would be more successful, and following AOL’s

release, many other ad-hoc anonymization techniques have been proposed. For example, if replacing

usernames with numeric ids is not su�cient for protecting privacy, then it is natural to wonder if

removing usernames preserves privacy. Such an approach would also likely fail to protect privacy

since one could potentially stitch together queries of a search session belonging to the same user via

the timestamps. Beyond inferring sessions, the heart of the problem lies in the fact that revealing a

single query such as a credit card number breaks privacy.

If the queries themselves are private, then it is natural to wonder if hashing the queries preserves

privacy. In fact, that too fails as Kumar et al. [115] nicely argue. They show that tokenizing a

query, hashing the tokens and publishing the hashes does not preserve privacy since an adversary

who has access to another log can reverse-engineer the tokens by utilizing the frequency with which

the query appears in the log.

Jones et al. [97] study an application of simple classifiers to connect a sequence of queries to

3

http://superjiju.wordpress.com/2009/01/18/aol-seach-query-database/

http://superjiju.wordpress.com/2009/01/18/aol-seach-query-database/
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the location, gender and age of the user issuing the queries, and argue that releasing a query log

poses a privacy threat because these three characteristics of the user can be used to create a set of

candidate users who might have posed that query. Their more recent work [98] investigates privacy

leaks that are possible even when queries from multiple users are grouped together and no user or

session identifiers are released.

In short, while many works [1,194] describe seemingly promising ad-hoc techniques for protecting

privacy when sharing search log data, the results are, by and large, negative for privacy.

2.1.2 Netflix Prize

The Netflix prize data release [25]4 announced on October 2nd, 2006, included over 100 million

ratings given by over 480 thousand users to 17,700 movies.

2.1.2.1 The Data

Netflix is an online movie subscription rental and streaming service that enables its subscribers

to watch movies and TV shows online or receive DVDs for watching by mail. One of the main

di↵erentiators of Netflix from previous generation movie rental companies such as Blockbuster, is

that the service provides recommendations of new movies to watched based on the history of the

user’s watching and rating activity. Robust movie recommendations is one of the reasons for active

subscriber engagement with Netflix’s service [25, 117,125].

2.1.2.2 Motivation for Data Release

The goal of the Netflix prize was to improve their existing movie recommendation algorithm. To

achieve this goal, Netflix announced a contest with a million dollar prize for the best prediction

algorithm and made an anonymized subset of user ratings data available to all interested participants.

The high-profile contest and data release enabled Netflix to engage a broad range of technologists

from all over the world in designing a better algorithm, at a tiny fraction of the cost that it would

have cost Netflix to hire even some of them [125]. The contest provided researchers interested in

developing recommendation algorithms with a training set of an unprecedented size and quality,

movie industry professionals – with an insight into viewer ratings, sociologists – with a snapshot of

interests of our generation, and so on.

4

http://www.netflixprize.com

http://www.netflixprize.com
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2.1.2.3 Anonymization Technique

On the other hand, it is clear that a release of an unperturbed movie rating database could be

catastrophic from a privacy perspective. Users watch and rate a variety of movies reflecting their

interests, concerns, and fears in the privacy of their homes, but they would not necessarily be

comfortable with the whole world knowing what and when they watch, and how they evaluate it.

For example, a teenager exploring their sexuality may not want classmates to become aware of this

exploration by identifying that he or she has watched and rated highly a disproportionally large

amount of gay/lesbian movies. An adult watching movies about people coping with life-threatening

or chronic diseases may not want their employer or insurance company to become aware of it, etc.

In order to protect user privacy Netflix had made modifications to the data before making a subset

of it available for download to the contest participants. They removed all user level information (such

as name, username, age, geographic location, browser used, etc.), and deliberately perturbed “some

of the rating data for some customers [...] in one or more of the following ways: deleting ratings;

inserting alternative ratings and dates; and modifying rating dates” [25]5. The published data

consisted of tuples of: a randomly assigned numeric user id, movie, date of rating, and a numeric

value of the rating on the scale from 1 to 5.

2.1.2.4 Impact (Utility)

The contest was a tremendous success from a business and publicity perspectives for Netflix, as

well as from the perspective of furthering the science of recommendations. During the contest’s

three year duration 41 thousand teams from 186 di↵erent countries have downloaded the data and 5

thousand teams submitted an algorithm. The winning algorithm has shown significant improvement

in the quality of recommendations over the algorithm developed by Netflix, and hence, is expected

to further increase user engagement and satisfaction with the service [117, 125]. Furthermore, the

contest has given high publicity and led to significant progress in the field of recommender systems

[23,107], resulting in establishment of matrix factorization techniques as the dominant methodology

for implementing collaborative filtering [108, 177], introduction of two-layer undirected graphical

models capable of representing and e�ciently learning over large tabular data [160], and progress on

modeling temporal dynamics in collaborative filtering [106]. The techniques developed are applicable

to other companies recommending items to users, such as Amazon, Pandora, and others.

5

http://www.netflixprize.com/rules

http://www.netflixprize.com/rules
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2.1.2.5 Impact (Privacy)

The consequences of the Netflix prize were dire from the privacy perspective. Narayanan and

Shmatikov [147] have shown how to de-anonymize several users in the published dataset by cross-

correlating published Netflix ratings with non-anonymous movie ratings on the Internet Movie

Database (IMDb) website. While the ratings of movies users made on IMDb did not pose pri-

vacy risks as they were made consciously, the re-identification of users using their public ratings

enabled the world to also see their private ratings. A surprising statistic about the anonymized Net-

flix dataset and the de-anonymization algorithm of [147] is how little auxiliary information is needed

for reliable cross-correlation – with 8 movie ratings, 99% of records can be uniquely identified; for

68% of records two ratings and dates are su�cient. Moreover, the de-anonymization algorithm is

robust to discrepancies in the ratings and dates, and works even though Netflix only published a

sample of their user data. The work of [147] has o↵ered a formal mathematical treatment of how a

small amount of background information or auxiliary knowledge about an individual can facilitate

a fairly reliable de-identification of that individual in a seemingly well-anonymized dataset.

Netflix’s failure to fully protect the privacy of the users during the first data release a↵ected

their ability to run a follow-up contest with an expanded set of user data, such as gender, age,

and location. The announcement of the follow-up contest was greeted with concern by privacy

advocates [152] and a privacy law suit [169]. As a result, Netflix has decided to cancel the follow-up

contest [88], a missed opportunity both for Netflix, their users, and the scientific community.

Furthermore, as in the AOL case, the failure to protect privacy during data sharing may have

had a hard-to-measure negative impact. For example, particularly privacy conscious users may have

stopped using Netflix or stopped rating or truthfully rating movies on the service due to lack of

trust to the service. The second high-profile privacy breach due to user data release within a year

of AOL’s has significantly elevated privacy concerns in the minds of users and legislators, and have

made other companies even more hesitant to share their data, which is a loss to society impeding

innovation.

2.1.2.6 Why Simple Tweaks won’t Fix It

It is hard to even conceive of other anonymization techniques for privacy-preserving sharing of Netflix

data, given how bare-bones the data set published already was. [147] show that even after removing

rating date information from consideration, 84% of subscribers can still be uniquely identified. One

can consider excluding movies of sensitive context entirely, but the sensitivities of users may vary
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widely, and while some may feel comfortable sharing their rating of a seemingly innocuous movie

with the world, others may not be even comfosrtable admitting that they have watched it. One can

request users to select which of their ratings they would be comfortable with being included in the

contest, but it is unlikely that users would be willing to engage in such a time and thought-consuming

e↵ort.

In short, the hopes for coming up with strategies for protecting privacy in this context, and

especially, in the context of a follow-up prize competition containing a broader range of user data,

were rather glim. Up until the recent work of [133] there was no approach known for sharing Netflix

data with guarantees that another clever attack would not be able to thwart the protections, with

a tremendous hit to Netflix trustworthiness and to its users.

2.2 Privacy Breaches when Data Mining

In Section 2.1 we reviewed examples of user privacy breaches that were a result of data shared by

companies using ad-hoc anonymization techniques to protect privacy. However, it is reasonable to

presume that if the companies do not share anonymized versions of their user data and merely use

it for their own internal data-mining purposes, then user privacy is protected. In this section we

present the first contribution of the thesis, a study of a real-world system designed with an intention

to protect privacy but without rigorous privacy guarantees, and experimental evidence that user

privacy may be breached not only when user data is shared, but also when it is data-mined while

relying on ad-hoc techniques to protect privacy.

The real-world data-mining system we study is the advertising system of the largest online social

network at the time of writing, Facebook. We propose, describe, and provide experimental evidence

of several novel approaches to exploiting the advertising system, its capabilities for fine-grained

targeting and detailed campaign performance reports, in order to obtain private user information.

In addition to building the case for developing techniques for mining and sharing user data that

satisfy provable privacy guarantees, the disclosure of our findings to Facebook and their response has

contributed to making the kinds of attacks identified more di�cult to execute in the future [81,151].

Organization. In Section 2.2.1 we give the background on the trade-o↵s Facebook faces with

regards to protecting user privacy while enabling monetization of their data. We describe the data

users share with Facebook, the privacy controls available to them, and user privacy expectations

in Section 2.2.2.1, and the capabilities provided to advertisers by Facebook in Section 2.2.2.2 We

introduce the underlying causes of privacy leaks, our proposed attack blueprints, and present our
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experimental evidence of their success in Section 2.2.3. We discuss our results, their implications, and

related work in Sections 2.2.4 and 2.2.5. We conclude in Section 2.2.6 with a discussion of Facebook’s

response to our research disclosure and a discussion of the challenges of designing privacy-preserving

microtargeted advertising systems.

2.2.1 Introduction: Facebook, Targeted Advertising, and Privacy

As more people rely on online social networks to communicate and share information with each

other, the social networks expand their feature set to o↵er users a greater range of the type of data

they can share. As a result, more types of data about people is collected and stored by these online

services, which leads to increased concerns related to its privacy and re-purposing. One of the big

concerns users have when they share personal information on social networking sites is the possibility

that their personal information may be sold to advertisers [164,176].

Although leading social networks such as Facebook have refrained from selling the information

to advertisers, in order to monetize the data they possess they have created systems that enable

advertisers to run highly targeted social advertising campaigns. Not surprisingly, the goals of mon-

etization through enabling highly targeted advertising and protecting the privacy of users’ personal

information entrusted to the company are at odds. To reconcile these conflicting goals, Facebook

has designed an advertising system which provides a separation layer between individual user data

and advertisers. Concretely, Facebook collects from advertisers the ad creatives to display and the

targeting criteria which the users being shown the ad should satisfy, and delivers the ads to people

who fit those criteria [162].

Building an advertising system that serves as an intermediary layer between user data and

advertisers is a common approach to user data monetization. As observed by Harper [77], “most

websites and ad networks do not “sell” information about their users. In targeted online advertising,

the business model is to sell space to advertisers - giving them access to people (“eyeballs”) based on

their demographics and interests. If an ad network sold personal and contact info, it would undercut

its advertising business and its own profitability.”

Through experiments, we demonstrate that an advertising system serving as an intermediary

layer between users and advertisers is not su�cient to provide the guarantee of “deliver the ad [...]

without revealing any personal information to the advertiser” [162, 201], as many of the details of

the advertising system’s design influence the privacy guarantees the system can provide, and an

advertising system without privacy protections built in by design is vulnerable to determined and
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sophisticated attackers. We propose and give experimental evidence of feasibility of several new

types of attacks for inferring private user information by exploiting the microtargeting capabilities

of Facebook’s advertising system. The crux of the attacks consists of crafting advertising campaigns

targeted to individuals whose privacy one aims to breach and using the ad campaign performance

reports to infer new information about them. The first type of attack, Inference from Impres-

sions, enables an attacker posing as an advertiser to infer a variety of private information about

a user from the fact that he matched the campaign targeting criteria. The second type of attack,

Inference from Clicks, enables inferences from the fact that a user takes action, such as a click,

based on the content of the ad.

We thus make a two-fold contribution, by raising awareness of the many ways that information

leakage can happen in microtargeted advertising systems and by providing an example of a real-

world system in which internal data mining of users’ private data entrusted to the company can lead

to privacy breaches.

2.2.2 The Facebook Interface for Users and Advertisers

This section describes the functionality of Facebook from user and advertiser perspectives during

Spring and Summer of 2010, the time during which this research was performed.

2.2.2.1 Facebook from the Users’ Perspective

In this section we describe the types of information that users can include in their Facebook profiles,

the privacy controls available to them, and their privacy concerns.

2.2.2.1.1 User Profile Information When users sign up on Facebook, they are required to

provide their real first and last name, email, gender, and date of birth6. They are also immediately

encouraged to upload a picture and fill out a more detailed set of information about themselves,

such as Basic Information, consisting of current city, hometown, interested in (women or men), look-

ing for (friendship, dating, a relationship, networking), political and religious views; Relationships,

consisting of a relationship status (single, in a relationship, engaged, married, it’s complicated, in

an open relationship, widowed); Education and Work information; Contact Information, including

address, mobile phone, IM screen name(s), and emails; as well as Likes and Interests. The Likes

and Interests profile section can include things such as favorite activities, music, books, movies, TV,

6It is against Facebook’s Statement of Rights and Responsibilities to provide false personal information http:

//www.facebook.com/terms.php

http://www.facebook.com/terms.php
http://www.facebook.com/terms.php
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as well as Pages corresponding to brands, such as Starbucks or Coca Cola, events such as the 2010

Winter Olympics, websites such as TED.com, and diseases, such as AIDS. Any user can Like any

Page about any topic. Since the launch of Facebook’s Open Graph API [179], users are able to

Like many entities on the web, such as webpages, blog posts, products, and news articles. Users

can also post status updates, pictures, and videos, ask questions and share links through Facebook,

potentially enabling Facebook to learn further details about their interests through data mining of

these pieces of content.

Many Facebook users complete and actively update [71] this variety of information about them-

selves, thus seamlessly sharing their interests, current activities, thoughts, and pictures with their

friends.

2.2.2.1.2 User Privacy Facebook provides the ability to limit who can see the information a

user shares on Facebook through a privacy setting specific to each category of information. One

can distinguish five significant levels of privacy settings specifying the visibility of a particular type

of information: Everyone, Friends of Friends, Friends Only, Hide from specific people, and Only

me. A very natural set of privacy settings, and one for which there is evidence7 many users would

strive for if they had the technical sophistication and patience to navigate Facebook’s ever-changing

privacy interface, is to restrict the majority of information to be visible to “Friends only”, with

some basic information such as name, location, a profile picture, and a school (or employer) visible

to “Everyone” to enable search and distinguishability from people with the same name. In certain

circumstances, one might want to hide particular pieces of one’s information from a subset of one’s

friends (e.g., sexual orientation information from co-workers, relationship status from parents), as

well as keep some of the information visible to “Only me” (e.g., date of birth, which is required by

Facebook or interest in a certain Page, in order to receive that Page’s updates in one’s Newsfeed,

without revealing one’s interest in that Page to anyone).

Facebook users have shown time [112] and again [101] that they expect Facebook to not expose

their private information without their control [102]. This vocal view of users, privacy advocates, and

legislators on Facebook’s privacy changes has recently been acknowledged by Facebook’s CEO [201],

resulting in a revamping of Facebook’s privacy setting interface and a re-introduction of the options

to restrict the visibility of all information, including that of Likes and Interests. Users are deeply

concerned about controlling their privacy according to a Pew Internet and American Life Project

7As evidenced by 100,000 people using an open-source privacy scanner Reclaim Privacy http://www.reclaimprivacy.

org

http://www.reclaimprivacy.org
http://www.reclaimprivacy.org
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study [130], which shows that more than 65% of social network users say they have changed the

privacy settings for their profile to limit what they share with others.

Facebook users have been especially concerned with the privacy of their data as it relates to the

sharing of it with advertisers [164,176]. In particular, the user attitude to Facebook’s microtargeted

personalized ads is very mixed. A user survey by [172] shows that 54% of users don’t mind the

Facebook ads, while 40% dislike them, with ads linking to other websites and dating sites gathering

the least favorable response. Often, users seem perplexed about the reason behind a particular ad

being displayed to them, e.g., a woman seeing an ad for a Plan B contraceptive may wonder what in

her Facebook profile led to Facebook matching her with such an ad and feel that the social network

calls her sexual behavior into question [171]. When asked about targeted advertisements in the

context of their online experience, 72% of respondents feel negatively about targeted advertising

based on their web activity and other personal data8; 66% of Americans do not want marketers to

tailor advertisements to their interests [182], and 52% of survey respondents claim they would turn

o↵ behavioral advertising [143].

2.2.2.2 Facebook from the Advertisers’ Perspective

2.2.2.2.1 Ad Creation Process and Targeting Options An ad creative created using Face-

book’s self-serve advertising system consists of the destination URL, Title, Body Text, and an

optional image.

The unique and valuable proposition [153] that Facebook o↵ers to its advertisers are the tar-

geting criteria they are allowed to specify for their ads. As illustrated in Figure 2.1, the ad-

vertiser can specify such targeting parameters as Location (including a city), Sex, Age or Age

range (including a “Target people on their birthdays” option), Interested In (all, men, or women),

Relationship status (e.g., single or married), Languages, Likes & Interests, Education (including

specifying a particular college, high school, and graduation years), and Workplaces. The targeting

criteria can be flexibly combined, e.g., targeting men who live within 50 miles of San Francisco,

are male, 24-30 years old, single, interested in women, Like Skiing, have graduated from Harvard,

and work at Apple. If one chooses multiple options for a single criteria, e.g., both “Single” and

“In a Relationship” in Relationship status, then the campaign will target people who are “singe

or in a relationship”. Likewise, specifying multiple interests, e.g., “Skiing”, “Snowboarding”, tar-

gets people who like “skiing or snowboarding”. Otherwise, unrelated targeting criteria such as

8

http://online.wsj.com/community/groups/question-day-229/topics/how-do-you-feel-about-targeted

http://online.wsj.com/community/groups/question-day-229/topics/how-do-you-feel-about-targeted
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age and education are combined using a conjunction, e.g., “exactly between the ages of 24 and

30 inclusive, who graduated from Harvard”. During the process of ad creation, Facebook pro-

vides a real-time “Estimated Reach” box, that estimates the number of users who fit the currently

entered targeting criteria. The diversity of targeting criteria that enable audience microtargeting

down to the slightest detail is an advertiser’s (and, as we will see, a malicious attacker’s) paradise.

Figure 2.1: Campaign targeting interface

The advertiser can also specify the time during which

to run the ad, daily budget, and max bid for Pay for

Impressions (CPM) or Pay for Clicks (CPC) campaigns.

2.2.2.2.2 Matching Ads to People After the ad

campaign is created, and every time it is modified, the

ad is submitted for approval that aims to verify its ad-

herence to Facebook’s advertising guidelines.9 Based on

our experiments it appears that the approval is occasion-

ally performed manually and other times - automatically,

and focuses on checking adherence to guidelines of the

ad image and text.

For each user browsing Facebook, the advertising sys-

tem determines all the ads whose targeting criteria the

user matches, and chooses the ads to show based on their

bids and relevance.

Facebook provides detailed ad campaign perfor-

mance reports specifying the total number of impressions

and clicks the ad has received, the number of unique im-

pressions and clicks, broken up by day, as well as rudi-

mentary responder demographics. The performance re-

port data is reported close to real time.

2.2.2.2.3 E↵ectiveness of Targeted Ads From

the advertisers’ perspective, the ability to microtarget

users using a diverse set of powerful targeting criteria

o↵ers a tremendous new opportunity for audience reach.

9

http://www.facebook.com/ad guidelines.php

http://www.facebook.com/ad_guidelines.php
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Specifically on Facebook, in 2010 the biggest advertisers have increased their spending more than 10-

fold [192] and the “precise enough” audience targeting is what encourages leading brand marketers

to spend their advertising budget on Facebook [153]. Furthermore, Facebook itself recommends

targeting ads to “smaller, more specific” groups of users,10 as such ads are “more likely to perform

better”.

In a broader context, there is evidence that narrowly targeted ads are much more e↵ective than

ordinary ones [143,195] and that very targeted audience buying ads, e.g., directed at “women between

18 and 35 who like basketball”11 are valuable in a search engine ad setting as well.

2.2.3 Proposed Attacks Breaching Privacy

We illustrate that the promise by several Facebook executives [162, 164, 165, 201] that Facebook

“[doesn’t] share your personal information with services you don’t want”, and in particular, “[doesn’t]

give advertisers access to your personal information” [201], “don’t provide the advertiser any [...]

personal information about the Facebook users who view or even click on the ads” [165] is something

that the advertising system has strived to achieve but has not yet fully accomplished. We show that

despite Facebook’s advertising system serving as an intermediary layer between user data and ad-

vertisers, the design of the system, the matching algorithm, and the user data used to determine the

fit to the campaign’s targeting criteria, combined with the detailed campaign performance reports,

has contributed to a system that could have leaked private user information.

We experimentally investigate the workings of Facebook’s advertising system and establish that

(during the summer of 2010 when this research was done):

• Facebook used private and “Friends Only” user information to determine whether the user

matches an advertising campaign’s targeting criteria

• The default privacy settings led to many users having a publicly visible uniquely identifying

set of features

• The variety of permissible targeting criteria allowed microtargeting an ad to an arbitrary

person

• The ad campaign performance reports contained a detailed breakdown of information, in-

cluding number of unique clicks, respondents’ demographic characteristics, and breakdown by

time,
10

http://www.facebook.com/help/?faq=14719

11

http://blogs.wsj.com/digits/2010/07/15/live-blogging-google-on-its-earnings

http://www.facebook.com/help/?faq=14719
http://blogs.wsj.com/digits/2010/07/15/live-blogging-google-on-its-earnings
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which we show leads to an attacker posing as an advertiser being able to design and successfully run

advertising campaigns that enable them to:

A. Infer information that people post on Facebook in “Only me”, “Friends Only”, and “Hide from

these people” visibility mode

B. Infer private information not posted on Facebook through ad content and user response

C. Display intrusive and “creepy” ads to individuals

We now describe in detail two novel attacks that exploit the details of the advertising system’s

design in order to infer private information and our experiments implementing them.12

2.2.3.1 Infer Information Posted on Facebook with “Only me”, “Friends Only”, and

“Hide from these people” Privacy Settings through Ad Campaign Match

Attack 1: Inference from Impressions is aimed at inferring information that a user has entered

on Facebook but has restricted to be visible to “Only me” or “Friends Only.” According to the

privacy settings chosen by the user, this information should not be available for observation to

anyone except the user themself, or to anyone except the user’s friends, respectively. The proposed

attack will bypass this restriction by running several advertising campaigns targeted at the user

and di↵ering only in the targeting criteria corresponding to the unknown private information the

attacker is trying to infer. The di↵erence in campaign performance reports of these campaigns will

enable the attacker to infer desired private information.

For ease of notation, we represent each advertising campaign as a mixture of conjunctions and

disjunctions of boolean predicates, where campaign A = a
1

^ (a
2

_ a
3

) targets people who satisfy

criteria a
1

(e.g., “went to Harvard”) and criteria a
2

(e.g., “Like skiing”) or a
3

(e.g., “Like snow-

boarding”).

The necessary and su�cient conditions for the attack’s success are: the ability to choose targeting

criteria A that identify the user U uniquely13; Facebook’s user-ad matching algorithm showing the

ad only to users who match the ad targeting criteria exactly and using the information of whether

U satisfies fi when determining campaign match; the user U using Facebook su�ciently often so

that the ads have a chance to be displayed to U at least once over the observation time period, if U

matches the targeting criteria; the advertising system treating campaigns A
1

, . . . , Ak equally.

12For ethical reasons, all experiments conducted were either: 1) performed with consent of the people we were
attacking or aimed at fake accounts; 2) aimed at Facebook employees involved with the advertising system; 3) aimed
at inferring information that we do not plan to store, disclose, or use.

13We discuss the feasibility of this in Section 2.2.4.1.
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Attack 1 Inference from Impressions

1: Input: A user U and a feature F whose value from the possible set of values {f
1

, . . . , fk} we’d
like to determine, if it is entered by U on Facebook.

2: Observe the profile information of U visible to the advertiser that can be used for targeting.
3: Construct an ad campaign with targeting criteria A combining background knowledge about U

and information visible in U ’s profile, so that one reasonably believes that only U matches the
campaign criteria of A.

4: Run k ad campaigns, A
1

, . . . , Ak, such that Ai = A^ fi. Use identical and innocuous content in
the title and text of all the ads. Specify a very high CPM (or CPC) bid, so as to be reasonably
sure the ads would win an auction among other ads for which U is a match.

5: Observe the impressions received by the campaigns over a reasonable time period. If only one
of the campaigns, say Aj , receives impressions, from a unique user, conclude that U satisfies fj .
Otherwise, refine campaign targeting criteria, bid, or ad content.

We run several experiments following the blueprint of Attack 1, and experimentally establish

that the advertising system satisfies the above conditions. In particular, we establish that Facebook

uses “Friends Only” and “Only me” visible user data when determining whether a user matches

an advertising campaign, thereby enabling a malicious attacker posing as an advertiser to infer

information that was meant by the user to be kept private or “Friends only”, violating user privacy

expectations and the company’s privacy promises [162,164,165,201].

We also remark that a typical user would find Attack 1: Inference from Impressions very

surprising, as the advertiser is able to gain knowledge about things the user might have listed in

their profile even if the user U does not pay attention to or click on the ad.

2.2.3.1.1 Inferring a Friend’s Age The first experiment shows that using Facebook’s adver-

tising system it is possible to infer the age of a particular person, who has set the information to

only be visible by themselves.

We attack a friend of the author, who has entered her birthday on Facebook (because Facebook

requires every user to do so) but has specified that she wants it to be private by selecting the “Don’t

show my birthday in my profile” option in the Information section of her profile and by selecting

“Make this visible to Only Me” in the Birthday Privacy Settings. Accordingly, she expects that no

one should be able to learn her age, however, our experiments demonstrate that it is not the case.

We know the college she went to and where she works, which happens to be a place small enough

that she is the only one at her workplace from that college. Following the blueprint of Inference

from Impressions we created several identical ad campaigns targeting a female at the friend’s

place of work who went to the friend’s college, with the ads di↵ering only in the age of the person

being targeted – 33, 34, 35, 36, or 37. The ads whose age target does not match the friend’s age will
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not be displayed, and the ad that matches her age will be, as long as the ad creative is reasonably

relevant and the friend uses Facebook during the ad campaign period.

From observing the daily stats of the ad campaigns’ performance, particularly, the number of

impressions each of the ads has received, we correctly inferred the friend’s age: 35, as only the ad

targeted to a 35-year-old received impressions. The cost of finding out the private information was a

few cents. The background knowledge we utilized related to the friend’s education and workplace, is

also available in her profile and visible to “Friends Only”. Based on prior knowledge, we pruned our

exploration to the 33 – 37 age range, but could have similarly succeeded by running more campaigns,

or by first narrowing down the age range by running campaigns aimed at “under 30” and “over 30”,

then “under 40” and “over 40”, then “under 34” and “over 34”, etc.

2.2.3.1.2 Inferring a Non-friend’s Sexual Orientation Similarly, following the same blueprint,

we succeeded in correctly inferring sexual orientation of a non-friend who has posted that she is “In-

terested in women” in a “Friends Only” visibility mode. We achieved Step 3 of the blueprint by

targeting the campaign to her gender, age, location, and a fairly obscure interest publicly visible to

everyone, and used “Interested in women” and “Interested in men” as the varying values of F .

2.2.3.1.3 Inferring Information other than Age and Sexual Orientation The private

information one can infer using techniques that exploit the microtargeting capabilities of Facebook’s

advertising system, its ad-user matching algorithm, and the ad campaign performance reports, is not

limited to user age or sexual orientation. An attacker posing as an advertiser can also infer a user’s

relationship status, political and religious a�liation, presence or absence of a particular interest, as

well as exact birthday using the “Target people on their birthdays” targeting criterion.

Although using private user information obtained through ad campaigns is against Facebook’s

Terms of Service, a determined malicious attacker would not hesitate to disregard it.

2.2.3.2 Infer Private Information not Posted on Facebook through Microtargeted Ad

Creative and User Response to it

The root cause of privacy breaches possible using Attack 1: Inference from Impressions is

Facebook’s use of private data to determine whether the users match targeting criteria specified by

the ad campaign. We now present a di↵erent kind of attack, Attack 2: Inference from Clicks,

that takes advantage of the microtargeting capabilities of the system and the ability to observe a

user’s response to the ad in order to breach privacy. The goal of this attack is to infer information
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about users that may not have been posted on Facebook, such as a particular user’s interest in a

certain topic. The attack proceeds by creating an ad enticing a user U interested in topic T to click

on it, microtargeting the ad to U , and using U ’s reaction to the ad (e.g., a click on it) as an indicator

of U ’s interest in the topic.

Suppose an attacker wants to find out whether a colleague is having marital problems, a celebrity

is struggling with drug abuse, or whether an employment candidate enjoys gambling or is trying to

get pregnant. Attack 2: Inference from Clicks targets the campaign at the individual of interest,

designs the ad creative that would engage an individual interested in the issue (e.g., “Having marital

di�culties? Our o�ce o↵ers confidential counseling.”), and observes whether the individual clicks

on the ad to infer the individual’s interest in the issue.

Attack 2 Inference from Clicks
1: Input: A user U and a topic of interest T.
2: Observe the profile information of U visible to the advertiser that can be used for targeting.
3: Construct targeting criteria A combining background knowledge about U and information visible

in U ’s profile, so that one reasonably believes that only U matches the criteria of A.
4: Run an ad campaign with targeting criteria A and ad content, picture, and text inquiring about

T , linking to a landing page controlled by an attacker.
5: Observe whether the ad receives impressions to ensure that it is being shown to U . Make

conclusions about U ’s interest in topic T based on whether the ad receives clicks.

Any user who clicks on an ad devised according to the blueprint of Inference from Clicks

reveals that the ad’s topic is likely of interest to him. However, the user does not suspect that by

clicking the ad, he possibly reveals sensitive information about himself in a way tied to his identity, as

he is completely unaware what targeting criteria led to this ad being displayed to him, and whether

every single user on Facebook or only one or two people are seeing the ad.

For ethical reasons, the experiments we successfully ran to confirm the feasibility of such attacks

contained ads of more innocuous content: inquiring whether a particular individual is hiring for his

team and asking whether a person would like to attend a certain thematic event.

2.2.3.2.1 Display Intrusive and “Creepy” Ads to Individuals One can also take advantage

of microtargeting capabilities in order to display funny, intrusive, or creepy ads. For example, an ad

targeting a particular user U could use the user’s name in its content, along with phrases ranging

from funny, e.g., “Our son is the cutest baby in the world” to disturbing, e.g., “You looked awful

at Prom yesterday”. For these types of attacks to have the desired e↵ect, one does not need to

guarantee the success of Step 3 of Attack 2 – an intrusive ad may be displayed to a wider audience,
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but if it uses a particular user’s name, it will likely only have the desired e↵ect on that user, since

others will likely deem it irrelevant after a brief glance.

2.2.3.3 Other Possible Inferences

The information one can infer by using Facebook’s advertising system is not limited to the private

profile information and information inferred from the contents of the ads the users click.

Using the microtargeting capability, one can estimate the frequency of a particular person’s

Facebook usage, determine whether they have logged in to the site on a particular day, or infer

the times of day during which a user tends to browse Facebook. To get a sense of how private

this information may be or become in the future, consider that according to American Academy

of Matrimonial Lawyers, 81% of its members have used or faced evidence from Facebook or other

social networks in the last five years [8], with 66% citing Facebook as the primary source, including

a case when a father sought custody of kids based on evidence that the mother was on Facebook at

the time when she was supposed to attend events with her kids [91].

More broadly, going beyond individual user privacy, one can imagine running ad campaigns

in order to infer organization-wide trends, such as the age or gender distribution of employees

of particular companies, the amount of time they spend on Facebook, the fraction of them who

are interested in job opportunities elsewhere, etc. For example, a data-mining startup Rapleaf

has recently used [190] their database of personal data meticulously collected over several years,

to compare shopping habits and family status of Microsoft and Google employees. Exploitation of

powerful targeting capabilities and detailed campaign performance reports of Facebook’s advertising

system could potentially facilitate a low-cost e�cient alternative to traditional investigative analysis.

Insights into interests and behavioral patterns of certain groups could be valuable from the social

science perspective, but could also have possibly undesired implications, if exploited, for example,

by insurance companies negotiating contracts with small companies, stock brokers trying to gauge

future company performance, and others trying to exploit additional information obtained through

ad campaigns to their advantage.

2.2.4 Discussion of Attacks and their Replicability

In this section, we discuss the feasibility of selecting campaign features for targeting particular indi-

viduals, the additional privacy risks posed by “Connections targeting” capabilities of the Facebook

advertising system, the ways in which an attacker can increase confidence in conclusions obtained
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through the attacks exploiting the advertising system, and the feasibility of creating fake user ac-

counts.

2.2.4.1 Targeting Individuals

The first natural question that arises with regards to the attack blueprints and experiments presented

is whether creating an advertising campaign with targeting criteria that are satisfied only by a

particular user is practically feasible. There is strong experimental and theoretical evidence that it

is indeed the case.

As pointed out by [174], 87% of all Americans (or 63% in follow-up work by [67]) can be uniquely

identified using zip code, birth date, and gender. Moreover, it is easy to establish [52, 145] that 33

bits of entropy are su�cient in order to identify someone uniquely from the entire world’s population.

Recent work [51] successfully applies this observation to uniquely identify browsers based on char-

acteristics such as user agent and timezone information that browsers make available to websites.

Although we did not perform a rigorous study, we conjecture that given the breadth of permissible

Facebook ad targeting criteria, it is likely feasible to collect su�cient background knowledge on

anyone to identify them uniquely.

The task of selecting targeting criteria matching a person uniquely is in practice further simplified

by the default Facebook privacy settings that make profile information such as gender, hometown,

interests, and Pages liked visible to everyone. An obscure interest shared by few other people, com-

bined with one’s location is likely to yield a unique identification, and although the step of selecting

these targeting criteria requires some thinking and experimentation, common sense combined with

easily available information on the popularity of each interest or Page on Facebook enables the cre-

ation of a desired campaign. For users who have changed their default privacy settings to be more

restrictive, one can narrow the targeting criteria by investigating their education and work informa-

tion through other sources. An attacker, such as a stalker, malicious employer, insurance company,

journalist, or lawyer, is likely to have the resources to obtain the additional background knowledge

on their person of interest or may have this information provided to them by the person himself

through a resume or application. Friends of a user are particularly powerful in their ability to infer

private information about the user, as all information the user posts in “Friends Only” privacy mode

facilitates their ability to refine targeting and create campaigns aimed at inferring information kept

in the “Only me” mode or inferring private information not posted using Inference from Clicks.
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2.2.4.2 Danger of Friends of Friends, Page and Event Admins

Additional power to successfully design targeting criteria matching particular individuals comes from

the following two design choices of Facebook’s privacy settings and ad campaign creation interface:

• All profile information except email addresses, IM, phone numbers and exact physical address

is by default available to “Friends of Friends”.

• The campaign design interface o↵ers options of targeting according to one’s Connections on

Facebook, e.g., targeting users who are/aren’t connected to the advertiser’s Page, Event, Group,

or Application, or targeting users whose friends are connected to a Page, Event, Group, or

Application.

While these design choices are aimed at enabling users to share at various levels of granularity and

enabling advertisers to take full advantage of social connections and the popularity of their Page(s)

and Event(s), they also facilitate the opportunity for a breach of privacy through advertising. For

example, an attacker may entice a user to Like a Page or RSVP to an event they organize through

prizes and discounts. What a user most likely does not realize is that by Liking a Page or RSVPing

to an event he makes himself more vulnerable to the attacks of Section 2.2.3. Furthermore, since

the Connections targeting also allows to target friends of users who are connected to a Page, if one’s

friend Likes a Page, it also makes one vulnerable to attacks from the owner of that Page, leading to

a potential privacy breach of one’s data without any action on one’s part.

2.2.4.3 Mitigating Uncertainty

A critic can argue that there is an inherent uncertainty both on the side of Facebok’s system design (in

the way that Facebook matches ads to people, chooses which ads to display based on bids, and does

campaign performance reporting) and on the side of user usage of Facebook (e.g., which information

and how people choose to enter it in their Facebook profile, how often they log in, etc.) that would

hinder an attacker’s ability to breach user privacy. We o↵er the following counter-arguments:

Uncertainty in Matching Algorithm. The attacker has the ability to create multiple adver-

tising campaigns as well as to create fake user profiles (see Section 2.2.4.4) matching the targeting

criteria of those campaigns in order to reverse-engineer the core aspects of how ads are being matched

to users, in what positions they are being displayed, how campaign performance reporting is done,

which of the targeting criteria are the most reliable, etc. For example, in the course of our experi-

ments, we identified that targeting by city location did not work as expected, and were able to tweak
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the campaigns to rely on state location information. For our experiments and in order to learn the

system, we created and ran more than 30 advertising campaigns at the total cost of less than $10,

without arousing suspicion.

Uncertainty in User Information. Half of Facebook’s users log in to Facebook every day [14],

thus enabling a fairly quick feedback loop: if, with a high enough bid, the attacker’s campaign is

not receiving impressions, this suggests that the targeting criteria require further exploration and

tweaking. Hence, although a user might have misspelled or omitted entering information that is

known to the attacker through other channels, some amount of experimentation, supplemented with

the almost real-time campaign performance reporting, including the number of total and unique

impressions and clicks received, is likely to yield a desired campaign.

Uncertainty in Conclusion. Although attacks may not yield conclusions with absolute cer-

tainty, they may provide reasonable evidence. A plausible sounding headline saying that a particular

person is having marital problems or is addicted to pain killers can cause both embarrassment and

harm. The detailed campaign performance reports, including the number of unique clicks and im-

pressions, the ability to run the campaigns over long periods of time, the almost real-time reporting

tools, the incredibly low cost of running campaigns, and the lax ad review process, enables a deter-

mined attacker to boost his confidence in any of the conclusions.

2.2.4.4 Fake Accounts

As the ability to create fake user accounts on Facebook may be crucial for learning the workings of

the advertising system and for more sophisticated attacks, we comment on the ease with which one

can create these accounts.

The creation of fake user accounts (although against the Terms of Service) that look real on

Facebook is not a di�cult task, based on our experiments, anecdotal evidence [13], 14 and others’

research [159]. The task can be outsourced to Mechanical Turk, as creation of an account merely

requires picking a name, email, and filling out a CAPTCHA. By adding a profile picture, some inter-

ests, and some friends to the fake account, it becomes hard to distinguish from a real account. What

makes the situation even more favorable for an advertising focused attacker, is that typically fake

accounts are created with a purpose of sending spam containing links to other users, an observation

Facebook relies upon to mark an account as suspicious [60]; whereas the fake accounts created for

the purpose of facilitating attacks of Section 2.2.3 would not exhibit such behavior, and would thus,

14

http://rickb.wordpress.com/2010/07/22/why-i-dont-believe-facebooks-500m-users/

http://rickb.wordpress.com/2010/07/22/why-i-dont-believe-facebooks-500m-users/
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presumably, be much harder to distinguish from a regular user.

2.2.5 Related Work

The work most closely related to ours is that of Wills and Krishnamurthy [114] and Edelman [53]

who have shown that clicking on a Facebook ad, in some cases, revealed to the advertiser the user ID

of the person clicking, due to Facebook’s failure to properly anonymize the HTTP Referer header.

Their work has resulted in much publicity and Facebook has since fixed this vulnerability [96].

The work of [73] observes that ads whose ad creative is neutral to sexual preference may be

targeted exclusively to gay men, which could create a situation where a user clicking on the ad

would reveal to the advertiser his sexual preference.

Several pranks have used Facebook’s self-serve advertising system to show an innocuous or funny

ad to one’s girlfriend15 or wife16. However, they do not perform a systematic study or suggest that

the advertising system can be exploited in order to infer private information.

2.2.6 Why Simple Tweaks won’t Fix It

As we have demonstrated, despite Facebook’s intentions to protect privacy and the use of user

private information only for internal data-mining rather than external data-sharing, the information

that has been explicitly marked by users as private or information that they have not posted on

the site but is inferable from the content of the ads they click, leaks in a way tied to their identity

through the current design of Facebook’s advertising system. We describe Facebook’s response to

our research disclosure, and other seemingly promising ad-hoc solutions towards protecting privacy

in microtargeted ad systems, as well as outline the reasons why they would not guarantee privacy,

next.

2.2.6.1 Facebook’s Response and Other Candidate Solutions

Following the disclosure of our findings to Facebook on July 13, 2010, Facebook promptly imple-

mented changes to their advertising system that make the kinds of attacks we describe much harder

to execute.

Their approach was to introduce an additional check in the advertising system, which at the

campaign creation stage looks at the “Estimated Reach” of the ad created, and suggests to the

15

http://www.clickz.com/3640069

16

http://www.gabrielweinberg.com/blog/2010/05/a-fb-ad-targeted-at-one-person-my-wife.html

http://www.clickz.com/3640069
http://www.gabrielweinberg.com/blog/2010/05/a-fb-ad-targeted-at-one-person-my-wife.html
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advertiser to target a broader audience if the “Estimated Reach” does not exceed a soft threshold of

about 20 people. We applaud Facebook’s prompt response and e↵orts in preventing the execution

of attacks proposed in this work, but believe that their fix does not fully eliminate the possibility of

proposed attacks.

Although we did not perform further experiments, it is conceivable that the additional restric-

tion of su�ciently high “Estimated Reach” can be bypassed in principle for both types of attacks

proposed. To bypass the restriction while implementing Attack 1: Inference from Impressions,

it su�ces for the attacker to create more than 20 fake accounts (Section 2.2.4.4) that match the

user being targeted in the known attributes. A su�cient number of accounts matching the targeting

criteria in the system would permit running the ad, and attacker’s control over the fake accounts

would enable di↵erentiating between the impressions and clicks of targeted individual and of the

fake accounts. To bypass the restriction while implementing Attack 2: Inference from Clicks,

one can either take a similar approach of creating more than 20 fake accounts, or target the ad to a

slightly broader audience than the individual, but further personalize the ad to make it particularly

appealing to the individual of interest (e.g., by including the individual’s name or location in the

ad’s text).

Hence, although the minimum campaign reach restriction introduced additional complexity into

reliably executing attacks, the restriction does not seem to make the attacks infeasible for determined

and resourceful adversaries.

A better solution to protect users from private data inferences using attacks of type 1: Inference

from Impressions would be to use only profile information designated as visible to “Everyone” by

the user when determining whether a user matches a campaign’s targeting criteria. If private and

“Friends Only” information is not used when making the campaign match decisions, then the fact

that a user matches a campaign provides no additional knowledge about this user to an attacker

beyond what they could infer by simply looking up their public profile on Facebook.

Although using only fully public information in the advertising system would come closest to

delivering on the privacy promises made by Facebook to its users [162, 164, 165, 201], it would also

introduce a business challenge for Facebook. As much of the information users share is “Friends

Only”, using only information shared with “Everyone” would likely degrade the quality of the

audience microtargeting that Facebook is able to o↵er advertisers, and hence create a business

incentive to encourage users to share their information more widely in order to monetize better

(something that Facebook has been accused of but vehemently denies [164]). Another approach
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would be to introduce an additional set of privacy controls to indicate which information the users

are comfortable sharing with advertisers; however, this would create significant additional cognitive

burden on users navigating an already very complex set of privacy controls [59].

We do not know of a solution that would be fully foolproof against Inference from Clicks

attacks. The Power Eye concept [118, 185], providing consumers with a view of the data used to

target the ad upon a mouseover, o↵ers some hope in providing the user with the understanding of

the information they might be revealing when clicking on a particular ad. However, the hassle and

understanding of privacy issues required to evaluate the breadth of the targeting and the risk that

it poses is likely beyond the ability of a typical consumer.

2.2.6.2 Microtargeted Advertising while Preserving Privacy in Other Contexts

The challenges of designing microtargeted advertising systems o↵ering the benefits of fine-grained

audience targeting while aiming to preserve user privacy will become applicable to a variety of

other companies entrusted with user data and administering their own advertising systems (e.g.,

Google) as they move to enable better targeting [184]. We have demonstrated that merely using an

intermediary layer that handles the matching between users and ads is not su�cient for being able

to provide the privacy guarantees users and companies aspire for, and that a variety of seemingly

minor design decisions play a crucial role in the ease of breaching user privacy using the proposed

novel class of attacks.

The works of [180] and [74] propose systems that perform profiling, ad selection, and targeting

on the client’s (user’s) side and use cryptographic techniques to ensure accurate accounting. These

proposals require a shift in the paradigm of online advertising, where the ad brokers relinquish the

control of the way profiling and matching is performed and rely on a weaker client-side model of the

user, which seems unlikely in the near-term.

2.3 Summary

In Section 2.1 we have described two cases of sharing of seemingly anonymized user data that resulted

in privacy breaches. In Section 2.2 we have described a case of seemingly privacy-preserving data

mining that resulted in privacy breaches. For each of these data types and sharing and mining goals,

we have discussed additional candidate techniques for protecting privacy and highlighted the reasons

why each of those techniques would also be unsatisfactory.
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We have not considered cases where data was being mindlessly shared; in all of these examples,

there was a conscious and good faith e↵ort made to protect the privacy of users whose data was

involved. A variety of other e↵orts for sharing other types of user data illustrate the same point –

an utter failure of ad-hoc anonymization techniques to adequately protect privacy [16,146,200].

The Internet user data that the companies desire to mine and share has certain very distinct

characteristics that are novel to privacy research and have been the source of stumbling in all the

privacy protection attempts described in this chapter. The space of possible features mined or

shared (such as search queries posed, movies rated, social network profile features specified) is very

high-dimensional but each vector representing a particular user is very sparse (as each user poses

only a tiny fraction of possible queries, rates a tiny fraction of all movies, and has a limited number

of profile features). Moreover, auxiliary information on a particular user is available in abundance,

as pieces of information are spread out and shared by users with multiple websites with varying

privacy settings, and unlike in previous research in which the features could have been cleanly

divided into sensitive and insensitive [187], it is impossible to predict which parts of the data are

sensitive and/or available elsewhere to the adversary. The characteristics of the data and the users

combined with abundant auxiliary information creates new challenges for protecting privacy, as a few

queries, ratings, or profile features may be su�cient to uniquely fingerprint a user [51, 52, 145, 147].

Moreover, the individual queries, ratings, or profile features themselves may be extremely sensitive

and a publication of just one of them may violate privacy.

Furthermore, each privacy breach due to improper privacy protection while mining or sharing

user data, even if the number of users a↵ected is small, deals a multi-faceted blow: to the reputation

of the company that shared this data, to the individual(s) whose privacy was violated, to the

willingness of users and other companies to consider sharing their data, as well as to the perpetual

availability of the published private data for use in further attacks. Lack of ability to capitalize

on the increased availability of online data by sharing and mining it across companies, institutions,

and communities due to privacy concerns would be a loss to society and academic scholarship [30],

significantly impeding innovation, and the ability of all members of society to gain new insights into

humanity’s behavior.

We have built a case, supported also by decades of research in cryptography [44], that ad-hoc

approaches to protecting privacy inevitably fail in the world of creative and sophisticated adversaries

in possession of auxiliary information from multiple sources. However, we and many members of the

scientific community [70, 76, 123] believe that the tremendous value of user data for innovation and
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scientific discovery warrants a thorough search for approaches to protecting privacy while mining and

sharing user data. The way to avoid the failures of ad-hoc techniques to protect privacy is to start

with a rigorous, quantifiable privacy definition and design algorithms for mining and sharing data

that provably satisfy the definition. We introduce a well-motivated privacy definition and proceed

to design algorithms and analyze privacy/utility trade-o↵s using that definition next.



Chapter 3

A Rigorous Privacy Definition

In this chapter we describe a rigorous definition of privacy, di↵erential privacy, introduced by [49]

in 2006 that we will rely on in the rest of the thesis, briefly highlight reasons why this definition

is particularly well-suited to our problem domain, and present two known approaches for achieving

di↵erential privacy. Several recent surveys by Dwork [43,45,46] provide a further in-depth overview

of the motivation, techniques, and frontiers of di↵erential privacy.

3.1 Di↵erential Privacy

3.1.1 Prior to Di↵erential Privacy

In the last two decades of work focused on releasing statistics about groups of individuals while

protecting their privacy, many definitions of what it means to protect privacy have been proposed

and utilized. One in particular, k-anonymity, has been popular in relation to user data [3,119] until

di↵erential privacy was introduced. In the k-anonymity model, each individual is represented as a

tuple of attributes, and those attributes that can be linked with external information in order to

uniquely identify an individual are termed quasi-identifiers. The privacy protection of k-anonymity

[161, 175] is to guarantee that every set of quasi-identifiers appears in at least k records in the

data set, or equivalently, that any particular individual’s data is indistinguishable from data of at

least k � 1 other individuals with respect to the quasi-identifiers. k-anonymity is usually achieved

through suppression or coarsening of the values of the attributes, for example by omitting names of

the individuals and replacing five-digit zipcodes with only their first two digits.

37
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The definition is very restrictive and hard to achieve without significant loss in utility especially in

the context of online and social data. To understand why, imagine representing a user’s search history

as a set of attributes, then trying to specify quasi-identifiers among those attributes, and making

each individual’s search history indistinguishable from k� 1 others. Even if we were able to reliably

identify the quasi-identifiers among the search queries, the number of which is almost certainly very

large, subsequent anonymization of the very sparse user search history representations would likely

render them useless from the utility perspective, an argument that is formalized in the work of [2].

Furthermore, in the real-world settings where an adversary, unknown to the data curator, may have

access to background information, k-anonymity provides particularly poor privacy guarantees, as

the adversary may be able to distinguish among the k individuals with identical quasi-identifiers

using the background knowledge. A more detailed discussion of k-anonymity’s shortcomings can be

found in [128].

3.1.2 Informal Definition

In contrast with k-anonymity, which tries to make one individual’s data “blend in” with k � 1

others, di↵erential privacy, introduced by Dwork, McSherry, Nissim, and Smith [43,49], aims to limit

the privacy risk to an individual that arises as a result of their data being used by the company,

as compared to the privacy risk that the same individual would have incurred had he not used

the service o↵ered by the company. Phrased di↵erently, an analysis or a release of a dataset is

di↵erentially private if an attacker can infer approximately the same amount of information about

an individual B from the analysis or release of the dataset, whether or not B’s data was included

in the input on which the analysis or release was based. The meaning of “approximately the same”

is quantified using the privacy parameter ✏.

3.1.3 Formal Definition

More formally,

Definition 1 (✏-di↵erential privacy). A randomized algorithm A is ✏-di↵erentially private if for

all datasets D
1

and D
2

di↵ering in at most one individual’s data and all D̂ ✓ Range(A) :

Pr[A(D
1

) 2 D̂]  e✏ · Pr[A(D
2

) 2 D̂],

where the probabilities are over the coin flips of the algorithm A.
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By datasets D
1

and D
2

di↵ering in at most one individual’s data we mean that one is a subset

of the other, and the larger dataset contains all data from the smaller dataset and data of one more

individual. The definition can also be analogously stated for all pairs of datasets D
1

and D
2

that

di↵er in the value of the data of at most one individual or di↵er in at most one piece of content. We

use the original meaning of the definition, and state additional assumptions on D
1

and D
2

separately

in each chapter depending on the exact problem being considered.

Subsequent work [47] relaxed the ✏-di↵erential privacy definition to include a non-zero additive

component �, which allows to ignore events of very low probability.

Definition 2 ((✏, �)-di↵erential privacy). A randomized algorithm A is (✏, �)-di↵erentially private

if for all datasets D
1

and D
2

di↵ering in at most one individual’s data and all D̂ ✓ Range(A) :

Pr[A(D
1

) 2 D̂]  e✏ · Pr[A(D
2

) 2 D̂] + �,

where the probabilities are over the coin flips of the algorithm A.

The parameters ✏ and � are publicly known, and the higher ✏ and �, the weaker the privacy

guarantee provided by the algorithm. There is no agreement on exact values of ✏ and � that are

meaningful in practical contexts as their selection is considered a social question [46], but ✏ can be

thought of as a small constant (e.g., ln 2, ln 5), and � - as negligible in the number of users whose

data is included in the dataset.

3.1.4 The Advantages of the Definition

The privacy guarantee of di↵erential privacy is not an absolute one, and is weaker than the privacy

guarantee one may initially hope to achieve, namely, one in which the beliefs of an adversary about

an individual prior to seeing the output of algorithm A are approximately the same as the adversary’s

beliefs after seeing the output of A. However, such a stringent privacy guarantee cannot be achieved

if algorithm A provides any meaningful aggregate information about its input [43,50]. For example,

suppose an adversary believes that individuals never search for the word “apple”, and a search engine

states that 20% of its users have searched for “apple” at some point. As a result of such a statement,

an adversary’s belief about whether or not a particular person B has ever searched for “apple” is

radically changed, even though B might have never used the search engine. The di↵erential privacy

guarantee, which aims to keep the adversary’s beliefs approximately the same whether or not B’s

data was included in the input to A, is a more sensible and practical guarantee to aim for.
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Furthermore, as a definition of what it means to protect privacy, di↵erential privacy is particularly

well-matched to the context we aim to address in the thesis (in which companies obtain large amounts

of diverse user data as the result of them using their services, and would like to utilize the collected

data in order to further improve their services or advance scientific research, while at the same time

protecting the privacy of the individual users), for the following reasons:

• The definition measures the privacy guarantee of a particular algorithm, A, which enables

reasoning under the assumption that the company is interested in protecting privacy and is

evaluating candidate data-mining and data-sharing algorithms from that perspective.

• It measures privacy in terms of the e↵ect that the presence or absence of one individual’s data

has on the output of the algorithm (which is what becomes available to the adversary). Thus, it

measures and “announces” the privacy risk an individual would incur by using the company’s

service (e.g., using the search engine, participating in the social network), and enables every

individual to make a choice of not using the service if he deems that the utility he derives from

the service is not worth the privacy risk he is going to incur as a result.

• Unlike black-and-white statement about whether the company protects or does not protect

privacy, di↵erential privacy enables a more fine-grained paradigm in which privacy loss can

be quantified on a continuous spectrum. This enables both companies and users to trade-o↵

and balance competing objectives of providing better and innovative services while protecting

privacy.

• The definition can be applied to any user data, not just data of a particular type, which is

especially important given that every day new types of data about individuals become available

for collection and analysis. Consider that pre-Internet, collecting several dozen characteristics

about an individual was a challenging and time-consuming task, whereas now the possibilities

for seamless user data collection are virtually limitless, starting from user personal information

provided to the service, to timestamped logs of all actions on the service, to the location, device,

and browser used to access the service, to speed with which the user moves between di↵erent

actions or pieces of content on the service, to combinations and cross-referencing of actions

performed on partner services.

• The definition does not make any assumptions about the adversary and the computational, so-

cial, and auxiliary data resources available to him. In the world in which computational power

doubles every year, and the resources for obtaining additional data and for executing data
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linkage attacks are multiplying, making no assumptions about the adversary is an important

characteristic for protecting privacy not only from the most advanced adversaries of today, but

also from the most sophisticated and resourceful adversaries of tomorrow. Furthermore, the

definition protects privacy of user B even if the adversary has coerced all other users of the

service except B.

• The definition allows arbitrary post-processing and use of the output of the algorithm without

additional privacy risks, a feature that is highly desirable in the real-world, since the data

curator may not be able to exhort control over how the results of his analysis or data release

are used once they are published, and thus would like to have the privacy guarantees extend

to all possible post-publishing analyses.

• The definition adapts well to privacy of multiple individuals and to protecting privacy of

multiple simultaneous uses of the same or similar user data by independent entities.

3.2 Known Techniques for Achieving Di↵erential Privacy

3.2.1 Laplace and Exponential Mechanisms

Two specific algorithms, the Laplace mechanism and the Exponential mechanism, are the known

building blocks for publishing data or answering queries in a di↵erentially private manner.

3.2.1.1 Laplace Mechanism

The idea of the Laplace mechanism proposed by Dwork et al. [49] is to add properly calibrated

random noise to the true answer of the query function being computed on the data. The noise

magnitude is calibrated with respect to the query function’s sensitivity, the maximum possible

change in the function value due to the addition or removal of one person’s data from the input.

The idea of Laplace mechanism is most naturally applied to histogram queries. Consider an

arbitrary domain D which has been partitioned into r disjoint bins. A histogram query function,

f : D ! Zr maps the dataset entries into these bins and reports the number of entries in each bin.

The sensitivity S(f) of a function f denotes the maximum possible “change” in the value of f when

the inputs di↵er in one individual’s data, i.e.,

S(f) = max{kf(D
1

)� f(D
2

)k
1

: D
1

, D
2

2 D di↵er in at most one individual’s data}. Then
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Theorem 1. [49] For all f : D ! Rr the mechanism that given input D publishes Sanf (D) =

f(D)+ (Y
1

, . . . , Yr), where the Yi are drawn i.i.d. from Lap
�
S(f)/✏

�
, satisfies ✏-di↵erential privacy.

Lap(b) denotes the Laplace distribution with scale parameter b, location parameter 0, and vari-

ance 2b2. In this notation, increasing b flattens out the Lap(b) curve, yielding larger expected noise

magnitude and therefore, eventually, better privacy guarantees. Recall the following two properties

of the Laplace distribution:

Observation 1. [Properties of Laplace distribution] For Laplace distribution with location

parameter 0, and scale parameter b > 0, denoted by Lap(b), and a random variable X, the cdf

F (x) = Pr[X  x] satisfies:

F (x) = 1/2 · exp(x/b), if x < 0

= 1� 1/2 · exp(�x/b), if x � 0

Observation 2. [Properties of Laplace ratios] Let r be a random Lap(b) noise. Then,

1  Pr[r<c+1]

Pr[r<c]  e1/b and e�1/b  Pr[r>c+1]

Pr[r>c]  1.

Note that the privacy guarantees in Theorem 1 do not depend on r. Further, note that, by

definition, the sensitivity depends only on the query function whose output is being published and

not on the input dataset. In many practical applications, when the data owner is interested in

computing and releasing aggregate statistics over a histogram query function, the sensitivity is low

and yields fairly accurate and privacy-preserving output statistics.

3.2.1.2 Exponential Mechanism

The Exponential mechanism proposed by McSherry and Talwar [134] aims to help in privately

answering queries for which the addition of random noise to their output makes no sense (e.g., queries

with non-numerical output, such as “What is the most frequent word users search for online?”). The

idea of the mechanism is to select the output from among all possible query answers at random,

with the probability of selecting a particular output being higher for those outputs that are “closer”

to the true output.

More formally, let R be the range of possible outputs of the query function f , and let uf (D, r)

be a utility function that measures how good output r 2 R is as an answer to the query function

f given that the input dataset is D (with higher values of uf representing better outputs). The
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sensitivity S(uf ) is defined as the maximum possible change in the utility function’s value uf due

to the addition or removal of one person’s data from the input, i.e.,

S(uf ) = max
D

1

,D
2

,r2R

�
kuf (D1

, r)� uf (D2

, r)k
1

: D
1

and D
2

di↵er in at most one individual’s data
 
.

Then

Theorem 2. [134] Let D be the input dataset. The mechanism that chooses output r, with proba-

bility proportional to exp
�

✏
S(u

f

)

uf (D, r)
�
satisfies ✏-di↵erential privacy.

3.2.2 Other Techniques

Since the introduction of the di↵erential privacy definition [49], and discovery of the two foundational

mechanisms for achieving it [49, 134], the search for other algorithms satisfying the definition has

been an active area of research [45].

Di↵erentially private algorithms have been proposed for problems such as:

• contingency table releases [21]

• obtaining synthetic databases that are useful for all queries of a particular class (such as

predicate queries computing fractional counts) [28]

• computation of count queries satisfying fixed predicates [61]

• collaborative filtering techniques for producing recommendations [133]

• release of degree distributions of social networks [78]

• discovery of frequent itemsets [26]

• aggregation of distributed time-series data [156]

• computation of combinatorial optimization primitives, e.g., k-median and vertex cover [75]

• learning of classifiers via empirical risk minimization [33],

and data analysis frameworks supporting di↵erentially private computations have been developed

for traditional [132] and MapReduce [158] computations.

We describe and discuss the details of additional related works in each chapter.
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Chapter 4

Releasing Search Queries and

Clicks Privately

There is much to be gained from sharing the search logs with the wider community, and the question

of how to publish an anonymized search log was brought to the forefront by a well-intentioned, but

privacy-unaware AOL search log release (Section 2.1.1). Since then a series of ad-hoc techniques have

been proposed in the literature (Section 2.1.1.6), though none are known to be provably private.

The open question to date has been whether there even exists a way to publish search logs in a

perturbed fashion in a manner that is simultaneously useful and private. In this chapter, we take a

first significant step towards answering that question.

Rather than looking for a privacy-preserving way to publish a search log in its entirety, we focus

on a seemingly more attainable goal of releasing a privacy-preserving query click graph. In a query

click graph the vertices correspond to both queries and URLs and there is an edge from a query to

a URL with weight equal to the number of users who click on that URL given they posed the query.

Each query node is labeled by the number of times this query was posed in the log. Similarly, there

is an edge from one query to another query with weight equal to the number of users that posed one

query and reformulated to another.

While a query click graph is not as rich a dataset as the actual search log, many computations

can still be performed on the click graph with results similar to the computations starting with the

actual search log [18, 40]. Query suggestions can be derived using common query reformulations.

Spelling corrections can be inferred from queries with low click through and high reformulation rates.

45
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Similar queries can be found using common URLs clicked for those queries. Query classification and

keyword generation can also be deduced from the query click graph [58].

Our technical contributions are as follows:

• We propose a simple, intuitive, and e�ciently implementable algorithm for producing a privacy-

preserving query click graph based on a search log (Section 4.3).

• We utilize the formal privacy definition of di↵erential privacy [49] (described in Chapter 3)

adapted for the search logs context (Section 4.2), to prove that our proposed algorithm gives

rigorous, rather than ad-hoc or intuition-based privacy guarantees (Section 4.4).

• We give a precise characterization of how to set the parameters of the proposed algorithm

depending on the privacy guarantees desired (Section 4.5) and analyze the e↵ects of the pa-

rameter settings on the characteristics of the publishable query set (Section 4.6.1).

• Although we do not utilize a formal notion of utility, we perform experiments to demonstrate

that the query click graph we can produce can be of practical use. We show that the fraction of

distinct queries that can be published, as well as the amount of search volume involving those

queries, is non-negligible (Section 4.6.1). We then select two applications, keyword generation

and studying human fears, and demonstrate that keywords and fears obtained from our query

click graph closely resemble those obtained from the original unperturbed data (Section 4.6.2).

The main algorithmic insight of our work is that an intuition that publishing search queries can

be done while preserving user privacy by “throwing away tail queries” [1], can be formalized into

a privacy-preserving algorithm with rigorous privacy guarantees (Section 4.3). The modifications

needed are:

1. limits on the extent to which a particular user’s search and click activity is counted towards

query and click frequency

2. systematic introduction of some randomness into the decision of whether a particular query

is a tail query, by comparing the query’s frequency with a fixed threshold after adding some

random noise to the true frequency

3. systematic introduction of some randomness into the frequency counts reported, by adding

some random noise to the true counts.
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Given the queries that are determined to be safe to publish, the ten URLs surfaced are also safe to

publish because anyone can pose a query to a search engine and see the top ten links. To publish

the number of users who click on a result, we compute the actual number and add random noise.

Our work is the first to take a concrete definition of privacy, di↵erential privacy, and design

an algorithm for producing a private query click graph that provably satisfies that definition. Our

algorithm also formalizes the “throw away tail queries” intuition into an algorithm with rigorous

privacy guarantees, and mathematically quantifies exactly how to choose the threshold and random

noise parameters so as to guarantee a desired level of privacy. The algorithm and the insights

obtained from its analysis can be applied to improve privacy when sharing and mining user search

data [105,131].

4.1 Related Work

We use the ideas developed in [49], showing that any function with low sensitivity can be computed

privately (Section 3.2), for our analysis. The aggregate statistical values reflected in our query click

graph have low sensitivity, provided that each user issues a bounded number of queries - a condition

which will be enforced by our algorithm.

Randomly sampling a dataset is known to preserve privacy under a definition closely related

to di↵erential privacy [32], but only under the assumption that there are few rare values. In the

web context, it is more likely that every person’s searches are a unique fingerprint to them; thus,

randomly sampling the search log breaks privacy.

Prior to our work, no di↵erentially private algorithm was known for e�ciently publishing a

query click graph. The exponential mechanism due to McSherry and Talwar [134] (Section 3.2.1)

and another mechanism by Blum et al. [28] could be adapted to this task in theory but is not feasible

in practice, as this mechanism takes time exponential in the size of the output space. More recently,

McSherry and Talwar [135] have proposed an algorithm for releasing synthetic queries that holds

promise for synthetic data releases.

The work of [69] takes a similar approach to ours, utilizing two thresholds, and addition of noise

to query counts, in order to determine which queries can be published. Their work significantly

expands on the analysis of the utility of the data, by choosing a concrete measure of algorithm’s

accuracy, and exploring two additional applications relying on published search log data. Their work

provides additional confirmation to our experiments and claims that the subset of the search log

data published using our algorithm can be valuable.
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Finally, work of [86] aims to help users prevent search engines from building accurate interest

profiles of them through a browser extension that issues randomized queries to the search engines.

Their approach is interesting and empowering from the user perspective, but does not help address

the problem of privacy-preserving search data release.

4.2 Di↵erential Privacy for the Search Logs Context

In order to adapt the di↵erential privacy definition of Section 3.1 to the search logs context we

need to choose what we mean when we say that two datasets D
1

and D
2

di↵er in at most one

individual’s data. The notion of privacy we would like to preserve is the privacy of users. In the

di↵erential privacy context that means we want to ensure that the knowledge an attacker obtains

about a particular user from the data release based on a search log is roughly the same, whether or

not that user has used the search engine. Hence, when applying the di↵erential privacy definition

to the search logs context, we will consider all search logs D
1

and D
2

di↵ering in at most one user’s

data, i.e., di↵ering in at most one user’s entire search history, rather than in one query. Note that

a search engine may not always be able to identify when two sets of queries belong to the same

user, for example, if those queries were posed from multiple devices, after browser cookies have been

wiped, or if the IP addresses are unreliable. Therefore, in practice, our privacy guarantee will hold

for user privacy as per search engine’s identification of a user.

We use the weaker version of di↵erential privacy, the (✏, �) di↵erential privacy (Definition 2 from

Section 3.1.3), as the privacy guarantee we demand from our data release algorithm. We search

for algorithms that release a strict subset of the data that was contained in the original search log,

rather than algorithms that publish both queries that were contained in the log, as well as additional,

“fake” queries that were not present in the log. We show in Lemma 6 (Section 4.8) that among

algorithms that do not publish “fake” queries, only the algorithm that does not publish anything

satisfies ✏-di↵erential privacy. Therefore, (✏, �)-di↵erential privacy is, in many ways, the strictest

privacy definition we can hope to satisfy while preserving some utility when releasing search log

data without introducing any “fake” data.

Hence, a randomized search log data release algorithm A is (✏, �)-di↵erentially private, if for all

search logs D
1

and D
2

di↵ering in at most one user’s search history and all D̂ ✓ Range(A) :

Pr[A(D
1

) 2 D̂]  e✏ · Pr[A(D
2

) 2 D̂] + �.
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There are no hard and fast rules for setting ✏ and � – it is generally left to the data releaser (recall,

however, that these parameters are treated as public. One consideration to take into account when

choosing � is the number of users n participating in the dataset, and aim for � being negligible in n.

Indeed, imagine that the search log consists only of sensitive data, e.g., each user has posed exactly

one query, which is the concatenation of their name, date of birth, and social security number. An

algorithm that outputs one of these queries uniformly at random satisfies (0, 1

n )-di↵erential privacy.

At the same time, the algorithm implies that at least one user’s private query is published and

therefore, their privacy is compromised. Of course, imagining that the search log consists only of

this extremely sensitive queries is a very paranoid view of privacy, but this example argues that the

magnitude of 1

number of users

is useful to keep in mind when choosing �.

4.3 Algorithm for Releasing Search Queries and Clicks

We next describe our algorithm for generating a private query click graph. The key components

are: determining which queries to publish, together with the number of times the query was posed

and, further, determining which URLs to publish, together with the number of times the URL was

clicked for each query. Our basic method for accomplishing these tasks utilizes a noisy count: for any

statistic x of the data, the noisy count of x is x+ Lap(b), where Lap(b) denotes a random variable

drawn independently from the Laplace distribution with mean zero and scale parameter b.

At a high-level, the algorithm proceeds as follows.

1. Limit User Activity: Keep only the first d queries posed by each user and first dc URL

clicks of each user (Line 2 of Algorithm 3).

2. Queries: If the noisy count of the number of times a query is posed exceeds a specified

threshold, output the query together with its noisy count (Lines 3-5 of Algorithm 3).

3. URLs: If a query is safe to publish, then the ten URLs that are surfaced for that query are

also safe to publish since anyone can pose the query to a search engine and see the ten results.

For each query and ten surfaced URLs for that query, we output the noisy count of the number

of times each URL was clicked for that query (Line 6 of Algorithm 3).

Some comments about the algorithm are in order.

• We limit user activity in order to preserve privacy: if a user can contribute an unbounded

number of queries and clicks then they can have an unlimited influence on the set of queries
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that are published (and the URLs that are clicked). In practice, a typical user does not pose

an unlimited number of queries anyway — studies suggest that an average user poses about

34 queries per month [54]. We have flexibility for how we choose the d queries to keep for any

user – the first d, random d, etc.

• While the main idea of throwing away tail queries is quite natural and has been previously

suggested in the literature [1], we are the first to mathematically quantify exactly how to

perform this operation so as to preserve privacy with respect to a rigorous privacy definition.

Indeed, our theorems in subsequent sections establish a direct connection between the threshold

used for defining a tail query and the resulting privacy guarantees.

• It is crucial to note that every time our algorithm computes the noisy count, the noise should

be generated independently from the Laplace distribution. The independence of the random

variables used for each query and each query-URL pair is required for the privacy guarantees

to hold.

• A small caveat to using the algorithm is that, strictly speaking, its parameters such as

K, d, dc, b, bq, bc need to be made publicly known after they are chosen in order to guaran-

tee soundness of the privacy proof.

Algorithm 3 Release-Data
1: Input: D - search log, d, dc - parameters that limit user activity, b, bq, bc - noise parameters, K

- threshold that defines tail.
2: Limit-User-Activity: D  Keep the first d queries and the first dc URL clicks of each user.
3: For each query q, let M(q,D) = number of times q appears in D
4: Select-Queries: Q {q : M(q,D) + Lap(b) > K}
5: Get-Query-Counts: For each q in Q, output hq,M(q,D) + Lap(bq)i
6: Get-Click-Counts: For each URL u in the top ten results for q 2 Q, output hq, u, number of

times u was clicked when q was posed +Lap(bc)i.

4.4 Privacy Guarantees

We now state formally the (✏, �)-di↵erential privacy guarantees that our algorithm provides. We

then give a sketch of the proof that each of the individual steps preserves privacy and, further, that

their composition preserves privacy.

Let K, d, dc, b, bq, bc be the parameters of Algorithm 3 such that K � d. Define ↵ = max(e1/b, 1+

1

2e(K�1)/b�1

) and the multiplicative and additive privacy parameters as ✏alg = d · ln(↵)+d/bq +dc/bc
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and �alg = d
2

exp(d�K
b ).

Theorem 3. Algorithm 3 is (✏alg, �alg)-di↵erentially private for every pair of search logs di↵ering

in one user, where ✏alg and �alg are defined as above.

4.4.1 Proof Overview

In order to prove Theorem 3, we will show that each step of the algorithm is di↵erentially private

for appropriate values of ✏ and � and that their composition is also di↵erentially private.

Lemma 1. Select-Queries is (d · ln(↵), �alg)-di↵erentially private if each user is limited to posing

at most d queries, where ↵ and �alg are defined as above.

Lemma 2. Get-Query-Counts is (d/bq, 0)-di↵erentially private.

Lemma 3. Get-Click-Counts is (dc/bc, 0)-di↵erentially private.

Lemma 4. Suppose Select-Queries is (✏
1

, �)-di↵erentially private, Get-Query-Counts is (✏
2

, 0)-

di↵erentially private, and Get-Click-Counts is (✏
3

, 0)-di↵erentially private. Then Algorithm 3 is

(✏
1

+ ✏
2

+ ✏
3

, �)-di↵erentially private.

Theorem 3 follows from Lemmas 1, 2, 3, and 4. We next sketch the key ideas in the proofs of

the above lemmas.

4.4.2 Privacy for Selecting Queries

We first prove the guarantees for Select-Queries when each user can pose at most one query

(Lemma 5) and then generalize the proof to hold for d queries per user to obtain Lemma 1.

4.4.2.1 Privacy for Select-Queries with d = 1:

Let ↵ = max(e1/b, 1 + 1

2e(K�1)/b�1

) and �
1

= 1

2

e
1�K

b . Denote the Select-Queries algorithm by A.

Lemma 5. If each user can pose at most one query and K � 1, then Select-Queries satisfies

(ln(↵), �
1

)-di↵erential privacy.

Proof. Let D
1

and D
2

be arbitrary search logs that di↵er in exactly one query q⇤ posed by some user

such that D
2

is the larger of the two logs. Let D̂ ✓ Range(A) denote an arbitrary set of possible

outputs. Then we need to show the following:

Pr[A(D
1

) 2 D̂]  ↵Pr[A(D
2

) 2 D̂] + �
1

(4.1)
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and that

Pr[A(D
2

) 2 D̂]  ↵Pr[A(D
1

) 2 D̂] + �
1

(4.2)

We consider two di↵erent scenarios depending on whether q⇤ already appears as a query of some

user in D
1

or is a new query. For the first case, we do not need the additive parameter (i.e., �
1

= 0

works) as we can bound the ratio of the probabilities in each expression above. The key idea is to

notice that q⇤ has a slightly higher probability of being released from D
2

compared to D
1

and to

argue that the ratio of these probabilities can be bounded. However, for the second case, q⇤ can

never be released from D
1

, and hence we cannot bound the ratio of the probabilities. Instead, we

make use of the fact that q⇤ occurs only once in D
2

and use the additive parameter �
1

to bound the

probability that its noisy count exceeds the threshold K.

Recall that our algorithm A only produces a subset of queries contained in D
1

(or D
2

). Hence,

any set of queries O that contains some query not present in D
1

or D
2

can safely be removed from

D̂ as the probability that A produces O, with D
1

or D
2

as input, is zero. We also partition D̂ into

two subsets: D̂+, the query sets in D̂ that contain q⇤ and D̂�, the query sets in D̂ that do not

contain q⇤.

Throughout the proof, we use Observations 1, 2 about the properties of Laplace distribution

described in Section 3.2 and Observation 4 from Section 4.8 about the properties of ratios.

Case 1: q⇤ 2 D
1

Let M(q,D) be the number of times query q appears in the search log D. Since, by assumption,

q⇤ 2 D
1

, we have M(q⇤, D1

) � 1,M(q⇤, D2

) = M(q⇤, D1

) + 1.

We first prove inequality (4.1) with ↵ = e1/b and �
1

= 0 by upper bounding the ratio Pr[A(D
1

)2 ˆD]

Pr[A(D
2

)2 ˆD]

,

which we denote by R1

2

.

From our partition of D̂ into D̂+ and D̂� and using Observation 4 we have1:

R1

2

= Pr[A(D
1

)2 ˆD]

Pr[A(D
2

)2 ˆD]

= Pr[A(D
1

)2 ˆD+

]+Pr[A(D
1

)2 ˆD�
]

Pr[A(D
2

)2 ˆD+

]+Pr[A(D
2

)2 ˆD�
]

 max
⇣

Pr[A(D
1

)2 ˆD+

]

Pr[A(D
2

)2 ˆD+

]

, Pr[A(D
1

)2 ˆD�
]

Pr[A(D
2

)2 ˆD�
]

⌘

Consider now the ratio Pr[A(D
1

)2 ˆD+

]

Pr[A(D
2

)2 ˆD+

]

. Recall that in our algorithm, the decision to release a

particular query is made independently for each query and that D
1

and D
2

di↵er only in the number

of times that q⇤ occurs in each of them. Hence, for a particular possible output O, s.t. q⇤ 2 O:
Pr[A(D

1

)=O]

Pr[A(D
2

)=O]

= Pr[q⇤released by A(D
1

)]

Pr[q⇤released by A(D
2

)]

. Generalizing this observation to all outputs Oi 2 D̂+ we obtain:
Pr[A(D

1

)2 ˆD+

]

Pr[A(D
2

)2 ˆD+

]

= Pr[q⇤released by A(D
1

)]

Pr[q⇤released by A(D
2

)]

= Pr[M(q⇤,D1

)+Lap(b)>K]

Pr[M(q⇤,D2

)+Lap(b)>K]

= Pr[M(q⇤,D1

)+Lap(b)>K]

Pr[M(q⇤,D1

)+1+Lap(b)>K]

.

By analogous reasoning with respect to D̂� we obtain:

1Observation 4 holds only for positive denominators. In the event that either or both the denominators are zero,
it can be shown that the di↵erential privacy bound continues to hold.
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Pr[A(D
1

)2 ˆD�
]

Pr[A(D
2

)2 ˆD�
]

= Pr[M(q⇤,D1

)+Lap(b)<K]

Pr[M(q⇤,D2

)+Lap(b)<K]

= Pr[M(q⇤,D1

)+Lap(b)<K]

Pr[M(q⇤,D1

)+1+Lap(b)<K]

From these two bounds on the ratios, we bound R1

2

:

R1

2

 max
⇣

Pr[M(q⇤,D1

)+Lap(b)>K]

Pr[M(q⇤,D1

)+1+Lap(b)>K]

, Pr[M(q⇤,D1

)+Lap(b)<K]

Pr[M(q⇤,D1

)+1+Lap(b)<K]

⌘
, which by Observation 2 implies that

R1

2

=
Pr[A(D

1

) 2 D̂]

Pr[A(D
2

) 2 D̂]
 max(1, e1/b) = e1/b (4.3)

proving inequality (4.1), as desired.

A similar analysis can be performed to show that

Pr[A(D
2

) 2 D̂]

Pr[A(D
1

) 2 D̂]
 e1/b, (4.4)

yielding the proof of inequality (4.2) with ↵ = e1/b and �
1

= 0.

Case 2: q⇤ /2 D
1

, q⇤ 2 D
2

We now proceed to prove inequality (4.1) with ↵ = 1

1�0.5 exp(

1�K

b

)

and �
1

= 0.

First consider outputs that do not contain the new query q⇤. By similar reasoning as in Case

1, the probability of obtaining an output O, where O 2 D̂� when starting from the D
2

log di↵ers

from the probability of obtaining an output O, when starting from D
1

only in the choice that the

algorithm has to make for query q⇤. Hence,

Pr[A(D
2

) 2 D̂�] = Pr[q⇤ was not released byA(D
2

)] · Pr[A(D
1

) 2 D̂�], and therefore,

Pr[A(D
1

) 2 D̂�]

Pr[A(D
2

) 2 D̂�]
=

1

Pr[q⇤ 62 A(D
2

)]
=

1

Pr[1 + Lap(b) < K]
=

1

1� 0.5 exp( 1�K
b )

(4.5)

Since query q⇤ is not present in D
1

, our algorithm would not produce any output containing q⇤

when given D
1

as input, and thus Pr[A(D
1

) 2 D̂+] = 0.

Using the partition of D̂ into D̂+ and D̂� we have:

Pr[A(D
1

) 2 ˆD]

Pr[A(D
2

) 2 ˆD]

=

Pr[A(D
1

) 2 ˆD�
]

Pr[A(D
2

) 2 ˆD+

] + Pr[A(D
2

) 2 ˆD�
]

 Pr[A(D
1

) 2 ˆD�
]

Pr[A(D
2

) 2 ˆD�
]

 1

1� 0.5 exp( 1�K
b )

(4.6)

proving inequality (4.1), as desired.

It remains to show that in this case, inequality (4.2) is satisfied with ↵ = 1� 0.5 exp( 1�K
b ) and

�
1

= 0.5 exp( 1�K
b ). Observe that

Pr[A(D
2

) 2 D̂+]  Pr[q⇤ was released] = Pr[M(q⇤, D2

) + Lap(b
1

) > K] = 0.5 exp(
1�K

b
) (4.7)
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Combining (4.7) and (4.5), we have:

Pr[A(D
2

)2 ˆD]

Pr[A(D
1

)2 ˆD]

=

Pr[A(D
2

)2 ˆD+

]+Pr[A(D
2

)2 ˆD�
]

Pr[A(D
1

)2 ˆD�
]

=

Pr[A(D
2

)2 ˆD�
]

Pr[A(D
1

)2 ˆD�
]

+

Pr[A(D
2

)2 ˆD+

]

Pr[A(D
1

)2 ˆD�
]

 1�0.5 exp( 1�K
b )+

0.5 exp(

1�K

b

)

Pr[A(D
1

)2 ˆD]

,

which completes the proof of inequality (4.2).

Thus from the two cases, depending on whether q⇤ is an additional occurence of an element

already present in D
1

or is an entirely new element to D
1

, we established that our algorithm satisfies

the (ln(↵), �
1

)-di↵erential privacy, where

↵ = max
�
e1/b, 1� 0.5 exp( 1�K

b ), 1

1�0.5 exp(

1�K

b

)

�
= max(e1/b, 1

1�0.5 exp(

1�K

b

)

), and �
1

= 1

2

e(
1�K

b

).

Observation 3 (Need for �
1

). A crucial observation made in the proof of this lemma is that the

necessity for �
1

arises only when the extra query in D
2

is a query that was not previously present in

D
1

, and we are attempting to upper bound the ratio of Pr[A(D
2

)2 ˆD]

Pr[A(D
1

)2 ˆD]

.

We will use this observation next as we generalize the proof of privacy guarantees to the case

where each user can pose at most d queries.

4.4.2.2 Privacy for Select-Queries for arbitrary d:

We next prove Lemma 1. We first show that straight-forward generalization does not work and

hence perform a tighter analysis.

4.4.2.2.1 Straight-forward generalization: A natural approach towards this proof is to ob-

serve that a search log D
2

that di↵ers from D
1

by at most d queries can be obtained from D
1

by

adding the d queries to it, one query at a time. This enables the repeated application of the results

of Lemma 5 to obtain:

Pr[A(D
1

) 2 D̂]  ↵Pr[A(D
1

+ q
1

) 2 D̂] + �
1

 ↵(↵Pr[A(D
1

+ q
1

+ q
2

) 2 D̂] + �
1

) + �
1

 . . .

 ↵d Pr[A(D
2

) 2 D̂] + �
1

↵d�1

↵�1

However, this approach yields �alg = �
1

↵d�1

↵�1

, which will quickly exceed 1, yielding meaningless

privacy guarantees. To avoid the blow-up in the additive component of privacy guarantees, we build

on the insights of the Proof of Lemma 5, and especially, on Observation 3 in order to show better

guarantees for �alg.

4.4.2.2.2 Tighter analysis for �alg: As in the proof of Lemma 5, let D
2

be the larger of the

two search logs, containing an additional d queries compared to D
1

.

We again split the elements of D̂ into two subsets as follows: denote by D̂� the set of elements

of D̂ which can be obtained from both D
1

and D
2

, and by D̂+ – the set of elements of D̂ which can
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only be obtained from D
2

(as before, we remove those elements of D̂ that cannot be obtained from

either D
1

or D
2

from consideration wlog).

Observe that in the proof of Lemma 5, the additive component � arose only when considering

the ratio Pr[A(D
2

)2 ˆD]

Pr[A(D
1

)2 ˆD]

and not when considering the ratio Pr[A(D
1

)2 ˆD]

Pr[A(D
2

)2 ˆD]

. We take advantage of this

observation by proving the necessary upper bounds by recursively applying Lemma 5 in one case,

and by performing a more careful analysis for the need for the additive component in the other case.

Proof of (4.1) with ↵d = ↵d, �alg = 0:

Suppose D
2

can be obtained from D
1

by adding queries z
1

, . . . , zd (some of these may not be

distinct). Then Pr[A(D
1

)2 ˆD]

Pr[A(D
2

)2 ˆD]

can be represented as a product of ratios of obtaining an output in D̂

when starting from datasets di↵ering in one element as follows:
Pr[A(D

1

)2 ˆD]

Pr[A(D
2

)2 ˆD]

= Pr[A(D
1

)2 ˆD]

Pr[A(D
1

+z
1

)2 ˆD]

· Pr[A(D
1

+z
1

)2 ˆD]

Pr[A(D
1

+z
1

+z
2

)2 ˆD]

· . . . · Pr[A(D
1

+z
1

+...+z
d�1

)2 ˆD]

Pr[A(D
1

+z
1

+...+z
d

)2 ˆD]

Applying the above decomposition of the ratio into a product of ratios 2 and the results of

intermediate steps (4.3) and (4.6) of Lemma 5 to each of the ratios in the product, we obtain:
Pr[A(D

1

)2 ˆD]

Pr[A(D
2

)2 ˆD]

 ↵d, as desired.

Proof of (4.2) with ↵d = ↵d, �alg = d
2

exp(d�K
b ):

Denote by x
1

, . . . , xn
x

those of the additional d queries that are already in D
1

and by y
1

, . . . , yn
y

–

those queries that are unique to D
2

. Note that
Pn

x

i=1

�
M(xi, D2

)�M(xi, D1

)
�
+
Pn

y

i=1

M(yi, D2

)  d

and nx + ny  d.

By definition of D̂+ one obtains an output in D̂+ when given the search log D
2

, only if at least

one of the queries in D
2

which was not present in D
1

is chosen for release. Applying the union

bound we have:

Pr[A(D
2

) 2 D̂+] 
n
yX

i=1

Pr[yi was chosen for release] =

n
yX

i=1

Pr[M(yi, D2

) + Lap(b) > K] =

=

n
yX

i=1

Pr[Lap(b) > K �M(yi, D2

)] =
�
since K � d �M(yi, D2

)
�
=

1

2

n
yX

i=1

exp

✓
M(yi, D2

)�K

b

◆

�
applying the knowledge that ny  d and M(yi, D2

)  d
�
 d

2
exp

✓
d�K

b

◆
(4.8)

We now represent the ratio Pr[A(D
2

)2 ˆD�
]

Pr[A(D
1

)2 ˆD�
]

as a product3 of ratios of obtaining an output in D̂�

2As long as Pr[A(D
1

) 2 D̂] 6= 0, the denominator of all the ratios involved in the product is guaranteed to be

non-zero; whereas, if Pr[A(D
1

) 2 D̂] = 0, then the desired upper bound of ↵d holds for it automatically.
3The denominator of any of the product terms is 0 only if Pr[A(D

1

) 2 D̂�] = 0, in which case the desired
di↵erential privacy guarantees follow from (4.8).
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when starting from datasets di↵ering in one element:
Pr[A(D

2

)2 ˆD�
]

Pr[A(D
1

)2 ˆD�
]

= Pr[A(D
1

+z
1

)2 ˆD�
]

Pr[A(D
1

)2 ˆD�
]

· Pr[A(D
1

+z
1

+z
2

)2 ˆD�
]

Pr[A(D
1

+z
1

)2 ˆD�
]

· . . . · Pr[A(D
1

+z
1

+...z
d

)2 ˆD�
]

Pr[A(D
1

+z
1

+...z
d�1

)2 ˆD�
]

Recall from (4.4) that if zi 2 {D
1

+ z
1

+ . . .+ zi�1

} then Pr[A(D
1

+z
1

+...z
i

)2 ˆD�
]

Pr[A(D
1

+z
1

+...z
i�1

)2 ˆD�
]

 e
1

b

Recall from (4.5) that if zi 62 {D
1

+ z
1

+ . . .+ zi�1

} then Pr[A(D
1

+z
1

+...z
i

)2 ˆD�
]

Pr[A(D
1

+z
1

+...z
i�1

)2 ˆD�
]

= 1�0.5 exp( 1�K
b ).

Combining the last three inequalities, we have

Pr[A(D
2

) 2 D̂�]

Pr[A(D
1

) 2 D̂�]


d�n
yY

i=1

e
1

b

n
yY

i=1

�
1� 0.5 exp(

1�K

b
)
�
 e

d�n

y

b  ↵d (4.9)

We now use (4.8) and (4.9) to obtain the desired upper bound:
Pr[A(D

2

)2 ˆD]

Pr[A(D
1

)2 ˆD]

= Pr[A(D
2

)2 ˆD�
]+Pr[A(D

2

)2 ˆD+

]

Pr[A(D
1

)2 ˆD�
]

= Pr[A(D
2

)2 ˆD�
]

Pr[A(D
1

)2 ˆD�
]

+ Pr[A(D
2

)2 ˆD+

]

Pr[A(D
1

)2 ˆD�
]

 ↵d +
0.5d exp(

d�K

b

)

Pr[A(D
1

)2 ˆD�
]

=

↵d +
0.5d exp(

d�K

b

)

Pr[A(D
1

)2 ˆD]

, hence Pr[A(D
2

) 2 D̂]  ↵d Pr[A(D
1

) 2 D̂] + 0.5d exp(d�K
b ), as desired.

4.4.3 Privacy for Noisy Counts

We next show that the steps involving noisy counts (Get-Query-Counts and Get-Click-Counts)

are di↵erentially private. We reduce both these steps to the problem of releasing histograms pri-

vately studied by [49] and described in Section 3.2. Intuitively, the privacy guarantee follows from

limitations of user activity in Algorithm 3 Release-Data, ensuring bounded sensitivity, and the

addition of correspondingly calibrated Laplace noise.

For Get-Query-Counts, the reduction from Theorem 1 (Section 3.2) is as follows: the domain

D (the search log) is partitioned into bins (distinct queries) according to Q. Function f reports

the number of elements in the bin for each bin, i.e., the number of occurences of each query. The

datasets di↵er in one user, who can pose at most d queries, hence S(f) = d. Therefore, by Theorem 1

adding Lap(d/✏) noise to each query occurrence count gives ✏-di↵erential privacy guarantee, and

Get-Query-Counts is d/bq-di↵erentially private.

Similarly for Get-Click-Counts, each query-URL pair serves as a partition bin (note that the

top 10 URLs returned upon searching for a given query are not private if the query is known and

hence the partition is known given the set of queries Q). Hence, by Theorem 1, adding Lap(bc)

noise to the true count of the number of clicks on a URL for a query will preserve dc/bc-di↵erential

privacy.
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4.4.4 Privacy for Composition of Individual Steps

We have shown that steps 4–6 of theRelease-Data algorithm preserve privacy, so it remains to show

that limiting the user activity and the composition of the steps preserves privacy and to quantify

the e↵ect of applying these algorithms in sequence on the privacy guarantees (Lemma 4).

We note that Limit-User-Activity helps to satisfy the condition in Lemma 1 that each user

should pose at most d queries and otherwise does not a↵ect the privacy guarantees. To prove

Lemma 4, we note that a straight-forward composition does not work, as it would cause the additive

privacy parameter to blow up. We exploit the special structure of our algorithm and obtain the

desired tighter composition result through a more careful analysis. Our result is similar to the

observations of [47, 48] that in the (✏, �) di↵erential privacy context, the parameters are added

during composition but we provide it for completeness.

4.4.4.1 Proof of Lemma 4

Proof. Denote the Select-Queries algorithm (that operates on the search log input D) by A
1

, and

Get-Query-Counts algorithm (that operates on the search log input D, and queries Q selected

for release by A
1

(D)) by A
2

. We show that if A
1

satisfies (ln(↵
1

), �) di↵erential privacy, and A
2

satisfies ln(↵
2

)-di↵erential privacy, then the application of A
1

algorithm followed by A
2

satisfies

(ln(↵
1

+↵
2

), �) di↵erential privacy. The composition withGet-Click-Counts follows using a similar

argument.

Let D
1

and D
2

be two search logs that di↵er in one user’s search history, i.e., di↵er in at most d

queries and at most dc clicks. Denote by Q̂ the subset of the set of possible outputs D̂ restricted to

the queries, i.e., ignoring their counts, and by Ĉ(Q) – the (query, query counts) subset of the set of

possible outputs in D̂ whose queries are Q. In other words, D̂ = [Q2 ˆDĈ(Q).

As in the previous proofs, wlog, let D
2

be the larger of the two input datasets, and let us exclude

from D̂ those outputs which are not feasible to achieve from either D
1

nor D
2

.

Observe that

Pr[A
2

�
D

1

, A
1

(D
1

)
�
2 D̂] =

X

Q2 ˆQ

Pr[A
1

(D
1

) = Q] · Pr[A
2

(D
1

, Q) 2 Ĉ(Q)] (4.10)

We now prove the di↵erential privacy guarantees by separately upper bounding the output prob-

abilities when starting from input D
1

relative to starting from input D
2

, and vice versa, similar to

our approach of separately proving inequalities (4.1) and (4.2) in the proof of Lemma 1.
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Upper Bound for Pr[A
2

(A
1

(D
1

)) 2 D̂]:

Recall from proof of (4.1) in the proof of Lemma 1 that

Pr[A
1

(D
1

) = Q]  ↵
1

Pr[A
1

(D
2

) = Q].

By assumption on the privacy guarantees satisfied by A
2

we have

Pr[A
2

(D
1

, Q) 2 Ĉ(Q)]  ↵
2

Pr[A
2

(D
2

, Q) 2 Ĉ(Q)].

Combining these two inequalities and equation (4.10) we obtain:

Pr[A
2

�
D

1

, A
1

(D
1

)
�
2 D̂] 

P
Q2 ˆQ ↵

1

Pr[A
1

(D
2

) = Q] · ↵
2

Pr[A
2

(D
2

, Q) 2 Ĉ(Q)] =

= ↵
1

↵
2

Pr[A
2

�
D

2

, A
1

(D
2

)
�
2 D̂]

Upper Bound for Pr[A
2

(A
1

(D
2

)) 2 D̂]:

Analogous to our reasoning in earlier proofs, denote by D̂� a set of those outputs from D̂ possible

to obtain from both D
1

and D
2

; by D̂+ – those outputs possible to obtain only from D
2

. Denote

by Q̂+ and Q̂� the corresponding sets of output queries.

Observe that

Pr[A
2

�
D

2

, A
1

(D
2

)
�
2 D̂+]  Pr[A

1

(D
2

) 2 Q̂+]  (from (4.8) in the proof of Lemma 1)  �.

On the other hand, by (4.9) in the proof of Lemma 1

Pr[A
1

(D
2

) 2 Q̂�]  ↵
1

Pr[A
1

(D
1

) 2 Q̂�],

and by assumption on the privacy guarantees satisfied by A
2

we have

Pr[A
2

(D
2

, Q) 2 Ĉ(Q)]  ↵
2

Pr[A
2

(D
1

, Q) 2 Ĉ(Q)].

Therefore,
Pr[A

2

�
D

2

,A
1

(D
2

)

�
2 ˆD]

Pr[A
2

�
D

1

,A
1

(D
1

)

�
2 ˆD]

=
Pr[A

2

�
D

2

,A
1

(D
2

)

�
2 ˆD+

]

Pr[A
2

�
D

1

,A
1

(D
1

)

�
2 ˆD�

]

+
Pr[A

2

�
D

2

,A
1

(D
2

)

�
2 ˆD�

]

Pr[A
2

�
D

1

,A
1

(D
1

)

�
2 ˆD�

]



(using definition of D̂�, equation (4.10), Observation 4, and preceding three inequalities)

 Pr[A
2

�
D

2

,A
1

(D
2

)

�
2 ˆD+

]

Pr[A
2

�
D

1

,A
1

(D
1

)

�
2 ˆD]

+maxQ2 ˆQ�

✓
Pr[A

1

(D
2

)=Q]·Pr[A
2

(D
2

,Q)2 ˆC(Q)]

Pr[A
1

(D
1

)=Q]·Pr[A
2

(D
1

,Q)2 ˆC(Q)]

◆

 �

Pr[A
2

�
D

1

,A
1

(D
1

)

�
2 ˆD]

+ ↵
1

· ↵
2

, and hence,

Pr[A
2

(D
2

, A
1

(D
2

)) 2 D̂]  ↵
1

↵
2

Pr[A
2

(D
1

, A
1

(D
1

)) 2 D̂] + �, as desired.

4.5 Discussion

The algorithm and analysis leaves several questions open for discussion. How does a data releaser set

the various parameters in the analysis above? Is the algorithm really di↵erent from just publishing

queries with su�ciently large frequency (without the addition of noise)? What frequency queries end

up getting published? Why do we use fresh noise in Step 5 Get-Query-Counts? What happens if

a count is negative after adding noise? Is it possible to release query reformulations? In this section

we provide answers to each of these questions in turn.



CHAPTER 4. RELEASING SEARCH QUERIES AND CLICKS PRIVATELY 59

d 1 5 10 20 40 80 160
K 5.70 31.99 66.99 140.00 292.04 608.16 1264.49
b 0.43 2.17 4.34 8.69 17.37 34.74 69.49

Table 4.1: Optimal choices of the threshold, K and noise, b as a function of d for fixed privacy
parameters, e✏ = 10, � = 10�5

Setting parameters. Given the numerous parameters in the theorems just proved, a natural

question is how to set them. As mentioned earlier, it is up to the data releaser to choose ✏, while it

is advisable that � < 1/n, where n is the number of users. What about the remaining parameters?

Lemma 1 o↵ers answers for optimally setting4 the threshold K and noise b when the desired privacy

parameters and the limit for the number of queries per user are known: K = d
⇣
1� ln(

2�

d

)

✏

⌘
and

b = d
✏ .

Table 4.1 shows how the optimal choices of threshold K and noise b vary as a function of the number

of queries allowed per user, d, for fixed privacy parameters, e✏ = 10 and � = 10�5.

Publishing head queries. An important and natural question is why not just publish the

queries with frequency larger than an intuitively-pleasing fixed large number? The answer is that any

such deterministic algorithm is provably not di↵erentially private [150]. Intuitively, if an adversary

knows the number K being used as an exact threshold, and has a guess for someone’s private query,

he can pose this query to a search engine K � 1 times, and observe whether the query is published

or not in order to determine if that guess is correct, thereby violating the targeted person’s privacy.

Beyond the privacy breach, it is not clear how one should even select such a large number. Our

approach has the advantage that the threshold value K can be determined purely from the privacy

parameters, ✏ and �, and d. The values K and b are independent of the characteristics of the search

log.

Which queries are published. If the algorithm is di↵erent than publishing the queries with

su�ciently high frequency, it is reasonable to wonder which frequency queries do get published?

Consider Figure 4.1 which shows the probability of the query being chosen for release as a function

of its frequency, for d = 20,K = 140, and b = 8.69. The queries whose frequency is above 170 are

virtually guaranteed to be released, the queries whose frequency is below 110 are virtually guaranteed

not to be released, and the queries whose frequency is between 110 and 170 might or might not be

released depending on the random choices of the algorithm. It is clear that since b is smaller than

K, Select-Queries is close to the intuitive sharp threshold algorithm of only releasing the “head

4Assuming we desire to minimize the noise added and that e1/b � 1 + 1

2e(K�1)/b�1

, which is the case for value

ranges considered.
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Figure 4.1: Probability of a query being released as a function of its frequency, for d = 20,K = 140,
and b = 8.69

queries”, where the “head queries” are defined as those whose frequency is above 170.

Fresh noise. Next we explain why we recompute the noisy query frequency count in Step 5

of Release-Data. Technically speaking, Step 5 is not necessary: instead of computing the noisy

count of M(q,D), we could release the noisy count that was computed when deciding whether to

release query q in Step 4. Re-using the noisy count from Step 4 would lead to all released query

occurrence counts being skewed towards the larger side; for instance, there will be no queries whose

reported number of occurrences is less than K. On the other hand, skipping Step 5 would improve

the ✏ in the di↵erential privacy guarantee of the algorithm by reducing it by d/bc. It is up to the

data releaser to choose the trade-o↵ between more evenly distributed query counts and privacy.

Negative counts. The addition of Laplace random noise might yield lower or higher frequency

counts than the true counts, in some cases yielding negative query occurrence or query-click frequency

counts. The negative counts released where positive counts are expected are counter-intuitive but

do not pose a privacy risk, only a useability risk. If desired, one can perform a post-processing step

replacing all negative counts with zeros without impacting privacy (since any post-processing that

does not rely on the original data preserves privacy).

Query reformulations. Finally, we revisit the issue of releasing query reformulations, which

are a valuable part of the search log, but are not directly handled by our algorithm. In fact, query

reformulations can be produced in the specific case when the reformulation is a click on a query

suggestion. In such a case, a click on a reformulation is treated as a click on a URL, since a surfaced

suggestion is as public as a surfaced URL. To ensure privacy, we could modify Step 2, Limit User

Activity, to count the first d queries that were typed and treat clicks on reformulations in the
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same way as URL clicks. These reformulations would not be as powerful and rich as actual user

reformulations since they are limited to what a search engine is already capable of suggesting.

4.6 Experimental Results

There is no doubt that attempting to preserve user privacy when performing a search log data

release will take a toll on the utility of the data released, and that an algorithm that aims to satisfy

rigorous privacy guarantees will not be able to release datasets that are as useful as the ones obtained

through ad-hoc approaches such as merely replacing usernames with random identifiers. However,

the decrease in utility is o↵set by the ability to protect user privacy and the ability to avoid PR

disasters and retain user trust in the search engine. In this section, we describe several simple

properties of the query and clicks data that can be released by applying our proposed algorithm to

the search logs of a major search engine and characterize their dependence on the parameters of the

algorithm and other choices that need to be made by the data releaser. The aim of the properties

that we study is to initiate a study of utility of the data that can be released for several concrete

applications. A much more extensive evaluation of utility using additional applications can be found

in the work of [69].

Our experiments suggest that in the absence of other provably private methods for data release,

and considering that our approach closely mimics the one that others are anecdotally considering

utilizing, our proposed algorithm could serve as a first step towards the eventual goal of performing

provably private and useful search log data releases.

Experimental Setup. We obtained the full query logs from a major search engine. The

information necessary for our experiments is the session information per user (in order to restrict

to d queries per user) and the issued queries together with their clicked URLs. We performed a

marginal amount of cleaning of the logs by removing special sets of characters (e.g., extra white

spaces or runaway quotes) from the queries. In our comparisons below, we considered queries to

match regardless of the case in words.

4.6.1 Published Query Set Characteristics

In our first experiment, we seek to gain insight into the e↵ect of privacy guarantees desired from the

algorithm on the following two characteristics of the published query set:
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Percent of distinct queries released, i.e., the ratio of the number of distinct queries released to

the actual number of distinct queries for all users in the original dataset (without limitations on how

many queries the user can pose). Our goal here is to capture how representative is the published

query set of the real set in terms of the released queries.

Percent of query impressions released, i.e., the ratio of the number of query impressions released

(with each query accounted for as many times as the released noisy count) to the actual number of

query impressions for all users in the original dataset. Our goal in this case is to capture how much

query volume is published by our algorithm.

4.6.1.1 E↵ect of Maximum Queries d per User

A crucial step of our algorithm is to limit the number of queries posed per user that we consider

for the release to d. Since the optimal choice of d is non-obvious from the perspective of a data

releaser, we start by studying the e↵ect of d and fixed privacy parameters on the published query

set characteristics when starting from a one week log from October 2007.

We compute the percent of distinct queries and impressions released by Algorithm 3 for di↵erent

values of d and for parameters e✏ = 10 and � = 10�5, choosing the threshold K and noise b as

described in Section 4.5. The results are shown in Figure 4.2. The horizontal axis represents the

increasing values of d, the right vertical axis represents the percent of distinct queries released for a

given value of d, and the left vertical axis shows the percent of impressions for the respective d.

From Figure 4.2, we observe that although we can only publish a small percent of distinct queries

overall, we can cover a reasonbly large percent of impressions. More specifically, the output of our

algorithm contains in total at most about 0.75% (for d = 1) of the distinct queries present in the

original query log. However, the released queries correspond to about 10% – 35% of the search

volume, depending on the choice of d, with a maximum of about 34% of volume achieved by d of

around 20. The distinct queries released form a tiny fraction of the log because an overwhelming

fraction of queries are issued very few times and our algorithm throws away such “tail queries” in

order to guarantee privacy. However, we can release all the “frequent queries” and by virtue of their

frequency, the volume of the released queries is substantial. Furthermore, although the percent of

distinct queries released is small, the absolute number of the distinct queries released is large.

In Figure 4.2, we also observe that the percent of distinct queries released decreases as d increases.

This is due to the fact that the threshold K increases slightly more than linearly with d; when d

increases, our dataset may contain more distinct queries and larger counts for all previously present
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Figure 4.2: Percent of distinct queries and impressions released as a function of d, for fixed privacy
parameters, e✏ = 10, � = 10�5 and a one week time period

queries, but such larger count is insu�cient to o↵set the required increase in K to ensure the same

privacy guarantees. Finally, we observe that for the one week log, the percent of impressions released

initially increases with d, peaks for d around 20 and then decreases. There are two competing forces

responsible for this observation: as d gets larger, more queries (and hence impressions) per user

are included in the data while at the same time the threshold K needs to be increased in order to

maintain the same privacy guarantees.

4.6.1.2 E↵ect of Time-span of the Log

We next study the e↵ect of the time period of the log considered for release on the size of the released

dataset. We repeated the previous experiment with query logs extracted over di↵erent time periods

(one day, two weeks and one month from October 2007, and also one year) and compared to the

output data generated from our log of one week. We plot the percent of released queries (distinct

and impressions) in Figures 4.3 and 4.4 respectively. Figure 4.3 demonstrates that the percent of

distinct queries released is more or less independent of the time-span of the source query log. On

the other hand, the total number of query impressions does depend on the time-span as shown in
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Figure 4.3: Percent of distinct queries released as a function of d for di↵erent time periods, with
fixed privacy parameters, e✏ = 10, � = 10�5

Figure 4.4. In this case, we observe that the value of d at which the maximum percent of impressions

is achieved increases with the length of the time period. This fits well with the intuition for sensible

choices of d - as the time-span increases, the number of queries each user is limited to should increase

as well.

The absolute number of queries (distinct and impressions) released increases with the increase

in time-span of the source log. For example, for d = 20, the absolute number of distinct queries

released grows 6-fold over one week, 12-fold over two weeks, 24-fold over one month, and 184-fold

over one year time-spans of the source logs compared to that of a one day source log. Similarly the

absolute number of impressions released grows 7-fold over one week, 15-fold over two weeks, 33-fold

over one month, and 325-fold over one year durations compared to that of a one day source log.

Thus, for the fixed choices of privacy parameters and d, it may be desirable to start with a query

log extracted over a longer period of time, such as one year, to obtain better utility.
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Figure 4.4: Percent of query impressions released as a function of d for di↵erent time periods, with
fixed privacy parameters, e✏ = 10, � = 10�5

4.6.1.3 E↵ect of Privacy Parameters

We now turn to studying how the choice of multiplicative and additive privacy parameters used

in Algorithm 3 a↵ects the size of the released query set for fixed time period (one week) and d =

215. Intuitively, the percent of distinct queries released should increase with less strict privacy

requirements. More specifically, the larger the values of ✏ and �, the larger the portion of the

original query log we should be able to release.

We present the percent of distinct queries and impressions as a function of privacy requirements

captured by di↵erent values of ✏ and �, in Tables 4.2 and 4.3 respectively. They show that, in general,

the percent of queries (distinct and impressions) that we can release increases as � increases, with

the relative increase in the percent of distinct queries being slightly higher for a given ✏.

5Although 21 queries per week per user seems to be a harsh restriction on the amount of queries posed, it turns
out that an average user performs even fewer than 21 queries per week [54].
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% of distinct queries ✏ = ln(2) ✏ = ln(5) ✏ = ln(10)
� = 10�6 0.03% 0.06% 0.09%
� = 10�5 0.03% 0.07% 0.10%
� = 10�4 0.04% 0.09% 0.12%

Table 4.2: Percent of distinct queries released as a function of privacy parameters, for one week time
period and d = 21

% of query impressions ✏ = ln(2) ✏ = ln(5) ✏ = ln(10)
� = 10�6 26.79% 30.92% 32.64%
� = 10�5 27.55% 31.67% 33.38%
� = 10�4 28.45% 32.55% 34.23%

Table 4.3: Percent of query impressions released as a function of privacy parameters, for one week
time period and d = 21

4.6.2 Utility of the Published Dataset

In this section our goal is to study the utility of the dataset output by our algorithm both in terms of

the utility of the queries and the utility of the query click graph. First, we give anecdotal examples

of queries that could be released and then study the usefulness of these queries for social science

research, and the usefulness of the query click graph obtained by the algorithm for an algorithmic

application. We call the output of our algorithm the published or released dataset for conciseness,

even though no data release had occurred as a result of our experiments.

We start with the query log over one year duration (restricted to d = 21 queries per user), and

run Release-Data algorithm to obtain the queries safe to release, their noisy counts, and the noisy

query-URL click counts. For each of the queries, we obtain the top 20 most clicked URLs instead of

the top 20 URLs returned by the search engine, which is nearly equivalent as almost all users look at

only the first page of 10 results [94] and very rarely beyond the second page; hence, these URLs get

the most clicks. For simplicity of experiment implementation, we did not limit the number of clicks

per user, since most users click on very few results per search query anyway [54]. For determining

the queries that are safe to release, we use the privacy parameters e✏ = 10 and � = 10�5 (so that

the threshold K = 147.4 and noise b = 9.1). For click counts we use noise bc = 0.43.

Some examples of non-trivial queries released are: “girl born with eight limbs”, “cash register

software”, “vintage aluminum christmas trees”, “how to tie a windsor knot”.
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Rank Comorbidity Survey Original Log Released Queries
1. Bugs, mice, snakes Flying Flying
2. Heights Heights Heights
3. Water Snakes, spiders Public speaking
4. Public transportation Death Snakes, spiders
5. Storms Public speaking Death
6. Closed spaces Commitment Commitment
7. Tunnels and bridges Intimacy Abandonment
8. Crowds Abandonment The dark
9. Speaking in public The dark Intimacy

Table 4.4: Most common fears, depending on the data source

4.6.2.1 Utility for Studying Human Fears

Since users communicate with a search engine in an uninhibited manner, posing queries containing

their most private interests and concerns, the search log could also be an invaluable source of insights

for social science research. We take an example proposed by Tancer [178] of using the queries posed

by users to obtain insight into human fears and compare the conclusions that can be obtained by

studying the queries of the original log vs the released queries.

Tancer [178] suspected that the insight one can gain into human fears through search logs is

di↵erent than the data obtained through surveys. He compared the results of the National Comor-

bidity Survey [100], a phone survey where respondents were asked about their fears, with Internet

searches he had access to through Hitwise that contained the term “fear of”, testing the theory

that some people must be searching the Web to understand their fears. He observed that after re-

moving those terms that are not phobia searches (such as “Fear of Clowns”, a movie), the ordering

of the most frequent fears as reported in the Comorbidity Survey di↵ers from that obtained from

searches. Furthermore, there are more social fears in the list of top searches than in the list of top

fears from the Comorbidity Survey, perhaps due to people being less likely to admit to a social fear

when answering questions posed by another person than when posing queries to an inanimate search

engine.

We repeat Tancer’s experiment on the search engine data available to us and on the proposed

perturbed release of that data, and obtain the ranking of fear frequencies that can be seen in

Table 4.4.

The ordering of most popular fears is not fully preserved in the released queries compared to the

original searches due to the noise added. However, the set of top nine fear searches obtained is the

same in both cases, and is noticeably di↵erent from the one reported in the survey. For example,
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there is only one social fear in the Comorbidity Survey top list, the fear of speaking publicly, versus

four in the “fear of” searches: public speaking, commitment, intimacy, and abandonment. Both

the original log and the perturbed query click graph suggest that survey responses may only be

reflecting a certain part of what people are afraid of, and suggest a strong direction for further

study by social scientists. Hence, the dataset that could be published using our algorithm could

have non-trivial utility in identifying directions for future study by social scientists and providing

preliminary support for hypotheses.

4.6.2.2 Utility for Keyword Generation

We study the utility of the released query click graph by comparing the performance of an important

application that utilizes a query click graph in its original and released forms. The application we

study is keyword generation: given a business that is interested in launching an online advertising

campaign around a concept, suggest keywords relevant to it. The idea of generating additional

keywords from a seed set of keywords or URLs is powerful because it enables the advertisers to

expand their exposure to users through bidding on a wider set of keywords. We use the algorithm

proposed by Fuxman et al. [58] that exploits the query click graph. Their algorithm takes a seed

set of URLs about the concept and uses the idea of random walks on the query click graph with

the seed set URLs as absorbing states in order to generate more keywords. Typically, random walks

are highly sensitive to changes in the graph, and hence, on one hand, it would be surprising if the

keyword generation algorithm worked well on the released perturbed query click graph, given how

much it has changed from the original query click graph. On the other hand, we would like to

understand to what extent it still works.

We compare the keywords generated by this algorithm over the original graph and the released

graph for three di↵erent seed sets. Each seed set consists of all URLs from the respective domains:

1) shoes: shoes.com; 2) colleges: Homepage domains of the top ten U.S. universities according to the

US News Report ranking from early 2009; 3) suicide: six domains associated with depression and

suicide (depression.com, suicide.com, and the 4 corresponding ones from WebMD and Wikipedia).

The parameters of the keyword generation algorithm are set as in [58] (↵ = 0.001, � = 0.0001). We

pruned all query-URL pairs with less than 10 clicks in both the original and the released graphs for

e�ciency of implementation.

Compared to the query click graph based on the original log, the released private query click

graph contains 9.85% of the queries and 20.43% of the edges of the original graph. Nonetheless,
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Relevance probability threshold
URL seed set 0.5 0.7 0.9 0.95

colleges
released 3,667 2,403 1,337 883
original 28,346 17,103 8,287 6,373

shoes
released 2,733 1,620 448 248
original 19,669 8,418 1,800 1,047

suicide
released 175 116 50 39
original 3,945 2,517 806 525

Table 4.5: Number of keyword suggestions generated depending on URL seed set and query click
graph source. Relevance probability refers to the probability that the keyword belongs to the seed
set concept.

as can be seen in Table 4.5, we find that for all three seed sets, the absolute number of keywords

generated by the algorithm using the released query click graph is substantial. For the shoes seed

set, the number of keywords generated on the basis of the private graph comprises 13.9% to 24.9% of

the number of keywords that can be generated using the original graph, depending on the relevance

probability threshold used. For the college seed set the number of keywords generated is in the range

of 12.9% to 16.1% of the original; and for the suicide seed set it is 4.4% to 7.4%. Moreover, more

than 78% of the keyword suggestions obtained from the released graph were also obtained from the

original graph, which is an indication of the similar level of relevance of the keywords produced in

both cases. We observe greater overlap for more focused concepts (shoes: 93%, suicide: 99%).

We conclude that the released query click graph is still very useful for keyword generation. While

one cannot generate as many keyword suggestions on the basis of the released graph as one would

on the basis of the original graph6, the volume of keyword suggestions generated is still substantial.

4.7 Summary and Open Questions

In this chapter, we took a first major step towards a solution for releasing search logs by proposing

an algorithm for releasing queries and clicks in a manner that guarantees user privacy according to

a rigorous privacy definition.

We have shown that some non-trivial fraction of queries and impressions can be privately released

and that the released query click graph can be successfully used for applications such as keyword

generation and studies of people’s fears. The question of whether this graph would be useful for

6It is important to note that the keyword suggestions obtained from the original graph that are not present among
those obtained from the released graph, are not necessarily private. Algorithm 3 is conservative and chooses not to
release many queries, a large fraction of which are likely not sensitive by themselves.
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other applications or whether it could serve as a benchmark log is far from being answered and is

further explored with encouraging results in [69].

It is worth noting that as people invent more ways to group similar queries (such as “mom” and

“mother”), we could use the grouping techniques to improve the performance of Algorithm 3. It is

also possible that a tighter analysis of the algorithm’s guarantees could lead to weaker requirements

on the threshold K and noise b needed; we mention one possible improvement in the analysis in

Section 4.8.

A separate issue is that our algorithm implicitly assumes that users behave in an honest manner.

However, there are ways for an attacker to maliciously bring private tail queries already known to

them into the head. For instance, since K, b, d are public parameters, an attacker could create, say,

K + 5b copies of themselves and in their first d queries issue a private query such as someone else’s

credit card number. The net e↵ect is that the search engine would publish this private data. We do

not have a way to get around such malicious activities and leave this too as a direction for future

work.

It seems promising to try using the query click graph to generate a synthesized search log: select

a query according to the perturbed frequency distribution that we publish, select clicks according to

the perturbed probability a document is clicked, select a reformulation according to the perturbed

distribution over reformulations, or select a new query. This procedure would not generate a search

log per se, since no timestamps would be published and it is not clear if the sessions would actually

be meaningful. We leave open the question of how best to generate a search log from the perturbed

data that we publish.

Finally, there are many other aspects to releasing search logs besides the privacy of users. For

instance, releasing queries and clicks reveals at a large scale the performance of a search engine.

Thus, the log leaks queries where the search engine performs poorly, e.g., abandoned head queries

or head queries with few clicks. As another example, search data reveals queries that surface adult

content when they should not. So beyond the privacy of users, there are other factors to consider

before search data is released. However, our techniques for determining which queries can be released

can be of immediate use in existing applications such as Google’s autocomplete7 and Bing’s search

suggestions8. These applications predict and display search queries to a user as they type based on

what other users are searching for, and could use our algorithm’s approach in determining which

suggestions are safe to display.

7

http://www.google.com/support/websearch/bin/static.py?hl=en&page=guide.cs&guide=1186810&answer=106230

8

http://onlinehelp.microsoft.com/en-us/bing/↵808490.aspx

http://www.google.com/support/websearch/bin/static.py?hl=en&page=guide.cs&guide=1186810&answer=106230
http://onlinehelp.microsoft.com/en-us/bing/ff808490.aspx
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4.8 Miscellaneous Technical Details

Lemma 6. Suppose A(D) is an algorithm that selects which queries to publish from those present

in the search log D and A satisfies ✏-di↵erential privacy. Then A(D) always publishes an empty set

of queries.

Proof. We prove by contradiction. Suppose for some non-empty input search log D
0

, the algorithm

A publishes a query x from D
0

, i.e., Pr[A(D
0

) = x] > 0. Now,

while Di has at least one user u whose search history contains x and Pr[A(Di) = x] > 0,

let Di+1

be the search log obtained by removing that user u and all of his queries from Di.

We stop after k iterations, for some k � 1, either because Pr[A(Dk) = x] = 0, or because

there are no more occurrences of query x in Dk, in which case, by assumption that our algorithm

selects queries to publish from the log and is not allowed to publish “fake” queries, we also have

Pr[A(Dk) = x] = 0.

Since, by assumption, A satisfies ✏-di↵erential privacy, if we set D̂ = {x} we have:

Pr[A(D
0

) 2 D̂]  e✏ Pr[A(D
1

) 2 D̂]  e2✏ Pr[A(D
2

) 2 D̂] Pr[A(Dk�1

) 2 D̂]  . . .  ek✏ Pr[A(Dk) 2

D̂] = 0. A contradiction, which completes the proof.

Observation 4. [Properties of ratios] For a, b � 0 and c, d > 0 : a+b
c+d  max(ac ,

b
d ).

A small improvement of Theorem 3:

The main result of this chapter (Theorem 3) can be slightly improved by applying a tighter bound in

inequality (4.8) used in the proof of Lemma 1. The more careful analysis below shows that Theorem 3

holds for an even smaller �alg than stated, namely for �alg = 0.5 exp(�K
b )
�
exp(db )+d�1

�
. This also

implies that when the desired privacy guarantees and the limit of queries per user are known, the

threshold K used by the algorithm can be slightly lower than the one we applied in our experiments,

namely, K = d
✏

�
ln
�
exp(✏) + d� 1

�
� ln(2�)

�
.

The improvement can be attained as a result of applying a tighter bound in the last step of

inequality (4.8) in the proof of Lemma 1, in which �alg is determined:
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Lemma 7. 8xi > 0, n � 2 :
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i=1
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i + n� 1.
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Proof. We prove by induction, starting with base case n = 2. For the base case to hold, we need to

show that for x > 0, y > 0 : ex + ey  ex+y + 1. Indeed,

1� ex + ex+y � ey = 1� ex � ey(1� ex) = (1� ex)(1� ey) > 0.

Suppose that the lemma’s statement holds for n = k � 2, and proceed to prove it for n = k + 1.
Pk+1

i=1

exi =
Pk

i=1

exi + exk+1  (by inductive assumption for n = k)  (e
P

k

i=1

x
i + k� 1)+ exk+1 =

e
P

k

i=1

x
i + exk+1 + k � 1  (by inductive assumption for n = 2)  (exk+1

+

P
k

i=1

x
i + 1) + k � 1 =

e
P

k+1

i=1

x
i + k, which completes the inductive proof.
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Chapter 5

Social Recommendations

Making recommendations or suggestions to users in order to increase user engagement is a common

and meaningful practice for websites [34,117]. For instance, YouTube recommends videos, Amazon

suggests products, and Netflix recommends movies, in each case with the goal of making as relevant

a recommendation to the user as possible.

The phenomenal participation of users in social networks, such as Facebook and LinkedIn, has

given tremendous hope for designing a new type of user experience, the social one. The feasibility

of social recommendations has been fueled by initiatives such as Facebook’s Open Graph API1, that

explicitly create an underlying graph where people, events, movies, etc., are uniformly represented

as nodes, and connections, such as friendship relationships, event participation, interest in a book or

a movie, are represented as edges between those nodes. The connections can be established through

friendship requests, event RSVPs, and social plug-ins2, such as the “Like” button.

Web companies are striving to personalize recommendations by incorporating the likes and dis-

likes of an individual’s social neighborhood into their recommendation algorithms. Instead of de-

faulting to generic recommendations of items popular among all users of the site, a social-network

aware system can provide recommendations based on what is popular among active friends or friends-

of-friends of that particular user. There has been much research and industrial activity to solve two

problems: (a) recommending content, products, ads not only based on the individual’s prior his-

tory but also based on the likes and dislikes of those the individual trusts [9, 27, 127, 191], and (b)

1

https://developers.facebook.com/docs/reference/api

2

http://developers.facebook.com/plugins
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recommending others whom the individual might trust [82]. In this chapter, we focus on recommen-

dation algorithms based exclusively on graph link-analysis, i.e., algorithms that rely on underlying

connections between people and other entities, rather than their individual features, to make rec-

ommendations.

However, when designing algorithms based on graph analysis one needs to carefully consider

the privacy implications. For instance, a social recommendation algorithm that recommends to

you only the products that your friends buy, seems like a perfectly sensible and useful algorithm.

However, if you only have one friend, this algorithm would reveal the entire shopping history of that

friend – information that he may not have intended to share. Here is another example of how a

privacy breach can arise from a social recommendation. Imagine a browser toolbar integrated with

your social network that recommends you webpages to visit based on the webpages visited by your

friends. Suppose you go to a page X, and the social recommendation algorithm suggests that, based

on browsing history of your friends who visited page X, you may also like page Y. If you know which

one of your friends likes Y, then the social recommendation enables you to infer that this friend also

visited website X. If X’s content is sensitive, e.g., related to a medical condition, you infer something

your friend may not have wanted to share, resulting in a privacy breach. Finally, a system that

uses only trusted edges in suggestions may leak information about lack of trust along specific edges,

which would also constitute a privacy breach.

In this chapter we present a theoretical study of the privacy/utility trade-o↵s in personalized

graph link-analysis based social recommender systems. There are many di↵erent settings in which

social recommendations may be used (friend, product, interest recommendations, or trust propaga-

tion), each having a slightly di↵erent formulation of the privacy concerns (the sensitive information

is di↵erent in each case). However, all these problems have a common structure – recommendations

are made based on a social graph (consisting of people and other entities), where some subset of the

edges is sensitive. For clarity of exposition, we ignore scenario specific constraints, and focus on a

generic model. Our main contributions are intuitive and precise trade-o↵ results between privacy and

utility for a clear formal model of personalized social recommendations, emphasizing impossibility

of social recommendation algorithms that are both accurate and private for all users [55].

We consider a graph where all edges are sensitive, and an algorithm that recommends a single

node v to some target node u. We assume that the algorithm is based on a utility function, satisfying

certain natural properties (Section 5.2.4), that encodes the “goodness” of recommending each node

in the graph to this target node. We focus on graph link-analysis recommenders; hence, the utility
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function must only be a function of the nodes and edges in the graph. Suggestions for graph

link-analysis based utility functions include: number of common neighbors, number of weighted

paths, and PageRank distributions [87,122,163]. We consider an attacker who wishes to deduce the

existence of a single edge (x, y) in the graph with n nodes by passively observing a recommendation

(v, u). We measure the privacy of the algorithm using ✏-di↵erential privacy - requiring the ratio of the

likelihoods of the algorithm recommending (v, u) on the graphs with, and without, the edge (x, y),

respectively, to be bounded by e✏. We define accuracy of a recommendation algorithm R as the ratio

between R’s expected utility to the utility achieved by an optimal (non-private) recommender. In

this setting:

• We present and quantify a trade-o↵ between accuracy and privacy of any social recommenda-

tion algorithm that is based on any general utility function. This trade-o↵ shows a lower bound

on the privacy parameter ✏ that must be incurred by an algorithm that wishes to guarantee

any constant-factor approximation of the maximum possible utility (Section 5.3).

• We present stronger lower bounds on privacy and the corresponding upper bounds on accuracy

for algorithms based on two particular utility functions previously suggested for social recom-

mendations – number of common neighbors and weighted paths [82,87,122,163]. If reasonable

privacy is to be preserved when using the common neighbors utility function, only nodes with

⌦(log n) neighbors can hope to receive accurate recommendations (Section 5.3.3).

• We show how the two well-known di↵erential privacy-preserving mechanisms, Laplace noise

addition and the Exponential mechanism (Section 3.2.1), can be used for producing social

recommendations based on a known utility vector (Section 5.4.1). We then briefly consider

the setting when an algorithm may not know (or be able to compute e�ciently) the entire utility

vector, and propose and analyze a sampling based linear smoothing algorithm (Section 5.4.2).

• We perform experiments on two real graphs using several utility functions. The experiments

compare the accuracy of Laplace and Exponential mechanisms, and the upper bound on achiev-

able accuracy for a given level of privacy, as per our proof. Our experiments suggest three

takeaways: (i) For most nodes, the lower bounds imply harsh trade-o↵s between privacy and

accuracy when making social recommendations; (ii) The more natural Laplace algorithm per-

forms as well as Exponential; and (iii) For a large fraction of nodes, the gap between accuracy

achieved by Laplace and Exponential mechanisms and our theoretical bound is not significant

(Section 5.5).
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We now discuss related work and systems, and then formalize our model and problem statement

in Section 5.2.

5.1 Related Work

Several papers propose that social connections can be e↵ectively utilized for enhancing online appli-

cations [9, 127]. Golbeck [65] uses the trust relationships expressed through social connections for

personalized movie recommendations. Mislove et al. [138] attempt an integration of web search with

social networks and explore the use of trust relationships, such as social links, to thwart unwanted

communication [139]. Approaches incorporating trust models into recommender systems are gain-

ing momentum [199], [140], [173]. In practical applications, the most prominent example of graph

link-based recommendations is Facebook’s recommendation system that recommends to its users

Pages corresponding to celebrities, interests, events, and brands, based on the social connections

established in the people and Pages social graph3. More than 100,000 other online sites4, including

Amazon5 and the New York Times, are utilizing Facebook’s Open Graph API and social plug-ins.

Some of them rely on the social graph data provided by Facebook as the sole source of data for

personalization. Depending on the website’s focus area, one may wish to benefit from personalized

social recommendations when using the site, while keeping one’s own usage patterns and connections

private – a goal whose feasibility we analyze in this work.

There has been recent work discussing privacy of recommendations, but it does not consider the

social graph. Calandrino et al. [31] demonstrate that algorithms that recommend products based on

friends’ purchases have very practical privacy concerns. McSherry and Mironov [133] show how to

adapt the leading algorithms used in the Netflix prize competition to make privacy-preserving movie

recommendations. Their work does not apply to algorithms that rely on the underlying social graph

between users, as the user-user connections have not been released as part of the Netflix competition.

Aı̈meur et al. [7] propose a system for data storage for privacy-preserving recommendations. Our

work di↵ers from all of these by considering the privacy/utility trade-o↵s in graph-link analysis based

social recommender systems, where the graph links are private.

Bhaskar et al. [26] consider mechanisms analogous to the ones we adapt, for an entirely di↵erent

problem of making private frequent item-set mining practically e�cient, with distinct utility notion,

analysis, and results.

3

http://www.facebook.com/pages/browser.php

4

http://developers.facebook.com/blog/post/382

5

https://www.amazon.com/gp/yourstore?ie=UTF8&ref =pd rhf ys

http://www.facebook.com/pages/browser.php
http://developers.facebook.com/blog/post/382
https://www.amazon.com/gp/yourstore?ie=UTF8&ref_=pd_rhf_ys
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There has been an extensive e↵ort aimed towards publishing anonymized versions of social graphs

or synthetic graphs that have similar characteristics to the original [16, 38, 79, 197]. These are not

helpful in the social recommendations context as they do not disclose the correspondence of the user

to the node in the published graph, and therefore, do not enable graph link-based recommendations

for individuals.

5.2 Preliminaries and the Formal Problem Model

We formalize the problem definition and initiate the discussion by establishing notation and de-

scribing what a social recommendation algorithm entails. We then adapt the di↵erential privacy

definition of Chapter 3 to the social recommendations context. We define the accuracy of an algo-

rithm and formally state the problem of designing a private and accurate social recommendation

algorithm. Finally, as we aim for our privacy/utility trade-o↵ work to be applicable for a general

class of social recommendation algorithms, we define properties that we expect those algorithms to

satisfy.

5.2.1 Social Recommendation Algorithm

Let G = (V,E) be the graph that describes the network of connections between people and entities,

such as products purchased. Each recommendation is an edge (i, r), where node i is recommended

to the target node r. Given graph G, and target node r, we denote the utility of recommending

node i to node r by uG,r
i , and since we are considering the graph as the sole source of data, the

utility is some function of the structure of G. We assume that a recommendation algorithm R is

a probability vector on all nodes, where pG,r
i (R) denotes the probability of recommending node i

to node r in graph G by the specified algorithm R. We consider algorithms aiming to maximize

the expected utility
P

i u
G,r
i · pG,r

i (R) of each recommendation. Our notation defines algorithms as

probability vectors, thus capturing randomized algorithms; note that all deterministic algorithms

are special cases. For instance, an obvious candidate for a recommendation algorithm would be

Rbest that always recommends the node with the highest utility (equivalent to assigning probability

1 to the node with the highest utility). Note that no algorithm can attain a higher expected utility

of recommendations than Rbest.

When the graph G and the target node r are clear from context, we drop G and r from the

notation – ui denotes utility of recommending i, and pi denotes the probability that algorithm R
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recommends i. We further define u
max

= maxi ui, and d
max

- the maximum degree of a node in G.

5.2.2 Di↵erential Privacy for the Social Recommendations Context

Recall that di↵erential privacy (Section 3.1) is based on the principle that an algorithm preserves

privacy of an entity if the algorithm’s output is not too sensitive to the presence or absence of

the entity’s information in the input data set. In our setting of graph link-analysis based social

recommendations, we wish to maintain the presence (or absence) of an edge in a graph private.

Hence, the di↵erential privacy definition (Definition 1 of Section 3.1.3) in this context can be stated

as follows:

Definition 3. A recommendation algorithm R satisfies ✏-di↵erential privacy if for any pair of graphs

G and G0 that di↵er in one edge (i.e., G = G0 + {e} or vice versa) and every set of possible recom-

mendations S,

Pr[R(G) 2 S]  exp(✏)⇥ Pr[R(G0) 2 S] (5.1)

where probabilities are over random coin tosses of R.

We show trade-o↵s between utility and privacy for algorithms making a single social recommen-

dation, and restricting our analysis to algorithms making one recommendation allows us to relax

the privacy definition. We require Equation (5.1) to hold only for edges e that are not incident to

the node receiving the recommendation. This relaxation reflects the natural setting in which the

node receiving the single recommendation (the attacker) already knows which nodes in the graph

he is connected to, and hence the algorithm only needs to protect the knowledge about the presence

or absence of edges that do not originate from the attacker node. While we consider algorithms

making a single recommendation throughout, we use the relaxed variant of di↵erential privacy only

in Sections 5.3.3 and 5.5.

5.2.3 Problem Statement

We now formally define the private social recommendation problem. Given utility vectors (one per

target node), determine a recommendation algorithm that (a) satisfies the ✏-di↵erential privacy

constraints and (b) maximizes the accuracy of recommendations.

Definition 4 (Private Social Recommendations). Design a social recommendation algorithm

R with maximum possible accuracy under the constraint that R satisfies ✏-di↵erential privacy.
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The remaining question is how to measure the accuracy of an algorithm. For simplicity, we focus

on the problem of making recommendations for a fixed target node r. Thus, the algorithm takes as

input only one utility vector ~u, corresponding to utilities of recommending each of the nodes in G

to r, and returns one probability vector ~p (which may depend on ~u).

Definition 5 (Accuracy). The accuracy of an algorithm R is defined as min~u
P

u
i

p
i

u
max

.

In other words, an algorithm is (1� �)-accurate if (1) for every input utility vector ~u, the output

probabilities pi are such that
P

u
i

p
i

u
max

� (1��), and (2) there exists an input utility vector ~u such that

the output pi satisfies
P

u
i

p
i

u
max

= (1��). The second condition is added for notational convenience (so

that an algorithm has a well defined accuracy). In choosing the definition of accuracy, we follow the

paradigm of worst-case performance analysis from the algorithms literature6; average-case accuracy

analysis may be an interesting direction for future work.

Recall that u
max

is the maximum utility achieved by any algorithm (in particular by Rbest).

Therefore, an algorithm is said to be (1��)-accurate if for any utility vector, the algorithm’s expected

utility is at least (1� �) times the utility of the best possible algorithm. A social recommendation

algorithm that aims to preserve privacy of the edges will have to deviate from Rbest, and accuracy is

the measure of the fraction of maximum possible utility it is able to preserve despite the deviation.

Notice that our definition of accuracy is invariant to rescaling utility vectors, and hence all results

we present are unchanged on rescaling utilities.

5.2.4 Properties of Utility Functions and Algorithms

Our goal is to theoretically determine the bounds on maximum accuracy achievable by any social

recommendation algorithm that satisfies ✏-di↵erential privacy. Instead of assuming a specific graph

link-based recommendation algorithm, more ambitiously we aim to determine accuracy bounds for a

general class of recommendation algorithms. In order to achieve that, we define properties that one

can expect most reasonable utility functions and recommendation algorithms to satisfy, and restrict

our subsequent analysis to utility functions and algorithms satisfying them.

5.2.4.1 Axioms for Utility Functions

We present two axioms, exchangeability and concentration, that should be satisfied by a meaningful

utility function in the context of recommendations on a social network. Our axioms are inspired by

6we assume wlog that the utility of the least useful recommendation is 0; otherwise we would define accuracy as

min~u

P
u
i

p
i

u
max

�u
min

.
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work of [122] and the specific utility functions they consider: number of common neighbors, sum of

weighted paths, and PageRank based utility measures.

Axiom 1 (Exchangeability). Let G be a graph and let h be an isomorphism on the nodes giving

graph Gh, s.t. for target node r, h(r) = r. Then 8i : uG,r
i = uG

h

,r
h(i) .

This axiom captures the intuition that in our setting of graph link-analysis based recommender

systems, the utility of a node i should not depend on the node’s identity. Rather, the utility for

target node r only depends on the structural properties of the graph, and so, nodes isomorphic from

the perspective of r should have the same utility.

Axiom 2 (Concentration). There exists S ⇢ V (G), such that |S| = �, and
P

i2S ui � µ
P

i2V (G)

ui

for some µ = ⌦(1) and � = o(nd) for any positive d.

This says there are some � nodes that together have at least a constant fraction of the total

utility. This is likely to be satisfied for small enough � in practical contexts, as in large graphs

there are usually a small number of nodes that are very good recommendations for r and a long

tail of those that are not. Depending on the setting, � may be a constant, or may be a function

growing with the number of nodes. Furthermore, � can be viewed as dependent not only on the

utility function but also on µ. For intuition purposes, one may think of µ as a fixed large fraction,

say µ = 0.9.

5.2.4.2 Property of Recommendation Algorithms

We present a property, monotonicity, that should be satisfied by a meaningful recommendation

algorithm:

Definition 6 (Monotonicity). An algorithm is said to be monotonic if 8i, j, ui > uj implies that

pi > pj.

The monotonicity property is a very natural notion for a recommendation algorithm to satisfy.

It says that the algorithm recommends a higher utility node with a higher probability than a lower

utility node.

In our subsequent discussions, we only consider the class of monotonic recommendation algo-

rithms for utility functions that satisfy the exchangeability axiom as well as the concentration axiom

for a reasonable choice of �. In Section 5.3.2.3 we briefly mention how the lower bounds can be

altered to avoid this restriction.
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A running example throughout the chapter of a utility function that satisfies these axioms and

is often successfully deployed in practical settings [82, 122, 163] is that of the number of common

neighbors utility function: given a target node r and a graph G, the number of common neighbors

utility function assigns a utility uG,r
i = C(i, r), where C(i, r) is the number of common neighbors

between i and r.

5.3 Privacy Lower Bounds

In this section we show a lower bound on the privacy parameter ✏ for any di↵erentially private

recommendation algorithm that (a) achieves a constant accuracy and (b) is based on any utility

function that satisfies the exchangeability and concentration axioms, and the monotonicity property.

We present tighter bounds for several concrete choices of utility functions in Section 5.3.3.

Theorem 4. For a graph with maximum degree d
max

= ↵ log n, a di↵erentially private algorithm,

that satisfies monotonicity and is operating on a utility function that satisfies exchangeability and

concentration, and certain technical conditions (�  nµ(1�2�), and � < 0.5), can guarantee constant

accuracy only if

✏ � 1

↵

✓
1

4
� o(1)

◆
(5.2)

As an example, the theorem implies that for any utility function that satisfies exchangeability

and concentration (with any � = O(log n)), and for a graph with maximum degree log n, there is no

0.24-di↵erentially private algorithm that achieves accuracy better than 0.5.

5.3.1 Proof Overview

The building blocks to proving Theorem 4 are Lemmas 8 and 9 that relate the accuracy parameter

1 � � and privacy parameter ✏ first by utilizing exchangeability and monotonicity and then by

incorporating the concentration axiom. We first introduce notation used in the Lemmas, state and

interpret them, and then provide detailed proofs in Section 5.3.2.

Notation. Let node r be the target of recommendation. Let c be a real number in (�, 1), and

let V r
hi be the set of nodes 1, . . . , k each of which have utility ui > (1 � c)u

max

, and let V r
lo be the

nodes k + 1, . . . , n each of which have utility ui  (1 � c)u
max

of being recommended to target

node r. Recall that u
max

is the utility of the highest utility node. Let t be the number of edge

alterations (edge additions or removals) required to turn a node with the smallest probability of
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being recommended from the low utility group V r
lo into the node of maximum utility in the modified

graph.

The following lemma states the main trade-o↵ relationship between the accuracy parameter 1��

and the privacy parameter ✏ of a recommendation algorithm:

Lemma 8. ✏ � 1

t

�
ln( c��

� ) + ln(n�k
k+1

)
�

This lemma gives us a lower bound on the privacy guarantee ✏ in terms of the accuracy parameter

1 � �. Equivalently, the following corollary presents the result as an upper bound on accuracy

that is achievable by any ✏ di↵erential privacy preserving social recommendation algorithm:

Corollary 1. 1� �  1� c(n�k)
n�k+(k+1)e✏t

Consider an example of a social network with 400 million nodes, i.e., n = 4 · 108. Assume that

for c = 0.99, we have k = 100; this means that there are at most 100 nodes that have utility close

to the highest utility possible for r. Recall that t is the number of edges needed to be changed

to make a low utility node into the highest utility node, and consider t = 150 (which is about the

average degree in some social networks). Suppose we want to guarantee 0.1-di↵erential privacy,

then we compute the bound on the accuracy 1 � � by plugging in these values in Corollary 1. We

get (1 � �) < 0.46. This suggests that for a di↵erential privacy guarantee of 0.1, no algorithm can

guarantee an accuracy better than 0.46.

Lemma 8 combined with the concentration axiom with parameters � and µ will yield:

Lemma 9. For (1� �) = ⌦(1), and technical conditions (�  nµ(1� 2�) and � < 0.5):

✏ � log n� o(log n)

t
(5.3)

This expression can be intuitively interpreted as follows: in order to achieve good accuracy with

a reasonable amount of privacy (where ✏ is independent of n), either the number of nodes, �, that

together capture a significant fraction of utility needs to be very large (i.e., � = ⌦(nd)), or the

number of steps, t, needed to bring up any node’s utility to the highest utility needs to be large (i.e.,

t = ⌦(log n)). Another way to intuitively interpret the requirement that � is large is to say that

there are no good utility recommendations to begin with.

As will become clear from the proof of Lemma 9, it is also possible to obtain the same asymptotic

bound under di↵erent technical conditions, hence they should be viewed as a conceptual represen-

tation encoding a reasonable set of values for �, µ, and �, rather than hard constraints.
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Lemma 9 will be used in Section 5.3.3 to prove stronger lower bounds for two well studied specific

utility functions, by proving tighter upper bounds on t, which imply tighter lower bounds for ✏.

We now proceed to prove Lemmas 8 and 9, and then use them in the proof of Theorem 4.

5.3.2 Proof Details

Before jumping into the proof, we explain the intuition for the proof technique for the lower bound

on privacy in Lemma 8 using the number of common neighbors utility metric.

5.3.2.1 Proof Sketch for Lemma 8

Let r be the target node for a recommendation. The nodes in any graph can be split into two groups

– V r
hi, nodes which have a high utility for the target node r and V r

lo, nodes that have a low utility. In

the case of common neighbors utility, all nodes i in the 2-hop neighborhood of r (who have at least

one common neighbor with r) can be part of V r
hi and the rest – of V r

lo. Since the recommendation

algorithm has to achieve a constant accuracy, it has to recommend one of the high utility nodes with

constant probability.

By the concentration axiom, there are only a few nodes in V r
hi, but there are many nodes in V r

lo;

in the case of common neighbors, node r may only have 10s or 100s of 2-hop neighbors in a graph of

millions of users. Hence, there exists a node i in the high utility group and a node ` in the low utility

group such that � = pi/p` is very large (⌦(n)). At this point, we show that we can carefully modify

the graph G by adding and/or deleting a small number (t) of edges in such a way that the node `

with the smallest probability of being recommended in G becomes the node with the highest utility

in G0 (and, hence, by monotonicity, the node with the highest probability of being recommended).

By the exchangeability axiom, we can show that there always exist some t edges that make this

possible. For instance, for common neighbors utility, we can do this by adding edges between a node

i and t of r’s neighbors, where t > maxi C(i, r). It now follows from di↵erential privacy that

✏ � 1

t
log�.

5.3.2.2 Detailed Proofs for the General Privacy Lower Bound

Claim 1. Suppose the algorithm achieves accuracy of (1 � �) on a graph G. Then there exists a

node x in V r
lo(G), such that its probability being recommended is at most �

c(n�k) , i.e., p
G
x  �

c(n�k) .
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Proof. In order to achieve (1� �) accuracy, at least c��
c of the probability weight has to go to nodes

in the high utility group V r
hi, and at most �

c of the probability weight can go to nodes in the low

utility group V r
lo. Indeed, denote by p+ and p� the total probability that goes to high and low utility

nodes, respectively, and observe that, by choice of c, V r
hi, and V r

lo: p
+u

max

+(1�c)u
max

p� �
P

i uipi.

Moreover, if the algorithm achieves accuracy (1 � �) then by definition of accuracy
P

i uipi �

(1� �)u
max

. Furthermore, since p+ and p� are probabilities, we have p+ + p�  1. Combining the

last three inequalities, we obtain p+ > c��
c , p�  �

c . Since V r
lo contains n � k nodes, that means

there exists a node in V r
lo whose probability of being recommended is at most p�

n�k , as desired.

Proof of Lemma 8. Using the preceding Claim, let x be the node in G
1

that is recommended with

utility of at most �
c(n�k) by the privacy-preserving (1 � �)-accurate algorithm. And let G

2

be the

graph obtained by addition of t edges to G
1

chosen so as to turn x into the node of highest utility.

By di↵erential privacy, we have pG

2

x

p
G

1

x

 e✏t.

In order to achieve (1 � �) accuracy on G
2

, at least c��
c of the probability weight has to go to

nodes in the high utility group, and hence by monotonicity, pG2

x > c��
c(k+1)

. Combining the previous

three inequalities, we obtain:
(c��)(n�k)

(k+1)� =
c��

c(k+1)

�

c(n�k)

<
pG

2

x

p
G

1

x

 e✏t, hence ✏ � 1

t

�
ln( c��

� ) + ln(n�k
k+1

)
�
, as desired.

Before proceeding to prove Lemma 9, we use the concentration axiom to prove the following

claim:

Claim 2. Suppose the sum of utilities of � nodes satisfying the concentration axiom is µ
P

i2V (G)

ui,

for some µ = ⌦(1). Then k  �
µ(1�c) .

Proof. Recall that by choice of c, k is the number of nodes with utility greater than (1 � c)u
max

.

Therefore, k(1� c)u
max


P

i2V (G)

ui.

And recall that by concentration axiom, there exist some � nodes so that the sum of their utilities

is at least µ
P

i2V (G)

ui, for some µ = ⌦(1). Hence, �u
max

� µ
P

i2V (G)

ui.

Combining the inequalities of the last two paragraphs, we obtain k  �
µ(1�c) .

Proof of Lemma 9. We start with the expression from Lemma 8 and plug in the bound on k from

Claim 2.

✏t � ln( c��
� ) + ln(n�k

k+1

) � ln( c��
� ) + ln(

n� �

µ(1�c)

�

µ(1�c)

+1

) = ln( c��
� ) + ln(nµ(1�c)��

µ(1�c)+� ) = ln
�
(c��)(nµ(1�c)��)

�(µ(1�c)+�)

�
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We want to show ln
⇣

(c��)(nµ(1�c)��)
�(µ(1�c)+�)

⌘
= lnn� o(lnn), which is equivalent to

lnn� ln
⇣

(c��)(nµ(1�c)��)
�(µ(1�c)+�)

⌘
= ln

⇣
n�(µ(1�c)+�)

(c��)(nµ(1�c)��)

⌘
= o(lnn), or

8a > 0 9n
0

, s.t. 8n > n
0

: | ln
✓

n�(µ(1� c) + �)

(c� �)(nµ(1� c)� �)

◆
|  a lnn. (5.4)

Suppose

nµ(1� c)� � � 0, (5.5)

and ✓
n�(µ(1� c) + �)

(c� �)(nµ(1� c)� �)

◆
� 1 (5.6)

then for statement (5.4) and, therefore, for the lemma to hold, we need
⇣

n�(µ(1�c)+�)
(c��)(nµ(1�c)��)

⌘
 na or

n�(µ(1� c) + �)  na(c� �)(nµ(1� c)� �)

�(na(c� �) + n�)  na(c� �)nµ(1� c)� n�µ(1� c)

�  na

(c��)nµ(1�c)�n�µ(1�c)
na

(c��)+n� = (na

(c��)��)nµ(1�c)
na

(c��)+n� .

Recall that c can be chosen arbitrarily from (�, 1), so let c = 2�. Then to prove (5.4) we need to

show that

8a > 0 9n
0

, s.t. 8n > n
0

: �  nanµ(1� 2�)� nµ(1� 2�)

na + n
= nµ(1� 2�)

na � 1

na + n
(5.7)

and that inequalities (5.5) and (5.6) are satisfied.

Inequality (5.5) is satisfied if �  nµ(1� 2�), which holds by assumption of the lemma.

After substitution of the chosen value of c inequality (5.6) becomes: n�(µ(1�2�)+�)
�(nµ(1�2�)��) � 1 or

n(µ(1�2�)+�)
nµ(1�2�)�� � 1, which trivially holds given that (5.5) holds.

To show that inequality (5.7) is satisfied, consider two separate cases a < 1 and a � 1.

Recall that by assumption � = o(nd) for any positive d, meaning that 8d > 0, and 8z >

0 9nzd
0

, s.t. 8n > nzd
0

,�  znd.

If a � 1 then 9na
0

, s.t. 8n > na
0

, na�1

na

+n > 1

3

. Let d = 1, z = 1

3

µ(1 � 2�). Then 8a > 0, n
0

=

max(na
0

, nzd
0

) we have 8n > n
0

: �  1

3

µ(1� 2�)n < na�1

na

+nµ(1� 2�)n, as desired by (5.7).

If a < 1 then 9na
0

, s.t. 8n > na
0

: na + 2n1�a  n, from which it follows that n2a + 2n 

n1+a, n2a+2n+n1+a  2n1+a, na(na+n)  2n1+a�2n, na  2n1+a�2n
na

+n . Let d = a, z = 0.5µ(1�2�).

Then 8a > 0, n
0

= max(na
0

, nzd
0

) we have 8n > n
0

: �  0.5µ(1 � 2�)na  0.5µ(1 � 2�) 2n
1+a�2n
na

+n =

nµ(1� 2�) n
a�1

na

+n , as desired by (5.7). This completes the proof.
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It is worth noting that changes in the chosen value of c yield asymptotically the same bounds

with slightly di↵erent restrictions on �, µ, and �, hence the conditions provided in the statement of

the lemma can be viewed as technical conditions encoding reasonable assumptions, rather than hard

constraints needed for the lemma to hold.

Proof of Theorem 4 (Any utility function). Recall that d
max

denotes the maximum degree in

the graph. Using the exchangeability axiom, we can show that t  4d
max

in any graph. Consider

the highest utility node and node with the lowest probability of being recommended, say x and y

respectively. These nodes can be interchanged by deleting all of x’s current edges, adding edges from

x to y’s neighbors, and doing the same for y. This requires at most 4d
max

changes. By applying the

upper bound on t in Lemma 9 we obtain the desired result.

5.3.2.3 Non-monotone Algorithms

Our results can be generalized to algorithms that do not satisfy the monotonicity property, assuming

that they only use the utilities of nodes (and node names do not matter). We omit the exact lemmas

analogous to Lemmas 8 and 9 but remark that the statements and our qualitative conclusions will

remain essentially unchanged, with the exception of the meaning of variable t. Currently, we have t as

the number of edge additions or removals necessary to make the node with the smallest probability of

being recommended into the node with the highest utility. We then argue about the probability with

which the highest utility node is recommended by using monotonicity. Without the monotonicity

property, t would correspond to the number of edge alterations necessary to exchange the node with

the smallest probability of being recommended and the node with the highest utility. We can then

use just the exchangeability axiom to argue about the probability of recommendation. Notice that

this requires a slightly higher value of t, and consequently results in a slightly weaker lower bound.

5.3.3 Privacy Lower Bounds for Specific Utility Functions

In this section, we start from Lemma 9 and prove stronger lower bounds for particular utility

functions using tighter upper bounds on t.

5.3.3.1 Privacy Bound for Common Neighbors

Theorem 5. A monotone recommendation algorithm based on the number of common neighbors

utility function7 that guarantees any constant accuracy for a target node r has a lower bound on

7satisfying the same technical conditions as in Lemma 9.
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privacy given by ✏ � 1

↵

�
1� o(1)

�
, if node r’s degree is dr = ↵ log n.

Proof. Consider a graph and a target node r. The crux of the proof is to observe that we can make

any node x into the highest utility node by adding t = dr + 2 edges. Indeed, it su�ces to add dr

edges from x to all of r’s neighbors and additionally add two more edges (one each from r and x) to

some node with small utility, to make x the highest utility node. This is because the highest utility

node previously has had at most dr common neighbors with r, and hence had the utility no larger

than dr. Further, adding these edges cannot increase the number of common neighbors to exceed dr

for any other node.

This bound on t combined with Lemma 9 yields the result.

As we will show in Section 5.5, this is a very strong lower bound. Since a significant fraction of

nodes in real-world graphs have small dr (due to a power law degree distribution), we can expect

no algorithm based on common neighbors utility to be both accurate on most nodes and satisfy

di↵erential with a reasonable ✏. Moreover, this is contrary to the commonly held belief that one can

eliminate privacy risk by connecting to a few high degree nodes.

Consider an example to understand the consequence of this theorem of a graph on n nodes with

maximum degree log n. Any algorithm that makes recommendations based on the common neighbors

utility function and achieves a constant accuracy is at best, 1.0-di↵erentially private. Specifically,

for example, such an algorithm cannot guarantee a 0.999-di↵erential privacy on this graph.

5.3.3.2 Privacy Bound for Weighted Paths

A natural extension of the common neighbors utility function and one whose usefulness is supported

by the literature [122], is the weighted path utility function, defined as:

score(s, y) =
P1

l=2

�l�2|paths(l)
(s,y)|, where |paths(l)

(s,y)| denotes the number of length l paths from s

to y. Typically, one would consider using small values of �, such as � = 0.005, so that the weighted

paths score is a “smoothed version” of the common neighbors score.

Theorem 6. A monotone recommendation algorithm based on the weighted paths utility function8

with � < 1

⇢d
max

+2

that guarantees constant accuracy for a target node r has a lower bound on

privacy given by ✏ � 1

↵

✓
1

⇢�3�
p

⇢2�8⇢+8

� o(1)

◆
, if the degree of r, dr = ↵ log n, ⇢ � 4 + 2

p
2, and

0.5(⇢� 2�
p
⇢2 � 8⇢+ 8)dr(dmax

+ 1) < n� 2.

8satisfying the same technical conditions as in Lemma 9.
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For example, if ⇢ = 7, the theorem implies ✏ � 1

↵

�
1

3

� o(1)
�
; ⇢ = 8.5 =) ✏ � 1

↵

�
1

2

� o(1)
�
;

⇢ = 9.4 =) ✏ � 1

↵

�
1

1.8 � o(1)
�
; ⇢ = 14.2 =) ✏ � 1

↵

�
1

1.4 � o(1)
�
; ⇢ = 24.1 =) ✏ � 1

↵

�
1

1.2 � o(1)
�
.

This is a stronger lower bound on ✏ than that of Theorem 4. Moreover, as � ! 0, (and corre-

spondingly, ⇢!1), or in other words, as the score function becomes more and more similar to the

number of common neighbors, we get essentially the same bound as in Theorem 5. Hence the same

example as before suggests roughly that for nodes with at most logarithmic degree, a recommenda-

tion algorithm with constant accuracy cannot guarantee anything better than constant di↵erential

privacy.

Proof of Theorem 6. Unlike in the proof of Theorem 5 for the common neighbors utility function,

we cannot trivially upper bound t with dr or even d
max

here. The highest utility node in the original

graph, say x, has at most d
max

edges, and one could make any other node, say y have at least as

much utility as x by adding the exact same edges as the ones outgoing from x. However, there could

be other nodes that would now have a larger utility than both x and y since the new edges have been

added and may have changed the number of paths of various lengths. Therefore, we need a more

careful analysis to obtain an upper bound on t in the case of weighted neighbors utility function.

Let y be the node with the smallest probability of being recommended. We rewire the original

graph G into G0 as follows to make y into the highest utility node in G0. Connect both r and y to b

nodes (other than r and y themselves), chosen in such a way so that these b nodes and the dr nodes r

is already connected to have no common neighbors (this can be done if (b+dr)dmax

< n�2�b�dr).

Additionally, connect y to all of r’s dr neighbors. We have thus added t = dr + 2b edges.

Observe that utility of node y is now uG0

y � dr + b. We now bound from above the utility of any

other node in the rewired graph G0.

All nodes in the new graph have degree at most d
max

+2, except nodes r and y, which have degrees

of at most dr+ b and d
max

+dr+ b, respectively. Therefore, the number of paths of length l for l � 3

from node r to any other node is at most (dr + b)(d
max

+ dr + b)(d
max

+2)l�3. The number of paths

of length 2 from r to any node except y is at most dr due to how the b nodes to connect r and y to

were chosen. Therefore, for any node z other than y, the utility uG0

z  dr+
P1

l=3

�l�2(dr+b)(d
max

+

dr+b)(d
max

+2)l�3 = dr+(dr+b)(d
max

+dr+b)�
P1

l=3

�l�3(d
max

+2)l�3 = dr+(dr+b)(d
max

+dr+

b)�
P1

l=0

�l(d
max

+2)l. Thus as long as � < 1

d
max

+2

, then uG0

z  dr+(dr+b)(d
max

+dr+b) �
1��(d

max

+2)

.

For y to be the maximum utility node in the new graph G0, we need for all nodes z in the graph:

uG0

y > uG0

z . We now show that it will be the case if we choose b = 0.5(⇢� 4�
p
⇢2 � 8⇢+ 8)dr.

Indeed, let b = 0.5
�
⇢�4�

p
⇢2 � 8⇢+ 8

�
dr, denote s =

p
⇢2 � 8⇢+ 8, and recall the assumption
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that � < 1

⇢d
max

+2

. Then

uG0

z � dr  (dr + b)(d
max

+ dr + b) �
1��(d

max

+2)

< (dr + b)(d
max

+ dr + b)
1

⇢d

max

+2

1� 1

⇢d

max

+2

(d
max

+2)

=

= 0.5(⇢ � 2 � s)dr
�
d
max

+ 0.5(⇢ � 2 � s)dr
�

1

(⇢�1)d
max

 0.5(⇢ � 2 � s)dr
�
d
max

+ 0.5(⇢ � 2 �

s)d
max

�
1

(⇢�1)d
max

= 0.5(⇢� 2� s)dr
�
1 + 0.5(⇢� 2� s)

�
1

(⇢�1)

= 0.5(⇢� 2� s)dr
�
0.5(⇢� s)

�
1

(⇢�1)

=

0.25(⇢� 2� s)dr
�
⇢� s

�
1

(⇢�1)

= (⇢2 � ⇢s� 2⇢+ 2s� ⇢s+ s2) 0.25dr

(⇢�1)

=

= (⇢2 � ⇢s� 2⇢+ 2s� ⇢s+ ⇢2 � 8⇢+ 8) 0.25dr

(⇢�1)

= (2⇢2 � 2⇢s+ 2s� 10⇢+ 8) 0.25dr

(⇢�1)

=

= (⇢2 � ⇢s+ s� 5⇢+ 4) 0.5d
r

(⇢�1)

= (⇢� 1)(⇢� 4� s) 0.5d
r

(⇢�1)

= (⇢� 4� s)0.5dr = b  uG0

y � dr

Therefore, if b = 0.5
�
⇢�4�

p
⇢2 � 8⇢+ 8

�
dr, then for any node z in the new graph G0, uG0

y > uG0

z .

Observe that to obtain the new graph, we have added t = dr + 2b = (⇢ � 3 �
p

⇢2 � 8⇢+ 8)dr

edges. Substituting this value of t into Lemma 9, we obtain the desired lower bound on the privacy

parameter, ✏ � logn�o(logn)
t = 1

↵

✓
1

⇢�3�
p

⇢2�8⇢+8

� o(1)

◆
.

The bound of Theorem 6 can be significantly strengthened for particular nodes and graphs,

which we omit for reasons of consistency with Theorems 4 and 5 and simplicity of interpretation.

For example, it is clear from the proof that if we bound � in terms of d
max

and dr, rather than

only d
max

, the bound on � may be made weaker, or, correspondingly, the bound on ✏ can be made

stronger for nodes where dr << d
max

. Furthermore, our proofs assumed a worst-case scenario, by

bounding the number of paths of length l assuming that each node has a maximum possible number

of outgoing edges and all those edges meaningfully contribute to the path from r to z. For practical

graphs that is not the case. We will use a node-specific and graph-specific version of Corollary 1 in

Section 5.5 when we assess the practical implications of Theorems 5 and 6.

5.4 Privacy-preserving Recommendation Algorithms

In this section we articulate how the known approaches to preserving privacy, the Laplace noise

addition and the Exponential mechanism (Section 3.2.1), can be applied in the setting of social

recommendations. We describe how, when given an input vector ~u of utilities, to recommend a node

in a privacy-preserving manner, achieving ✏-di↵erential privacy, where the desired privacy guarantee

of ✏ is specified by the designer. We will show experimentally in Section 5.5 that although one

can, perhaps, hope to develop slightly better algorithms than the known ones for this particular

problem setting, our utility loss lower bound from Section 5.3 suggests that any improvement in

utility achieved would be fairly incremental. In Section 5.4.2 we describe and analyze a sampling-

based approach towards making recommendations for the case when the entire utility vector may
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not be known to the algorithm and only e�cient sampling from it is possible.

5.4.1 Privacy-preserving Algorithms for Known Utility Vectors

Assume that given a graph and a target node, our algorithm has access to (or can e�ciently com-

pute) the utilities ui for all other nodes in the graph. Recall that our goal is to compute a vector

of recommendation probabilities pi such that (a)
P

i ui · pi is maximized, and (b) di↵erential pri-

vacy is satisfied. Also recall that maximum accuracy is achieved by Rbest, the algorithm always

recommending the node with the highest utility umax. However, any ✏-di↵erentially private mono-

tonic algorithm applied to a utility function that satisfies exchangeability aiming to achieve non-zero

accuracy must recommend every node, even the ones that have zero utility, with a non-zero prob-

ability [150]. Therefore, in order to guarantee privacy, we need to search for algorithms that will

ensure that every node has a chance of being recommended, and, in order to maximize accuracy,

will give the higher utility nodes as high a chance of being recommended as possible. The Exponen-

tial mechanism and Laplace noise addition (Section 3.2) are two approaches towards producing this

probability vector that is, in some way, a “smoothed version” of the utility vector.

The Exponential mechanism (Section 3.2.1) creates a smooth probability distribution from the

utility vector and samples from it.

Definition 7. Exponential mechanism for social recommendations: Given nodes with

utilities (u
1

, . . . , ui, . . . , un), algorithm AE(✏) recommends node i with probability
exp(

✏

S(u)

u
i

)

P
n

k=1

exp(

✏

S(u)

u
k

)

, where ✏ > 0 is the privacy parameter, and S(u) is the sensitivity of the utility

function computed as S(u) = maxr maxG,G0
:G=G0

+e ||~uG,r � ~uG0,r||
1

.

The proof that AE(✏) guarantees ✏ di↵erential privacy follows from the privacy of Exponential

mechanism (see Theorem 2 due to McSherry and Talwar [134] in Section 3.2.1, using a slightly

di↵erent meaning of sensitivity: [134] use sensitivity defined as a change in the function when applied

to inputs that di↵er in a single value, whereas we consider sensitivity as a change in the function

when applied to inputs that di↵er by an edge.)

Unlike the Exponential mechanism, the Laplace mechanism (Section 3.2.1) in this context more

closely mimics the optimal mechanism Rbest. It first adds random noise drawn from a Laplace

distribution, and, then, like the optimal mechanism, picks the node with the maximum noise-infused

utility.

Definition 8. Laplace mechanism for social recommendations: Given nodes with utilities

(u
1

, . . . , ui, . . . , un), algorithm AL(✏) first computes a modified utility vector (u0
1

, . . . , u0
n) as follows:
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u0
i = ui + x, where x is a random variable chosen from the Laplace distribution with scale (S(u)

✏ )

independently at random for each i. Then, AL(✏) recommends node z whose noisy utility is maximal

among all nodes, i.e., z = argmaxi u0
i.

The proof that AL(✏) guarantees ✏ di↵erential privacy follows from the privacy of Laplace mech-

anism when publishing histograms (see Theorem 1 due to [49] described in Section 3.2.1): each node

can be treated as a histogram bin and u0
i is the noisy count for the value in that bin. Since AL(✏) is

e↵ectively doing post-processing by releasing only the name of the bin with the highest noisy count,

the algorithm remains private.

AL as stated does not satisfy monotonicity; however, it satisfies it in expectation, which this

is su�cient for our purposes, if we perform our comparisons between mechanisms and apply the

bounds to AL’s expected, rather than one-time, performance.

As we will see in Section 5.5, in practice, AL and AE achieve very similar accuracies. The Laplace

mechanism may be a bit more intuitive of the two, as instead of recommending the highest utility

node it recommends the node with the highest noisy utility. It is natural to ask whether the two

are isomorphic in our setting, which turns out not to be the case, as we show in Section 5.7.1 by

deriving a closed form expression for the probability of each node being recommended by the Laplace

mechanism as a function of its utility when n = 2 and comparing it with the probability of each

node being recommended by the Exponential mechanism given the same utilities.

5.4.2 Sampling and Linear Smoothing for Unknown Utility Vectors

Both the di↵erentially private algorithms we have just discussed assume the knowledge of the entire

utility vector, an assumption that cannot always be made in social networks for various reasons.

Firstly, computing, as well as storing the utility of n2 pairs may be prohibitively expensive when

dealing with graphs of several hundred million nodes. Secondly, even if one could compute and store

them, these graphs change at staggering rates, and therefore, utility vectors are also constantly

changing.

We now propose a simple algorithm that assumes no knowledge of the utility vector; it only

assumes that sampling from the utility vector can be done e�ciently. We show how to modify any

given recommendation algorithm A, which is µ-accurate but not provably private, into an algorithm

AS(x) that guarantees di↵erential privacy, while still preserving, to some extent, the accuracy of A.

Definition 9. Given an algorithm A = (p
1

, p
2

, . . . , pn), which is µ-accurate, algorithm AS(x) rec-

ommends node i with probability 1�x
n + xpi, where 0  x  1 is a parameter.
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Intuitively, AS(x) corresponds to flipping a biased coin, and, depending on the outcome, either

sampling a recommendation using A or making one uniformly at random.

Theorem 7. AS(x) guarantees ln(1 + nx
1�x )-di↵erential privacy and xµ accuracy.

Proof. Let p00i = 1�x
n + xpi. First, observe that

Pn
i=1

p00i = 1, and p00i � 0, hence AS(x) is a

valid algorithm. The utility of AS(x) is U(AS(x)) =
Pn

k=1

ukp
00
k =

Pn
k=1

( 1�x
n )uk +

Pn
k=1

xpkuk �

xµu
max

, where we use the facts that
P

k uk � 0 and
P

pkuk � µu
max

by assumption on A’s accuracy.

Hence, U(AS(x)) has accuracy � xµ.

For the privacy guarantee, note that 1�x
n  p00i  1�x

n + x, since 0  pi  1. These upper and

lower bounds on p00i hold for any graph and utility function. Therefore, the change in the probability

of recommending i for any two graphs G and G0 that di↵er in exactly one edge is at most:

pi(G)

pi(G0)


x+ 1�x
n

1�x
n

= 1 +
nx

1� x
.

Therefore, AS is ln(1 + nx
1�x )-di↵erentially private, as desired.

Note that to guarantee ✏-di↵erentially privacy for AS(x), we need to set the parameter x so that

ln(1 + nx
1�x ) = ✏, namely x = exp(✏)�1

exp(✏)+n�1

.

5.5 Experiments

In this section we present experimental results on two real-world graphs and for two particular

utility functions. We compute accuracies achieved by the Laplace and Exponential mechanisms, and

compare them with the theoretical upper bound on accuracy (Corollary 1) that any ✏-di↵erentially

private algorithm can hope to achieve. Our experiments suggest three takeaways: (i) For most

nodes, our bounds suggest that there is an inevitable harsh trade-o↵ between privacy and accuracy

when making social recommendations, yielding poor accuracy for most nodes under reasonable

privacy parameter ✏; (ii) The more natural Laplace mechanism performs as well as the Exponential

mechanism; and (iii) For a large fraction of nodes, the accuracy achieved by Laplace and Exponential

mechanisms is close to the best possible accuracy suggested by our theoretical bound.

5.5.1 Experimental Setup

We use two publicly available social networks – Wikipedia vote network (GWV ) and Twitter connec-

tions network (GT ). While the edges in these graphs are not private, we believe that these graphs
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exhibit the structure and properties typical of other private social networks.

The Wikipedia vote network (GWV ) [121] is available from Stanford Network Analysis Package9.

Some Wikipedia users are administrators, who have access to additional technical features. Users

are elected to be administrators via a public vote of other users and administrators. GWV consists

of all users participating in the elections (either casting a vote or being voted on), since inception

of Wikipedia until January 2008. We convert GWV into an undirected network, where each node

represents a user and an edge from node i to node j represents that user i voted on user j or user

j voted on user i. GWV consists of 7,115 nodes and 100,762 edges, and has the maximum degree of

1, 065.

The second data set we use (GT ) is a sample of the Twitter connections network, obtained

from [168]. GWV is directed, as the “follow” relationship on Twitter is not symmetrical; consists of

96, 403 nodes, 489, 986 edges, and has the maximum degree of 13, 181.

Similar to Section 5.3.3 we use two particular utility functions: the number of common neighbors

and weighted paths (with various values of �), motivated both by literature [122] and evidence of

their practical use by many companies [82], including Facebook [170] and Twitter [167]. For the

directed Twitter network, we count the common neighbors and paths by following edges out of target

node r, although other interpretations are also possible.

We select the target nodes for whom to solicit recommendations uniformly at random (10%

of nodes in GWV and 1% of nodes in GT ). For each target node r, we compute the utility of

recommending to it each of the other nodes in the network (except those r is already connected to),

according to the two utility functions. We approximate the weighted paths utility by considering

paths of length up to 3. We also omit from further consideration a negligible number of the nodes

that have no non-zero utility recommendations available to them. Then, fixing a desired privacy

guarantee, ✏, given the computed utility vector ~ur, and assuming we will make one recommendation

for r, we compute the expected accuracy of ✏-private recommendation for r. For the Exponential

mechanism, the expected accuracy follows from the definition of AE(✏) directly; for the Laplace

mechanism, we compute the accuracy by running 1, 000 independent trials of AL(✏), and averaging

the utilities obtained in those trials. Finally, we use Corollary 1 to compute the theoretical upper

bound we derived on accuracy achievable by any ✏ privacy-preserving recommendation algorithm.

Note that in our experiments, we can compute exactly the value of t to use in Corollary 1 for a

particular ~ur, and we are also not constrained by the technical conditions of Lemma 9, as Corollary 1

does not depend on it.

9

http://snap.stanford.edu/data/wiki-Vote.html

http://snap.stanford.edu/data/wiki-Vote.html
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5.5.2 Results

We verified in all experiments that the Laplace mechanism achieves nearly identical accuracy as the

Exponential mechanism. For readability, we include only the accuracy of Exponential mechanism

in all figures, as the two curves are indistinguishable on the charts.

We now experimentally illustrate the best accuracy one can hope to achieve using an ✏ privacy-

preserving recommendation algorithm as given by our theoretical bound of Corollary 1. We compare

this bound to the accuracy of the Exponential mechanism. In the following Figures 5.1(a), 5.1(b),

5.2(a), and 5.2(b), we plot accuracy (1 � �) on the x-axis, and the fraction of target nodes that

receive recommendations of accuracy  (1� �) on the y-axis (a visualization similar to CDF plots).

5.5.2.1 Common Neighbors Utility Function

Figures 5.1(a) and 5.1(b) show the accuracies achieved on GWV and GT , resp., under the common

neighbors utility function. As shown in Figure 5.1(a), for some nodes in GWV , the Exponential

mechanism performs quite well, achieving accuracy of more than 0.9. However, the number of such

nodes is fairly small – for ✏ = 0.5, the Exponential mechanism achieves less than 0.1 accuracy for

60% of the nodes. When ✏ = 1, it achieves less than 0.6 accuracy for 60% of the nodes and less

than 0.1 accuracy for 45% of the nodes. The theoretical bound proves that any privacy preserving

algorithm on GWV will have accuracy less than 0.4 for at least 50% of the nodes, if ✏ = 0.5 and for

at least 30% of the nodes, if ✏ = 1.
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Figure 5.1: Accuracy of algorithms using # of common neighbors utility function for two privacy

settings. X-axis is the accuracy (1� �) and y-axis is the % of nodes receiving recommendations with

accuracy  1� �
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The performance worsens drastically for nodes in GT (Figure 5.1(b)). For ✏ = 1, 98% of nodes

will receive recommendations of accuracy less than 0.01, if the Exponential mechanism is used.

Moreover, the poor performance is not specific to the Exponential mechanism. As can be seen from

the theoretical bound, 95% of the nodes will necessarily receive less than 0.03-accurate recommen-

dations, no matter what privacy-preserving algorithm is used. Compared to the setting of ✏ = 1, the

performance improves only marginally even for a much more lenient privacy setting of ✏ = 3 (corre-

sponding to one graph being e3 ⇡ 20 times more likely than another): if the Exponential mechanism

is used, more than 95% of the nodes still receive an accuracy of less than 0.1; and according to the

theoretical bound, 79% of the nodes will necessarily receive less than 0.3-accurate recommendations,

no matter what the algorithm.

This matches the intuition that by making the privacy requirement more lenient, one can hope to

make better quality recommendations for more nodes; however, this also pinpoints the fact that for

an overwhelming majority of nodes, the Exponential mechanism and any other privacy preserving

mechanism can not achieve good accuracy, even under lenient privacy settings.

5.5.2.2 Weighted Paths Utility Function

We show experimental results with the weighted paths utility function on GWV and GT in Figures

5.2(a) and 5.2(b), respectively. As expected based on Theorem 6, we get a weaker theoretical bound

for a higher parameter value of �. Moreover, for higher �, the utility function has a higher sensitivity,

and hence worse accuracy is achieved by the Exponential and Laplace mechanisms.

The main takeaway is that even for a lenient ✏ = 1, the theoretical and practical performances

are both very poor (and worse in the case of GT ). For example, in GWV , when using the Expo-

nential mechanism (even with � = 0.0005), more than 60% of the nodes receive accuracy less than

0.3. Similarly, in GT , using the Exponential mechanism, more than 98% of nodes receive recom-

mendations with accuracy less than 0.01. Even for a much more lenient setting of desired privacy

of ✏ = 3 (Figure 5.3)), the Exponential mechanism still gives more than 98% of the nodes the same

extremely low accuracy of less than 0.01.
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Figure 5.2: Accuracy of algorithms using weighted paths utility function. X-axis is the accuracy

(1� �) and the y-axis is the % of nodes receiving recommendations with accuracy  1� �



CHAPTER 5. SOCIAL RECOMMENDATIONS 99

Figure 5.3: Accuracy on Twitter network using # of weighted paths as the utility function, for ✏ = 3.

Even if one is able to come up with more accurate mechanisms than Exponential and Laplace,

our theoretical bounds quite severely limit the best accuracy any privacy-preserving algorithm can

hope to achieve for a large fraction of target nodes. Even for the lenient privacy setting of ✏ = 3, at

most 52% of the nodes in GT can hope for an accuracy greater than 0.5 if � = 0.05, 0.005, or 0.0005,

and at most 24% of the nodes can hope for an accuracy greater than 0.9. These results show that

even to ensure a weak privacy guarantee, the utility accuracy is severely compromised.

Our findings throw into serious doubt the feasibility of developing graph link-analysis based

social recommendation algorithms that are both accurate and privacy-preserving for many real-

world graphs and utility functions.

5.5.2.3 The Least Connected Nodes

Finally, in practice, it is the least connected nodes that are likely to benefit most from receiving high

quality recommendations. However, our experiments suggest that the low degree nodes are also the

most vulnerable to receiving low accuracy recommendations due to needs of privacy-preservation:

see Figure 5.4 for an illustration of how accuracy depends on the degree of the node. This further

suggests that, in practice, one has to make a choice between accuracy and privacy.
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Figure 5.4: Accuracy achieved by AE(✏) and predicted by Theoretical Bound as a function of node

degree. X-axis is the node degree and the y-axis is accuracy of recommendation on Wiki vote

network, using # common neighbors as the utility function for ✏ = 0.5.

5.6 Summary and Open Questions

Several interesting questions remain unexplored. While we have analyzed privacy/utility trade-o↵s

for two particular utility functions, it would be nice to extend our analysis to others, including those

that are not purely graph-based, e.g., [17]. Also, although we have shown how to make privacy-

preserving social recommendations on static data, social networks fairly rapidly change over time.

Dealing with such temporal graphs and understanding their trade-o↵s would be very interesting.

Another interesting setting to consider is the case when only certain edges are sensitive. For

example, in particular settings, only people-product connections may be sensitive but people-people

connections are not, or users are allowed to specify which edges are sensitive. We believe our lower

bound techniques could be suitably modified to consider only sensitive edges.

We have presented a theoretical and experimental analysis of the privacy/utility trade-ofs in

personalized graph link-analysis based social recommender systems. We have shown that even when

trying to make a single social recommendation the trade-o↵s are harsh, i.e., there is a fundamental
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limit on the accuracy of link-based privacy-preserving recommendations. Although the trade-o↵s

may be less harsh in settings where only some edges are sensitive, for other types of utility functions

than the ones we considered, or for the weaker privacy definition of (✏, �)-di↵erential privacy, our

analysis suggests that, at least for some utility functions, it may be more promising to look for

non-algorithmic solutions for enabling social recommendations that preserve privacy. For example,

a promising direction is development of systems that allow users to e↵ortlessly specify which of their

connections, purchases, and likes are sensitive, and which they are comfortable sharing with the

service aiming to improve recommendations using social data, and then using algorithms that rely

only on the approved connections.

5.7 Miscellaneous Technical Details

5.7.1 Comparison of Laplace and Exponential Mechanisms

Although we have observed in Section 5.5 that the Exponential and Laplace mechanisms perform

comparably and know anecdotally that the two are used interchangeably in practice, the two mech-

anisms are not equivalent.

To show that, we compute the probability of each node being recommended by each of the

mechanisms when n = 2, using the help of the following Lemma:

Lemma 10. Let u
1

and u
2

be two non-negative real numbers and let X
1

and X
2

be two random

variables drawn independently from the Laplace distribution with scale b = 1

✏ and location 0. Assume

wlog that u
1

� u
2

. Then

Pr[u
1

+X
1

> u
2

+X
2

] = 1� 1

2
e�✏(u

1

�u
2

) � ✏(u
1

� u
2

)

4e✏(u1

�u
2

)

To the best of our knowledge, this is the first explicit closed form expression for this probability

(the work of [144] gives a formula that does not apply to our setting)10.

Proof. Let �X(u) denote the characteristic function of the Laplace distribution, it is known that

�X(u) = 1

1+b2u2

. Moreover, it is known that if X
1

and X
2

are independently distributed random

variables, then

�X
1

+X
2

(u) = �X
1

(u)�X
2

(u) =
1

(1 + b2u2)2

10We thank Sergey Melnik of Progmestars for contributing the technical ideas used in the proof.



CHAPTER 5. SOCIAL RECOMMENDATIONS 102

Using the inversion formula, we can compute the pdf of X = X
1

+X
2

as follows:

fX(x) = F 0
X(x) =

1

2⇡

Z 1

�1
e�iux�X(u)du

For x > 0, the pdf of X
1

+X
2

is fX(x) = 1

4b (1 +
x
b )e

� x

b (adapting formula 859.011 of [42]) and the

cdf is FX(x) = 1� 1

4

✏e�✏x( 2✏ + x).
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It follows from Lemma 10 and the definition of the mechanisms in Section 5.4.1 that when

n = 2, and the node utilities are u
1

and u
2

(assuming u
1

� u
2

wlog), the Laplace mechanism will

recommend node 1 with probability 1� 1

2

e�✏(u
1

�u
2

)� ✏(u
1

�u
2

)

4e✏(u1

�u

2

)

, and the Exponential mechanism will

recommend node 1 with probability e✏u1

e✏u1

+e✏u2

. The reader can verify that the two are not equivalent

through value substitution.



Chapter 6

Social Graph Visibility

A major part of the value of participating in an online social network for a user lies in the ability

to leverage the structure of the social network graph. For example, in the case of LinkedIn, an

online network of professionals, each connection signifies a professional relationship between two

individuals, such as having worked together in the past. If an individual has access to their con-

nections, and their connections’ connections, and so on, this extended network enables professional

networking at an unprecedented scale, through ability to find potential collaborators, clients, em-

ployers, and subject experts and to be introduced to them through a chain of mutually trusting

individuals [11]. Similarly, in the case of Facebook, an ability to assess a relation between oneself

and others in the social graph (measured, for example, using a weighted combination of the number

of common friends, friends-of-friends, and so on), could enable more trusting transactions between

otherwise unacquainted individuals, e.g., for the purposes of subletting an apartment, online dating,

or weighing the applicability of a product review. In all these cases, the larger the local snapshot of

the social network that an individual can access, the more useful the social network is to him.

On the other hand, the graph link information is a valuable asset for the social network owner,

one that they have a business interest to protect from malicious adversaries and competitors. An

illustrative example of the value of link information to social network owners and users is an ongoing

battle between Facebook and Google focused on preventing the competitor’s service from seamlessly

importing the friends or connections the user has established in their online service [62, 92, 166].

Hence, in online social networks, a user is typically permitted only limited access to the link structure.

For example, a LinkedIn user can only see the profiles and friend lists of his friends and the profiles

of friends of friends. The limit on the extent of access to the link structure is in e↵ect not only in

103
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the user interface, but also in the API functionality made available to third-party developers.

In this chapter we consider a privacy threat to a social network in which the goal of an attacker

is to obtain knowledge of a significant fraction of the links in the network. We focus on a particular

threat model, in which an attacker, whose goal is to ascertain a significant fraction of the links

in a network, obtains access to parts of the network by gaining access to the accounts of some

select users. This is done either maliciously by breaking into user accounts or by o↵ering each user

a payment or a service in exchange for their permission to view their neighborhood of the social

network. Both scenarios are realistic and common in practice. Online social networks, such as

LiveJournal and Facebook, regularly experience successful account hijacking attempts [36, 99, 113].

Users routinely voluntarily grant access to their friends list in exchange for services when using

applications developed by third parties on the developer platforms provided by the social networks

(for example, as of 2011, more than 95% of Facebook users have used at least one application built on

Facebook Platform1). Although the third-party developer may not be able to store and re-purpose

the obtained snippets of social graph according to the terms of service limitations, such restrictions

are di�cult to enforce in practice.

We formalize the typical social network interface and the information about graph links that it

provides to its users in terms of lookahead. We classify possible strategies that an adversary can use

for choosing users whose accounts to target in order to obtain local snapshots of the graph, such as

targeting users with the most connections, those who are likely to give the most incremental gain,

or arbitrary ones. For each of the strategies of user targeting, using a real-world social network,

we analyze experimentally the di�culty of obtaining a large portion of the social network graph

depending on lookahead. For two of the strategies, we provide an explicit mathematical analysis for

the relationship between lookahead and fraction of users whose accounts need to be compromised in

order to obtain a large portion of the social graph, assuming that the social network is formed using

the preferential attachment graph model.

Our analysis is the first step towards helping social network owners make quantitative trade-o↵s

between utility they provide to the users through increasing the lookahead and the privacy threat

this lookahead choice poses to their business from competitors [126].

In Section 6.1, we discuss related work on privacy in social networks and models of social network

graphs. Section 6.2 lays out a formal model of the kind of attacks we consider and the goal of the

attacker. We present experimental results of the success of di↵erent attack strategies on both simu-

lated and real world social network graphs in Section 6.3, and present a rigorous theoretical analysis

1

https://www.facebook.com/note.php?note id=171817642885051

https://www.facebook.com/note.php?note_id=171817642885051
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of the attacks’ potential for success in Section 6.4. We conclude in Section 6.5 with recommendations

of actions for web service providers that would preserve user privacy.

6.1 Related Work

There has been much recent interest in anonymized social network graph releases. Backstrom et.

al. [16] consider a framework where a social network owner announces the intention to release an

anonymized version of a social network graph, i.e., a copy where true usernames are replaced with

random ids but the network structure is unchanged, and the goal of an attacker is to uniquely

identify the node that corresponds to a real world entity in this anonymized graph. They show

that, if given a chance to create as few as ⇥(log(n)) new accounts in the network prior to its

anonymized release, an attacker can e�ciently recover the connections between any ⇥(log2(n))

nodes chosen a-priori. This is achieved by first finding the new accounts that the attacker inserted

into the network and working through the connections established between the attacker’s accounts

and the chosen targets to identify the targets. In [80], the authors experimentally evaluate how

much background information about the structure of the neighborhood of an individual would be

su�cient for an attacker to uniquely identify the individual in such an anonymized graph. In [197]

the emphasis is on protecting the types of links associated with individuals in an anonymized release.

Simple edge-deletion and node-merging algorithms are proposed to reduce the risk of sensitive link

disclosure. [198] and [124] pursue the question of privacy as it relates to social networks from various

other perspectives.

The problem we study is di↵erent from the anonymized social network data release and re-

identification work of [16,79,148,197]. Rather than searching for ways to release the social network

while protecting the privacy of individuals in it or analyzing the barriers for such a release, we

consider the scenario in which the social network owner would like to protect the privacy of its

business by keeping the entire structure of the graph hidden from any one entity while providing

utility to its users by giving them partial access to the link structure of the graph. This distinction

of whose privacy we are trying to protect - the social network owner’s rather than the users’, is also

the reason that in this chapter we do not utilize the definition of di↵erential privacy.

There has been considerable theoretical work in modeling the structure and evolution of the web

graph and social networks, some of which we utilize in our theoretical analysis. In [20] and [116]

the preferential attachment model and the copying model are introduced as generative models for

the web graph. Many variations and extensions of these models have been proposed, such as [29]
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and [37]. It has been observed that social networks are subject to the small-world phenomenon [104]

and models such as [189] have been proposed to account for it. The model of [120] aims to account

for all of the commonly found patters in graphs. The common theme in this research is a search for

a random process that models how users establish links to one another. The various models succeed

to di↵ering extents in explaining certain properties of the web graph and social networks observed

in practice.

In the attack strategies that we consider, the e↵ectiveness of the strategies is likely to depend on

the underlying social graph and the degree distribution of its nodes, which is commonly known to be

close to power law [41, 188]. In our theoretical analysis of the e↵ectiveness of an attack, we use the

configuration model of [24] and [6] that guarantees a power law distribution. Unlike the evolutionary

models such as preferential attachment, this model does not consider the process by which a network

comes to have a power law degree sequence; rather, it takes the power law degree distribution as a

given and generates a random graph whose degree distribution follows such a power law (specifics

of graph generation according to this model are described in Section 6.3.1.1). We could also use the

preferential attachment or copying models for analysis, but a static model such as [24] or [6] su�ces

for our purpose and allows for simpler analysis.

6.2 Preliminaries and the Formal Problem Model

We now describe the problem statement formally. We first define the primary goal of the privacy

attack considered and a measure of the extent to which an adversary achieves this goal (Section 6.2.1);

then discuss the knowledge of social networks available to users, and thus adversaries (Section 6.2.2);

finally, we list possible attack strategies (Section 6.2.3).

We view a social network as an undirected graph G = (V,E), where the nodes V are the users

and the edges E represent connections or interactions between users. Even though some online

social networks, such as LiveJournal, allow one-directional links, many others, and especially those

where the link information is sensitive and subject to privacy considerations, such as LinkedIn and

Facebook, require mutual friendship. In those networks links between users are naturally modeled

as undirected edges, and thus we focus on undirected graphs in our discussion and analysis.
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6.2.1 Attack Goal and E↵ectiveness Measure

We consider privacy attacks whose primary goal is to discover the link structure of the network.

Knowledge of the entire network is superior to knowledge of connections of a subset of individual

users because it allows seamless application of commonly used graph mining algorithms, such as

computation of the shortest path between two people, clustering, or study of di↵usion processes.

We measure an attack’s e↵ectiveness using the notion of node coverage, or simply coverage, which

measures the amount of network graph structure exposed to the attacker.

Definition 10 (Node Coverage). The fraction of nodes whose entire immediate neighborhood is

known.

One may also consider measuring an attack’s e↵ectiveness using a notion of edge coverage, defined

in one of the following ways:

1. The fraction of edges known to the attacker among all edges that exist in the graph. This notion

of edge coverage does not account for the attacker’s knowledge about non-existing edges, and,

therefore, is not a comprehensive view of an attacker’s knowledge.

2. Among all pairs of users, the fraction of pairs between which the attacker knows whether or

not an edge exists.

As will become clear in the following sections, our definition of node coverage is more sensible

for the attack strategies we consider and implies the knowledge of edge coverage under this

definition. Thus, throughout the chapter we will use node coverage as the primary measure of

an attack’s e↵ectiveness.

6.2.2 The Network through a User’s Lens

An online social network has the flexibility to choose the extent to which links in the network are

made visible to its users through the service’s interface, and this choice may depend both on how

sensitive the links themselves are and on how protective the service is about the links being obtained

by other entities. For example, LinkedIn allows a user to see all edges incident to oneself, as well as

all edges incident to one’s friends. We formalize such choices in the social network’s interface using

the notion of lookahead that, intuitively, measures the distance in the graph that is visible to a user

beyond his own connections. We say that the social network has lookahead of 0 if a user can see

exactly who he links to; it has lookahead 1 if a user can see exactly the friends that he links to as

well as the friends that his friends link to; and so on. In general,
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Definition 11 (Lookahead). We say that the social network has lookahead ` if a user can see all

of the edges incident to the nodes within distance ` from him.

Using this definition, LinkedIn has lookahead 1. In terms of node coverage, a lookahead of `

means that each node covers all nodes within distance ` from it; nodes at distance ` + 1 are seen

(i.e., their existence is known to the user), but not covered (i.e., their connections are not known to

the user).

There are other variations on the type of access that a user can have to the social graph structure.

For example, some networks allow a user to see the shortest path between himself and any other

user, some display the path only if it is relatively short, some only display the length of the shortest

path, and others let the user see the common friends he has with any other user. For simplicity, we

do not incorporate these additional options into our model, but observe that the presence of any of

them reduces the di�culty of discovering the entire link structure, thereby strengthening our results.

In addition to the connection information, a typical online social network also provides a search

interface, where people can search for users by username, name or other identifying information

such as email or school or company a�liation. The search interface returns usernames of all users

who satisfy the query, often with the numbers of friends of those users, i.e., the degrees of the nodes

corresponding to those users in the social network graph, G. LinkedIn is an example of a social

network that allows such queries and provides degree information.

We formalize the most common aspects of social network interfaces that may be leveraged by

attackers to target specific user accounts using the following functions:

• neighbors(username, password, `): Given a username with proper authentication information,

return all users within distance ` and all edges incident to those users in the graph G;

• exists(username): Given a username, return whether the user exists in the network;

• degree(username): Given a username, return the degree (number of friends) of the user with

that username. Note that degree(username) implies exists(username);

• userlist(): Return a list of all usernames in the network.

In the above, only neighbors() requires authentication information, all other functions are publicly

available. A social network might expose some or all of these functions to its users. For example,

LinkedIn provides neighbors(username, password, `) for ` = 0 or 1, but not for ` > 1; it also

provides exists(username) and degree(username). Most social networks do not expose userlist()
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directly; however, an attacker may be able to generate a near complete user list through other

functionalities provided by the network such as fuzzy name search or public profiles.

A particular network may expose only a subset of the above functions and even if all functions

are available, their costs may vary greatly. Therefore, when we discuss attack strategies in the next

section we list the functions required by each strategy, and when we evaluate and compare strategies

there is a trade-o↵ between the e↵ectiveness of an attack and the complexity of the available interface

it requires.

6.2.3 Possible Attack Strategies

We say that a node is covered, if and only if the attacker knows precisely which nodes it is connected

to and which nodes it is not connected to. We call the users whose accounts the attacker had gained

access to bribed users. Thus, each time the attacker gains access to or bribes a user account, he

immediately covers all nodes that are at a distance of no more than the lookahead ` enabled by the

social network.

In order to understand the privacy/utility trade-o↵s when choosing the lookahead, we need to

study not only how an attack’s success or attained node coverage varies depending on lookahead,

but also how it varies based on the power of the attacker to select nodes to bribe. We now list the

strategies an attacker can use for bribing nodes in decreasing order of information needed for the

attacker to be able to implement them, and study the success of attacks following these strategies

for various settings of the lookahead both experimentally and theoretically in Sections 6.3 and 6.4.

Benchmark-Greedy: From among all users in the social network, pick the next user to bribe as

the one whose perspective on the network will give the largest possible amount of new information.

More formally, at each step the attacker picks the node covering the maximum number of nodes

not yet covered. For `  1 this can be implemented if the attacker can access the degrees of all

users in the network. However, for ` > 1 it requires that for each node the attacker has access to all

usernames covered by that node, which is not a primitive that we consider available to the attacker.

Thus this strategy serves as a benchmark rather than as an example of a feasible attack – it is the

optimal bribing algorithm that is computationally feasible when given access to the entire graph G.

Note that by reduction to set cover, finding the optimal bribing set for a given G is NP-hard, thus the

best polynomial-time (computationally feasible) approximation algorithm is the greedy algorithm

described.

Requires: G;
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Heuristically Greedy: Pick the next user to bribe as the one who can o↵er the largest possible

amount of new information, according to some heuristic measure. The heuristic measure is chosen

so that the attacker does not need to know G to evaluate it. In particular, we consider the following

strategy:

• Degree-Greedy: Pick the next user to bribe as the one with the maximum “unseen” degree,

i.e., its degree according to the degree(username) function minus the number of edges incident

to it already known by the adversary.

Requires: neighbors(username, password, `), degree(username), userlist();

Highest-Degree: Bribe users in the descending order of their degrees.

Requires: neighbors(username, password, `), degree(username), userlist();

Random: Pick the users to bribe at random. Variations could include picking the users uni-

formly at random, with probability proportional to their degrees, and so on. In particular, we study

one strategy in this category:

• Uniform-Random: Pick the users to bribe uniformly at random.

Requires: neighbors(username, password, `), userlist();

Crawler: This strategy is similar to the Heuristically Greedy strategy, but the attacker chooses

the next node to bribe only from the nodes already seen (within distance `+1 of some bribed node).

We consider one such strategy:

• Degree-Greedy-Crawler: From among all users already seen, pick the next user to bribe as

the one with the maximum unseen degree.

Requires: neighbors(username, password, `), degree(username);

Note that the Degree-Greedy-Crawler and Uniform-Random strategies are very easily

implementable in practice on most social networks, since they do not require any knowledge of

nodes that are not within the neighborhood visible to the attacker.

6.3 Experiment-based Analysis

We present experimental results from the application of the strategies from Section 6.2.3 to both

synthetic and real world social network data. At a high level, our experiments explore the fraction,

f , of nodes that need to be bribed by an attacker using the di↵erent bribing strategies in order to
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achieve 1 � " node coverage of a social network with lookahead `. Our experimental results show

that the fraction of users an attacker needs to bribe in order to acquire a fixed coverage decreases

exponentially with increase in lookahead. In addition, this fraction corresponds to a fairly small

number of users from the perspective of practical attack implementation, indicating that several of

the attack strategies from Section 6.2.3 are feasible to implement in practice and will achieve good

results, especially for lookaheads � 2.

We implemented and evaluated the following five strategies, ordered in the decreasing order of

complexity of the social network interface needed for them to become feasible: Benchmark-Greedy

(abbreviated as Benchmark); Degree-Greedy (abbrev. as Greedy); Highest-Degree (abbrev.

as Highest); Uniform-Random (abbrev. as Random); Degree-Greedy-Crawler (abbrev. as

Crawler).

6.3.1 Results on Synthetic Data

6.3.1.1 Generating Synthetic Graphs

In order to measure the e↵ectiveness of the di↵erent attack strategies, we generate random graphs

with power-law degree distributions and apply our strategies to them. Following the motivation of

Section 6.1, we use the configuration model of [6] to generate the graphs. The model essentially

generates a graph that satisfies a given degree distribution, picking uniformly at random from all

such graphs.

More specifically, let n be the total number of nodes in G, ↵ (2 < ↵  3, [35]) be the

power law parameter; and d
min

and d
max

be the minimum and maximum degree of any node in the

graph, respectively. First, we generate the degrees of all the nodes d(vi), i = 1, . . . , n independently

according to the distribution Pr[d(vi) = x] = C/x↵, d
min

 x  d
max

, where C is the normalizing

constant. Second, we consider D =
P

d(vi) minivertices which correspond to the original vertices

in a natural way and generate a random matching over D. Finally, for each edge in the matching,

we construct an edge between corresponding vertices in the original graph. As a result, we obtain a

random graph with a given power-law degree distribution. The graph is connected almost surely [64].

The graph has a few multi-edges and self-loops that we remove in our experiments, without a↵ecting

the power law degree distribution.

Furthermore, following the practice of [137], we cap d
max

, the maximum number of connections

that a user may have, at
p
n, reflecting the fact that in a large enough social network, a single

person, even a very social one, cannot know a constant fraction of all users.
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We denote the fraction of nodes bribed by f , the number of nodes bribed by k = fn, and the

coverage achieved by 1� " = number of nodes covered
n .

6.3.1.2 Comparison of Strategies

We analyze the relative performance of five of the strategies proposed in Section 6.2.3 on random

power-law graphs with n = 100, 000 nodes, ↵ = 3, and d
min

= 5. We run each strategy on 10

power-law graphs generated as described in Section 6.3.1.1, with the aim of achieving coverage of

0.5 through 0.99. For each strategy, we average across the experimental runs the fraction of nodes

that need to be bribed with that strategy in order to achieve the desired coverage. This gives us f

as a function of 1� " for each strategy. We present the results for lookaheads 1 and 2 in Figure 6.1.

The experimental results show that Benchmark has the best performance, i.e., to achieve a

fixed coverage of 1� ", Benchmark needs to bribe fewer nodes than any other strategy. However,

as mentioned previously, Benchmark is not feasible to implement in practice because it requires

knowledge of the entire graph structure, and so it can only serve as a benchmark upper bound on

how good any given strategy can be.

Some of the other observations we make are that Highest and Benchmark perform almost

equally well when the desired coverage is less than 90%. However, the performance of Highest

deteriorates as the lookahead increases and desired coverage increases.

Somewhat surprisingly, we find that Greedy performs worse than Highest while Greedy and

Crawler perform equally well. Not surprisingly, Random performs the worst out of all the strate-

gies.

We choose the following three strategies to analyze in more detail and show that they can pose

serious threats to link privacy: Highest and Crawler as a measure of performance of somewhat

sophisticated yet still implementable strategies; and Random as the most easily implementable

attack strategy that can serve as a lower bound on how well other strategies can work.

6.3.1.3 Dependence on the Number of Users

We analyze how performance of a bribing strategy changes with an increase in the number of nodes

in the graph. We observe that the number of nodes k that need to be bribed using the Highest

strategy in order to achieve a fixed coverage of 1� " is linear in the size of the network, for various

values of ". We illustrate it in Figure 6.2 for lookahead of 2. Since Highest has the best performance

among all the suggested realistically implementable strategies, this implies that k is linear in n for
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Figure 6.1: Comparison of attack strategies on synthetic data. Fraction of nodes that needs
to be bribed depending on the coverage desired and bribing strategy used, for lookaheads 1 and 2.
n = 100, 000, ↵ = 3, and d

min

= 5. The lines for Crawler and Greedy are nearly identical and
hence hardly distinguishable.
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other strategies as well. However, it is worth observing that the slope of the linear function is very

small, for all " not very close to 1. As discussed in the next section, this makes all of the strategies

a realistic threat at lookaheads greater than 1.
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Figure 6.2: Number of nodes that need to be bribed for graphs of size n using Highest
with lookahead 2 for coverage 0.8, 0.9, 0.99.

6.3.1.4 Dependence on Lookahead

The performance of all strategies substantially improves with increase in lookahead. Consider, for

example, the performance of the Highest strategy, plotted in Figure 6.3 (a), and also detailed in

Table 6.1.

1-" f
1

/f
2

f
2

/f
3

0.7 112.3 39.3
0.8 105.0 49.1
0.9 88.6 65.1
0.95 73.1 79.0
0.99 46.6 101.7

Table 6.1: Factors of improvement in performance of Highest strategy with increases in lookahead.
fi - fraction of nodes that needs to be bribed to achieve 1� " coverage when lookahead is i.

With each increase in lookahead, the number of nodes k that need to be bribed in order to

achieve the same 1 � " coverage decreases by two orders of magnitude. In an 800, 000-user social
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Figure 6.3: E↵ect of lookahead on attack di�culty on synthetic data. The number of nodes
needed to bribe to achieve 1 � " coverage with various lookaheads, using Highest and Crawler
strategies, respectively. The y axis is log scale.
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network, Highest needs to bribe 36, 614 users in order to achieve a 0.8 coverage in a network with

lookahead 1, but in the network of the same size with lookahead 2 Highest needs to bribe 348 users

to achieve the same coverage, and only 7 users, if the lookahead is 3. In other words, the fraction

of nodes that need to be bribed to achieve fixed coverage decreases exponentially in the lookahead,

making the Highest strategy attack a feasible threat at lookahead 2 in social networks with under

1 million users, and a feasible threat at lookahead 3 in social networks with as many as 100 million

users.

We observe a similar exponential decrease with increase in lookahead in the number of nodes

that need to be bribed for Crawler (Figure 6.3 (b)) and for Random (Figure 6.3 (c)).

6.3.2 Results on Real Data

As we felt that attacking accounts of LinkedIn users with a goal of recovering the network’s structure

would be inappropriate as a research exercise, we used the LiveJournal friendship graph, whose link

structure is readily available, instead as a proxy. We crawled LiveJournal using the friends and

friend-of listings to establish connections between users and extracted a connected component of

572, 949 users.

The obtained LiveJournal graph has an average degree of 11.8, d
min

= 1, d
max

= 1974,↵ = 2.6.

The obtained d
max

is higher than the one assumed by our synthetic model, but the LiveJournal

graph contained only 12 nodes with degrees higher than
p
572, 949.

6.3.2.1 Comparison of Strategies

Analogous to our discussion in Section 6.3.1.2 we compare the performance of the di↵erent bribing

strategies on the LiveJournal graph at lookaheads of 1 and 2 in Figures 6.4 (a) and (b). The relative

performance of the di↵erent strategies is the same as on the synthetic data, with the exception of

Highest performing worse than Crawler and Greedy at lookahead 1. The Crawler and Greedy

strategies also perform better on real data than on the synthetic data. Our intuition is that these

di↵erences are due to the disparities between properties of the graphs generated using the theoretical

model and the real social network. The real social network graphs tend to contain a larger number

of triangles than the graphs generated using the theoretical model (i.e., in practice, conditioned on

edges (a, b) and (b, c), the edge (a, c) is more likely than random [189]), with this local property

likely leading to the Crawler and Greedy strategies being more e↵ective.
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Figure 6.4: Comparison of attack strategies on LiveJournal data. Fraction of nodes that
needs to be bribed depending on the coverage desired and bribing strategy used, for lookaheads 1
and 2. The lines for Crawler and Greedy are nearly identical.
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6.3.2.2 Dependence on Lookahead

Furthermore, as on the synthetic data, the number of nodes that need to be bribed in order to

achieve fixed coverage of LiveJournal decreases exponentially with an increase in lookahead (see

Figure 6.5).
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Figure 6.5: E↵ect of lookahead on attack di�culty on LiveJournal data. The number

of nodes needed to bribe to achieve 1 � " coverage with various lookaheads, using Highest and

Crawler strategies, respectively. The y axis is log scale.

These experiments also confirm our hypothesis that while none of the strategies are a truly feasible

threat at lookahead 1, some of them become feasible at lookahead 2, and all of them become feasible
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at lookahead 3. For example, in order to obtain 80% coverage of the 572, 949-user LiveJournal

graph using lookahead 2 Highest needs to bribe 6, 308 users, and to obtain the same coverage using

lookahead 3 Highest needs to bribe 36 users – a number of users that is su�ciently small given the

size of the network, and thus, feasible to bribe in practice.

6.4 Theoretical Analysis for Random Power Law Graphs

In this section we provide a theoretical analysis of the performance of two of the bribing strategies

from Section 6.2: Uniform-Random and Highest-Degree. We analyze the fraction of nodes an

attacker needs to bribe to reach a constant node coverage with high probability for a power law

social network graph drawn from the configuration model described in Section 6.3.1.1. We carry

out the analysis for power law graphs; for configuration models with other degree distributions, our

analysis technique still applies, but the result depends on the specific degree distribution.

We use the same notation as in Section 6.3: n is the number of nodes in the network; m

is the number of edges; d
min

is the minimum degree of a node; d
max

is the maximum degree;

2 < ↵  3 is the power law parameter; C is the normalizing constant for the degree distribution so

that
Pd

max

d=d
min

Cd�↵ = 1; the target node coverage is 1 � "; k is the number of bribed nodes, and

f = k
n is the fraction of the total number of nodes that are bribed.

6.4.1 Analysis of Lookahead ` = 1

We first answer a simpler question: if in each trial the attacker covers a node randomly with

probability proportional to its degree (all trials being independent), after how many trials will the

attacker have covered (1�")n distinct nodes? Once we have the analysis for randomly covered nodes,

we refine it and take into account the e↵ect of the bribing strategy being used on the probabilities

of nodes being covered.

6.4.1.1 Analysis of Covering Proportional to Node Degree

If all nodes had an equal probability of being covered, the question would reduce to occupancy

and coupon collector problems [142]. Schelling [186] studied an instance of the weighted coupon

collector problem in which the probability of sampling each coupon is explicitly given. However, in

our problem, not only do we need to consider the weighted random choices of coupon collection, but

also the random realization of the graph.
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Lemma 11. Suppose in each trial we cover a node randomly with probability proportional to its

degree, independently of previous trials. Then for "
0

< 1, after � ln "
0

d
min

2m trials, with high probability,

the number of distinct nodes covered is at least n(1�"�o(1)), where " =
Pd

max

d=d
min

"

�
1�o(1)

�
d

d

min

0

Cd�↵.

Proof of Lemma 11. We prove the lemma by calculating the expected number of trials that result in

covering nodes of degree i for each d
min

 i  d
max

, and then applying the result of the Occupancy

problem (Section 6.6) to determining expected number of distinct nodes of degree i covered in those

trials. Since both quantities are sharply concentrated around their expectation, the result will hold

with high probability.

We first compute the expected number of trials covering nodes of degree i if the total number of

trials is � ln "
0

d
min

2m.

Denote by ci the fraction of nodes in the graph of degree i. Since we cover nodes with probability

proportional to their degree, the probability that a node of degree i is covered in a particular trial is

ic
i

n
2m (recall that 2m is the total sum of degrees of nodes in the graph). Hence, out of � ln "

0

d
min

2m the

expected number of trials covering nodes of degree i is � ln "
0

d
min

2m ⇤ ic
i

n
2m = � i

d
min

cin ln "
0

. Moreover,

by Cherno↵ bound [142], there are at least �(1� o(1)) i
d
min

cin ln "
0

such trials with high probability.

Observe that if the the trial is covering a node of degree i, all nodes with degree i have an equal

probability of being covered in that trial. Thus if we want to compute the expected number of

distinct nodes of degree i that are covered, we have a classic occupancy problem with the number

of balls being constrained to those �(1� o(1)) i
d
min

cin ln "
0

trials covering nodes of degree i and the

number of bins being cin. Therefore, using Lemma 12 (Section 6.6), the expected number of distinct

nodes of degree i covered is at least

cin

✓
1� exp

�
�
�(1� o(1)) i

d
min

cin ln "
0

cin

�◆
=

✓
1� "

�
1�o(1)

�
i

d

min

0

◆
cin

and by sharp concentration, the number of such nodes is at least

✓
1� "

�
1�o(1)

�
i

d

min

0

�o(1)

◆
cin with

high probability.

In total, after � ln "
0

d
min

2m trials, the number of nodes that is not covered is at most

X

d
min

id
max

,

�
"

�
1�o(1)

�
i

d

min

0

+ o(1)
�
cin =

X

i

�
"

�
1�o(1)

�
i

d

min

0

�
cin+ o(n).

In the power law random graph model, ci = Ci�↵ + o(1) with high probability, therefore, the

number of nodes that is not covered is at most
P

i

�
"

�
1�o(1)

�
i

d

min

0

�
Ci�↵n + o(n), i.e., we cover at
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least n(1� "� o(1)) distinct nodes with high probability, as desired.

In total, with high probability we miss at most
P

d
i

cin"
d
i

/d
min

0

+o(n) nodes after � ln "
0

d
min

2m trials.

In the power law random graph model, ci = Cd�↵
i + o(1) with high probability, therefore, we miss

at most
Pp

n
d=d

min

Cd�↵n"
d/d

min

0

+ o(n), i.e., we collect at least n(1� "� o(1)) nodes. ⇤
It is easy to see that " is always smaller than "

0

. Table 6.2 gives some asymptotic values of " for

chosen values of "
0

; for example, when ↵ = 3 and d
min

= 5, " = 0.4 gives "
0

= 0.534.

6.4.1.2 E↵ect of Bribing Strategy on Coverage

We now compute the number of nodes an attacker needs to bribe when lookahead = 1, in order to

obtain the coverage of 1 � " of the graph, depending on the bribing strategy used by the attacker.

Recall that when lookahead is 1, the attacker covers a node only if it is a direct neighbor of a bribed

node. Thus, it is not surprising that when ` = 1, the power of the bribing strategy is correlated with

the sum of degrees of nodes bribed by the strategy.

Theorem 8. Suppose distinct nodes b
1

, b
2

, . . . , bk selected using an arbitrary strategy are bribed.

Denote the sum of their degrees by D =
Pk

i=1

d(bi). If lookahead = 1, and D = � ln "
0

d
min

2m for

some "
0

< 1, then the node coverage attained is at least 1 � " � o(1) with high probability, where

" =
Pd

max

d=d
min

"

�
1�o(1)

�
d

d

min

0

Cd�↵.

Proof. Pick a node b to bribe using any strategy. Consider one edge of the bribed node, the other

endpoint of the edge can be any node and the probability of it being a particular node v is d(v)/2m

if we randomize over all graphs with the given degree sequence using the Principle of Deferred

Decisions [142]. Therefore, if we bribe a node with degree d and cover all its neighbors, it is

equivalent to having made d trials covering nodes with probability proportional to their degree, as

in the setup of Lemma 11. And if we bribe distinct nodes b
1

, b
2

, . . . , bk and cover all their neighbors,

it is equivalent to having made D =
Pk

i=1

d(bi) such trials.

Moreover, in the set-up of bribing nodes, not every trial covers a node v with probability pro-

portional to its degree: if v was already covered in a previous trial, the probability of covering

it again decreases, whereas if it was not covered in a previous trial, the probability of covering it

increases with each new trial. Therefore, the expected number of distinct nodes covered according

to Lemma 11 is a lower bound on the actual number of distinct nodes covered, which completes the

proof.
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Theorem 8 establishes the connection between the total degree of bribed nodes (regardless of

the strategy for choosing nodes to bribe) and the attained node coverage. In order to complete the

analysis of particular bribing strategies it remains to analyze the total degree of k nodes bribed by

that strategy.

We first analyze the strategy of bribing nodes uniformly at random without replacement.

Corollary 2. If an attacker bribes � ln "
0

d
min

n nodes picked according to the Uniform-Random

strategy, then he covers at least n(1� "� o(1)) nodes with high probability, where

" =
Pd

max

d=d
min

"

�
1�o(1)

�
d

d

min

0

Cd�↵.

Proof. In any graph, a node chosen uniformly at random has expected degree d̄ = 2m/n, and bribing

k nodes yields expected total degreeD = 2mk/n. Plugging this expected total degree into Theorem 8

we obtain the corollary.

Next we analyze the Highest-Degree strategy.

Corollary 3. If an attacker bribes

✓
� ln "

0

d
min

+ 1

(

d

max

d

min

)

↵�2�1

◆↵�1

↵�2

n nodes picked according to the

Highest-Degree strategy, then he covers at least n(1� "� o(1)) nodes with high probability, where

" =
Pd

max

d=d
min

"

�
1�o(1)

�
d

d

min

0

Cd�↵, provided that 2 < ↵  3 and d
max

> d
min

.

Proof. To apply Theorem 8, we compute the expected total degree of the nodes with degree d and

higher. Denote the number of such nodes by k. In our calculations, we focus on the expectations,

observing that when n is large and k = ⇥(n), the actual values are tightly concentrated around

expectations. Then, in the power law random graph model, the constant C is chosen in such a way

that the total number of nodes is n:
Pd

max

x=d
min

Cx�↵n = n, and the expected number of nodes of

degree d and higher is k:
Pd

max

x=d Cx�↵n = k.

When n is large, we can use integration to approximate the sum, and thus get the following

system of equations:8
><

>:

R d
max

x=d
min

Cx�↵dx = 1

R d
max

x=d
Cx�↵dx = k

n

8
><

>:

C
1�↵x

1�↵|dmax

x=d
min

= 1

C
1�↵x

1�↵|dmax

x=d = k
n

8
><

>:

C = 1�↵
d1�↵

max

�d1�↵

min

= ↵�1

d1�↵

min

�d1�↵

max

d1�↵
max

� d1�↵ = k(1�↵)
nC =

k(d1�↵

max

�d1�↵

min

)

n

Suppose d
max

� td
min

for some t � 1. Then d1�↵ = d1�↵
max

� k(d1�↵

max

�d1�↵

min

)

n = k
nd

1�↵
min

+(1� k
n )d

1�↵
max

�
k
nd

1�↵
min

� k
nd

1�↵
max

� k
n

�
d1�↵
min

� (td
min

)1�↵
�
= k

nd
1�↵
min

(1� t1�↵), from which it follows that for ↵ � 2:

d2�↵ � (
k

n
)

2�↵

1�↵ d2�↵
min

(1� t1�↵)
2�↵

1�↵ (6.1)
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The sum of degree of all nodes is:
Pd

max

x=d
min

Cx�↵nx ⇡
R d

max

x=d
min

Cx1�↵ndx = nC
2�↵x

2�↵|dmax

d
min

= nC
2�↵ (d

2�↵
max

� d2�↵
min

) = 2m

The sum of degrees of the k nodes whose degree is at least d is:

D =
Pd

max

x=d Cx�↵nx ⇡
R d

max

x=d
Cx1�↵ndx = nC

2�↵x
2�↵|dmax

d = nC
2�↵ (d

2�↵
max

� d2�↵). Combining with the

previous equation regarding the sum of all degrees we have: D
2m ⇡

d2�↵

max

�d2�↵

d2�↵

max

�d2�↵

min

= d2�↵�d2�↵

max

d2�↵

min

�d2�↵

max

. Using

inequality (6.1), we obtain:

D
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By choice of t, we have d2�↵
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d2�↵

min

�d2�↵

max

 d2�↵

max

(

d

max

t

)

2�↵�d2�↵

max

= 1

t↵�2�1

. Hence,

D
2m � ( kn )

2�↵

1�↵ (1 � t1�↵)
2�↵

1�↵ � 1�(

k

n

)

2�↵

1�↵

(1�t1�↵

)

2�↵

1�↵
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1�↵
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(1� t1�↵)

2�↵

1�↵ + (1�t1�↵
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2�↵

1�↵
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�
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. Using Lemma 13 (Section 6.6) we obtain:

D
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� (
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↵�2
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k

n
)

↵�2
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Therefore, bribing

✓
� ln "

0

d
min

+ 1

(

d

max

d

min

)

↵�2�1

◆↵�1

↵�2

n nodes according to the Highest-Degree strat-

egy su�ces to obtain n(1� "� o(1)) nodes with high probability,

Corollaries 2 and 3 only give lower bounds on the attained node coverage, but our simulation

results in Section 6.4.1.3 indicate that the analysis is fairly tight.

From the corollaries, it is clear that when ` = 1, in order to cover a certain fraction of the nodes,

an attacker needs to bribe much fewer nodes when using the Highest-Degree bribing strategy

than when using the Uniform-Random bribing strategy. For example, when ↵ = 3, if an attacker

bribes an f fraction of the nodes with the Uniform-Random strategy, then he only needs to bribe

an ⇡ f2 fraction of the nodes using the Highest-Degree strategy to attain the same coverage.

Moreover, the smaller the powerlaw parameter ↵ of the network, the fewer nodes need to be bribed

using the Highest-Degree strategy to attain the same coverage. On the other hand, the bad news

for an attacker targeting a social network that provides only lookahead of ` = 1 is that even if he

has the power to choose the highest degree nodes for an attack, a linear number of nodes will need

to be bribed in order to cover a constant fraction of the whole graph (since the number of nodes

needed to bribe is linear in n in both Corollaries). Hence, lookahead ` = 1 is fairly protective of
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privacy.

6.4.1.3 Validating Theoretical Analysis With Simulation

We validate our theoretical estimates of Section 6.4.1 by simulation. Our theoretical analysis shows

that in order to achieve a certain fixed node coverage, the number of nodes needed to bribe is linear

in the total number of nodes in the social network, i.e., f is a constant with varying n. This matches

and confirms our simulation results from Section 6.3.1.3.

Next we check whether the f values predicted by Corollaries 2 and 3 match simulation results

(see Table 6.22). We observe that the f values obtained through simulation are smaller than those

predicted in Corollaries 2 and 3. This is because Theorem 8, on which Corollaries 2 and 3 rely,

gives a lower bound on the number of covered nodes. There are two factors responsible for the

underestimation of the coverage attained in our theoretical analysis: (1) the di↵erent trials cover

uncovered nodes with higher probability; (2) we did not count the bribed nodes as covered. The

second factor responsible for the underestimation is more severe when the number of bribed nodes

is not negligible in comparison to the number of covered nodes, which is especially true in the case

of the Uniform-Random strategy. We can remedy this by taking into consideration the bribed

nodes and refining our analysis. Using the same parameters as in Table 6.2, for " = 0.4, 0.2, 0.1, the

refined predicted fs for the Uniform-Random bribing strategy are 0.110, 0.204, 0.305 respectively,

which are closer to the simulation results, indicating that our theoretical analysis is fairly tight.

Uniform-Random Highest-Degree
" "

0

fp fs fp fs
0.4 0.534 0.125 0.103 0.016 0.015
0.2 0.309 0.235 0.183 0.055 0.045
0.1 0.173 0.350 0.259 0.123 0.090

Table 6.2: Theoretical estimates vs simulation results. We compute f for varying " for
two bribing strategies. fp is the estimate of the fraction of nodes needed to bribe according to
Corollaries 2 and 3. fs is the fraction needed to bribe obtained experimentally through simulation.
We use ↵ = 3 and d

min

= 5.

6.4.2 Heuristic Analysis of Lookahead ` > 1

Performing an exact analysis of performance of bribing strategies when lookahead ` > 1 is chal-

lenging, so we perform a heuristic analysis in order to understand the influence of an increase in

2We omit the 1

(

d

max

d

min

)

↵�2�1

term of Corollary 3 in our computation as it is negligible when n ! 1, d
max

>> d
min

.
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lookahead on the number of nodes needed to bribe at least directionally. In practice, the trade-o↵

can be made more precise by running simulations measuring performance of strategies on the social

network graph that the social network owner wishes to protect, depending on lookahead ` and the

strategy used.

Our heuristic analysis shows that in order for the attacker to get (1 � ") coverage using the

Uniform-Random strategy, the fraction of nodes f that the attacker needs to bribe is ⇡ � ln "
0

d
min

b`�1

,

where " and "
0

satisfy the equation in Lemma 11 and b = ⇥
�
ln(d

max

)
�
. When using the Highest-

Degree strategy, the fraction of nodes the attacker needs to bribe is ⇡
� � ln "

0

d
min

b`�1

�↵�1

↵�2 . Details of

the analysis that leads to these estimates can be found in Section 6.4.2.1.

The heuristic analysis shows that the fraction of nodes needed to bribe in order to achieve

constant coverage decreases exponentially with increase in lookahead `. For example, when lookahead

` = ⇥( lnn
ln ln d

max

), bribing a constant number of nodes is su�cient to attain coverage of almost the

entire graph, making link privacy attacks on social networks with lookahead ` > 1 truly feasible.

6.4.2.1 Details of Heuristic Analysis of Lookahead ` > 1

Denote by B the set of bribed nodes; by Ni(B) the set of nodes whose shortest distance to B

is exactly i. Our goal is to estimate the number of covered nodes given the bribed nodes when

lookahead is `, which is equivalent to the number of nodes within distance  ` from B, denoted by

D`(B) = |
S

0i` Ni(B)|. Then, in order to achieve coverage of (1� "), we need to bribe f = |B|/n

fraction of nodes, where B is such that D`(B) = (1� ")n.

Suppose that for i  `�1, Ni(B) is small enough such that
S

0i`�1

Ni(B) is a forrest rooted at

B, i.e., there are no loops between nodes belonging to Ni(B)s in the network. Under this assumption,

|N`(B)| is much larger than all |Ni(B)|s (i < `), so we can use |N`(B)| as an approximation toD`(B).

To compute |N`(B)|, we first study the expansion rate from Ni to Ni+1

for 1  i  `�2, denoted

by bi = |Ni+1

(B)|/|Ni(B)|. We then apply Lemma 11 to compute |N`(B)| given |N`�1

(B)|, and use

the results of Corollaries 2 and 3 to estimate |N
1

(B)|.

6.4.2.1.1 Estimating bi: Under the no-loop assumption, bi can be estimated as the expected av-

erage degree of nodes in Ni(B) decreased by 1 (in order to exclude the edges coming from Ni�1

(B)).

Note that nodes in Ni(B) are not chosen uniformly at random; rather, they are chosen with proba-

bility proportional to their degrees because of the random realization of the graph. Therefore, the

probability that such a node has degree x is proportional to xCx�↵, and consequently the expected

average degree of these nodes is
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E[davg] =
P
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max
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min

xxCx�a
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d

max
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R
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max
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min

x2�adx
R
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max
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R
d

max
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R

d

max

x=d
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= (2 � ↵) ln(dmax

)�ln(d
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)

d2�↵

max

�d2�↵

min
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2) ln(dmax

)�ln(d
min
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�d2�↵
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� (↵� 2)d↵�2
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�
ln(d
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)� ln(d
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�
.

Hence, the expansion rate bi = (↵� 2)d↵�2

min

ln(dmax

d
min

)� 1 = ⇥(ln(d
max

)) and it is independent of

i.

6.4.2.1.2 Estimating |N`(B)| : When b|N`�1

(B)| is large, we can no longer use the no-loop

assumption to estimate |N`(B)|. There still are b|N`�1

(B)| edges incident to N`�1

(B) but now

some of these edges may share the same endpoints. In this case, the set-up is the same as in

Lemma 11 and so in order to compute the number of distinct nodes in N`(B) we can apply the

result of Lemma 11, i.e., if b|N`�1

(B)| = � ln "
0

d
min

2m, then |N`(B)| ⇡ n(1� ").

6.4.2.1.3 Estimating |N
1

(B)|: Using Corollary 2 we know that if we bribe k nodes using the

Uniform-Random strategy, then the expected total degree is 2mk/n. Under the no-loop assump-

tion, this implies |N
1

(B)| = 2m|B|/n.

Similarly, using Corollary 3 we know that for Highest-Degree strategy, |N
1

(B)| ⇡ 2m( |B|
n )

↵�2

↵�1 .

6.4.2.1.4 Combining the Estimates to Complete Heuristic Analysis: We now complete

the heuristic analysis of the fraction of nodes that need to be bribed to achieve 1 � " coverage

when lookahead is `. Suppose we bribe a small number |B| nodes, so that
S

0i`�1

Ni(B) is a

forrest, and only for i = ` the nodes start repeating significantly. Then, |N`�1

(B)| ⇡ b`�2|N
1

(B)|.

Moreover, under the forrest assumption, D`(B) ⇡ |N`(B)| and hence to achieve 1 � " coverage we

need |N`�1

(B)| = � ln "
0

bd
min

2m. Combining these approximations we obtain that we need |N
1

(B)| =
� ln "

0

b`�1d
min

2m.

Hence, for Uniform-Random strategy, we need to bribe |B| = � ln "
0

b`�1d
min

n nodes; and for

Highest-Degree strategy, we need to bribe |B| =
� � ln "

0

b`�1d
min

�↵�1

↵�2n nodes.

We have made several crude approximations in this analysis, especially around the assumption

that nodes at distances less than `� 1 from B form a forrest. However, we have mitigated the e↵ect

of this assumption by using |N`| rather than
P`

i=0

|Ni(B)| to estimate D`(B), and by applying the

occupancy problem based estimation for computing N`, based on the largest seed of nodes than

all other Nis. The heuristic analysis illustrates that the inverse exponential dependance between

lookahead ` and the fraction of nodes that need to be bribed to achieve constant coverage. For real-

world applications, the exact dependance can be established experimentally, based on the particular
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network the social network owner wishes to protect, and their assumptions of the attacker’s ability

to choose bribing strategies.

6.5 Summary

In this chapter, we provided a theoretical and experimental analysis of the vulnerability of a social

network to a certain kind of privacy attack, in which an attacker aims to obtain knowledge of a

significant fraction of links belonging to a social network by gaining access to local snapshots of the

graph through accounts of individual users. We described several strategies for carrying out such

attacks, and analyzed their potential for success as a function of the lookahead permitted by the

social network’s interface. We have shown that the number of user accounts that an attacker needs to

subvert in order to obtain a fixed portion of the link structure of the network decreases exponentially

with increase in lookahead chosen by the social network owner. We conclude that social networks

owners interested in protecting their social graphs ought to carefully balance the trade-o↵s between

the social utility o↵ered by a large lookahead and the threat that such a lookahead poses to their

business, and our analysis can serve as a starting point towards evaluating these trade-o↵s.

We showed that as a rule of thumb, the social network owners concerned about protecting their

social graph may want to refrain from permitting lookaheads higher than 2 in their interface. They

may also consider decreasing their vulnerability through other restrictions, such as not displaying

the exact number of connections of each user or by varying the lookahead available to particular

users depending on their trustworthiness.

6.6 Miscellaneous Technical Details

Lemma 12 (Occupancy Problem (Theorem 4.18 in [142])). Let Z be the number of empty bins

when m balls are thrown randomly into n bins. Then E[Z] = n(1� 1

n )
m  n exp(�m

n ) and for � > 0,

Pr[|Z � E[Z]| � �]  2 exp
�
��2

(n�0.5)
n2�E[Z]

2

�
.

Lemma 13. If 2 < a  3 and t > 1 then Z = (1� t1�a)
2�a

1�a + (1�t1�a

)

2�a

1�a

ta�2�1

� 1.

Proof. Z = (1� t1�a)
2�a

1�a + (1�t1�a

)

2�a

1�a

ta�2�1

= (1� t1�a)
2�a

1�a

⇣
1 + 1

ta�2�1

⌘
= (1� t1�a)

2�a

1�a

⇣
ta�2

ta�2�1

⌘
=

⇣
ta�1�1

ta�1

⌘ a�2

a�1

⇣
ta�2

ta�2�1

⌘
= (ta�1�1)

a�2

a�1

ta�2�1

We prove that (ta�1�1)

a�2

(ta�2�1)

a�1

� 1 from which it follows that Z � 1 for the chosen values of a and t.
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Let’s find the extreme values of (ta�1 � 1)a�2 � (ta�2 � 1)a�1 by computing the zeros of the

expression’s derivative.

ln(ta�1 � 1) · (ta�1 � 1)a�2 ln t · ta�1 � ln(ta�2 � 1) · (ta�2 � 1)a�1 ln t · ta�2 = 0

ln t = 0, or t = 0 or ln(ta�1 � 1) · (ta�1 � 1)a�2 · t� ln(ta�2 � 1) · (ta�2 � 1)a�1 = 0

Note that t > ta�2 � 1, and ta�1 � 1 > ta�2 � 1, therefore (ta�1 � 1)a�2 · t � (ta�1 � 1)a�2 ·

(ta�2 � 1) � (ta�2 � 1)a�1 and thus the last equation has no solutions.

Hence, it remains for us to check that (ta�1�1)

a�2

(ta�2�1)

a�1

� 1 for a! 2 and a = 3, which is, indeed, the

case, for t > 1.



Chapter 7

Contributions and Open Questions

In today’s digital online world, massive amounts of data on individual users is amassed on a daily

basis. The growth of this data and the ability of online service providers to mine and share it provides

great opportunities for innovation that can in turn improve user experience. However, finding ways

to support this innovation while protecting individual privacy is a truly multidisciplinary challenge

facing modern society, involving a diverse set of stakeholders with competing interests and sets of

expertise. The role of algorithmic research in this debate is to envision and develop a foundation

for dealing with the challenge and to lead the way in shaping the debate through elucidation of

capabilities, limitations, and quantitative analyses of trade-o↵s.

In this thesis, we have explored examples of privacy violations, proposed privacy-preserving

algorithms, and analyzed the trade-o↵s between utility and privacy when mining and sharing user

data for several concrete problems in search and social networks. We suggested practical algorithms

and provided quantitative and actionable analyses of the trade-o↵s for the problems considered.

From the algorithmic perspective, the main challenge for future work in the field is to remove

the remaining barriers to adoption of approaches satisfying rigorous privacy guarantees, such as

di↵erential privacy, to real-world settings. Open questions for future research include:

• expand the toolkit of privacy-preserving algorithms by building primitives for the core data-

mining operations used today

• where possible, improve the existing algorithms to achieve better utility, and to respect exoge-

nous constraints such as data accuracy or consistency

• make the application of privacy-preserving techniques and privacy/utility trade-o↵ analyses

129



CHAPTER 7. CONTRIBUTIONS AND OPEN QUESTIONS 130

straightforward for people with no special training in privacy, working under tight time-

constraints

• make the algorithms and analyses applicable to a rapidly expanding variety of input data

• make the algorithms useful and practical for scenarios when data-mining and sharing are

happening on a continuous basis

• develop an infrastructure and support for users to exercise an individualized choice on the

privacy risk they are willing to incur when using a service, and ability to adjust the service’s

performance and cost accordingly

• be able to provide justification for the choice of parameter values in the privacy framework.

Beyond the algorithmic advances, if we are to achieve a better balance in the trade-o↵ between

privacy and innovation, progress needs to be made in integrating those into the societal discourse

taking place around issues of privacy. The main challenges are to:

• build a foundation for enabling the discourse to move away from a binary perspective on privacy

(either something is private or it is not) towards a more fine-grained quantifiable gradation of

the extent to which a particular service’s data-sharing and mining practices preserve privacy

• communicate to users the protections o↵ered by parameterized privacy-preserving algorithms

and empower them to make informed decisions about their use of a service based on the privacy

guarantees it provides

• make the benefits and dangers of data-mining and sharing transparent and quantifiable for all

participants of the ecosystem

• find opportunities for integration into legal and regulatory frameworks for measuring risk and

compliance of companies’ data mining and sharing practices with respect to their promises.

Few topics today arouse as much heated discussion as issues of user privacy. As individuals’ online

presence and activities rapidly expand, the question of how we balance innovation and open platforms

with privacy concerns will only grow. There is a great opportunity for algorithmic research not only

to help advance computational solutions for these challenges but also contribute to developing a

more constructive and granular societal discourse around privacy. This thesis focused on making

practical and constructive strides in that direction.
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