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Abstract— We consider a privacy threat to a social network
in which the goal of an attacker is to obtain knowledge of a
significant fraction of the links in the network. We formalize the
typical social network interface and the information about links
that it provides to its users in terms of lookahead. We consider
a particular threat in which an attacker subverts user accounts
to gain information about local neighborhoods in the network
and pieces them together in order to build a global picture. We
analyze, both experimentally and theoretically, the number of
user accounts an attacker would need to subvert for a successful
attack, as a function of his strategy for choosing users whose
accounts to subvert and a function of the lookahead provided
by the network. We conclude that such an attack is feasible in
practice, and thus any social network that wishes to protect the
link privacy of its users should take great care in choosing the
lookahead of its interface, limiting it to 1 or 2, whenever possible.

I. INTRODUCTION

Participation in online social networks is becoming ubiqui-
tous. A major part of the value of participating in an online
social network, such as LinkedIn, or a web-service with an
online community, such as LiveJournal, for a user lies in the
ability to leverage the structure of the social network graph.
However, knowledge of this social graph by parties other than
the service provider opens the door for powerful data mining,
some of which may not be desirable to the users.

The motivation for this paper is networks such as LinkedIn,
where relationships between users may be sensitive to privacy
concerns, and the link information is a valuable asset to the
user and to the network owner. In such networks, a user is
typically permitted only limited access to the link structure.
For example, a LinkedIn user can only see the profiles and
friends lists of his friends and the profiles of friends of friends.

Even though each user is given access only to a small part
of the social network graph, one could imagine a resourceful
adversarial entity trying to stitch together local network infor-
mation of different users in order to gain global information
about the social graph. In this paper we focus on the case
in which an attacker, whose goal is to ascertain a significant
fraction of the links in a network, obtains access to parts of the
network by gaining access to the accounts of some select users.
This is done either maliciously by breaking into user accounts
or by offering each user a payment or service in exchange
for their permission to view their neighborhood of the social
network. We describe both experimental and theoretical results
on the success of such an attack depending on the type of local
neighborhood access permitted by the network owner to each
individual user.

Our work is different from the recent work of [1], [2]
concerned with user privacy in anonymized social network

graph releases. In that setting, a social network owner releases
the underlying graph structure after removing all username
annotations of the nodes. The goal of an attacker is to map
the nodes in this anonymized graph to real world entities. In
contrast, we consider a case where no underlying graph is
released and, in fact, the owner of the network would like to
keep the link structure of the entire graph hidden from any
one individual.

II. THE MODEL

A. Goal of the Attack

We view a social network as an undirected graph � �
������ where the nodes � are the users and the edges �
represent connections or interactions between users. As was
discussed in the Introduction, the primary goal of the privacy
attack is to discover the link structure of the network. We
measure an attack’s effectiveness using the notion of node
coverage, or simply coverage, which measures the amount of
network graph structure exposed to the attacker.

Definition 1 (Node Coverage): The fraction of nodes
whose entire immediate neighborhood is known. We say that
a node is covered, if and only if the attacker knows precisely
which nodes it is connected to and which nodes it is not
connected to.

B. The Network through a User’s Lens

As mentioned in Section I, LinkedIn allows a user to see all
edges incident to oneself, as well as all edges incident to one’s
friends. An online social network could choose the extent to
which links are made visible to its users depending on how
sensitive the links are and we quantify such choices using
lookahead. We say that the social network has lookahead of �
if a user can see exactly who he links to; it has lookahead �
if a user can see exactly the friends that he links to as well
as the friends that his friends link to. In general, we say that
the social network has lookahead � if a user can see all of
the edges incident to the nodes within distance � from him.
Using this definition, LinkedIn has lookahead �. In terms of
node coverage, a lookahead of � means that each node covers
all nodes within distance � from it; nodes at distance � � �
are seen (i.e., their existence is known to the user), but not
covered (i.e., their connections are not known to the user).

There are other variations on the type of access that a user
can have to the social graph structure. For example, some
networks allow a user to see the shortest path between himself
and any other user. We ignore these additional options in our
discussion, while noting that the presence of any of them
simplifies the task of discovering the entire link structure.



In addition to the connection information, a typical online
social network also provides a search interface, where people
can search for users by username, name or other identifying
information such as email and affiliation. The search interface
returns usernames of all users who satisfy the query, often with
the numbers of friends of those users, i.e., the degrees of the
nodes corresponding to those users in the social network graph,
�. LinkedIn is an example of a social network that allows
such queries and provides degree information. We formalize
the various aspects of social network interfaces that may be
leveraged by attackers to target specific user accounts below:

� neighbors(username, password, �): Given a username
with proper authentication information, return all users
within distance � and all edges incident to those users in
the graph �;

� exists(username): Given a username, return whether the
user exists in the network;

� degree(username): Given a username, return the degree
(number of friends) of the user with that username. Note
that degree(username) implies exists(username);

� userlist(): Return a list of all usernames in the network.

A social network might expose some or all of these func-
tions to its users, either explicitly or implicitly. LinkedIn
provides neighbors(username, password, �) for � � � or
�, but not for � � �; it also provides exists(username)
and degree(username). Most social networks do not expose
userlist() directly; however, an attacker may be able to generate
a near complete user list through other functionalities provided
by the network such as fuzzy name search.

C. Possible Attack Strategies

Recall that each time the attacker gains access to a user ac-
count, he immediately covers all nodes that are at distance less
than the lookahead distance � enabled by the social network,
i.e., he learns about all the edges incident to these nodes. Thus
by gaining access to user ��s account, an attacker immediately
covers all nodes within distance � of �. Additionally, he gets to
learn about the existence of (”sees”) all nodes within distance
��� from �� We call the users to whose accounts the attacker
obtains access bribed users.

A natural question that arises is how does an attack’s success
or attained node coverage vary depending on the strategy
followed for picking the users to bribe. We list the strategies
we study in the decreasing order of information needed for the
attacker to be able to implement them and study the success
of attacks following these strategies in Section III and IV.

Greedy: From among all users in the social network, pick
the next user to bribe as the one with the maximum “unseen”
degree, i.e. its degree according to the degree(username)
function minus the number of edges incident to it already
known to the adversary.
Requires: neighbors(username, password, �),
degree(username), userlist();

Highest-Degree: (abbreviated as Highest) Bribe users in
the descending order of their degrees.
Requires: neighbors(username, password, �),
degree(username), userlist();

Random: Pick the users to bribe uniformly at random.
Requires: neighbors(username, pwd, �), userlist();

Crawler: From among all users already seen, pick the next
user to bribe is the one with the maximum unseen degree.
Requires: neighbors(username, pwd, �);

III. EXPERIMENTAL RESULTS

In this section we present experimental results from the
application of the four strategies discussed in Section II-
C to real world social network data. At a high level, our
experiments explore the fraction, � , of nodes that need to be
bribed by an attacker using the different bribing strategies in
order to achieve � � 	 node coverage of a social network
with lookahead �. Our experimental results show that the
number of users an attacker needs to bribe in order to acquire
a fixed coverage decreases exponentially with increase in
lookahead. In addition, this number is also fairly small from
the perspective of practical attack implementation, indicating
that several of the attack strategies from Section II-C are
feasible to implement in practice and will achieve good results.

We felt that bribing LinkedIn users with a goal of recovering
the network’s structure would be inappropriate as a research
exercise, so we used the LiveJournal friendship graph, whose
link structure is readily available, instead as a proxy. We
crawled LiveJournal using the friends and friend-of listings to
establish connections between users and extracted a connected
component of ���� 	
	 users. The obtained LiveJournal graph
has an average degree of ����.

We denote the fraction of nodes bribed by � , and the
coverage achieved by �� 	 � ������ �� ����	 
������

� �

A. Comparison of Strategies

For each strategy proposed in Section II-C, we calculate �
as a function of � � 	 by averaging across multiple runs the
fraction of nodes that need to be bribed using that strategy in
order to achieve the desired coverage of the LiveJournal graph.
The relative performance of the four strategies in a lookahead
� graph is presented in Figure 1.

The Highest-Degree bribing strategy yields the best per-
formance, i.e., to achieve a fixed coverage of �� 	� Highest
needs to bribe fewer nodes than any other strategy. Greedy
and Crawler perform equally well - their ���� 	� curves are
almost overlapping. Not surprisingly, Random performs the
worst out of all the strategies.
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Fig. 1. Comparison of attack strategies on LiveJournal data. We plot the
fraction of bribed nodes against node coverage with lookahead 2. The two
lines for Crawler and Greedy are almost overlapping.



B. Dependence on Lookahead

The performance of all strategies substantially improves
with increase in lookahead. Figure 2 shows that the number of
nodes that need to be bribed in order to achieve fixed coverage
of LiveJournal decreases exponentially with an increase in
lookahead (forming a line in log plot). These experiments
confirm our hypothesis that while none of the strategies are
a truly feasible threat at lookahead �, some of them become
feasible at lookahead �, and all of them become feasible at
lookahead �. For example, in order to obtain ��
 coverage
of the ���� 	
	-user LiveJournal graph using lookahead �
Highest needs to bribe �� ��� users, and to obtain the same
coverage using lookahead � Highest needs to bribe �� users
– a number of users that is sufficiently small given the size of
the network, and feasible to bribe in practice.
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Fig. 2. Effect of lookahead on LiveJournal data. The figures show the
number of nodes needed to bribe to achieve � � � coverage with different
lookaheads using Highest and Crawler respectively. The � axis is log scale.

IV. THEORETICAL ANALYSIS FOR

RANDOM POWER LAW GRAPHS

In order to be able to extrapolate our results experimentally
observed on the LiveJournal graph to a setting with an arbitrary
social network graph, and because the degree distribution of
social networks is commonly considered to be close to power
law ([3], [4]), we performed a theoretical analysis of the
performance of two of the bribing strategies from Section II,
Random and Highest-Degree, on graphs with power law
degree distribution. We use the configuration model in [5],
which generates, uniformly at random, a graph that satisfies a
given degree distribution, for our analysis.

Let 
 be the total number of nodes in �, � �� � � � ��
be the power law parameter, and let 
� and 
��
 be the
minimum and maximum degree of any node in the graph,
respectively. First, we generate the degrees of all the nodes

����� � � �� � � � � 
 independently according to the distribution
���
���� � �� � ����� 
� � � � 
��
� where � is the
normalizing constant. Second, we consider � �

�

����

minivertices which correspond to the original vertices in a
natural way and generate a random matching over �. Finally,
for each edge in the matching, we construct an edge between
corresponding vertices in the original graph. This gives us a
random graph with the given power law degree distribution.
The graph has been shown to be connected almost surely.
Following common practice, we cap 
��
 at

�

.

A. Analysis for Lookahead = 1

Theorem 1: If an attacker bribes � �� ��
��


 nodes picked
according to the Random strategy, then he covers at least

�� � 	 � ����� nodes with high probability, where 	 �
��

�
����

	
����
�

�
��.

Theorem 2: If an attacker bribes �� �� ��
��

�
���

���
 nodes ac-
cording to the Highest-Degree strategy, then he covers at
least 
�� � 	 � ����� nodes with high probability, where
	 �
��

�
����

	
����
�

�
��.
Compare the two strategies: to cover a certain fraction of

the nodes, an attacker needs to bribe much fewer nodes when
using the Highest-Degree bribing strategy than when using
the Random bribing strategy. For example, when � � �, if an
attacker bribes an � fraction of the nodes with the Random
strategy, then he only needs to bribe an �� fraction of the
nodes using the Highest-Degree strategy to attain the same
coverage. On the other hand, the bad news for an attacker
targeting a social network that provides only lookahead of �
is that even if he has the power to choose the highest degree
nodes for an attack, a linear number of nodes will need to be
bribed in order to cover a constant fraction of the graph.

B. Analysis for Lookahead � 1

When lookahead � � �, our heuristic analysis shows
that when � � �, using Random strategy, � needs to be
approximately � �� ��

����
to attain ��	 coverage, where 	 and 	�

satisfy the equation in Theorem 1 and � is of the order ��
;
using Highest-Degree strategy, the attacker needs to bribe
approximately � � �� �� ��

����
�� of users. Our analysis can be

easily extended to any � � � � �.
Our analysis shows that the number of nodes needed to be

bribed to cover a constant fraction of the network decreases
exponentially with increase in lookahead �. For example, with
lookahead � � �� ��
, bribing a constant number of nodes is
sufficient to attain coverage of almost the entire graph, making
the link privacy attacks on social networks with lookahead
greater than one truly feasible.

We generated synthetic data using the above model, and the
simulation results match well with our theoretical analysis (for
both � � � and � � �). This confirms that our analysis is close
to being tight. The detailed analysis can be found in [6].
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