Top-down induction of decision trees: rigorous guarantees and inherent limitations

Guy Blanc, Jane Lange, Li-Yang Tan

Stanford University
This work: Learning decision trees from labeled data
“In experimental and applied machine learning work, it is hard to exaggerate the influence of top-down heuristics for building a decision tree from labeled sample data” - [Kearns and Mansour 96]
Decision trees also intensively studied in TCS

- Query model of computation
- Quantum complexity
- Derandomization
- ...
- Learning theory
 - [Ehrenfeucht-Haussler 89, Goldreich-Levin 89, Kushilevitz-Mansour 92, ... MR02, OS07, GKK08, HKY18, CM19, ...]
Theory vs. practice of learning decision trees: A disconnect

Practical heuristics work “top-down”
ID3, C4.5, CART

Theoretical algorithms work “bottom-up”
[EH89, MR02]

Our results (Part 1):
Rigorous guarantees and inherent limitations

Our results (Part 2):
Theoretical algorithms with improved guarantees
Theory vs. practice of learning decision trees: A disconnect

Practical heuristics work “top-down”
ID3, C4.5, CART

Our results (Part 1):
Rigorous guarantees and inherent limitations

Theoretical algorithms work “bottom-up”
[EH89, MR02]

Our results (Part 2):
Theoretical algorithms with improved guarantees
Top-down induction of decision trees

1) Determine “good” variable to query as root

2) Recurse on both subtrees
Top-down induction of decision trees

1) Determine “good” variable to query as root

2) Recurse on both subtrees

“Good” variable = one that is very “relevant,” “important,” “influential”
Our splitting criterion: Influence

\[\text{Inf}_i(f) := \Pr_{x \sim \{0,1\}^n} [f(x) \neq f(x^{\oplus i})] \]

\[x \text{ with the } i^{th} \text{ bit flipped} \]

Basic and well-studied notion with applications throughout TCS
Our algorithm: TopDown

1) Query the **most influential variable** of \(f \) at the root

2) Recurse on both subtrees

Our results: Provable guarantees and inherent limitations of TopDown
A guarantee for all functions

Theorem: Let f be a size-s decision tree. TopDown builds a tree of size at most $s^{O(\log(s/\epsilon) \log(1/\epsilon))}$ that ϵ-approximates f

A matching lower bound

Theorem: For any s and ϵ, there is a size-s decision tree f such that the size of $\text{TopDown}(f, \epsilon)$ is $s^{\tilde{\Omega}(\log s)}$
A guarantee for monotone functions

Theorem: Let f be a monotone size-s decision tree. TopDown builds a tree of size at most $s^{O(\sqrt{\log s}/\varepsilon)}$ that ε-approximates f.

A near-matching lower bound

Theorem: For any s and ε, there is a monotone size-s decision tree f such that the size of $\text{TopDown}(f, \varepsilon)$ is $s^{\tilde{\Omega}(4/\sqrt{\log s})}$.

A bound of $\text{poly}(s)$ had been conjectured by [FP04].
Algorithmic consequences

- Properly learn decision trees in time $s^{O(\log(s/\varepsilon) \log(1/\varepsilon))}$
 - Runtime compares favorably with best algorithm with provable guarantee [EH89]
 - Downside: requires query access to the function

- For monotone functions, properly learn decision trees in time $s^{O(\sqrt{\log s/\varepsilon})}$ using only random examples
 - For monotone functions, influence = splitting criteria used in practical heuristics (ID3, C4.5, and CART)
 - Provable guarantees on these heuristics for a broad and natural class of data sets
Theory vs. practice of learning decision trees: A disconnect

Practical heuristics work “top-down”
ID3, C4.5, CART

Our results (Part 1):
Rigorous guarantees and inherent limitations

Theoretical algorithms work “bottom-up”
[EH89, MR02]

Our results (Part 2):
Theoretical algorithms with improved guarantees
Improving Ehrenfeucht-Haussler (1989)

Theorem [EH89]: There is a quasi-polynomial time algorithm for properly learning decision trees.

Theorem (Our work): There is a quasi-polynomial time algorithm for properly learning decision trees with \textit{polynomial} memory and sample complexity.
Thank you!

Practical heuristics work “top-down”
ID3, C4.5, CART

Our results (Part 1):
Rigorous guarantees and inherent limitations

Theoretical algorithms work “bottom-up”
[EH89, MR02]

Our results (Part 2):
Theoretical algorithms with improved guarantees