Decision tree heuristics can fail, even in the smoothed setting

Guy Blanc
Stanford

Jane Lange
MIT

Mingda Qiao
Stanford

Li-Yang Tan
Stanford
Decision Tree Learning

Unknown decision tree $f: \{0,1\}^n \rightarrow \{0,1\}$

Training data $(x_i, f(x_i))$

Each x_i drawn from distribution \mathcal{D}

Goal: $f' \approx f$ w.r.t. \mathcal{D}, i.e.,
$$\Pr_{x \sim \mathcal{D}} [f'(x) \neq f(x)] \leq \epsilon$$
Top-Down Heuristics

Step 1. Find variable x_i that “provides the most information” about $f(x)$

Step 2. (Split) Query variable x_i at the root of the decision tree

Step 3. (Recurse) Build trees for $f_{x_i=0}$ and $f_{x_i=1}$ recursively and use as subtrees

Terminate when depth reaches a specified budget
Label each leaf with the majority
Impurity Function

\(\mathcal{G} : [0,1] \rightarrow [0,1] \) is an **impurity function** if:

- \(\mathcal{G} \) is concave and symmetric w.r.t. \(1/2 \);
- \(\mathcal{G}(0) = \mathcal{G}(1) = 0 \) and \(\mathcal{G}(1/2) = 1 \)

\(\mathcal{G}(p) \approx \) amount of uncertainty if \(f \) evaluates to 1 on \(p \)-fraction of inputs

Binary entropy:

\[
\mathcal{G}(p) = -p \log_2 p - (1 - p) \log_2 (1 - p)
\]

Normalized variance:

\[
\mathcal{G}(p) = 4p(1 - p)
\]
Impurity-Based Heuristics

The “purity gain” of querying variable x_i:

$$
\text{PurityGain}(f, x_i) := \mathcal{G}(\mathbb{E}[f]) - \left[\Pr[x_i = 0] \cdot \mathcal{G}(\mathbb{E}[f_{x_i=0}]) + \Pr[x_i = 1] \cdot \mathcal{G}(\mathbb{E}[f_{x_i=1}]) \right]
$$

Top-down algorithm based on impurity function \mathcal{G}:

- Find variable x_i that (roughly) maximizes $\text{PurityGain}(f, x_i)$
- (Split) Query variable x_i at the root of the decision tree
- (Recurse) Build trees for $f_{x_i=0}$ and $f_{x_i=1}$ recursively and use them as subtrees
Impurity-Based Heuristics

Empirical success: ID3, C4.5, CART, ...

Hoped-for theoretical guarantee:

For any depth-\(k\) DT \(f\) and distribution \(\mathcal{D}\), these heuristics build a high-accuracy DT of depth \(k'\), where \(k'\) is not too much larger than \(k\).

Unfortunately, such guarantee is known to be impossible:

• Even if distribution \(\mathcal{D}\) is uniform over \(\{0,1\}^n\)
• Even if \(f\) is a DT of depth \(k = 2\)
• Need depth \(k' = \Omega(n)\) to achieve nontrivial accuracy
Smoothed Analysis

First developed by [Spielman-Teng’04] for the simplex algorithm

Hard instances are pathological

Pictures produced by Daniel A. Spielman and Shang-Hua Teng:
https://www.cs.yale.edu/homes/spielman/SmoothedAnalysis/framework.html
Smoothed Learning

Smoothed learning setting of [Kalai-Samorodnitsky-Teng’09]:

Hard data distributions are pathological

Learning over a **smoothed product distribution** over \(\{0,1\}^n\)

- Biases \(p_1, p_2, \ldots, p_n\) are set as \(p_i \leftarrow \hat{p}_i + \Delta_i\)
- \(\hat{p}_1, \ldots, \hat{p}_n\) are fixed, whereas \(\Delta_1, \ldots, \Delta_n \sim \text{Uniform}([-c, c])\)

Many hard distributions...

... but they can be rare
Smoothed Learning of Decision Trees

Conjecture of Brutzkus, Daniely and Malach (COLT’20):

Conjecture: For any depth-k decision tree f, any impurity-based heuristic builds a high-accuracy DT of depth $O(k)$ given samples from a smoothed product distribution.

Evidence: Provable guarantee for learning k-juntas

Theorem [BDM20]: For any k-junta f, any impurity-based heuristic builds a high-accuracy DT of depth k given samples from a smoothed product distribution.
Our Results

Counterexample to the conjecture of [BDM20]:

Theorem 1. There is a depth-\(k\) decision tree \(f\) such that: *any* impurity-based heuristic must build a DT of depth \(2^{\Omega(k)}\) given samples from *any* balanced product distribution \(\mathcal{D}\).

\(\mathcal{D}\) is balanced if \(\Pr_{x \sim \mathcal{D}}[x_i = 1] \in [0.01, 0.99]\) for every coordinate \(i \in [n]\)

This \(2^{\Omega(k)}\) depth is almost as bad as it can get:

- Every depth-\(k\) decision tree is a \(2^k\)-junta
- Result of [BDM20] \(\implies\) heuristics build trees of depth \(\leq 2^k\)
Our Results

Counterexample to the conjecture of [BDM20]:

Theorem 1. There is a depth-k decision tree f such that: any impurity-based heuristic must build a DT of depth $2^\Omega(k)$ given samples from any balanced product distribution \mathcal{D}.

Theorem 1 is stronger than what is needed:

• The same function f is simultaneously hard for all heuristics

• f is hard over all product distributions and, in particular, over a smoothed product distribution
Our Results

Moreover, the guarantee for juntas does not extend to agnostic setting:

Theorem 2. There is a function f that is ϵ-close to k-juntas such that:

- any impurity-based heuristic must build a DT of depth $\epsilon \cdot 2^{\Omega(k)}$ given samples from any balanced product distribution \mathcal{D}.

Corollary: There exists function f s.t.

- f is $2^{-\Omega(k)}$-close to a k-junta
- DT heuristics build trees of depth $2^{\Omega(k)}$ when learning f from a smoothed product distribution
Hard Instance

Recall from [BDM20]’s positive result for juntas:
\(f \) depends on \(N \) variables \(\implies \) DT heuristics build trees of depth \(\leq N \)

To prove the \(2^{\Omega(k)} \) lower bound in Theorem 1, we need \(f \) to:
• Be computable by a depth-\(k \) decision tree
• Have \(2^{\Omega(k)} \) relevant variables

One such extremal example: the “addressing function”
Hard Instance

Addressing function \(f: \{0,1\}^k \times \{0,1\}^{2^k} \rightarrow \{0,1\} \)

- \(k \) “addressing bits” \(x_1, x_2, \ldots, x_k \)
- \(2^k \) “memory bits” \((y_a) \) indexed by \(a \in \{0,1\}^k \)
- Define \(f(x, y) := y_x \)

\[
f(x, y) = y_{101} = 0
\]
Hard Instance

Addressing function f is computable by a DT of depth $k + 1$

- First query the addressing bits $x_1, x_2, ..., x_k$
- Query the relevant memory bit y_x, and label the leaf accordingly

Hoped-for scenario:

- The memory bits have higher purity gains than addressing bits
- DT heuristic builds a tree that queries the variables in the wrong order, i.e., the 2^k memory bits are queried first
Hard Instance

Actual hard instance \(f: \{0,1\}^{ck^2} \times \{0,1\}^{2^k} \rightarrow \{0,1\} \)

- \(ck^2 \) “addressing bits” \((x_{i,j})\) where \(i \in [k], j \in [ck]\)
- \(f(x, y) := y_{z(x)} \) where each \(z_i(x) \) is the XOR of \(x_{i,j} \) over \(j \in [ck] \)

\[
\begin{array}{ccc}
 x_{1,j} & x_{2,j} & x_{3,j} \\
 0 & 1 & 1 \\
 0 & 0 & 1 \\
 1 & 1 & 1 \\
 0 & 0 & 0 \\
\end{array}
\]

\(ck \) bits in each column

addressing bits

\(z(x) = 101 \)

\(y_{000} \ y_{001} \ y_{010} \ y_{011} \ y_{100} \ y_{101} \ y_{110} \ y_{111} \)

memory bits

\(f(x, y) = y_{101} = 0 \)
Address $z(x)$ is Almost Uniform

Benefit of XOR: when input (x, y) is drawn randomly, the address $z(x)$ is almost uniformly distributed over $\{0,1\}^k$:

Lemma 1. For sufficiently large c and balanced product distribution \mathcal{D},

$$\Pr_{(x,y) \sim \mathcal{D}} [z(x) = a] \in [2^{-k} - 5^{-k}, 2^{-k} + 5^{-k}], \forall a \in \{0,1\}^k.$$

Furthermore, this holds after conditioning on a single bit $x_{i,j}$.

Proof Idea: Each $z_i(x)$ is the XOR of ck independent random bits, each with an expectation in $[0.01,0.99]$

For each $i \in [k]$, $\Pr[z_i(x) = 1]$ is $2^{-\Omega(k)}$-close to $1/2$
Proof Overview

Need to argue:

\[\text{PurityGain}(f, x_{i,j}) \ll \text{PurityGain}(f, y_a) \]

\[\Rightarrow \text{Memory bits } (y_a) \text{ are queried first by impurity-based heuristics} \]

Easy fact: purity gain \(\approx \) gap between means

Under mild assumptions on impurity function \(\mathcal{G} \),

\[\text{PurityGain}(f, x_i) = \Theta(1) \cdot \left(\mathbb{E}[f_{x_i=0}] - \mathbb{E}[f_{x_i=1}] \right)^2 \]
Purity Gain of Memory Bits

Claim: For each memory bit y_a:

$$|\mathbb{E}[f_{y_a=0}] - \mathbb{E}[f_{y_a=1}]| = \Pr[z(x) = a]$$

Intuition: Flipping y_a changes $f(x, y)$ iff the relevant address $z(x)$ is a

By Lemma 1,

$$\Pr[z(x) = a] \geq 2^{-k} - 5^{-k} = \Omega(2^{-k})$$

Thus,

$$\text{PurityGain}(f, y_a) \gtrapprox (\mathbb{E}[f_{y_a=0}] - \mathbb{E}[f_{y_a=1}])^2 \gtrapprox (1/2)^{2k}$$
Purity Gain of Addressing Bits

Claim: For each addressing bit $x_{i,j}$, let P_b be the distribution of $z(x)$ conditioning on $x_{i,j} = b$. Then,

$$\left| \mathbb{E}[f_{x_{i,j}=0}] - \mathbb{E}[f_{x_{i,j}=1}] \right| \leq \text{TV}(P_0, P_1)$$

Intuition: $\mathbb{E}[f_{x_{i,j}=b}]$ is the expectation of a bounded function over P_b

Lemma 1 \Rightarrow both P_0 and P_1 are $(2/5)^k$-close to uniform distribution

$\text{PurityGain}(f, x_{i,j}) \leq \left(\mathbb{E}[f_{x_{i,j}=0}] - \mathbb{E}[f_{x_{i,j}=1}] \right)^2 \leq (2/5)^{2k}$
Putting Things Together

For any memory bit y_a and addressing bit $x_{i,j}$,

$$\text{PurityGain}(f, y_a) \simeq (1/2)^{2k} \gg (2/5)^{2k} \simeq \text{PurityGain}(f, x_{i,j})$$

Thus, an impurity-based heuristic always builds a tree that queries an addressing bit at the root.

Repeating this argument \implies all the 2^k memory bits need to be queried before any addressing bit is queried.
Recap & Open Problem

Prior work: Smoothed analysis was conjectured to be a promising route towards theoretical guarantees of DT heuristics

Our negative results: These heuristics may still fail badly in the smoothed setting
Recap & Open Problem

Open question: Stronger guarantees for restricted classes of functions via smoothed analysis?

• E.g., [Blanc-Lange-Tan’20] focused on monotone functions
• The hard instances in this work are highly non-monotone