
Adaptive Probing and Communication in Sensor
Networks

Iftach Ragoler, Yossi Matias, and Nimrod Aviram

School of Computer Science, Tel Aviv University
{ragoleri, matias, aviramni}@post.tau.ac.il

Abstract. Sensor networks consist of multiple low-cost, autonomous,
ad-hoc sensors, that periodically probe and react to the environment
and communicate with other sensors or devices. A primary concern in
the operation of sensor networks is the limited energy capacity per sensor.
As a result, a common challenge is in setting the probing frequency, so as
to compromise between the cost of frequent probing and the inaccuracy
resulting from infrequent probing.
We present adaptive probing algorithms that enable sensors to make
effective selections of their next probing time, based on prior probes. We
also present adaptive communication techniques, which allow reduced
communication between sensors, and hence significant energy savings,
without sacrificing accuracy. The presented algorithms were implemented
in Motes sensors and are shown to be effective by testing them on real
data.

1 Introduction

Sensor networks consist of multiple low-cost, autonomous, ad-hoc sensors, that
periodically probe and react to the environment and communicate with other
sensors or devices. A primary concern in the operations of sensor networks is
the limited energy capacity per sensor. There has been extensive research aimed
to reduce energy consumption in the application itself, network level, Datalink
level and physical level. A few examples are works on network aggregation, im-
proved routing algorithms, efficient communication, synchronizing wake-up time
between nodes, data compression and efficient tracking algorithms.

This paper presents two primitives for energy saving in the service level:
adaptive probing and adaptive communication. These primitives assume very
little about the system settings or the behavior of the measured data, and thus
many applications may gain significant energy savings simply by using the new
primitives instead of raw probing and communication.

Adaptive Probing

In current settings, the probing rate of sensors is typically fixed, and is set as a
compromise between the cost of frequent probing and the inaccuracy resulting
from infrequent probing. In contrast, adaptive probing is based on variable rate

2 Iftach Ragoler, Yossi Matias, and Nimrod Aviram

probing so that the base rate is lower than the typical one, and is increased as
required when the probed measurements change more rapidly, or are approaching
the vicinity of a predefined threshold. The adaptive probing primitive enables
sensors to make effective selections of their next probing times, based on what
they have learned so far. This results with reduced energy consumption while
improving accuracy.

The energy saving obtained when using adaptive probing is three fold: (1) re-
duced probing: as probing is the most frequent operation in sensor networks and
thus reduction in the average probing rate could be significant; (2) reduced com-
munication, as a result of reduced probing - the communication step is typically
the most expensive operation in sensor networks; and (3) reduced wake-up time:
the average sleep time is increased resulting with potentially reduced energy
consumption.

The problem of devising a suitable adaptive probing can be formalized as an
optimization problem with respect to cost versus approximation error: given a
stream of data, our goal is to probe the stream so as to obtain as good approxi-
mation as possible, with minimum number of probes. We denote by Approximate
Probing (AP) a method for online scheduling of probes with the goal of learning
the measured values with minimum error and minimum cost.

Approximate probing is suitable for settings in which the entire pattern of a
measured value over time is of interest. There are other situations of interest in
which the sensor network has to alert when certain values exceed a predefined
threshold. Rather than having a constant rate probing, it is more effective to
have an adaptive probing approach: the next probe should be set according to
the approximate time to reach the threshold. We denote by Threshold Probing
(TP) a method for efficiently alerting on a value reaching a threshold in minimum
detecting latency and at a minimum cost.

Adaptive Communication

The second optimization primitive is Adaptive Communication (AC), which is
a method for efficiently adapting the communication to the actual values of the
data stream.

In Adaptive Communication, a sender and its receiver maintain each a synop-
sis of the stream history and compute each a prediction for the next value. When
a node needs to send the next value, it sends a message only in case the value
deviates significantly from its prediction, which is also shared (approximately)
by its receiver. Otherwise this can be thought of as an Implicit Send operation,
in which no value is actually transmitted and its receiver will compute the next
value by itself based on its own prediction. In this setting, we show additional
significant energy savings, as in many cases communication is a dominant factor
in energy consumption.

In the heart of all our methodology is computing an instant, low cost model
of the changes in the environment and issuing a tiny prediction from this model
for the next desired probe or send time.

Adaptive probing and communication in sensor networks 3

The requirement to obtain an instant prediction implies using a simple model
to compute that prediction, so that it can be computed efficiently. There is
extensive literature about prediction computations such as adaptive filters which
include Weiner and Kalman filters (e.g., [4]), Box-Jenkins modeling (e.g., [1]) and
time series analysis (e.g., [16]) to name a few. Those methods usually involve
complex calculations that can be computed on a powerful server such as a base
station, but are too costly to be computed on the sensors themselves. In addition,
those methods typically compute the expected value in a particular time, rather
than the expected time to get to some value as our method requires. It is possible
to find an approximation to this inverse function using doubling and binary
search, but this will be even more costly. We further elaborate on related works
in Section 6. In contrast, our method is built on computing a tiny model in the
severe constraint of the sensor itself and not in a powerful base station. Adding
to this constraint the fact that the calculation should be done in real-time for the
next probing or sending epoch, limits the possible complexity of the prediction.
Our model makes no assumptions about the model of the environment (e.g.,
sinusoid or any other periodic model), thus it can serve as a basic primitive in
large number of applications.

To fully exploit the advantages of adaptive probing and adaptive commu-
nication, a tiny low cost non-volatile memory is sufficient. In particular, about
a dozen of registers that remain non-volatile in “sleep” period, and for which
storing and retrieval is low-cost would be sufficient to hold the history synopses.

We devise basic concrete algorithms and validate their potential impact with
experimentation. We tested the algorithms by simulation on data gathered from
the Great Duck Island (GDI) [9]. We also implemented the algorithms on Mica
motes and tested the performance of these implementations. For instance, at the
GDI case we obtain up to 55% improvement in the error for the same number of
probes (AP), up to 95% improvements in latency of threshold detection (TP),
and up to 75% reduction in the number of messages needed for the same error
(AC). In the Mica motes experiments we got up to up to 48% improvement in
the error for the same cost (AP) and up to 70% reduction in the number of
messages needed for the same error (AC).

2 Basic Prediction Techniques

We begin by presenting some basic low-cost prediction techniques that will later
be used by both the adaptive probing and adaptive communication algorithms.
Given a target value τ , one of our objectives is to predict the time in which
the measured value will be τ , based on the recorded information. The prediction
techniques, presented in increasing complexities, are used for computing the next
probing time based on the recorded history of the measured stream, and also
estimate the value of the stream in a future time.

Distance prediction. This technique is based on the distance between the current
measured value and a given threshold. While the value is far from the thresh-

4 Iftach Ragoler, Yossi Matias, and Nimrod Aviram

old, the node can probe at a slow rate, but as the value advances towards the
threshold, the node should increase the probing rate.

Let ∆ti+1 be the time between probe i and probe i + 1, Let xi be the value
measured at time ti. Our objective is to predict the time ti+1 at which the
measured value will satisfy xi+1 = τ . The time till next probe ∆ti+1 = ti+1 − ti
will be taken as linear in the distance from the threshold: ∆ti+1 = Θ (τ − xi)

There are no memory requirements for calculating the distance prediction,
except for τ , as the next probing time is calculated using the current value only.
Linear Prediction. This technique adapts the local probing rate not only to the
distance from the target value, but also to the rate of change in the measured
values. Intuitively, while the probed value is changing fast, the node should probe
at a high rate, but when the change is slow the node can probe at a slower rate
and still detect the essential properties.

Computing the estimated value at different points is based on linear extrapo-
lation. Given two probe points (ti−1, xi−1) and (ti, xi), the predicted value xi+1

in time ti+1 is computed as :

xi+1 = xi + (ti+1 − ti) · xi − xi−1

ti − ti−1
(1)

Based on this prediction, the time ti+1 in which the value is expected to get
to xi+1 is hence:

ti+1 = ti + (xi+1 − xi) · ti − ti−1

xi − xi−1
(2)

We can then compute ∆ti+1 by substituting xi+1 with τ . If the computed ∆ti+1

is not positive, then we can probe as far in the future as desired.
The memory requirement consists of additional two registers, holding ti−1

and xi−1, which are updated at each epoch.
Quadratic Prediction. This technique extends the linear prediction by accounting
for the acceleration / deceleration in the measured value; i.e., to its second
derivative. Intuitively, while the measured function is accelerating significantly,
the node should correspond by accelerating the probing frequency, whereas while
the acceleration is moderate, the prediction can be done using linear prediction.

Computing the estimated value at different points is based on quadratic
extrapolation. Given three probe points (ti−2, xi−2), (ti−1, xi−1) and (ti, xi),
computing the value xi+1 in time ti+1 can be computed using the Lagrange
Equation (LE) for three points:

LE = xi−2 · (ti+1 − ti−1)(ti+1 − ti)
(ti−2 − ti−1)(ti−2 − ti)

+ xi−1 · (ti+1 − ti−2)(ti+1 − ti)
(ti−1 − ti−2)(ti−1 − ti)

(3)

+ xi · (ti+1 − ti−2)(ti+1 − ti−1)
(ti − ti−2)(ti − ti−1)

We provide an improved progressive computation, by leveraging on previous
computations: let x′i = xi−xi−1

ti−ti−1
, t′i = ti−ti−1

2 be the values as computed for linear
prediction, x′i−1 and t′i−1 be these values as computed in the previous epoch. In

Adaptive probing and communication in sensor networks 5

our progressive estimation (PE) the number of basic arithmetic operations is 13
compared to 23 in the Lagrange computation:

PE = xi + x′i(ti+1 − ti) +
(x′i − x′i−1)(ti+1 − ti)(ti+1 − ti−1)

t′i − t′i−1

(4)

It can be proved using basic arithmetic that LE as computed by the La-
grange Equation (Eq. 3) equals to PE as computed by the progressive estimation
(Eq. 4). The detailed proof can be found in the extended paper.

Given the next desired value xi+1 = τ , the time ti+1 can be computed by
solving the quadratic equation. There are a few possibilities for the equation
results, depending on the number of solutions that specify a time in the future.
We take the smallest ti+1 such that ti+1 > ti. If no such solution exists, we
can probe again very far in the future, such that ∆ti+1 is very large. Quadratic
prediction requires two more non-volatile registers for x′i and t′i, bringing the
total number of required registers to four.
Higher Dimension Prediction. It is possible to extend to higher prediction levels
using the general Lagrange equation. However, the additional cost may not be
justified by the possible improvement, which is expected to be diminishing.

3 Adaptive Probing

We define two types of Adaptive Probing: Approximate Probing (Section 3.1)
and Threshold Probing (Section 3.2).

3.1 Approximate Probing (AP)

The basic function of sensors is to approximate their environment as they probe
it in a periodic manner. Our goal is to improve this approximation, so that we
probe as infrequently as possible with minimum approximation error.

The AP algorithm uses extrapolation for predicting future values and de-
termining the right time for the next probe. It may utilize any of the predic-
tion techniques, described in Section 2. We present algorithms with linear and
quadratic predictions. The Naive algorithm can be viewed as probing in equal
time difference between probes, therefore the changes in the probed environ-
ment do not influence its execution. In contrast, the AP algorithm will aim to
probe in equal value differences between probes, adapting to the changes in the
environment. At each epoch the algorithm should decide when the next probe
should take place.

For a given desired value difference c between the last probe and the next
probe, the goal of the algorithm is to decide the time difference, ∆t until next
probe.

Recall that xi−1 is the probed value at time ti−1 and xi is the value in current
time ti. By defining c = xi+1 − xi and using Eq. 2 for linear prediction, we get
the next probing time:

ti+1 = ti + c · ti − ti−1

xi − xi−1
(5)

6 Iftach Ragoler, Yossi Matias, and Nimrod Aviram

For quadratic prediction, substituting c = xi+1 − xi in Eq. 4 gives:

c = x′i(ti+1 − ti) +
(x′i − x′i−1)(ti+1 − ti)(ti+1 − ti−1)

t′i − t′i−1

(6)

Calculating quadratic equation for both c and −c (for increasing values) may
result with four possible solutions. The selected solution is taken as discussed
for the quadratic prediction of Section 2.
The Error Metric: Let E be the error, N be the number of probes, RVi be the
real value and AVi be the value estimated by the algorithm at epoch i then

the error is computed as: Eabs = 1
N

N∑
i=1

|RVi −AVi| or Erel = 1
N

N∑
i=1

∣∣∣RVi−AVi

RVi

∣∣∣.
Higher moments of errors can be defined in a similar manner.

3.2 Threshold Probing (TP)

In many cases, the function of a sensor network is to alert when the measured
value reaches a certain level. That would be the case, for instance, in fire detec-
tion. In such cases, we do not want to approximate an entire measured signal,
but rather to alert when reaching at the desired threshold, with minimum cost
and minimum latency error.

The algorithm for TP is based on computing Estimate Time of Arrival
(ETA): the predicted time in which the threshold value is expected to be reached
based on the stream history.

Let τ be the threshold value; we desire to predict the time ti+1 in which
the measured value will become xi+1 = τ . The TP algorithm based on linear
prediction, and using Eq. 2, gives:

ti+1 = ti +
(τ − xi) · (ti − ti−1)

xi − xi−1
(7)

Eq. 7 might return time ti+1 in the past (i.e., < ti), when the value is getting
farther from the threshold. In that case the next probe can be determined using
a predetermined bound, as discussed in Section 3.3.

The TP algorithm is based on quadratic prediction, using Eq. 4, gives:

xi+1 = xi + x′i∆ti→i+1 +

(
x′i − x′i−1

)
∆ti→i+1∆ti−1→i+1

t′i − t′i−1

(8)

As for AP , solving the quadratic equation might return two possible results,
in order to be conservative and thus not lose important events, the algorithm
should take a point in time t, such that t is the minimal solution that is larger
than the current time ti. If the equation does not have any result, we use the
adjustment parameters as discussed in Section 3.3.
The Error Metric: The goal of Threshold Probing is to detect an event as soon
as possible, therefore the error measure is the delay between the time in which
real event occurs and the time in which the algorithm detects this event.

Adaptive probing and communication in sensor networks 7

Let ErrorTP ≥ 0 be the error of the algorithm, Ta be the algorithmic de-
tected time of event e and Te the time of event Let Te the time of an event e,
in which the measured value reaches a predefined threshold, and let Ta be the
detection time based on the TP algorithm. Then the latency error is defined as:
ErrorTP = Ta − Te

Note that for any algorithm, but especially for the Naive algorithm the value
of the error in each run is influenced by the starting time of the probing (i.e. the
synchronization) as it is defined by the time difference between the last probe
and the threshold achievement. The average error in the Naive case is half of the
time between probes. For the TP algorithm, the starting point is less important
as the algorithm adjusts itself to the value changes.

3.3 Realization

We consider the realization of the AP and TP algorithms. The basic algorithms,
as described so far, only treat the anticipated case where a very small synopsis of
history perfectly predicts the future, and they do not guarantee neither error nor
cost. As a result, there may be quite reasonable adversarial scenarios in which
the algorithm predicts poorly or costly. In order to overcome those problems,
we utilize two methods: (1) using adjustment parameters for computing ∆t; (2)
incorporating a fall back methodology in which the algorithm monitors its own
performance and transforms to a Naive algorithm in case it performs poorly.
Due to space limitation, we only describe briefly the method of adjustment
parameters and leave the discussion on the fall back method to the full paper.

Let ∆ti+1 be the estimated time difference so that xi+1 = τ , when letting
ti+1 − ti = ∆ti+1, as computed by a prediction method. To address the imper-
fection of this prediction, we conservatively enforce the next probe to be earlier,
based on two adjustment parameters: α ≥ 0, and β ≥ 0:

∆ta =
∆ti+1

(1 + α)
− β (9)

The parameter α is multiplicative and it would mostly affect the mean relative
error; the parameter β is additive and it would mostly affect the mean absolute
error. We also use two adjustment parameters: ∆ and ∆. The upper-adjustment
parameter ∆ provides an upper bound on the time difference between two probes,
and hence on the latency error. The lower-adjustment parameter ∆ provides a
lower bound on the time difference, to avoid costly probing that is beyond the
required granularity. The waiting time for the next probe is computed as a
function of the adjusted prediction and the two adjustment parameters:

∆t = Min
(
Max (∆ta, ∆) , ∆

)
(10)

4 Adaptive Communication (AC)

One of the most common uses of communication in sensor networks is the transfer
of probed values of a sensor node to other nodes (e.g., base station). The value

8 Iftach Ragoler, Yossi Matias, and Nimrod Aviram

can be passed as raw data or aggregated along the communication path. In
either case, a node transfers data to its parent node, which in turn transfers data
onwards. The base assumption for our methodology is that there is a temporal
correlation between subsequent values.

4.1 AC Protocol

The sender maintains a synopsis that represents the stream of values sent so
far, and a prediction of the value that is to be sent next, based on the synopsis.
Similarly, the receiver maintains a synopsis that represents the stream of values
received so far, and a prediction of the value that is to be received next, based on
the synopsis. The synopses and the corresponding predictions can be computed
using the prediction techniques of Section 2.

If the next probe is as predicted, within a small allowed error, then the sender
does not send it. If the receiver does not receive a value at a designated time, it
assumes that it equals its predicted value. Thus we manage to avoid transmission
and still transfer the appropriate information. This event is therefore called
implicit send.

In cases in which the time of transmission is unknown, as is the case for
probing with a variable rate, the receiver does not compute any prediction.
Its synopsis is then only used for the purpose of interpolation for reporting
values. The protocol is described in Table 1, with an allowed error ε(s) per value
transmission.

4.2 AC Implementation

In many installations, the base station needs all the probed information from
each node in a multi-hop network of nodes (e.g., [9]). In such scenarios the AC
protocol can be applied between each node and the base station. It has two
advantages: (1) each message saving implies savings along all the routing to the
root; and (2) the base station might be a powerful node with ‘unlimited’ memory,
energy and computation power for issuing the Receiver protocol.

There are cases in which the user is interested only in aggregation of results
or the aggregation is desired from an energy saving perspective (e.g., [8]). In
such scenarios the AC protocol is applied between each node and its parent,
and the Receiver saves k states for its k children. If this is too much for its
constrained memory, it is used for the maximum number of children which can
use the protocol, while other children will continue propagating all their values
as before.

In sensor networks there might be extensive loss of communication due to
collisions, synchronization issues, lack of resources and other interferences. In
order to overcome these losses we propose two methods: (1) transmit redundant
information in which the sensor sends the subsequent probe after each sent
probe. In that case we would send more than the lossless AC but still less or
equal to the Naive; (2) in applications that use acknowledgment, piggyback on
this acknowledgment for AC, resulting with no losses.

Adaptive probing and communication in sensor networks 9

Adaptive Communication protocol - Sender

Save Synopsis and prediction Pred(vi+1)
1 while true
2 do
3 Probe a value vi // Probe a new value
4 if |vi − Pred(vi)| > ε
5 then //If this value is deviating

// Send the new value to the Receiver
6 Send vi

7 Update Synopsis
8 compute Pred(vi+1) //Compute next prediction
9 i++

10 sleep() // Sleep until next probe

Adaptive Communication protocol - Receiver

Save Synopsis
1 while true
2 do
3 if Receive New value vi

4 then // If received new value
5 Update Synopsis
6 else // There was no new value

// Compute value using extrapolation
7 Compute vi

8 Report vi // Report the new value
9 i++

10 sleep() // Sleep until next probe

Table 1. Adaptive Communication (AC) protocol, the Sender sends its value only
when it deviates by more than ε from its predicted value. The Receiver reports the
next value either by using the received value or by extrapolating using previous values.

5 Experimental Results

In the experimental study, we demonstrate the efficiency of the algorithms pro-
posed in this paper. For each type of algorithm (i.e., AP , TP and AC) we con-
ducted the following experiments: (1) run the algorithm over real nodes traces,
which were taken from the Great Duck Island (GDI) project [9]; (2) run the
algorithms on Mica motes [12] using TinyOS [15]. Due to place limitations, we
present here a subset of the experiments, the full experiments can be found in
the extended paper.

5.1 Framework

Traces from GDI - The algorithms were implemented using an ad-hoc simulator
written in Java. All our experiments were held with the adjustment parame-

10 Iftach Ragoler, Yossi Matias, and Nimrod Aviram

ters. We plugged the real motes traces taken from the GDI project [2] into the
simulator. The traces include a few attributes from each mote, and consist of
probes taken about once every 5 minutes; we chose the temperature measure.
The Naive free variable was the time between probes, we simulated with differ-
ent values and for each such value we found the error and the cost (number of
probes) for drawing the plot. For the adaptive algorithm, the free variable was
used in order to generate the lower and upper bounds, which were division and
multiplicity of the Naive rate by a constant factor.

Mica Motes - We implemented the algorithms on Mica2 Motes [12] using the
Nesc language and over the TinyOS [15] OS. Our test bed includes two motes in
which one was attached to the base station in order to present the results, the
second ran Naive algorithm and adaptive algorithm in parallel. We chose this
setup in order to measure the same values using the same sensing calibration. In
order to know the ‘real function’, the Naive algorithm served two purposes: 1)
determining the ‘real function’, which means to probe very fast; 2) simulating
the Naive algorithm. In order to do that, the sensor probed and sent in a fixed,
very high frequency. For the simulation of the Naive algorithm we took only one
of every k probes. Thus for every experiment we get several results of error vs.
cost, depending on k. In our experiments we measured using the light sensing
device. Most of the experiments measured at least one sunset or sunrise, in order
to test the algorithms on a changing environment.

5.2 Approximate Probing (AP)

As evident from the results for the GDI case (Fig.1a), the AP is superior over
the Naive, especially if a low error rate is desired or a higher cost is allowed; the
reason for that is that the adaptive algorithm can use additional probes better.
It can be seen that for the same cost we obtained up to 54% improvements in
the error (the horizonal line in the figure, which compares between the Naive
and AP with desired value difference between probes of 5). For the same error
we obtained up to 43% reduction in probes (the vertical line in the figure, which
compares between the Naive and AP with desired value difference between
probes of 5). We tried in various other possible metrics and got similar results,
details can be seen in the extended paper.

For the real Motes experiments (Fig.1b), we ran the algorithms a few times.
As said earlier, for each experiment we got a few Naive results that are rep-
resented as a plot and one AP result which is presented as a point with the
same shape and color. We can see that for the same cost we get up to 48%
improvement in the error (vertical line in the figure, which compares between
the Naive and AP on the 25th of May). For the same error we get up to 51%
improvements in cost (horizontal line in the figure, which compares between the
Naive and AP on the 17th of May).

Adaptive probing and communication in sensor networks 11

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

10

Cost (number of Probes)

E
rr

or
 (

D
ev

ia
tio

n
fr

om
 r

ea
l v

al
ue

s)

Naive
AP vertical difference=1
AP vertical difference=3
AP vertical difference=5
AP vertical difference=10

0

5

10

15

20

25

8.296.635.524.143.312.48

M
ea

n
A

bs
ol

ut
e

E
rr

or

Cost (Number of Probes/Experiment Duration)

24-5-04sunset Naive
24-5-04sunset Adaptive

24-5-04 Naive
24-5-04 Adaptive

17-5-04 Naive
17-5-04 Adaptive

25-5-04 Naive
25-5-04 Adaptive

(a) (b)

Fig. 1. Error vs. Cost. (a) AP algorithm simulated over the measured data of GDI
of node 101. The adjustment parameters ∆ and ∆ are 1/3 and 3 times of the naive
rate. Plots for vertical difference of 1, 3, 5, 10◦ Celsius (b) AP algorithm run over Mica
Motes. For each day there are a few Naive experiments and one adaptive experiment

5.3 Threshold Probing (TP)

For node 101 of the GDI, around time 2, 030, 000 there is a single area in which
the value climbs over 37◦, it stays over this value for 3900 seconds (reaching even
to 39◦). We defined 37◦ as the Threshold. The results for the comparisons are
shown in Fig. 2. It is evident that TP with first derivative is quite superior to
the Naive. Positive values of α and β improve the results, which can reach in
some cases up to 90-95% improvements for the same cost.

It is notable that the TP algorithm is much more stable in its results, whereas
the Naive results are somewhat arbitrary; this is due to the fact that the Naive
is much more vulnerable to the staring time relative to the threshold crossing
time. The TP in contrast is adapting to the measures and thus ”prepares itself”
to the threshold achievement in advanced.

5.4 Adaptive Communication (AC)

We ran both the Naive and the AC algorithms with equal time between probes.
The Naive is always sending while the AC is sending on a needed basis only.

For the GDI project (Fig. 3a), the free variable was the time between probes;
for each such value, we ran a simulation and obtained the error and the cost
(number of probes) for the plot. We can see that for the same cost we get up
to 75% error improvements compared to the Naive (see vertical line, which
compares between the Naive and AC with ε = 0.5). For the same error we
get up to 52% cost saving compared to the Naive (see horizonal line, which
compares between the Naive and AC with ε = 1).

For the Mica Motes experiments (Fig. 3b), we can see that for the same cost
we get up to 70% error improvements compared to the Naive (see vertical line,
which compares between the Naive and AC on the 29th of May) . For the same

12 Iftach Ragoler, Yossi Matias, and Nimrod Aviram

400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

900

1000

Cost (number of Probes)

La
te

nc
y

(in
 s

ec
on

ds
)

Naive
TP 1Der.
TP 1Der. alpha=0.9 beta=0
TP 1Der. alpha=1.0 beta=100
TP 1Der. alpha=0.9 beta=100
TP 2Der. alpha=0.9 beta=100

Fig. 2. Latency vs. Cost. TP algorithm simulated over node 101 of GDI. The Threshold
was set to 37◦ Celsius. The adjustment parameters ∆ and ∆ are 1/3 and 3 times of
the naive rate. α and β are precaution parameters.

error we get up to 70% reduction in the number of messages needed for the same
error compared to the Naive (see horizontal line, which compares between the
Naive and AC on the 28th of May).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cost (Number of sent messages)

E
rr

or
 (

D
ev

ia
tio

n
fr

om
 r

ea
l v

al
ue

s)

Naive
AC epsilon=0.1
AC epsilon=0.25
AC epsilon=0.5
AC epsilon=1
AC epsilon=2
AC epsilon=4

0

5

10

15

20

25

30

35

40

10.018.346.675.564.774.13.332.521

E
rr

or
 (

D
ev

ia
tio

n
fr

om
 r

ea
l v

al
ue

s)

Cost (Number of Sent Probes/Experiment Duration)

29-5-04 Naive
29-5-04 Adaptive

27-5-04 Naive
27-5-04 Adaptive

28-5-04 Naive
28-5-04 Adaptive

(a) (b)

cc

Fig. 3. Error as function of the Cost. AC algorithm (a) simulated over the measured
data of GDI over node 101. The plots describes various ε values. (b)AC algorithm run
over Mica Motes. For each day there are a few Naive experiments and one adaptive
experiment

6 Related Work

There is rich literature on forecasting and adaptive techniques. The typical ques-
tions considered in these works is typically computing the expected value of an

Adaptive probing and communication in sensor networks 13

observed sequence at a future time. We are mostly interested in the inverse ques-
tion of when is the expected time to get to a certain value. It is possible to find
an approximation to this inverse function using doubling and binary search but
this will be rather costly in our context. Note that our adaptive methods should
be computed every epoch in runtime manner towards the next epoch; therefore
it should be done very cheaply and efficiently. We highlight a few adaptive tech-
niques that were considered in various scenarios, and relevant works on sensor
networks.

Adaptive Filters theory is a well researched domain with huge literature
(e.g., [4]). The idea is to apply filters on a signal for filtering, smoothing and
prediction. Weiner filters are used over stationary data. Kalman filters are used
for ongoing updated data where the computation is done incrementally. The idea
of predicting using Adaptive Filters is to find the next expected value based on
n previous values, assuming the value is changing linearly.

Box-Jenkins modeling [1] is a mathematical modeling of time series used for
forecasting. It involves identifying an appropriate ARIMA process, fitting it to
the data, and then using the fitted model for forecasting. It has three iterative
processes: Model selection, Parameter estimation and Model checking. Recent
improvements in the process [10] added two more steps of Data preparation and
Forecasting. All those methods are too computation and memory intensive for
our limited devices and online computation involved in our goal.

In [13] the authors propose an automatic environmental model construction,
but their sensors (“PDA-like devices”) are order of magnitude more powerful
than the sensors considered in our work (e.g., Mica Motes). They are trying
to construct a global model for future forecast whereas we are forming a local
model for forecasting the very near future.

In [11] the authors propose to adapt the sampling rate based on an a priory
model such as sinusoid. In contrast, our model is changing over time and adapts
to the changing measured stream. As a result, we do not assume an a priory
model which makes our solution more general and adequate for larger set of ap-
plications. As far as we know, except for this work, existing probing algorithms
use constant rate probing frequency. In [3] the authors propose to create a tem-
poral model by a base station. Each sensor in this case sends a message only if
the value deviates from this model. In our AC algorithm, the sender maintains
its own model. Thus, the base station does not need to issue and send a model
which is a costly communication step by its own.

The notion of a single node that uses only its own resources for event detec-
tion was considered in [7, 5]. However, [7] define an event as a value over some
predefined threshold but continued to probe in constant rate. Paper [5] propose
to put a special hardware in designated nodes, which has cost and need a priory
knowledge of the topology.

The idea of balancing the tradeoff between accuracy and lifetime was in-
troduced in [6]. They use this tradeoff in building a synopsis that represents
the data for queries of aggregation purposes, while our approach is to use this
tradeoff for reducing the number of probing and basic communication. In [14]

14 Iftach Ragoler, Yossi Matias, and Nimrod Aviram

the authors propose the idea of sending messages on a changing basis; however,
this method is proposed in the context of aggregations only, and in case it de-
viates from previous values. In contrast, AC deals with any communication and
sends in case the value deviates from previous prediction and not just from the
previous value.

7 Conclusions

In this paper we present the first study of adaptive probing and adaptive commu-
nication for improved utilization of sensor networks. We present basic algorithms
that effectively realize the adaptive methods. The potential impact of our ap-
proach is demonstrated using experimentations. There are many open questions
with regard to adaptive methods in sensor networks. Below we mention a few.

It would be interesting to consider various objective functions for approxi-
mation and their corresponding error metrics. We described some basic math-
ematical models that guide the adaptive algorithms. It would be interesting
to further develop mathematical models for measured functions that provide a
good approximation for real data and at the same time are manageable with low
overhead, given the limited computing and communication resources available
in sensor networks.

Prediction of future patterns based on past information is the heart of the
proposed adaptive methods. There may be significant promise in incorporating
methods from other disciplines that address related questions. We expect that
due to the computational constraints in sensor networks, many known techniques
would require considerable adaptation in order to be useful here. Some of them
might be derived from fields like Adaptive Filters and Box-Jenkins modeling.

This work focuses on adaptive methods for single sensors, or for pairs of
sensors. Applying more advanced adaptive methods for the entire network may
be a rich area for research with a potentially significant impact.

Acknowledgments: We thank Christos Faloutsos for helpful pointers to
relevant literature in the forecasting domain.

References

1. G. Edward, P. Box, and G. M. Jenkins. Time Series Analysis: Forecasting and
Control. Prentice Hall PTR, 1994.

2. Habitat monitoring on great duck island. http://www.greatduckisland.net/.
3. S. Goel and T. Imielinski. Prediction-based monitoring in sensor networks: Taking

lessons from mpeg. In ACM Computer Communication, Vol. 31, No. 5, 2001.
4. S. Haykin. Adaptive Filter Theory. Prentice Hall, 3rd edition, 1996.
5. J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Toward

sophisticated sensing with queries. In IPSN, March 2003.
6. K. Kalpakis, V. Puttagunta, and P. Namjoshi. Accuracy vs. lifetime: Linear

sketches for approximate aggregate range queries in sensor networks. available as
umbc cs tr-04-04, February 11, 2004.

Adaptive probing and communication in sensor networks 15

7. J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao. Distributed group management
for track initiation and maintenance in target localization. In IPSN, 2003.

8. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny aggregation
service for ad-hoc sensor networks. In THE MAGAZINE OF USENIX and SAGE
April 2003, page 8, 2003.

9. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless
sensor networks for habitat monitoring. In ACM WSNA, Atlanta, GA, Sept. 2002.

10. S. Makridakis, S. Wheelwright, and R. J. Hyndman. Forecasting : Methods and
Applications. John Wiley & Sons., 1998.

11. A. D. Marbini and L. E. Sacks. Adaptive sampling mechanisms in sensor networks.
In London Communications Symposium, 2003.

12. Berkley mica motes. http : //www.xbow.com/Products/Wireless Sensor Networks.htm.
13. S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive, hands-off stream

mining. In VLDB, 2003.
14. M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis. Tina: a scheme

for temporal coherency-aware in-network aggregation. In ACM workshop on Data
engineering for wireless and mobile access, pages 69–76. ACM Press, 2003.

15. Tinyos operating system. http : //webs.cs.berkeley.edu/tos/.
16. B.-K. Yi, N. D. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and

A. Biliris. Online data mining for co-evolving time sequences. In 16th International
Conference on Data Engineering, page 13. IEEE Computer Society, 2000.

