
Performance Evaluation of Approximate Priority Queues

Yossi Matias � S�uleyman Cenk S�ahinalp
y Neal E� Young z

June �� ����

Abstract

We report on implementation and a modest experimental evaluation of a recently introduced
priority�queue data structure� The new data structure is designed to take advantage of fast
operations on machine words and� as appropriate� reduced key�universe size and�or tolerance
of approximate answers to queries� In addition to standard priority�queue operations� the data
structure also supports successor and predecessor queries� Our results suggest that the data
structure is practical and can be faster than traditional priority queues when holding a large
number of keys� and that tolerance for approximate answers can lead to signi�cant increases in
speed�

�Bell Laboratories� ��� Mountain Ave� Murray Hill� NJ ������ matias�research�bell	labs�com�
yBell Laboratories� ��� Mountain Ave� Murray Hill� NJ ������ jenk�research�bell	labs�com� The author was

also a
liated with Department of Computer Science� University of Maryland� College Park� MD ����� when the
experiments were conducted�

zDepartment of Computer Science� Dartmouth College� Hanover� NH ���

	�
��� ney�cs�dartmouth�edu�



speedup �n� � An employer�s demand for accelerated output without increased pay�

� Webster�s dictionary�

� Introduction

A priority queue is an abstract data type consisting of a dynamic set of data items with the following
operations�

� inserting an item�

� deleting the item whose key is the maximum or minimum among the keys of all items�

The variants described in this paper also support the following operations� deleting an item with
any given key� �nding the item with the minimum or the maximum key� checking for an item with
a given key� checking for the item with the largest key smaller than a given key� and checking for
the item with the smallest key larger than a given key�

Priority queues are widely used in many applications� including shortest path algorithms� com�
putation of minimum spanning trees� and heuristics for NP�hard problems �e�g� TSP�� For many
applications� priority queue operations �especially deleting the minimum or maximum key� are the
dominant factor in the performance of the application� Priority queues have been extensively ana�
lyzed and numerous implementations and empirical studies exist� see� e�g�� 	AHU
�� Meh��� Jon�
�
SV�
� LL�
��

This note presents an experimental evaluation of one of the priority queues recently introduced
in 	MVY���� the �word�based� radix tree� This data structure is qualitatively di�erent than tra�
ditional priority queues in that its time per operation does not increase as the number of keys
grows �in fact it can decrease�� Instead� as in the van Emde Boas data structure 	vKZ

�� the
running time depends on the size of the universe � the set of possible keys � which is assumed
to be f�� �� � � � � Ug� for some integer U � �� Most notably� the data structure is designed to take
advantage of any tolerance the application has for working with approximate� rather than exact�
key values� The greater the tolerance for approximation� the smaller the e�ective universe size and
so the greater the speed�up�

More speci�cally� suppose that the data structure is implemented on a machine whose basic
word size is b bits� When no approximation error is allowed� the running time of each operation
on the data structure is expected to be close to c��lgU���lg b�� for some c� � �� It is expected to
be signi�cantly faster when a relative error tolerance� � � �� is allowed� In this case� each key k is
mapped to a smaller �approximate� key k� � dlg��� ke� resulting in an e�ective universe U� that is
considerably smaller� In particular� when the universe size U is smaller than �b� and the relative
error is � � ��j �for non�negative integer j�� then the running time of each operation on the data
structure is expected to be close to c�� � j� lg b�� for some constant c � ��

The data structure is also unusual in that it is designed to take advantage of fast bit�based
operations on machine words� Previously� such operations were used in the context of theoretical
priority queues� such as those of Fredman and Willard 	FW��a� FW��b� Wil���� which are often
considered non�practical� In contrast� the data structure considered here appears to be simple
to implement and to have small constants� it is therefore expected �at least in theory� to be a
candidate for a competitive� practical implementation� as long as the bit�based operations can be
supported e�ciently�

In this paper we report on an implementation of the word�based radix tree� on a demonstration
of the e�ectiveness of approximation for improved performance� and on a modest experimental

�



testing which was designed to study to what extent the above theoretical expectations hold in
practice� Speci�cally� our experimental study considers the following questions�

�� What may be a typical constant� c�� for the radix tree data structure with no approximation
tolerance� in the estimated running time of c��lgU���lg b��

�� What may be a typical constant� c� for the radix tree data structure with approximation error
� � ��� � �� for which the estimated running time is approximately c�� � �� lg b�� and

�� How does the performance of the radix tree implementations compare with traditional priority
queue implementations� and what may be a typical range of parameters for which it may
become competitive in practice�

We study two implementations of the radix tree� one top�down� the other bottom�up� The latter
variant is more expensive in terms of memory usage� but it has better time performance� The main
body of the tests timed these two implementations on numerous randomly generated sequences�
varying the universe size U over the set f���� ���� ���� ���g� the number of operations N over the set
f���� ���� ���� ���g� and the approximation tolerance� �� over the set f���� ����� � � � � U���� �g� where
the case � � � corresponds to no tolerance for approximation� The tests were performed on a single
node of an SGI Power Challenge with �Gbytes of main memory�

The sequences are of three given types� inserts only� inserts followed by delete�minimums�
and inserts followed by mixed operations� Based on the measured running times� we identify
reasonable estimates to the constants c� and c� for which the actual running time deviates from the
estimated running time by at most about ����

The bottom�up radix tree was generally faster than the top�down one� sometimes signi�cantly
so� For sequences with enough insertions� the radix trees were faster than the traditional priority
queues� sometimes signi�cantly so�

� The Data Structure

We describe the the top�down and the bottom�up variants of the �word�based� radix tree priority
queue�

Both implementations are designed to take advantage of any tolerance of approximation in the
application� Speci�cally� if an approximation error of � � � is tolerated� then each given key k is
mapped before use to the approximate key k� � dlg��� ke �details are given below�� This ensures
that� for instance� the find�minimum operation will return an element at most �� � times the true
minimum�

Operating on approximate keys reduces the universe size to the e�ective universe size U�� For
completeness� we give the following general expression for U� �according to our implementation��

U�
�
�

�
�dlgdlg�U���ee�dlg�����e� � if � � �
U if � � ��

���

Both the top�down and bottom�up implementations of the word�based radix�tree maintain a
complete b�ary tree with U� leaves� where b is the number of bits per machine word on the host
computer �here we test only b � ���� Each leaf holds the items having a particular approximate
key value k�� The time per operation for both implementations is upper bounded by a constant
times the number of levels in the tree� which is

levels�U� ��
�
� dlgb�U� � ��e �

�
lgb lgU � lgb����� if � � �
lgb U if � � ��

���

�



For U � �b� � � ���� and for b a power of two� we get

levels�U� �� �

�
d� � �� lg be if � � �
d� � lg�U�� lg be if � � ��

For all parameter values we test� the above inequality is tight� with the number of levels ranging
from � to � and the number of leaves ranging from ��� to ����

As mentioned above� each leaf of the tree holds the items having a particular �approximate�
key value� Each interior node holds a single machine word whose ith bit indicates whether the ith
subtree is empty� The top�down variant allocates memory only for nodes with non�empty subtrees�
Each such node� in addition to the machine word� also holds an array of b pointers to its children�
An item with a given key is found by starting at the root and following pointers to the appropriate
leaf� It examines a node�s word to navigate quickly through the node� For instance� to �nd the
index of the leftmost non�empty subtree� it determines the most signi�cant bit of the word� If a
leaf is inserted or deleted� the bits of the ancestors� words are updated as necessary�

The bottom�up variant pre�allocates a single machine word for every interior node� empty or
not� The word is stored in a �xed position in a global array� so no pointers are needed� The items
with identical keys are stored in a doubly linked list which is accessible from the corresponding
leaf� Each operation is executed by updating the appropriate item of the leaf� and then updating
the ancestors� words by moving up the tree� This typically will terminate before reaching the root�
for instance an insert needs only to update the ancestors whose sub�trees were previously empty�

��� Details on implementations of the data structure and word operations

Below we describe how the basic operations are implemented in each of our data structures� We
also describe implementations of the word�based operations we require�

����� Computing approximate keys

Given a key k� this is how we compute the approximate key k�� assuming � � ��j for some
non�negative integer j� Let aB��aB�� � � � a� be the binary representation of a key k � U � where
B � dlg�U � ��e� Let m � maxfi � ai � �g be the index of the most signi�cant bit of k� Let n
be the integer whose j�bit binary representation is am��am�� � � � am�j �i�e�� the j bits following the
most signi�cant bit�� Then

k�
�
� m�j � n�

Implicitly� this mapping partitions the universe into sets whose elements di�er by at most a mul�
tiplicative factor of two� then partitions each set into subsets whose elements di�er by at most an
appropriate additive amount� Under this mapping� the universe of approximate keys is a subset
of f�� �� � � � � U�g� where U� is the largest integer whose binary representation has a number of bits
equal to dlgdlg�U � ��ee� j��

����� Bottom�up implementation

The bottom�up implementation of the radix tree is a complete ���ary tree with L � dlg	�U�e levels
�level � consists of those nodes at distance � from the bottom of the tree� so that the leaves form
level zero��

�This mapping can be improved a bit by using k��
�
� �m� � j��j � n�� where m� �

� maxfj�mg and n �
am���am��� � � � am��j�

�



The leaves in the tree correspond to the approximate key values� For each leaf there is a pointer
to a linked list of the items �if any� whose keys equal the corresponding value� These pointers are
maintained in an array� of size ��L�

For each level � � �� we maintain an array A� of ��
L�� ���bit words� one for each node in level

�� For convenience and locality of reference� the nodes are stored in the arrays so that the binary
representation of the index of each node is the common pre�x of the binary representation of the
indices of its descendants� That is� the index of a leaf with key value k� is just k�� The index of the
ancestor of the leaf at level � has binary representation aD��aD�� � � �a��� where aD��aD�� � � � a� is
the binary representation of k� �D � dlg�U����e�� This allows the index of an ancestor or child to
be computed quickly from the index of a given node�

As described previously� we maintain the invariant that the rth bit of a node�s word is set i�
the subtree of the rth child is non�empty� For brevity� we call r the rank of the child�

Insert First insert the item �with key k�� into the linked list of the corresponding leaf� Then set
the appropriate bits of the ancestors� words to �� Speci�cally� starting at the leaf� check the rth
bit of the parent�s word� where r is the rank of the leaf �note that r is the �ve least signi�cant bits
of k��� If the bit is already set� stop� otherwise set it� move up to the parent� and continue� Stop
at the root or upon �nding an already�set bit�

Search To test whether an item with a given key k� is present� simply check whether the leaf�s
linked list is empty� To �nd an item with the given key� search the linked list of the leaf�

Delete First remove the item from the linked list of its leaf� If the list becomes empty� update
the appropriate bits of the ancestors� words� Speci�cally� starting at the leaf� zero the rth bit of the
parent�s word� where r is the rank of the node� If the entire word is still non�zero� stop� Otherwise�
move up to the parent and continue� Stop at the root or upon �nding a word that is non�zero after
its bit is zeroed�

Minimum Starting from the root� compute the index r of the least signi�cant bit �lsb� of the
root�s word� Descend to the child of rank r and continue� Stop at a leaf�	

Maximum This is similar to minimum� except it uses the most� rather than least� signi�cant bits�

Successor �Given a key k�� return an item with smallest key as large as k���
If the leaf corresponding to k� has a non�empty list� return an item from the list� Otherwise�

search up the tree from the leaf to the �rst ancestor A with a non�empty sibling RA of rank at least
the rank of A� To �nd RA� examine the word of the parent of A to �nd the most signi�cant bit �if
any� set among those bits encoding the emptiness of the subtrees of those siblings that have rank
at least the rank of A� �For this use the nearest�one�to�right operation� nor� as described later in
this section��

Next �nd the leftmost non�empty leaf in R�s subtree� proceeding as in the Minimum operation
above� Return an item from that leaf�s list�

�If this array is large and only sparsely �lled� it can instead be maintained as a hash table�
�In retrospect� this query should probably have been done in a bottom	up fashion� similar to the Successor query

below�

�



Predecessor Predecessor is similar to Successor� but is based on the nearest�one�to�left
�nol� operation�

����� Top�down implementation

This implementation also maintains a ���ary tree with L levels� The implementation di�ers from
the bottom�up one in that memory is allocated on a per�node basis and operations start at the
root� rather than at the leaves�

Speci�cally� each interior node rooting a non�empty subtree consists of a ���bit word �used as in
the bottom�up implementation� and an array of �� pointers to its children nodes �where a pointer
is null if the child�s subtree is empty��

Insert Starting from the root� follow pointers to the appropriate leaf� instantiating new nodes
and setting node�s word�s bits as needed� Speci�cally� before descending into a rank�r child� set the
rth bit of the node�s word�

Search Follow pointers from the root as in Insert� but stop upon reaching any empty subtree
and return NULL� If a leaf is reach� return a node from the leaf�s list�

Delete Follow pointers as in Search� Upon �nding the leaf� remove an item from the leaf�s list�
Retrace the path followed down the tree in reverse� zeroing bits as necessary to represent subtrees
that have become empty�

Minimum Starting at the root� use the node�s word to �nd the leftmost child with a non�empty
subtree �as in the bottom�up implementation of Insert�� Move to that child by following the
corresponding pointer� Continue in this fashion down the tree� Stop upon reaching a leaf and
return an item from the leaf�s list�

Maximum Similar to Minimum�

Successor Starting at the root� let r be the rank of the child whose subtree has the leaf cor�
responding to the given key k�� Among the children of rank at least r with non�empty subtrees�
�nd the one of smallest rank� Do this by applying the nearest�one�to�right word�operation �nor�
de�ned below� to the node�s word� Follow the pointer to that child� Continue until reaching a leaf�

Predecessor Similar to Successor� except use the nol operation instead of nor�

����� Implementation of binary operations

Below we describe howwe implemented the binary operations that are not supported by the machine
hardware�

msb�key�� Themost signi�cant bit operation� ormsb is de�ned as follows� Given a key k�msb�k�
is the index of the most signi�cant bit that is equal to � in k� We have three implementations of
the operation�

� The �rst method is starting from the lgU th
� msb of the key and linearly searching the msb

by checking next msb by shift left operation� We expect this method to be fast �just a few
shifts will be needed� for most values of the words�

�



� A method for obtaining a worst�case performance of lg lgU� is based on binary search� We
apply at most lg lgU� masks and comparisons with � to be to determine the index of msb
This method is not used in any our experiments as it was slower than the above method in
preliminary experiments�

� The last method is dividing the key to � blocks of � bit each� V�� V	� V�� V�� by shifts and
masks� and then search the msb of the most signi�cant non�zero block� This approach could
be seen as a compromise between the two methods described above� and is used for the
computation of the maximum and minimum keys�

lsb�key�� The least signi�cant bit operation� or lsb is de�ned as follows� Given a key k� lsb�k�
is the index of the least signi�cant bit that is equal to � in k� The implementations for lsb are
similar to those of msb �essentially� replacing above �most� with �least�� �msb� with �lsb�� and
�left� with �right���

We note that by using the above implementations for msb and lsb in our experiments� we
exploited the fact that the input is random� For general applicability� we would need an implemen�
tation that is e�cient for arbitrary input� This report is concerned mainly with the performance
of the radix tree data structure when e�cient bit�based operations are available� and therefore
exploiting the nature of input for e�cient msb and lsb executions is appropriate� Nevertheless�
we mention an alternative technique �which we have not tested�� that enables an msb and lsb
implementation using a few operations� one subtraction� one bit�wise XOR� one MOD� and one
lookup to a table of size b�

We describe the lsb implementation for a given value x� First� note that x �� �x bitwise�xor

�x� ��� maps x to �lsb�x���� �� Next� note that there will be a small prime p slightly larger than
b such that �i mod p is unique for i � f�� ���� p� �g� because � generates the multiplicative mod�p
group� Thus� the function x �� ��xbitwise�xor�x� ��� mod p� maps x to a number in f�� ���� p��g
that is uniquely determined by lsb�x�� By precomputing an array T of p � b b�bit words such that
T 	�xbitwise�xor�x���� mod p� � lsb�x�� the lsb function can subsequently be computed in a few
operations� Examples of good p include ��� �b � ����� �
� �b � ��
�� ��� �b � ����� 

 �b � 
���
�
 �b � ���� �� �b � �
�� and �� �b � ���

nol�index�key�� The operation nearest one to left� or nol� is de�ned as follows� Given a key k
and an index i� nol�i� k� is the index of the �rst bit that is equal to � to the left of �more signi�cant
than� the given index� The nol operation is implemented by using the operations shift right by
index and msb�

nor�index�key�� The operation nearest one the right� or nor � is de�ned as follows� Given a key
k and an index i� the nor�i� k� is the index of the �rst bit that is equal to � to the right of �least
signi�cant than� the given index� The nor operation is implemented by using the operations shift
left by index and lsb�

� The Tests

In this section we describe in detail what kind of tests we performed� the data sets we used and
the testing results� We verify from the testing results how well our theoretical expectations were
supported and interpret the variations�






��� The test sets

The main body of the test timed two implementations on numerous sequences� varying the universe
size U over the set f���� ���� ���� ���g� the number of operations N over the set f���� ���� ���� ���g�
and the approximation tolerance� �� over the set f���� ����� � � � � U���� �g� We note that the case
� � � corresponds to no tolerance for approximation�

The sequences were of three kinds� N insertions� N�� insertions followed byN�� delete�minimums�
or N�� insertions� followed by N�� mixed operations �half inserts� one quarter deletes� and one
quarter delete�minimums�� Each insertion was of an item with a random key from the universe�
Each deletion was of an item with a random key from the keys in the priority queue at the time of
the deletion�

For comparison� we also timed more �traditional� priority queues� the binary heap� the Fi�
bonacci heap� the pairing heap and the ���ary heap from the LEDA library 	LED�� as well as a
plain binary search tree with no balance condition� None of these data structures are designed to
take advantage of U or �� so for these tests we �xed U � ��� and � � � and let only N vary��

��� The test results

In summary� we observed that the times per operation were roughly linear in the number of levels
as expected� Across the sequences of a given type �inserts� inserts then delete�minimums� or
inserts then mixed operations�� the �constant� of proportionality varied up or down typically by
as much as ���� The bottom�up radix tree was generally faster than the top�down one� some�
times signi�cantly so� For sequences with enough insertions� the radix trees were faster than the
traditional priority queues� sometimes signi�cantly so�

��� Estimating the constants c� and c

The following table summarizes our best estimates of the running time �in microseconds� per
operation as a function of the number of levels in the tree L � level�U� �� �see Equation ����
for the two radix�tree implementations on the three types of sequences� as N � U � and � vary�
These estimates are based on the sequences described above� and are chosen to minimize the ratio
between the largest and smallest deviations from the estimate� The accuracy of these estimates in
comparison to the actual times per operation is presented Figures � and ��

insert ins�del ins�mixed

top�down � � � ���� � ���L ���� � ���L �
�� � 
�
L
� � � ����� � ���L ����� � ���L ����� � 
�
L

bottom�up � � � ��� � ���L ��� � ���L ��� � ��
L
� � � ���� � ���L ���
 � ���L ���� � ���L

The variation of the actual running times on the sequences in comparison to the estimate
is typically on the order of ��� �lower or higher� of the appropriate estimate� The bottom�up
implementation is generally faster than the top�down implementation� The � � � case is typically
slower per level than the � � � case �especially for the bottom�up implementation��

The table below presents for comparison an estimate of the time for the pairing heap �consis�
tently the fastest of the traditional heaps we tested� as a function of lgN �

�The use of approximate keys reduces the number of distinct keys� By using approximate keys� together with
an implementation of a traditional priority queue that �buckets� equal elements� the time per operation for delete
and delete�min could be reduced from proportional to lgN down to proportional to the logarithm of the number
of distinct keys� We don�t explore this here�






0.5 0.76 1.02 1.28 1.54 1.8

top-down inserts

0

.2

.4

.6

.8

1
-3.1+3.9*L, 36 seq’s

0.7 0.84 0.98 1.12 1.26 1.4

top-down ins/del

0

.2

.4

.6

.8

1
-2.9+3.4*L, 30 seq’s

0.8 0.88 0.96 1.04 1.12 1.2

top-down ins/mixed

0

.2

.4

.6

.8

1
-7.9+7.6*L, 30 seq’s

0.6 0.78 0.96 1.14 1.32 1.5

bottom-up inserts

0

.2

.4

.6

.8

1
1.3+1.3*L, 27 seq’s

0.8 0.9 1. 1.1 1.2 1.3

bottom-up ins/del

0

.2

.4

.6

.8

1
0.8+1.3*L, 30 seq’s

0.7 0.82 0.94 1.06 1.18 1.3

bottom-up ins/mixed

0

.2

.4

.6

.8

1
1.1+1.6*L, 36 seq’s

Figure �� For the plot in the upper left� the top�down radix tree was run on sequences of N
insertions of a universe of size U with approximation tolerance � for the various values of N � U � and
� � �� Above the plot is an estimate �chosen to �t the data� of the running time per operation �in
microseconds as a function of the number of levels L� for the top�down implementation on sequences
of insertions� To the right of the function is the number of sequences� Each sequence yields an �error
ratio� � the actual time for the sequence divided by the time predicted by the estimate� The plot
shows the distribution of the set of error ratios� Each histogram bar represents the fraction of error
ratios near the corresponding x�axes label x� The curve above represents the cumulative fraction
of sequences with error ratios x or less� There is one plot for each implementation�sequence�type
pair� Typically� the error ratios are between ��� and ����

insert ins�del ins�mixed

best traditional ��
� � ���� lgN ����
 � ���� lgN ��
�� � ���� lgN

��� Demonstrating the e�ect of approximation

Our experiments suggest that the radix tree might be very suitable for exploiting approximation
tolerance to obtain better performance� In the following table we provide timing results for three
sequences of operations applied to the bottom up implementation with approximation tolerance
� � ���� ����� ����� ����� �� and the universe size U � ���� The �rst sequence consist of N � ���

insertions� the second one consists of N�� � ��� insertions followed by N�� � ��� delete�minimums�
and �nally the third one consists of N�� � ��� insertions followed by N�� � ��� mixed operations�

�



0.4 0.82 1.24 1.66 2.08 2.5

top-down inserts

0

.2

.4

.6

.8

1
-14.9+5.2*L, 15 seq’s

0.6 0.8 1. 1.2 1.4 1.6

top-down ins/del

0

.2

.4

.6

.8

1
-11.4+4.4*L, 12 seq’s

0.9 0.94 0.98 1.02 1.06 1.1

top-down ins/mixed

0

.2

.4

.6

.8

1
-12.4+6.6*L, 12 seq’s

0.4 0.78 1.16 1.54 1.92 2.3

bottom-up inserts

0

.2

.4

.6

.8

1
-4.8+1.8*L, 13 seq’s

0.6 0.8 1. 1.2 1.4 1.6

bottom-up ins/del

0

.2

.4

.6

.8

1
-5.6+2.4*L, 12 seq’s

0.6 0.78 0.96 1.14 1.32 1.5

bottom-up ins/mixed

0

.2

.4

.6

.8

1
-4.8+2.2*L, 15 seq’s

Figure �� This �gure is analogous to Figure � but represents the case � � �� Note the larger
variation in insert times�

Sequence � Sequence � Sequence �
top�down bottom�up top�down bottom�up top�down bottom�up

� � � �
��� 
��� ����� ����� �
��� �����

� � ���� ���
 ���� ���

 ���� ����� �����

� � ���� �
�� ���� ���
� 
��
 ���
� �����

� � ���� ���
� ���� ����� ���� ����� ���



� � ��� ���

 ���� ����
 ���
 �
�� ����


��� Some comparisons to traditional heaps

Our experiments provide some indication that the radix tree based priority queue might be of prac�
tical interest� Below we provide timing results for the bottom up implementation on three sequences
for comparing the performance of the bottom up implementation and the fastest traditional heap
implementation from the LEDA library� which consistently occured to be the pairing heap� The
�rst sequence consist of N � ��� insertions� the second one consists of N�� � ��� insertions followed
by N�� � ��� delete�minimums� and �nally the third one consists of N�� � ��	 insertions followed
by N�� � ��	 mixed operations� U � ��� and � � � for all sequences�

These �gures suggest that under appropriate conditions � the size of the universe� the number
of elements� and the distribution of the keys over the universe � the radix tree can be competitive
with and sometimes better than the traditional heaps�

Sequence � Sequence � Sequence �

Bottom�Up 
��� ����� ������

fastest traditional ���
 ����� ����
�

The pairing heap is quite fast for the insertion�only sequences� For the other sequences� from
the above tables� we can give rough estimates of when� say� the bottom�up radix tree will be faster

�



inserts� deletes and deletemins
inserts and deletes

inserts

E�ective universe size U�

S
p
ee
d
u
p
v
s�
T
ra
d
it
io
n
a
l

��������������

��

��

�




�

�

�

Figure �� Speedup factor �running time for best traditional priority queue divided by time for
bottom�up ��approximate radix�tree� as a function of � for three random test sequences withN � ���

and U � ����

than the pairing heap� Recall that in the range of parameters we have studied�

levels�U� �� �

�
� � lg������� if � � �
� � lg�U��� if � � ��

For instance� assume a time per operation of � � ���level�U� �� for the radix tree� and � lgN � ��
for the pairing heap� Even for U as large as ��� and � � �� the radix tree is faster once N is larger
than roughly ������ If � � ������� then the radix tree is faster once N is larger than roughly �����
For direct comparisons on actual sequences� see Figure �� which plots the speed�up factor �ratio of
running times� as a function of � on sequences of each of the three types�

We also provide Figures �� �� and 
 to demonstrate the conditions under which the radix tree
implementations become competitive with the LEDA implementations�

��� Discussion

The variation in running times makes us cautious about extrapolating the results�

The e	ect of big data sets The �rst source of variation is that in both implementations having
more keys in the tree reduces the average time per operation� due to the following factors�

� The top�down variant is slower �by a constant factor� when inserting if the insert instantiates
many new nodes� The signi�cance of this varies � if a tree is fairly full� typically only a few
new nodes� near the leaves� will be allocated� If the tree is relatively empty� nodes will also
be allocated further up the tree�

� The bottom�up variant is faster if the tree is relatively full in the region of the operation�
As discussed above� bottom�up operations typically step from a leaf only to a �previously or

��



0

2

4

6

8

10

12

14

5 10 15 20

T
im

e 
pe

r 
op

er
at

io
n

log(N)

memory-intensive approx. p.q.
other approx. p.q.

binary tree
pairing heap

Figure �� Time per operation �in ��seconds� varying with lgN � for a sequence of N inserts� for
U � ���� with no approximation tolerance� One can observe that the time per operation in the
top�down implementation and the pairing heap does not vary with the number of operations� as
expected� For the bottom up implementation� the time per operation decreases with the increasing
number of items� as explained above�

still� non�empty ancestor� This means operations can take time much less than the number
of levels in the tree�

� The signi�cance of the above two e�ects depends on the distribution of keys in the trees� For
instance� if the keys are uniformly distributed in the original universe �as in our experiments�
then� when � � �� the approximate keys will not be uniformly distributed � there will be more
large keys than small keys in the e�ective universe� Thus� the rightmost subtrees will be fuller
�and support faster operations�� the leftmost subtrees will be less full �and therefore slower��

The e	ect of memory issues On a typical computer the memory�access time varies depending
on how many memory cells are in use and with the degree of locality of reference in the memory
access pattern� A typical computer has a small very fast cache� a large fast random access memory
�RAM�� and a very larger slower virtual memory implemented on top of disk storage�

Our test sequences are designed to allow the data structures to �t in RAM but not in cache� This
choice reduces but does not eliminate the memory�access time variation � variation due to caching
remains� It is important to note that our results probably do not extrapolate to applications where
the data structures do not �t in RAM� when that happens� the relative behaviors could change
qualitatively as locality of reference becomes more of an issue�� On the other hand� even with fairly
large universes and�or a large number of keys� most of these data structures can �t in a typical
modern RAM�

Another memory�related issue is the number of bits per machine word b� In this paper� we
consider only b � ��� On computers with larger words� the times per operation should decrease

�Of all the priority queues considered here� the bottom	up radix tree is the most memory	intensive� Nonetheless
it seems possible to implement with reasonable locality of reference�

��



0

5

10

15

20

4 6 8 10 12 14 16 18 20

T
im

e 
pe

r 
op

er
at

io
n

log(N)

memory intensive approx. p.q.
other approx. p.q.

binary tree
pairing heap

Figure �� Time per operation �in ��seconds� varying with lgN � for a sequence of N�� inserts�
followed by N�� delete�mins� for U � ��� with no approximation tolerance� One can observe that
the time per operation in the top�down and bottom�up implementations is decreasing with time�
The non�linear increase in the running time of the pairing heap is possibly due to decreasing cache
utilization with increasing number of operations�

slightly �all other things being equal�� Also� the relative speed of the various bit�wise operations
on machine words �as opposed to� for instance� comparisons and pointer indirection� could a�ect
the relative speeds of radix trees in comparison to traditional priority queues�

Acknowledgment

We thank Jon Bright for participating in this research at an early stage� and for contributing to
the implementations�

References

	AHU
�� A�V� Aho� J�E� Hopcroft� and J�D� Ullman� The Design and Analysis of Computer Algo�
rithms� Addison�Wesley Publishing Company� Inc�� Reading� Massachusetts� ��
��

	FW��a� M�L� Fredman and D�E� Willard� Blasting through the information theoretic barrier with
fusion trees� In Proc� ��nd ACM Symp� on Theory of Computing� pages ��
� �����

	FW��b� M�L� Fredman and D�E� Willard� Trans�dichotomous algorithms for minimum spanning
trees and shortest paths� In Proc� 	
st IEEE Symp� on Foundations of Computer Science�
pages 
���
��� �����

	Jon�
� D� W� Jones� An empirical comparison of priority queue and event set implementations�
Communications of the ACM� April ���
�

��



0

2

4

6

8

10

12

14

16

5 10 15 20

T
im

e 
pe

r 
op

er
at

io
n

log(N)

memory-intensive approx. p.q.
other approx. p.q.

binary tree
pairing heap

Figure 
� Time per operation �in ��seconds� varying with lgN � for a sequence of N�� inserts�
followed by N�� mixed operations� for U � ��� with no approximation tolerance� The same trend
as in Figure � can be observed�

	LED� LEDA system manual� version ������ Technical report� Max Planck Institute fur Infor�
matik� Saarbrucken� Germany�

	LL�
� Anthony LaMarca and Richard E� Ladner� The in�uence of caches on the performance of
heaps� Manuscript� ���
�

	Meh��� K� Mehlhorn� Data Structures and Algorithms I� Sorting and Searching� Springer�Verlag�
Berlin Heidelberg� ����� EATCS Monographs on Theoretical Computer Science�

	MVY��� Y� Matias� J�S� Vitter� and N�E� Young� Approximate data structures with applications�
In Proc� �th ACM�SIAM Symp� on Discrete Algorithms� pages ��
����� January �����

	SV�
� J� T� Stasko and J� S� Vitter� Pairing heaps� Experiments and analysis� Communications
of the ACM� March ���
�

	vKZ

� P� van Emde Boas� R� Kaas� and E� Zijlstra� Design and implementation of an e�cient
priority queue� Math� Systems Theory� ��������
� ��

�

	Wil��� D�E� Willard� Applications of the fusion tree method to computational geometry and
searching� In Proc� 	rd ACM�SIAM Symp� on Discrete Algorithms� pages ��
����� �����

��


