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Abstract

The frequency moments of a sequence containing mi ele�

ments of type i� for � � i � n� are the numbers Fk �Pn

i��
mk

i � We consider the space complexity of randomized

algorithms that approximate the numbers Fk� when the el�

ements of the sequence are given one by one and cannot be

stored� Surprisingly� it turns out that the numbers F�� F�
and F� can be approximated in logarithmic space� whereas

the approximation of Fk for k � � requires n���� space� Ap�

plications to data bases are mentioned as well�

� Introduction

Let A � �a�� a�� � � � � am� be a sequence of elements� where

each ai is a member of N � f�� �� � � � � ng� Let mi � jfj �

aj � igj denote the number of occurrences of i in the se�

quence A� and de�ne� for each k � �

Fk �

nX
i��

mk
i �

In particular� F� is the number of distinct elements appear�

ing in the sequence� F� � � m� is the length of the sequence�

and F� is the repeat rate or Gini�s index of homogeneity

needed in order to compute the surprise index of the se�
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quence �see� e�g�� ���	�� It is also natural to de�ne

F� � max
��i�n

mi �

The numbers Fk are called the frequency moments of A and

provide useful statistics on the sequence�

The frequency moments of a data set represent important

demographic information about the data� and are important

features in the context of database applications� Indeed�

Haas et al ���	 claim that virtually all query optimization

methods in relational and object�relational database sys�

tems require a means for assessing the number of distinct

values of an attribute in a relation� i�e�� the function F� for

the sequence consisting of the relation attribute�

The frequency moments Fk for k � � indicate the degree

of skew of the data� which is of major consideration in many

parallel database applications� Thus� for example� the de�

gree of the skew may determine the selection of algorithms

for data partitioning� as discussed by DeWitt et al ��	 �see

also references therein�� In particular� F� is used by Ioan�

nidis and Poosala ���	 for error estimation in the context of

estimating query result sizes and access plan costs� Their

method is based on selecting appropriate histograms for a

small number of values to approximate the frequency distri�

bution of values in the attributes of relations� The selection

involves joining a relation with itself� note that F� is the

output size of such join�

recently Haas et al ���	 considered sampling based algo�

rithms for estimating F�� and proposed a hybrid approach

in which the algorithm is selected based on the degree of

skew of the data� measured essentially by the function F��

Since skew information plays an important role for many

applications� it may be bene�cial to maintain estimates for

frequency moments� and� most notably� for F�� For e
ciency

purposes� the computation of estimates for frequency mo�

ments of a relation should preferably be done and updated

as the records of the relation are inserted to the database�

The general approach of maintaining views� such as distri�

bution statistics� of the data has been well�studied as the

problem of incremental view maintenance �cf� ���	��

Note that it is rather straightforward to maintain the



�exact� frequency moments by maintaining a full histogram

on the data� i�e�� maintaining a counter mi for each data

value i � f�� �� � � � � ng� which requires memory of size ��n�

�cf� ���	�� However� it is important that the memory used for

computing and maintaining the estimates be limited� Large

memory requirements would require storing the data struc�

tures in external memory� which would imply an expensive

overhead in access time and update time� The restriction

on memory size is further emphasized by the observation

that typically incoming data records will belong to di�erent

relations that are stored in the database� each relation re�

quires its own separate data structure� Thus� the problem

of computing or estimating the frequency moments in one

pass under memory constraints arises naturally in the study

of databases�

There are several known randomized algorithms that ap�

proximate some of the frequency moments Fk using limited

memory� For simplicity� let us consider �rst the problem

of approximating these numbers up to some �xed constant

factor� say with relative error that does not exceed ���� and

with success probability of at least� say� ���� given that

m � nO���� �In the following sections we consider the gen�

eral case� that is� the space complexity as a function of n�

m� the relative error 
 and the error�probability ��� Mor�

ris ���	 �see also ��	� ���	� showed how to approximate F�
�that is� how to design an approximate counter� using only

O�lg lgm� �� O�lg lg n� � bits of memory� Flajolet and

Martin �
	 designed an algorithm for approximating F� using

O�lg n� bits of memory� �Their analysis� however� is based

on the assumption that explicit families of hash functions

with very strong random properties are available�� Whang

et al ���	 considered the problem of approximating F� in the

context of databases�

Here we obtain tight bounds for the minimum possible

memory required to approximate the numbers Fk� We prove

that for every k � �� Fk can be approximated randomly us�

ing at most O�n����k lg n� memory bits� We further show

that for k � �� any �randomized� approximation algorithm

for Fk requires at least ��n��	�k� memory bits and any

randomized approximating algorithm for F� requires ��n�

space� Surprisingly� F� can be approximated �randomly�

using only O�lg n� memory bits�

In addition we observe that a version of the Flajolet�

Martin algorithm for approximating F� can be implemented

and analyzed using very simple linear hash functions� and

that �not surprisingly� the O�lg lg n� and the O�lg n� bounds

in the algorithms of ���	 and �
	 for estimating F� and F�
respectively are tight�

We also make some comments concerning the space com�

plexity of deterministic algorithms that approximate the fre�

quency moments Fk as well as on the space complexity of

randomized or deterministic algorithms that compute those

precisely�

The rest of this extended abstract is organized as follows�

In Section � we describe our space�e
cient randomized al�

gorithms for approximating the frequency moments� The

tools applied here include the known explicit constructions

of small sample spaces which support a sequence of four�

wise independent uniform binary random variables� and the

analysis is based on Chebyshev�s Inequality and a simple

application of the Cherno� bound� In Section � we present

our lower bounds which are mostly based on techniques from

communication complexity� The �nal Section � contains

some concluding remarks and open problems�

� Space e�cient randomized approximation algorithms

In this section we describe several space e
cient random�

ized algorithms for approximating the frequency moments

Fk� Note that each of these moments can be computed pre�

cisely and deterministically using O�n lgm� memory bits� by

simply computing each of the numbers mi precisely� Using

the method of ���	 the space requirement can be slightly re�

duced� by approximating �randomly� each of the numbers

mi instead of computing its precise value� thus getting a

randomized algorithm that approximates the numbers Fk
using O�n lg lgm� memory bits� We next show that one can

do better�

��� Estimating Fk

The basic idea in our algorithm� as well as in the next ran�

domized algorithm described in this section� is a very natural

one� Trying to estimate Fk we de�ne a random variable that

can be computed under the given space constraints� whose

expected value is Fk� and whose variance is relatively small�

The desired result can then be deduced from Chebyshev�s

Inequality�

Theorem ��� For every k � �� every 
 � � and every � � �

there exists a randomized algorithm that computes� given a

sequence A � �a�� � � � � am� of members of N � f�� �� � � � � ng�
in one pass and using

O

�
k lg �����


�
n����k�lg n � lgm�

�

memory bits� a number Y so that the probability that Y de�

viates from Fk by more than 
Fk is at most ��

Proof� Without trying to optimize our absolute constants�

de�ne s� � �kn����k

��
and s� � � lg������ �To simplify the

presentation we omit� from now on� all �oor and ceiling signs

whenever these are not essential�� We �rst assume the length

of the sequence m is known in advance� and then comment

on the required modi�cations if this is not the case�

The algorithm computes s� random variables Y�� � � � � Ys�
and outputs their median Y � Each Yi is the average of s�
random variables Xij � � � j � s�� where the Xij are in�

dependent� identically distributed random variables� Each



of the variables X � Xij is computed from the sequence in

the same way� using O�lg n� lgm� memory bits� as follows�

Choose a random member ap of the sequence A� where the

index p is chosen randomly and uniformly among the num�

bers �� �� � � � �m� Suppose that ap � l � � N � f�� �� � � � � ng��
Let

r � jfq � q � p� aq � lgj � � ��

be the number of occurrences of l among the members of

the sequence A following ap �inclusive�� and de�ne

X � m�rk � �r � ��k� �

Note that in order to compute X we only need to maintain

the lg n bits representing ap � l and the lgm bits represent�

ing the number of occurrences of l�

The expected value E�X� of X is� by de�nition�

E�X� �
m

m

� �
�k � ��k � �k� � � � �� �mk

� � �m� � ��k�
�
��

�k � ��k � �k� � � � �� �mk
� � �m� � ��k�

�
� � � ���

�k � ��k � �k� � � � �� �mk
n � �mn � ��k�

�
	

�

nX
i��

mk
i � Fk�

To estimate the variance Var�X� � E�X�� � �E�X��� of X

we bound E�X���

E�X�� �

m�

m

��
��k � ��k � �k�� � � � �� �mk

� � �m� � ��k��
�
�

�
��k � ��k � �k�� � � � �� �mk

� � �m� � ��k��
�
� � � ���

��k � ��k � �k�� � � � �� �mk
n � �mn � ��k��

��
�m

� �
k��k�� � k�k����k � �k� � � � ��

kmk��
� �mk

� � �m� � ��k�
�
�
�
k��k�� � k�k����k � �k�

� � � �� kmk��
� �mk

� � �m� � ��k�
�
� � � ���

k��k�� � k�k����k � �k� � � � ��

kmk��
n �mk

n � �mn � ��k�
��

�m
�
km�k��

� � km�k��
� � � � �� km�k��

n

�
� kmF�k�� � kF�F�k�� �

where the �rst ineq� is obtained from the following inequality

which holds for any numbers a � b � ��

ak � bk � �a� b��ak�� � ak��b� � � �� abk�� � bk���

� �a� b�kak�� �

We need the following simple inequality�

Fact� For every n positive reals m��m� � � � �mn

�

nX
i��

mi��

nX
i��

m�k��
i � � n����k�

kX
i��

mk
i �

� �

�Note that the sequence m� � n��k �m� � � � � � mn � �

shows that this is tight� up to a constant factor��

Proof �of fact�� Put M � max��i�nmi� then Mk �Pn

i��m
k
i and hence

�

nX
i��

mi��

nX
i��

m�k��
i � � �

nX
i��

mi��M
k��

nX
i��

mk
i �

� �

nX
i��

mi��

nX
i��

mk
i �

�k����k�

nX
i��

mk
i �

� �

nX
i��

mi��

nX
i��

mk
i �

��k����k

� n����k�

nX
i��

mk
i �

��k�

nX
i��

mk
i �

��k����k

� n����k�

nX
i��

mk
i �

� �

where for the last inequality we use the fact that�Pn

i��
mi

�
�n �

�Pn

i��
mk

i �n
���k

� �

By the above fact� the de�nition of the random variables

Yi and the computation above�

Var�Yi� �� E�X���s� � kF�F�k���s� � kn����kF �
k �s� �

whereas

E�Yi� � E�X� � Fk �

Therefore� by Chebyshev�s Inequality and by the de�nition

of s�� for every �xed i�

Prob �jYi � Fkj � 
Fk	 � Var�Yi�


�F �
k

� kn����kF �
k

s�
�F �
k

� �



�

It follows that the probability that a single Yi deviates from

Fk by more than 
Fk is at most ��
� and hence� by the stan�

dard estimate of Cherno� �cf�� for example� ��	 Appendix A��

the probability that more than s��� of the variables Yi de�

viate by more than 
Fk from Fk is at most �� In case this

does not happen� the median Yi supplies a good estimate to

the required quantity Fk� as needed�

It remains to show how the algorithm can be imple�

mented in case m is not known in advance� In this case�

we start with m � � and choose the member al of the se�

quence A used in the computation of X as a�� If indeed

m � �� r � � and the process ends� else we update the

value of m to �� replace al by a� with probability ���� and

update the value of r as needed� In general� after process�

ing the �rst m � � elements of the sequence we have �for

each variable Xij� some value for al and for r� When the

next element am arrives we replace al by that element with



probability ��m� In case of such a replacement� we update

r and de�ne it to be �� Else� al stays as it is and r increases

by � in case am � al and otherwise does not change� It is

easy to check that for the implementation of the whole pro�

cess� O�lg n � lgm� memory bits for each Xij su
ce� This

completes the proof of the theorem� �

Remark� In case m is much bigger than a polynomial in

n� one can use the algorithm of ���	 and approximate each

number r used in the computation of each Xij using only

O�lg lgm�lg���
�� memory bits� Since storing the value of

al requires lg n additional bits this changes the space com�

plexity to O
�
k lg�����

��
n����k�lg n � lg lgm� lg �

� �
�
�

��� Improved estimation for F�

The second frequency moment� F�� is of particular interest�

since the repeat rate and the surprise index arise in various

statistical applications� By the last theorem� F� can be ap�

proximated �for �xed positive 
 and �� using O�
p
n�lg n �

lgm�� memory bits� In the following theorem we show that

in fact a logarithmic number of bits su
ces in this case�

Theorem ��� For every 
 � � and � � � there exists a

randomized algorithm that computes� given a sequence A �

�a�� � � � � am� of members of N � in one pass and using

O

�
lg �����


�
�lg n� lgm�

�
memory bits� a number Y so that the probability that Y devi�

ates from F� by more than 
F� is at most �� For �xed 
 and

�� the algorithm can be implemented by performing� for each

member of the sequence� a constant number of arithmetic

and �nite �eld operations on elements of O�lg n�lg n� bits�

Proof� Put s� � ��
��

and s� � � lg������ As in the previous

algorithm� the output Y of the present algorithm is the me�

dian of s� random variables Y�� Y�� � � � � Ys� � each being the

average of s� random variables Xij � � � j � s�� where the

Xij are independent� identically distributed random vari�

ables� Each X � Xij is computed from the sequence in the

same way� using O�lg n� lgm� memory bits� as follows�

Fix an explicit set V � fv�� � � � � vhg of h � O�n�� vec�

tors of length n with ����� entries� which are four�wise

independent� that is� for every four distinct coordinates � �
i� � � � � � i� � n and every choice of ��� � � � � �� � f��� �g
exactly a �������fraction of the vectors have �j in their

coordinate number ij for j � �� � � � � �� As described in

��	 such sets �also known as orthogonal arrays of strength

�� can be constructed using the parity check matrices of

BCH codes� To implement this construction we need an ir�

reducible polynomial of degree d over GF ���� where �d is

the smallest power of � greater than n� It is not di
cult

to �nd such a polynomial �using O�lg n� space�� and once

it is given it is possible to compute each coordinate of each

vi in O�lg n� space� using a constant number of multiplica�

tions in the �nite �eld GF ��d� and binary inner products

of vectors of length d� To compute X we choose a random

vector vp � ���� ��� � � � � �n� � V � where p is chosen uniformly

between � and h� We then de�ne Z �
Pn

l��
�imi� Note

that Z is a linear function of the numbers mi� and can thus

be computed in one pass from the sequence A� where during

the process we only have to maintain the current value of

the sum and to keep the value p �since the bits of vp can

be generated from p in O�lg n� space�� Therefore� Z can be

computed using only O�lg n�lgm� bits� When the sequence

terminates de�ne X � Z��

As in the previous proof� we next compute the expecta�

tion and variance of X� Since the random variables �i are

pairwise independent and E��i� � � for all i�

E�X� � E

�
�

nX
i��

�imi�
�

	
�

nX
i��

m�
iE��

�
i ��

�
X

��i�j�n

mimjE��i�E��j� �

nX
i��

m�
i � F� �

Similarly� the fact that the variables �i are four�wise inde�

pendent implies that

E�X�� �

nX
i��

m�
i � �

X
��i�j�j

m�
im

�
j �

It follows that

Var�X� � E�X��� �E�X��� � �
X

��i�j�n

m�
im

�
j � �F �

� �

Therefore� by Chebyshev�s Inequality� for each �xed i�

� � i � s��

Prob �jYi � F�j � 
F�	 � Var�Yi�


�F �
�

� �F �
�

s�
�F �
�

�
�



�

The standard estimates of Cherno� now imply� as in the

previous proof� that the probability that the median Y of

the numbers Yi deviates from F� by more than 
F� is at

most �� completing the proof� �

Remark� The space complexity can be reduced for very

large m to O
�
lg �����
��

�lg n� lg lgm� lg���
�� by applying

the method of ���	 to maintain the sum Z with a su
cient

accuracy� The easiest way to do so is to maintain approxi�

mations of the negative and positive parts of this sum using

O�lg n�lg lgm�lg���
�� bits for each� and use the analysis

in ���	 and Chebyshev�s Inequality to show that this gives�

with a su
ciently high probability� the required result� We

omit the details�

��� Comments on the estimation of F�

Flajolet and Martin �
	 described a randomized algorithm

for estimating F� using only O�lg n� memory bits� and ana�

lyzed its performance assuming one may use in the algorithm

an explicit family of hash functions which exhibits some ideal



random properties� Since we are not aware of the existence

of such a family of hash functions we brie�y describe here

a slight modi�cation of the algorithm of �
	 and a simple

analysis that shows that for this version it su
ces to use a

linear hash function� For simplicity we only describe here

the problem of estimating F� up to an absolute multiplica�

tive constant factor� with constant success probability� It is

possible to improve the accuracy and the success probability

of the algorithm by increasing the space it uses�

Proposition ��� For every c � � there exists an algorithm

that� given a sequenceA of members of N � computes a num�

ber Y using O�lg n� memory bits� such that the probability

that the ratio between Y and F� is not between ��c and c is

at most ��c�

Proof� Let d be the smallest integer so that �d � n� and

consider the members of N as elements of the �nite �eld

F � GF ��d�� which are represented by binary vectors of

length d� Let a and b be two random members of F � chosen

uniformly and independently� When a member ai of the

sequence A appears� compute zi � a � ai � b � where the

product and addition are computed in the �eld F � Thus

zi is represented by a binary vector of length d� For any

binary vector z� let r�z� denote the largest r so that the

r rightmost bits of z are all � and put ri � r�zi�� Let R

be the maximum value of ri� where the maximum is taken

over all elements ai of the sequence A� The output of the

algorithm is Y � �R� Note that in order to implement the

algorithm we only have to keep �besides the d � O�lg n�

bits representing an irreducible polynomial needed in order

to perform operations in F � the O�lg n� bits representing

a and b and maintain the O�lg lg n� bits representing the

current maximum ri value�

Suppose� now� that F� is the correct number of distinct

elements that appear in the sequence A� and let us estimate

the probability that Y deviates considerably from F�� The

only two properties of the random mapping f�x� � ax� b

that maps each ai to zi we need is that for every �xed ai� zi
is uniformly distributed over F �and hence the probability

that r�zi� � r is precisely ���r�� and that this mapping is

pairwise independent� Thus� for every �xed distinct ai and

aj � the probability that r�zi� � r and r�zj� � r is precisely

����r �

Fix an r� For each element x � N that appears at least

once in the sequence A� let Wx be the indicator random

variable whose value is � i� r�ax � b� � r� Let Z � Zr �P
Wx� where x ranges over all the F� elements x that appear

in the sequence A� By linearity of expectation and since the

expectation of each Wx is ���r � the expectation E�Z� of Z

is F���r� By pairwise independence� the variance of Z is

F�
�
�r �� � �

�r � � F���
r � Therefore� by Markov�s Inequality

If �r � cF� then Prob�Zr � �� � ��c �

since E�Zr� � F���
r � ��c� Similarly� by Chebyshev�s In�

equality

If c�r � F� then Prob�Zr � �� � ��c �

since Var�Zr� � F���
r � E�Zr� and hence Prob�Zr � �� �

Var�Zr���E�Zr�
�� � ��E�Zr� � �r�F�� Since our algorithm

outputs Y � �R� where R is the maximum r for which Zr �

�� the two inequalities above show that the probability that

the ratio between Y and F� is not between ��c and c is

smaller than ��c� as needed� �

� Lower bounds

In this section we present our lower bounds for the space

complexity of randomized algorithms that approximate the

frequency moments Fk and comment on the space required

to compute these moments randomly but precisely or ap�

proximate them deterministically� Most of our lower bounds

are obtained by reducing the problem to an appropriate

communication complexity problem� where we can either

use some existing results� or prove the required lower bounds

by establishing those for the corresponding communication

problem� The easiest result that illustrates the method is

the proof that the randomized approximation of F� requires

linear memory� presented in the next subsection� Before pre�

senting this simple proof� let us recall some basic de�nitions

and facts concerning the ��error probabilistic communication

complexityC��f� of a function f � f�� �gn�f�� �gn 	
 f�� �g�
introduced by Yao ���	� Consider two parties with unlim�

ited computing power� that wish to compute the value of

a Boolean function f�x�y�� where x and y are binary vec�

tors of length n� the �rst party possesses x and the second

possesses y� To perform the computation� the parties are

allowed to send messages to each other� and each of them

can make random decisions as well� At the end of the com�

munication they must output the correct value of f�x�y�

with probability at least �� � �for the worst possible x and

y�� The complexity C��f� is the expected number of bits

communicated in the worst case �under the best protocol��

As shown by Yao ���	 and extended by Babai� Frankl and

Simon ��	� C��f� can be estimated by considering the related

notion of the ��error distributional communication complex�

ity D��f j�� under a probability measure on the possible in�

puts �x� y�� Here the two parties must apply a deterministic

protocol� and should output the correct value of f�x� y� on

all pairs �x� y� besides a set of inputs whose ��measure does

not exceed �� As shown in ���	� ��	� C��f� � �
�D���f j�� for

all f � � and ��

Let DISn � f�� �gn�f�� �gn 	
 f�� �g denote the Boolean
function �called the Disjointness function�whereDISn�x� y�

is � i� the subsets of f�� �� � � � � ng whose characteristic vec�

tors are x and y intersect� Several researchers studied the

communication complexity of this function� Improving a re�

sult in ��	� Kalyanasundaram and Schnitger ���	 proved that



for any �xed � � ���� C��DISn� � ��n�� Razborov ��
	

exhibited a simple measure � on the inputs of this function

and showed that for this measure D��DISnj�� � ��n�� Our

lower bound for the space complexity of estimating F� fol�

lows easily from the result of ���	� The lower bound for the

approximation of Fk for �xed k � � is more complicated and

requires an extension of the result of Razborov in ��
	�

��� The space complexity of approximating F�

Proposition ��� Any randomized algorithm that outputs�

given a sequenceA of at most �n elements of N � f�� � � � � ng
a number Y such that the probability that Y deviates from

F� by at least F��� is less than �� for some �xed � � ����

must use ��n� memory bits�

Proof� Given an algorithm as above that uses s memory

bits� we describe a simple communication protocol for two

parties possessing x and y respectively to compute DISn�x� y��

using only s bits of communication� Let jxj and jyj denote
the numbers of ��entries of x and y� respectively� Let A be

the sequence of length jxj� jyj consisting of all members of

the subset of N whose characteristic vector is x �arranged

arbitrarily� followed by all members of the subset ofN whose

characteristic vector is y�

The �rst party� knowing x� runs the approximation al�

gorithm on the �rst jxj members of A� It then sends the

content of the memory to the second party which� knowing

y� continues to run the algorithm for approximating F� on

the rest of the sequence A� The second party then outputs

�disjoint� �or �� i� the output of the approximation algo�

rithm is smaller than ���� else it outputs �� It is obvious

that this is the correct value with probability at least �� ��

since the precise value of F� is � if the sets are disjoint� and

otherwise it is ��

The desired result thus follows from the theorem of ���	

mentioned above� �

Remark� It is easy to see that the above lower bound

holds even when m is bigger than �n� since we may consider

sequences in which every number in N occurs either � or

m�n or �m�n times� The method of the next subsection

shows that the linear lower bound holds even if we wish to

approximate the value of F� up to a factor of ���� say� It is

not di
cult to see that ��lg lgm� is also a lower bound for

the space complexity of any randomized approximation al�

gorithm for F� �simply because its �nal output must attain

at least ��lgm� distinct values with positive probability� as

m is not known in advance�� Thus ��n� lg lgm� is a lower

bound for the space complexity of estimating F� for some

�xed positive 
 and �� On the other hand� as mentioned in

the previous section� all frequency moments �including F��

can be approximated using O�n lg lgm� bits�

Note that in the above lower bound proof we only need a

lower bound for the one�way probabilistic communication

complexity of the disjointness function� as in the protocol

described above there is only one communication� from the

�rst party to the second one� Since the lower bound of ���	

holds for arbitrary communication we can deduce a space

lower bound for the approximation of F� even if we allow

algorithms that observe the whole sequence A in its order a

constant number of times�

��� The space complexity of approximating Fk

In this subsection we prove the following�

Theorem ��� For any �xed k � � and 	 � ���� any ran�

domized algorithm that outputs� given an input sequenceA of

at most n elements of N � f�� �� � � � � ng� a number Zk such

that Prob�jZk � Fkj � ���Fk� � 	 uses at least ��n��	�k�

memory bits�

We prove the above theorem by considering an appro�

priate communication game and by studying its complexity�

The analysis of the game is similar to that of Razborov

in ��
	� but requires several modi�cations and additional

ideas� Proof� For positive integers s and t� let D�s� t�

be the following communication game� played by s play�

ers P�� P�� � � � � Ps� De�ne n � ��t � ��s � � and put N �

f�� �� � � � � ng� The input of each player Pi is a subset Ai of

cardinality t of N �also called a t�subset of N�� Each player

knows his own subset� but has no information on those of

the others� An input sequence �A��A�� � � � �As� is called dis�

joint if the sets Ai are pairwise disjoint� and it is called

uniquely intersecting if all the sets Ai share a unique com�

mon element x and the sets Ai � fxg are pairwise disjoint�

The objective of the game is to distinguish between these

two types of inputs� To do so� the players can exchange

messages according to any predetermined probabilistic pro�

tocol� At the end of the protocol the last player outputs a

bit� The protocol is called ��correct if for any disjoint input

sequence the probability that this bit is � is at least � � �

and for any uniquely intersecting input sequence the prob�

ability that this bit is � is at least �� �� �The value of the

output bit for any other input sequence may be arbitrary��

The length of the protocol is the maximum� over all possi�

ble input sequences �A�� � � � �As�� of the expected number of

bits in the communication� In order to prove Theorem ���

we prove the following�

Proposition ��� For any �xed � � ���� and any t � s��

the length of any randomized ��correct protocol for the com�

munication problem DIS�s� t� is at least ��t�s���

By the simple argument of ���	 and ��	� in order to prove

the last proposition it su
ces to exhibit a distribution on

the inputs and prove that any deterministic communication

protocol between the players in which the total commu�

nication is less than ��t�s�� bits produces an output bit

that errs with probability ����� where the last probability

is computed over the input distribution� De�ne a distribu�

tion � on the input sequences �A�� � � � �As� as follows� Let



P � I� � I� � � � � � Is � fxg be a random partition of N

into s � � pairwise disjoint sets� where jIjj � �t � � for

each � � j � s� x � N and P is chosen uniformly among

all partitions of N with these parameters� For each j� let

Aj be a random subset of cardinality t of Ij� Finally� with

probability ���� de�ne Aj � Aj for all � � j � s� and with

probability ���� de�ne Aj � �Ij � Aj� � fxg for all j� It is
useful to observe that an alternative� equivalent de�nition

is to choose the random partition P as above� and then let

each Aj be a random subset of cardinality t of Aj � fxg� If
either none of the subsets Aj contain x or all of them contain

x we keep them as our input sets� and otherwise we discard

them and repeat the random choice�

Note that the probability that the input sequence

�A�� � � � � As� generated under the above distribution is dis�

joint is precisely ���� whereas the probability that it is

uniquely intersecting is also ���� Note also that � gives

each disjoint input sequence the same probability and each

uniquely intersecting input sequence the same probability�

Let �A�
�� � � � �A

�
s� denote a random disjoint input sequence�

and let �A�
�� � � � �A

�
s� denote a random uniquely intersecting

input sequence�

A box is a family X� �X� � � � � �Xs� where each Xi is

a set of t�subsets N � This is clearly a family of s�tuples of t�

subsets of N � Standard �and simple� arguments imply that

the set of all input sequences �A��A�� � � � �As� corresponding

to a �xed communication between the players forms a box�

As we shall see later� this shows that the following lemma

su
ces to establish a lower bound on the average commu�

nication complexity of any deterministic ��correct protocol

for the above game�

Lemma ��� There exists an absolute constant c � � such

that for every box X� �X� � � � � �Xs

Prob
�
�A�

�� � � � �A
�
s� � X� � � � � �Xs

� �
�

�e
Prob

�
�A�

�� � � � �A
�
s� � X� � � � � �Xs

�� s��ct�s
�

To prove the lemma� �x a box X� �X� � � � � �Xs� Recall

that the distribution � on the inputs has been de�ned by �rst

choosing a random partition P � For such a partition P � let

ProbP �Aj � Xj	 denote the conditional probability that Aj

lies in Xj� given that the partition used in the random choice

of the input sequence �A�� � � � �As� is P � The conditional

probabilities ProbP �A
�
j � Xj	 and ProbP �A

�
j � Xj	 are de�

�ned analogously� A partition P � I� � I� � � � � �As � fxg
is called j�bad� where j satis�es � � j � s� if

ProbP �A
�
j � Xj	 �

�
�� �

s� �

�
ProbP �A

�
j � Xj	� ��ct�s

�

�

where c � � is a �small� absolute constant� to be chosen

later� The partition is bad if it is j�bad for some j� If it is

not bad� it is good�

We need the following two statements about good and

bad partitions�

Lemma ��	 There exists a choice for the constant c � �

in the last inequality such that the following holds� For any

set of s � � pairwise disjoint t�subsets I �r � N � �� � r �
s� r �� j�� the conditional probability that the partition P �

I� � I� � � � � � Is � fxg is j�bad� given that Ir � I �r for all

r �� j� is at most �
��s �

Proof� Note that since Ir is known for all r �� j� the union

Ij � fxg is known as well� and there are only �t possibilities

for the partition P � If the number of t�subsets of Ij � fxg
that belong to Xj is smaller than

�

�

�
�t

t

�
��ct�s

�

then for each of the �t possible partitions P � ProbP �A
�
j �

Xj	 � ��ct�s
�

� implying that P is not j�bad� Therefore�

in this case the conditional probability we have to bound

is zero and the assertion of the lemma holds� Consider�

thus� the case that there are at least that many t�subsets of

Ij �fxg in Xj� let F denote the family of all these t�subsets

and put Ij � fxg � fx�� x�� � � � � x�tg� Let pi denote the

fraction of members of F that contain xi� and let H�p� �

�p lg� p� ��� p� lg���� p� be the binary entropy function�

By a standard entropy inequality �cf�� e�g�� ��	��

jFj � �

P
�t

i��
H�pi� �

In order to determine the partition P � I��I��� � ��Is�fxg
we have to choose one of the elements xi as x� The crucial

observation is that if the choice of xi as x results in a j�

bad partition P � then pi � ��� �
s
� ���� pi�� implying that

H�pi� � � � c��s� for some absolute positive constant c��

Let b denote the number of elements xi whose choice as x

results in a j�bad partition P � By the above discussion

�

�

�
�t

t

�
��ct�s

� � jFj � ��t�bc
��s� �

This implies that if t�s� is much larger than lg t� then b �
O�ct�s�� and by choosing c to be su
ciently small this upper

bound for b is smaller than �t����s�� completing the proof

of the lemma� �

Lemma ��
 If P � I��I��� � ��Is�fxg is a good partition
then

ProbP
�
�A�

��A
�
�� � � � �A

�
s� � X� �X� � � � � �Xs

� �
�

e
ProbP

�
�A�

�� � � � �A
�
s� � X� � � � � �Xs

�
� s��ct�s

�

�

Proof� By the de�nition of a good partition

ProbP �A
�
j � Xj 	 � ��� �

s� �
�ProbP �A

�
j � Xj	� ��ct�s

�

for every j� � � j � s� Multiplying the above inequalities

and using the de�nition of the distribution � as well as the

fact that ��� �
s
�

�s � �
e
the desired result follows� �



Returning to the proof of Lemma ���� let ��P � be the

indicator random variable whose value is � i� P is a bad

partition� Similarly� let �j�P � be the indicator random vari�

able whose value is � i� P is j�bad� Note that ��P � �Ps

j�� �j�P ��

By computing the expectation over all partitions P

Prob
�
�A�

�� � � � �A
�
s� � X� � � � � �Xs

�
� E

�
ProbP

�
�A�

�� � � � �A
�
s� � X� � � � � �Xs

��
� E

�
ProbP

�
�A�

�� � � � �A
�
s� � X� � � � � �Xs

�
���� ��P ��� � �

e
E
�
ProbP

�
�A�

�� � � � � A
�
s� �

X� � � � � �Xs

�
��� ��P ��

�
� s��ct�s

�

�

where the last inequality follows from Lemma ����

It follows that in order to prove the assertion of Lemma

��� it su
ces to show that for every j� � � j � s�

E
�
ProbP

�
�A�

�� � � � �A
�
s� � X� � � � � �Xs

�
�j�P �

�
���

� �

�s
E
�
ProbP

�
�A�

�� � � � �A
�
s� � X� � � � � �Xs

��
� ���

Consider a �xed choice for the subsets Ir� r �� j in the

de�nition of the partition P � I� � I�� � � � � Is�fxg� Given
this choice� the union U � Ij �fxg is known� but the actual
element x should still be chosen randomly in this union�

Given the above information on P � the quantity ��� is

�

�s

sY
r��

ProbP �A
�
r � Xr 	 �

and each of these factors besides the one corresponding to

r � j is �xed� The same s � � factors appear also in ����

The last factor in the above product� ProbP �A
�
j � Xj	� is

also easy to compute as follows� Let l denote the number

of t�subsets in Xj which are contained in Ij � fxg� Then

ProbP �A
�
j � Xj 	 is precisely l�

�
�t
t

�
� Note� also� that for any

choice of a member of U as x� the probability that A�
j lies

in Xj cannot exceed l�
�
�t��
t

�
� �l�

�
�t
t

�
� By Lemma ���� the

probability that �j�P � � � given the choice of Ir� r �� j� is

at most �����s� and we thus conclude that

E
�
ProbP

�
�A�

��A
�
�� � � � � A

�
s� � X� �X� � � � � �Xs

�
�j�P �� � �

��s
E
�
ProbP

�
�A�

�� � � � �A
�
s� �

X� � � � � �Xs

��
�

implying the inequality in ���� ��� and completing the proof

of Lemma ���� �

Proof of Proposition ���� Since it is possible to repeat

the protocol and amplify the probabilities� it su
ces to prove

the assertion of the proposition for some �xed � � ���� and

thus it su
ces to show that any deterministic protocol whose

length is smaller than ��t�s��� applied to inputs generated

according to the distribution �� errs with probability �����

It is easy and well known that any �xed communication

pattern corresponds to a box of inputs� Therefore� if the

number of communication patterns in the end of which the

protocol outputs � is smaller than �
s
�ct�s

�

then� by summing

the assertion of Lemma ��� over all the boxes correspond�

ing to such communication patterns� we conclude that the

probability that the protocol outputs � on a random input

�A�
�� � � � �A

�
s� is at least

�
�e times the probability it outputs

� on a random input �A�
�� � � � �A

�
s� minus �� By choosing a

su
ciently small absolute constant � � � this shows that

in this case the algorithm must err with probability �����

Thus� the number of communication patterns must be at

least �� �s �
ct�s�� and hence the number of bits in the com�

munication must be at least ��t�s��� �

Proof of Theorem ���� Fix an integer k � �� Given a

randomized algorithm for approximating the frequency mo�

ment Fk for any sequence of at most n members of N �

f�� �� � � � � ng� where n � ��t � ��s � �� using M memory

bits� we de�ne a simple randomized protocol for the com�

munication game DIS�s� t� for s � n��k � t � ��n����k��

Let A��A�� � � � �As be the inputs given to the players� The

�rst player runs the algorithm on the t elements of his set

and communicates the content of the memory to the sec�

ond player� The second player then continues to run the

algorithm� starting from the memory con�guration he re�

ceived� on the elements of his set� and communicates the

resulting content of the memory to the third one� and so

on� The last player� player number s� obtains the out�

put Zk of the algorithm� If it is at most ���st he reports

that the input sequence �A�� � � � �As� is disjoint� Else� he

reports it is uniquely intersecting� Note that if the in�

put sequence is disjoint� then the correct value of Fk is st�

whereas if it is uniquely intersecting the correct value of Fk
is sk � s�t � �� � n � s�t � �� � ��t � ��s � � �� � o����n�

Therefore� if the algorithm outputs a good approximation to

Fk with probability at least ��	� the protocol for DIS�s� t�

is 	�correct and its total communication is �s� ��M � sM �

By Proposition ��� this implies that sM � ��t�s��� showing

that

M � ��t�s�� � ��n�s	� � ��n��	�k� �

This completes the proof� �

Remark� Since the lower bound in Proposition ��� holds

for general protocols� and not only for one�way protocols

in which every player communicates only once� the above

lower bound for the space complexity of approximating Fk
holds even for algorithms that may read the sequence A in

its original order a constant number of times�

We show in the remainder of this section that the ran�

domization and approximation are both required in the es�

timation of Fk when using o�n� memory bits�

��� Deterministic algorithms

It is obvious that given a sequence A� its length F� can

be computed precisely and deterministically in logarithmic



space� Here we show that for any nonnegative k besides ��

even an approximation of Fk up to� say� a relative error of ���

cannot be computed deterministically using less than a lin�

ear number of memory bits� This shows that the randomness

is crucial in the two approximation algorithms described in

Section �� This is a simple corollary of the known results

concerning the deterministic communication complexity of

the equality function� Since� however� these known results

are not di
cult� we present a self contained proof� without

any reference to communication complexity�

Proposition ��� For any nonnegative integer k �� �� any

deterministic algorithm that outputs� given a sequence A of

n�� elements of N � f�� �� � � � � ng� a number Y such that

jY � Fkj � ���Fk must use ��n� memory bits�

Proof� Let G be a family of t � ���n� subsets of N � each

of cardinality n�� so that any two distinct members of G
have at most n�
 elements in common� �The existence of

such a G follows from standard results in coding theory� and

can be proved by a simple counting argument�� Fix a de�

terministic algorithm that approximates Fk for some �xed

nonnegative k �� �� For every two members G� and G� of

G let A�G��G�� be the sequence of length n�� starting with

the n�� members of G� �in a sorted order� and ending with

the set of n�� members of G� �in a sorted order�� When the

algorithm runs� given a sequence of the form A�G��G��� the

memory con�guration after it reads the �rst n�� elements of

the sequence depends only on G�� By the pigeonhole prin�

ciple� if the memory has less than lg t bits� then there are

two distinct sets G� and G� in G� so that the content of the
memory after reading the elements of G� is equal to that

content after reading the elements of G�� This means that

the algorithm must give the same �nal output to the two

sequences A�G��G�� and A�G��G��� This� however� contra�

dicts the assumption� since for every k �� �� the values of Fk
for the two sequences above di�er from each other consid�

erably� for A�G��G��� F� � n�� and Fk � �kn�� for k � ��

whereas for A�G��G��� F� � �n�
 and Fk � n�� � �kn�
�

Therefore� the answer of the algorithm makes a relative er�

ror that exceeds ��� for at least one of these two sequences�

It follows that the space used by the algorithm must be at

least lg t � ��n�� completing the proof� �

��� Randomized precise computation

As shown above� the randomness is essential in the two al�

gorithms for approximating the frequency moments Fk� de�

scribed in Section �� In this subsection we observe that the

fact that these are approximation algorithms is crucial as

well� in the sense that the precise computation of these mo�

ments �for all k but k � �� requires linear space� even if we

allow randomized algorithms�

Proposition ��� For any nonnegative integer k �� �� any

randomized algorithm that outputs� given a sequence A of at

most �n elements of N � f�� �� � � � � ng a number Y such that

Y � Fk with probability at least �� � for some �xed � � ���

must use ��n� memory bits�

Proof� The reduction in the proof of Proposition ��� easily

works here as well and proves the above assertion using the

main result of ���	� �

� Tight lower bounds for the approximation of F�� F�� F�

The results in ���	� �
	 and those in Section � here show

that logarithmic memory su
ces to approximate randomly

the frequency moments F�� F� and F� of a sequence A of at

most m terms up to a constant factor with some �xed small

error probability� More precisely� O�lg lgm� bits su
ce for

approximating F�� O�lg n� bits su
ce for estimating F� and

O�lg n�lg lgm� bits su
ce for approximating F�� where the

last statement follows from the remark following the proof

of Theorem ���� It is not di
cult to show that all these

upper bounds are tight� up to a constant factor� as shown

below�

Proposition ��� Let A be a sequence of at most m ele�

ments of N � f�� �� � � � � ng�
�i� Any randomized algorithm for approximating F� up to

an additive error of ���F� with probability at least ��� must

use at least ��lg n� memory bits�

�ii� Any randomized algorithm for approximating F� up to

���F� with probability at least ��� must use at least��lg lgm�

memory bits�

�ii� Any randomized algorithm for approximating F� up to

���F� with probability at least ��� must use at least ��lg n�

lg lgm� memory bits�

Proof �sketch��

�i� The result follows from the construction in the proof

of Proposition ���� together with the well known fact that

the randomized communication complexity of the equality

function f�x�y� whose value is � i� x � y� where x and y

are l�bit numbers� is ��lg l��

�ii� Since the length F� of the sequence can be any number

up to m� the �nal content of the memory should admit at

least ��lgm� distinct values with positive probability� giving

the desired result�

�iii� The required memory is at least ��lg n� by the argument

mentioned in the proof of part �i� and is at least ��lg lgm�

by the argument mentioned in the proof of part �ii�� �

� Concluding remarks

We have seen that there are surprisingly space e
cient ran�

domized algorithms for approximating the �rst three fre�

quency moments F�� F�� F�� whereas not much space can be

gained over the trivial algorithms in the approximation of Fk
for k � �� We conjecture that an n���� space lower bound

holds for any k �integer or non�integer�� when k � �� It



would be interesting to determine or estimate the space com�

plexity of the approximation of
Pn

i��
mk

i for non�integral

values of k for k � �� or the space complexity of estimating

other functions of the numbers mi� The method described

in Section ��� can be applied in many cases and give some

nontrivial space savings� Thus� for example� it is not too dif�

�cult to design a randomized algorithm based on the general

scheme in Subsection ���� that approximates
Pn

i��
mi lgmi

up to some �xed small relative error with some small �xed

error�probability� using O�lg n lgm� memory bits� We omit

the detailed description of this algorithm�

In a recent work ��	 Alon et al presented an experimental

study of the estimation algorithms for F�� The experimental

results demonstrate the practical utility of these algorithms�

The algorithms are also extended to deal with the fully dy�

namic case� in which set items may be deleted as well� We

�nally remark that in practice� one may be able to obtain

estimation algorithms which for typical data sets would be

more e
cient than the worst case performance implied by

the lower bounds� Gibbons et al ��	 recently presented an

algorithm for maintaining an approximate list of the k most

popular items and their approximate counts �and hence also

approximating F�� using small memory� which works well

for frequency distributions of practical interest�
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