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Abstract

In large data recording and warehousing environments� it is often advantageous to provide

fast� approximate answers to queries� The goal is to provide an estimated response in orders of

magnitude less time than the time to compute an exact answer� by avoiding or minimizing the

number of accesses to the base data�

This paper presents the Approximate QUery Answering �AQUA� System� for fast� highly�

accurate approximate answers to queries� Aqua provides approximate answers using small� pre�

computed synopses �samples� counts� etc�� of the underlying base data� An important feature of

Aqua is that it provides accuracy guarantees without any a priori assumptions on either the data

distribution� the order in which the base data is loaded� or the layout of the data on the disks�

Currently� the system provides fast approximate answers for queries with selects� aggregates� group

bys and�or joins �especially� the multi�way foreign key joins that are popular in OLAP��

We present several new techniques for improving the accuracy of approximate query answers for

this class of queries� We show how join sampling can signi�cantly improve the approximation qual�

ity� We describe how biased sampling can be used to overcome the problem of group size disparities

in group by operations� Moreover� we present e�cient algorithms for incremental maintenance of

join samples� biased samples� and all other synopses used in the current Aqua system� Analytical

bounds and experimental results on TPC�D queries demonstrate Aqua�s e	ectiveness� even in the

presence of data distribution changes�

Aqua is the �rst system to provide fast �no accesses to the base data at query time�� highly�

accurate approximate answers for a broad class of queries that arise in data warehousing scenarios�

Finally� the area of approximate query answers is not well�understood �e�g�� what is a concise

approximate answer for a set�valued query
�� This paper attempts to clarify issues related to

approximate query answers by presenting a taxonomy for �metrics for evaluating� approximate

query engines and the approximate answers they provide�

�Current address� Tel�Aviv University� Ramat Aviv� Tel�Aviv ����� Israel�



� Introduction

Traditional query processing has focused solely on providing exact answers to queries� in a manner

that seeks to minimize response time and maximize throughput� However� there are a number of

environments for which the response time for an exact answer is often slower than is desirable� First�

in large data recording and warehousing environments� providing an exact answer to a complex query

can take minutes to hours� due to the amount of disk I�O required� For environments with terabytes

or more of data� even a single scan of the data can take tens of minutes� Second� in distributed data

recording and warehousing environments� some of the data may be remote� resulting in slow response

times� and may even be currently unavailable� so that an exact answer is not an option until the data

again becomes available �FJS���� Finally� in environments with stringent response time requirements�

even a single access at a particular level of the storage hierarchy may be unacceptably slow� e�g�� for

sub�millisecond response time� a single disk access is too slow�

Environments for which providing an exact answer results in undesirable response times motivate

the study of techniques for providing approximate answers to queries� The goal is to provide an

estimated response in orders of magnitude less time than the time to compute an exact answer� by

avoiding or minimizing the number of accesses to the base data�

There are a number of scenarios for which an exact answer may not be required� and a user may

prefer a fast� approximate answer� For example� during a drill�down query sequence in ad�hoc data

mining� the earlier queries in the sequence are used solely to determine what the interesting queries

are �GM��� HHW���� An approximate answer can also provide feedback on how well�posed a query

is� Moreover� it can provide a tentative answer to a query when the base data is unavailable� Another

example is when the query requests numerical answers� and the full precision of the exact answer is

not needed� e�g�� a total� average� or percentage for which only the 	rst few digits of precision are

of interest 
such as the leading few digits of a total in the millions� or the nearest percentile of a

percentage�� Finally� note that techniques for fast approximate answers can also be used in a more

traditional role within the query optimizer to estimate plan costs� such an application demands very

fast response times but not exact answers�

Despite some recent work in approximate query answers 
e�g�� �VL�
� GM��� HHW��� BDF����

GM����� the state�of�the�art is quite limited in its speed� scope and accuracy�

This paper describes the Approximate QUery Answering �AQUA� System� the 	rst system

designed to provide fast� highly�accurate approximate answers to a broad class of aggregate and set�

valued queries� Aqua provides approximate answers in orders of magnitude less response time than

previous systems 
e�g�� �VL�
� HHW����� by 
typically� avoiding disk accesses at query time� Another

important feature of Aqua is that it provides accuracy guarantees without any a priori assumptions on

either the data distribution� the order in which the base data is loaded� or the physical layout of the

data on the disks� Currently� the system provides fast approximate answers for queries with selects�

aggregates� group bys and�or joins 
especially� the multi�way foreign key joins that are popular in

OLAP��

This paper presents several new techniques for improving the accuracy of approximate query

answers for this class of queries� We show how join sampling overcomes a problem with joins and
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can signi	cantly improve the approximation quality� We describe how biased sampling can be used to

deal with group size disparities in group by operations� Moreover� we present e�cient algorithms for

incremental maintenance of join samples� biased samples� and all other synopses used in the current

Aqua system�

Experimental results on queries from the TPC�D benchmark demonstrate the e�ectiveness of Aqua

in providing highly�accurate answers without accessing the base data at query time� and in maintaining

this e�ectiveness in the presence of data distribution changes� In addition� we present both analytical

bounds and experimental results comparing various strategies for allocating sample sizes�

The area of approximate query answering is not well�understood� E�g�� what is a 
concise� approx�

imate answer for a set�valued query� How do we evaluate and compare approximate query systems�

This paper attempts to address some of these issues by presenting a general framework for approx�

imate query answering and a taxonomy for 
metrics for evaluating� approximate query engines and

the approximate answers they provide� This discussion generalizes the one in �GM��� from simple

aggregates to group by and set�valued queries�

Road map� Section � presents our framework�taxonomy�metrics� Section 
 describes the Aqua

system design� Section � describes the problem with joins and our solution� Section � presents

analytical bounds based on the allocation of sample sizes� Section � discusses our technique for group

bys� Section � presents the experimental set�up and results obtained� Section � discusses related work�

A summary of the Hoe�ding�based con	dence bounds we use appear in the appendix�

� A framework for approximate query answering

Figure � depicts a traditional data warehouse set�up� in which the base data resides in a data warehouse

that is updated as new data arrives� and each query is answered exactly using the data warehouse� In

contrast� Figure � depicts a set�up for approximate query answering� which includes an approximate

query engine in addition to the data warehouse� To facilitate in answering queries� the approximate

query engine can store various summary information on the data� which we denote synopsis data

structures or synopses� Examples of synopses for a relational data warehouse include histograms

and sample rows of large relations and all the rows of small relations� projected on the columns of

interest� These synopses can be maintained by� 
�� observing the new data as it is loaded into the

data warehouse� 
�� periodically returning to the data warehouse to update the information� and�or
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The exact answer An approximate answer

region type avg� sales min� sales region type avg� sales min� sales
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��

central retail �
��� ���� central retail �
���� ��� ����� 
��

western retail ����� 
��� central outlet � ��� � ���

western outlet ���
 ��� western retail ������ ��� 
���� 
��

western outlet ����� ��� � ���

Figure 
� An example approximate answer for a group by query�



� returning to the data warehouse at query time�

Queries are sent to the approximate answer engine� Whenever possible� the engine uses its synopses

to promptly return a query response� consisting of an approximate answer and an accuracy measure


e�g�� a ��� con	dence interval for numerical answers�� In continuous reporting�� the engine proceeds

to provide a series of happroximate answer� accuracy measurei pairs for the query� with each subsequent
pair providing a more accurate answer 
e�g�� �HHW����� In discrete reporting � only one or a few

such pairs are provided by the engine� The user posing the query can decide whether to abort the

query processing and be content with the current approximate answer or to proceed to the next

approximation or to an exact answer from the base data� Alternatively� the user may pose his�her

next query� while allowing the current query to proceed� in order to allow for subsequent veri	cation

of the approximate answer�

��� What is an approximate answer�

For queries whose answer is an aggregate value 
e�g�� the result of avg� sum� count�� the notion of an

approximate answer is an intuitive one� it is simply an estimated value for the answer and an accuracy

measure� This can be extended to a collection of aggregate values� such as arises with an SQL group

by operation� an approximate answer is an hestimated value� accuracy measurei pair for each such
aggregate value� labeled with the attributes that de	ne the aggregate 
the group�� An example is

given in Figure 
� In this example� the approximate answer provides accuracy measures as con	dence

intervals for each estimate� for some con	dence probability that would also be speci	ed 
e�g�� ���

con	dence intervals�� Note that in several cases an upper bound� denoted a sanity bound � is provided

instead of an estimate� Finally� note that an approximate answer can include rows not in the exact

answer� as in this example 
for the central outlet group�� and vice�versa�

For set�valued queries� it is less intuitive what an approximate answer should be� Since the number

of tuples in the exact answer may be quite large� we often do not want to return a tuple for each tuple

in the exact answer� In order to ensure very fast response times� we seek to return only a small

number of representative tuples� together with meta�information on the entire set of tuples� Thus an

approximate answer consists of both estimates on meta�information for the exact answer� including

�Denoted �progressive resolution re	nement
 in �BDF�����






an estimated 
or actual� count of the number of tuples in the exact answer� and representative tuples

from the exact answer� Each meta�information estimate includes an accuracy measure� Representative

tuples can be classi	ed as certain or possible� depending on whether or not the approximate engine

is certain that the tuple is in the exact answer �VL�
�� Possible tuples are reported along with some

measure of their similarity to tuples in the exact answer� Examples include tuples that are in the exact

answer with a given con	dence probability or tuples that may not meet a selection criterion 
such as

a min or a max� that is computed by the query� but are close to it�

We classify the certain tuples as randomly�selected if the tuples reported are a uniform random

sample of the set of output tuples� as biased�selected if the tuples reported are biased according to a

speci	c criterion� or as arbitrary � Randomly�selected tuples have the advantage that they are uniformly

representative of the entire set of output tuples� Biased�selected tuples have the advantage if the bias

criterion is in line with the �most interesting� output tuples� e�g�� the query requests tuples that lie

above a certain threshold and the reported tuples are biased towards those that exceed the threshold

by the largest amount� as in �GM���� In such cases� biased�selected may be preferred to randomly�

selected� On the other hand� if the criterion for what makes an output tuple interesting is not known�

or there are con�icting criteria� then a uniform random sample is a natural choice� Representative

tuples may or may not contain all the columns in the full tuple�

There are a number of possible accuracy measures for an approximate answer� depending on the

type of query� For numerical answers� a natural accuracy measure is a con	dence interval� consisting of

an accuracy interval �a� b� and a con	dence probability p� The con	dence interval asserts that the exact

value is between a and b with probability at least p� It is also useful to have the approximate answer

be an unbiased estimator of the exact value� that is� the expected value of the approximate answer

is equal to the exact value� Accuracy measures and similarity measures can be classi	ed as either


provably� guaranteed or heuristic� Common heuristic measures include those based on assumptions

on the distribution of the values within a histogram bucket� on the independence of attributes� on the

uniformity of joins� and on the randomness of tuples read sequentially from disk� Although guaranteed

measures are preferred� in some cases it is di�cult to obtain tight guaranteed bounds� and heuristic

measures may be more suitable�

Table � summarizes the requirements for approximate answers�

��� Metrics for evaluating approximate query engines

Approximate query engines can be evaluated according to the following 	ve metrics�

� coverage� the range of queries for which approximate answers can be provided�

� response time� the time to provide an approximate answer for a query�

� accuracy � the accuracy of the answers provided� and the con	dence in that accuracy�

� update time� the overheads in keeping its synopses up�to�date�

� footprint � the storage requirements for its synopses�

�



Table �� Approximate answers�

Exact answer Approximate answer

aggregate values for each aggregate value�

�� estimated value or sanity bound

�� accuracy measure

set of tuples �� estimated meta�information on the output�

i�e�� a collection of hvalue� accuracy measurei pairs�
�� representative tuples� either�

a� randomly�selected certain

b� biased�selected certain� with criterion

c� arbitrary certain� or

d� possible� with similarity measure

Typically� there will be trade�o�s among these metrics� e�g�� with continuous reporting� the addi�

tional response time for each subsequent answer results in greater accuracy�

� The Aqua system

The goal of Aqua is to provide highly�accurate answers with minimal response time by�

� Maintaining a number of synopses on the data�

� Updating these synopses primarily by observing the new data as it is loaded into the data ware�

house� We assume that Aqua is run primarily in the context of a data warehousing system in

which updates are applied in a �batch� mode� Aqua seeks to minimize disk accesses at update

time by observing new data during these batch updates and minimizing accesses to the old data�

� Providing discrete reporting� The current Aqua system provides for a single approximate answer�

determined by all the synopses at hand� This simpli	es the maintenance and use of the synopses�

resulting in faster response times and update times� Continuous reporting would require a means

for reporting answers with increasing accuracy� resulting in greater complexity and either a

su�ciently large footprint to support the highest level of accuracy or a very slow response time

if the base data must be heavily accessed�

� Ensuring guaranteed accuracy measures� Although heuristic accuracy measures for estimation

procedures are common in commercial databases� they are not quite satisfying� This is particu�

larly true for approximate query answers� since the approximate answer is reported to the user�

Aqua seeks to push from heuristic con	dence to guaranteed con	dence�

� Having a footprint orders of magnitude smaller than the data warehouse� Aqua seeks to have

memory�resident any synopsis that is frequently updated and�or frequently used to respond to

�



queries� in order to minimize update and response times��

In response to a query� Aqua uses its synopses to produce an approximate answer according to

Table �� For aggregate values� the accuracy measure is a con	dence interval� For set�valued queries�

the meta�information is an estimate and con	dence interval for the size of the exact answer and

representative tuples are of type 
a�� 
b� or 
d�� depending on the query�

��� Query processing in Aqua

In this section� we brie�y describe the internals of the query processing engine that we developed for

Aqua� Our design is motivated by the design principles of the Volcano query processing system �Gra����

The key features of the Aqua query processor are 
a� its rich set of query operators and 
b� its easy

extensibility� The input to the system is a query plan containing a tree of operators� Operators

correspond to distinct query operations� e�g�� select� hash or nested loop joins� sort� aggregate� read�

from�	le� etc� All operators are implemented as iterators with a standard interface and executed in a

top�down fashion� First� we invoke the open call on the root of the plan� which initializes the operator�

speci	c data and calls open on each of its children recursively� Next� we repeatedly invoke the fetch

call on the root� In response to this call� an operator fetches some of its input from its children 
or

from a database 	le in case of the �le read operator�� performs the relevant operation 
if any�� and

sends the results upwards� This process terminates when all the inputs to the query are exhausted

and no more results can be generated� Finally� we recursively invoke close on the operators which

performs clean�up operations� e�g�� close the open tables� release memory�

An important feature of this design is the isolation of operators from each other� i�e�� an operator

does not need to know the nature of the operators generating its input and vice versa� For example�

in the operator�s view� the input could be coming from a simple 	le scan or from a complex query


these are called anonymous inputs in Volcano �Gra����� This feature enables us to build arbitrarily

complex queries in a modular fashion and add 
or modify� an existing query operator with localized

changes� This is very useful in Aqua because it enables us to implement various novel operators needed

in our research very easily� For example� we implemented a sample operator� which samples its input

stream and outputs randomly chosen tuples� either a 	xed number 
using reservoir sampling �Vit����

or a desired fraction of the input stream� Clearly� this is very bene	cial in the study of sampling

techniques in Aqua�

The query processing engine is used for producing both approximate answers and exact answers�

��� Aqua synopses and their maintenance

The basic Aqua query processing engine is augmented with routines to maintain a number of synopses

on the data� many of which are normally stored in system catalogs� including�

� For each relation� we maintain a count of the number of tuples in the relation�

� For small relations 
hundreds of tuples or less�� we store all the tuples in the relation�
�For persistence and recovery� combinations of snapshots and
or logs can be stored on disk� alternatively� the synopsis

can often be recomputed in one pass over the base data�

�



� For all other relations� we store random tuples and various other synopses� as discussed in
subsequent sections of the paper�

� For each attribute that may be used in an avg or sum aggregate� we maintain an upper bound
and a lower bound on its range�

For each tuple stored� we retain only attributes of interest� The optimal selection of attributes to retain

depends on the mix of queries� In our experiments� we discard descriptive strings such as comments�

This reduces the footprint needed for each tuple� since descriptive strings often require many bytes�

On the other hand� this choice implies that the system can not provide a reasonable approximate

answer for queries on these attributes�

We have developed algorithms for incrementally maintaining the synopses used in Aqua� based

on the batch arrival of new data and an occasional access to the 
stored� base data� These enable

synopses to be kept e�ectively up�to�date at all times without any concurrency bottleneck� In an

online environment in which updates and queries intermix� Aqua can not a�ord to maintain up�to�date

synopses that require examining every tuple� such as the minimum and maximum value of an attribute�

without creating a concurrency bottleneck�� In such environments� maintenance is performed only

periodically� Approximate answers depending on synopses that require examining every tuple would

not take into account the most recent trends in the data 
i�e�� those occurring since maintenance was

last performed�� and hence could greatly decrease the accuracy guarantees� Note that the incremental

maintenance algorithms can be used to compute all synopses from scratch� in one scan of the base

data followed by indexed look�ups on a small fraction of the keys� should such a recomputation be

necessary�

Most of the synopses mentioned above can be maintained using known techniques� Counters

are maintained by incrementing them as tuples are inserted and decrementing them as tuples are

deleted� Uniform random samples are maintained as tuples are inserted and deleted using the algorithm

from �GMP��b�� Maximum and minimum values for attributes are maintained under insertions by

comparing the new tuple with the current maximum or minimum� Under deletions� if the maximum

or minimum is deleted� we can either 
�� ignore the deletion� resulting in a conservative bound� 
��

revisit the relation to extract the new maximum or minimum� 

� maintain a set of the largest and

smallest values� and only perform 
�� or 
�� if the entire set is deleted� or 
�� maintain a histogram on

the number of values within each range� where the ranges could be� e�g�� powers of two� This would

provide estimates on the maximum and minimum within a factor of � using only a logarithmic number

of buckets� and without resorting to 
���

� The problem with joins and a solution

A natural set of synopses for an approximate query engine would include a uniform random sample of

each base relation� However� the problem with using samples of base relations to provide approximate

�Note that most of the synopses in Aqua are sampling�based� and hence require only infrequent updates �see Sec�

tion �����
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answers for queries with joins is that� in general� the quality of the approximation su�ers greatly from

even a single join� for two reasons�

�� The join of two uniform random samples is not a uniform random sample of the output of the

join� Except in the special case where for both relations� each tuple joins with at most one tuple

in the other relation� the join operator results in dependencies among join tuples �GGMS����

�� The join of two random samples is typically a small number of tuples� even when the join

selectivity is fairly high� For example� if the majority of the tuples in one relation each joined

with a 	xed set S of tuples comprising a tiny fraction of the tuples in the other relation� then

with high probability� none of these tuples will be in the join of the samples of the relations since

the tuples in S will not appear in the sample with high probability�

Indeed the best known con	dence interval bounds for such approximations are quite pessimistic �Haa���


see Section A�� For example� it follows from the bounds there that when the join�size is not large�

as is frequently the case� the sample size must be at least quadratic in the maximum value of the join

attribute� or a sizeable fraction of the relations� before we get any nontrivial con	dence interval� Note

that this problem arises even with foreign key joins� 
see Section ��
��

We have developed a solution� called join samples� that works well for any acyclic data warehouse

schema with only foreign key joins� Such schema are common in data warehouses �Sch���� and in�

deed the TCP�D benchmark re�ects this scenario with its schema� We 	rst describe a solution that

maintains entire tuples from the output of various joins� Later� we will reduce the space needed by

storing only attributes of interest and by removing redundant sub�tuples� The basic idea is to leverage

Lemma ��� and Lemma ��� below by maintaining one join sample for each base relation�

Consider a directed acyclic graph� G� with a vertex for each base relation and a directed edge from

a vertex u to a vertex v �� u if there are one or more attributes in 
the relation corresponding to� u

that form a foreign key for 
the relation corresponding to� v� The edge is labeled with the foreign key�

An example is given in Figure � for the TPC�D benchmark�

Lemma ��� The subgraph of G on the k nodes in any k�way foreign key join must be a connected

subgraph with a single root node�

Proof� Consider an ordering r�� � � � � rk on the relations that satis	es the k�way foreign key join

property given above� The proof is by induction� with the base case of a single node r�� Let � � i � k

and si�� � r� � � � � � ri��� Assume that the subgraph Gi�� on the i � � nodes in si�� is connected

with a single root node r�� Since si�� � ri is a ��way foreign key join� the join attribute must be a

key in ri� Thus there is an edge directed from some node in Gi�� to ri� implying that Gi � Gi�� � ri

is a connected subgraph of G� Hence there is a directed path in G from r� to ri� Since G is acyclic�

ri �� r�� so r�� which by the inductive assumption is the only root node in Gi��� is the only root node

of Gi� The lemma follows by induction�

�A ��way join r� � r�� r� �� r�� is a foreign key join if the join attribute is a foreign key in r� �i�e�� a key in r��� For

k � �� a k�way join is a foreign key join if there is an ordering r�� r�� � � � � rk of the relations being joined such that for

i � �� �� � � � � k� si�� � ri is a ��way foreign key join� where si�� is the relation obtained by joining r�� r�� � � � � ri���

�



O

C

N

R

PS

P S

L
supppart

supp
part

part
supp

order

cust

nation

nation

region

Figure �� Directed graph for the TPC�D schema�

We denote the relation corresponding to the root node as the source relation for the k�way foreign

key join�

Lemma ��� There is a ��� correspondence between tuples in r� and tuples in any k�way foreign key

join with source relation r��

Proof� By the de	nition of a join� for each tuple � in the output of a join� there exists a tuple � � in
r� such that � projected on the attributes in r� is �

�� Conversely� we claim that for each tuple � � in r�
there is exactly one tuple � in the k�way foreign key join� The claim is shown by induction� Consider an

ordering r�� � � � � rk on the relations that satis	es the k�way foreign key join property given above� The

claim trivially holds for the base case of a single relation r�� Let � � i � k and si�� � r� � � � � � ri���
Assume inductively that for each tuple � � in r� there is exactly one tuple � in si��� Since si�� � ri is

a ��way foreign key join� the join attribute must be a key in ri� Thus there is at most one tuple in ri

joining with each tuple in si��� and furthermore� due to foreign key integrity constraints� there is at

least one such tuple� Hence� for each tuple � � in r� there is exactly one tuple � in si � si�� � ri� The

claim� and hence the lemma� follows by induction�

From Lemma ���� we have that each node can be the source relation only for k�way foreign key

joins involving its descendants in G� For each relation r� there is some maximum foreign key join with

r as the source relation� For example� in Figure �� C � N � R is the maximum foreign key join with

source relation C� and L � O � C � N� � R� � PS � P � S � N� � R� is the maximum foreign

key join with source relation L�

Join samples� For each node u in G� corresponding to a relation r�� we de	ne J 
u� to be the output
of the maximum foreign key join r� � r� � � � � � r� with source r�� 
If u has no descendants in G�

then � � � and J 
u� � r��� Let Su be a uniform random sample of r�� We de	ne a join sample�

J 
Su�� to be the output of Su � r� � � � � � r�� Our synopsis consists of J 
Su� for all u in G�
The utility of this synopsis can be observed by the following theorem� which is an immediate

consequence of Lemma ����

�



Theorem ��� Let r� � � � � � rk� k � �� be an arbitrary k�way foreign key join� with source relation

r�� Let u be the node in G corresponding to r�� and let Su be a uniform random sample of r�� Let A

be the set of attributes in r�� � � � � rk�

� J 
Su� is a uniform random sample of J 
u� of size jSuj�

� r� � � � � � rk � �AJ 
u�� i�e�� the projection of J 
u� on the attributes in r�� � � � � rk�

� �AJ 
Su� is a uniform random sample of r� � � � � � rk �� �AJ 
u�� of size jSuj�

Thus we can extract from our synopsis a uniform random sample of the output of any k�way foreign

key join� k � ��
Two joins are distinct if they do not join the same set of relations� The next lemma shows that a

single join sample can be used for a large number of distinct joins� especially for the star�like schemas

popular for data warehouses�

Lemma ��� From a single join sample for a node whose maximum foreign key join has � relations�

we can extract a uniform random sample of the output of between �� � and ���� � � distinct foreign
key joins�

Proof� The former case arises if all the descendants of the node form a line in G� The latter case

arises if the node is the root of a star of all its descendants� as in a star schema�

Note that since Lemma ��� fails to apply in general for any relation other than the source relation�

the joining tuples in any relation r other than the source relation will not in general be a uniform

random sample of r� Thus distinct join samples are needed for each node�

A limitation of our solution of maintaining join samples is that for worst case schemas� the size of

the maximum foreign key join can be exponential in the number of relations in the schema�

Lemma ��� There exists foreign key schema with t relations such that the maximum foreign key join

has � � ��t����� � 
 relations�

Proof� Consider a �coat hanger� Hi with root ri� Hi�� has root ri�� with two children l and r each

of which join to ri� It is easy to verify that the coat hanger Hi has 
i� � nodes� Consider t relations

which are the nodes of H�t����� with edges between them depicting the foreign key relationships� Then

it is easy to verify that the maximum foreign key join has � � ��t����� � 
 relations�
In such cases� we can decide how much of the maximum foreign key join to materialize based on

the joins actually arising in queries�

��� Maintaining the join samples

We can maintain the samples Su under insertions and deletions to the relation u using the algorithm

in �GMP��b�� We show next how to maintain J 
Su� for all u under insertions and deletions to
any relation� We rely on the integrity constraint on each foreign key to enable a faster maintenance

algorithm�

��



Our algorithm for maintaining a join sample J 
Su� for each u is as follows� Let pu be the current
probability for including a newly arriving tuple for relation u in the random sample Su� On an insert

of a new tuple � into a base relation corresponding to a node u in G� we do the following� Let

u � r� � � � � � r� be the maximum foreign key join with source u� 
�� We add � to Su with probability

pu� 
�� If � is added to Su� we add to J 
Su� the tuple f�g � r� � � � � � r�� This can be computed by

performing at most � � � look�ups to the base data� one each in r�� � � � � r�� 
For any key already in
J 
Su�� the look�ups for it or any of its �descendants� are not needed�� 

� If � is added to Su and Su
exceeds its target size� then select uniformly at random a tuple � � to evict from Su� Remove the tuple

in J 
Su� corresponding to � ��
On a delete of a tuple � from u� we 	rst determine if � is in Su� If � is in Su� we delete it from Su�

and remove the tuple in J 
Su� corresponding to � � As in �GMP��b�� if the sample becomes too small
due to many deletions to the sample� we repopulate the sample by rescanning the base relations�

Note that this algorithm only performs look�ups to the base data with 
small� probability pu� Also�

when a tuple is inserted into a base relation u� we never update join samples for any ancestors of u�

Such updates would be costly� since these operations would be performed for every insert and for each

ancestor of u� Instead� we rely on the integrity constraints to avoid these costly updates�

Theorem ��� The above algorithm properly maintains all Su as uniform random samples of u and

properly maintains all join samples J 
Su��

Proof� 
idea� Due to the integrity constraints� for each edge from w to u� there is exactly one tuple

in u joining with each tuple in w at all times� Thus any subsequent tuple inserted into u can not join

with any tuple already in w� and any tuple deleted from u can not join with a tuple still in w�

��� Reducing the space needed

Recall that in Aqua� we only store attributes of interest and we store all tuples of small relations� This

reduces the columns stored for join sample tuples� To further reduce the footprint for join samples�

we can renormalize the tuples in J 
Su� into their constituent relations and remove duplicates� To the
extent that foreign keys are many�to�one� this will reduce the space� although the key will then be

replicated� With this approach� when a tuple in Su is deleted� one can either 
�� immediately determine

which tuples in other relations to remove� if any� by either linear search� maintaining reference counts�

etc�� or 
�� leave the other tuples in� and then garbage collect periodically by materializing J 
Su� and
discarding unused tuples� Alternatively� we can renormalize as above� but take the union� excluding

the Su�s� of J 
Su� for all u� and remove duplicates�

Lemma ��	 For any node u whose maximum foreign key join is a ��way join� the number of tuples

in its renormalized join sample J 
Su� is at most �jSuj�

Proof� Each tuple in the 
unnormalized� J 
Su� contributes � tuples to the renormalized J 
Su�

before duplicate removal��

��



As an example� consider the schema in Figure �� If we store a single copy of N and R� and hence

remove them from G� then for L�PS�O�C� P � and S� the value of � is �� 
� �� �� �� and �� respectively�

If we take jSuj to be the same for all u in G� fN�Rg� then for all data distributions� the number of
tuples in the synopsis is at most ��jSuj� jN j� jRj� To the extent that foreign keys are many�to�one�
the space can be considerably smaller than this upper bound�

� Analytical bounds based on sample sizes

The current Aqua system focuses on guaranteed bounds� which provide guarantees to the user� but

may be overly pessimistic in some cases� Aqua provides con	dence intervals based on Hoe�ding bounds


these bounds are summarized in the appendix�� Since Aqua maintains join samples� J 
Su�� we can
report con	dence intervals based on Hoe�ding�based formulas for single�table queries only �Haa����

which are much faster to compute and much more accurate than the formulas involving joins�� To

apply Hoe�ding bounds� we use the bounds Aqua maintains on the minimum and maximum value for

each attribute to compute guaranteed bounds on the minimum and maximum value of the expression

occurring in a query� by considering how the attribute bounds may combine in the worst case� To

the extent that a query predicate limits the minimum and maximum of any subexpression in the

expression� better bounds are used�

In contrast to Hoe�ding�based bounds� the large sample bounds in �HHW��� Haa��� are only

heuristic bounds� Large sample bounds contain the 	nal answer with a probability approximately

equal to p and are based upon central limit theorems� As noted in �HHW���� the true probability can

be much less than the nominal probability p� These papers do not report a method for determining

when a 	nite sample is su�ciently large so that the bounds apply� and indeed the sample size needed

can vary widely depending on the distribution of the values� Observing the values occurring in a

sample is not su�cient in this regard� Thus� although it would be straightforward to consider large

sample bounds in the context of Aqua� we have focused instead on guaranteed bounds� and have not

implemented large sample bounds in the current system�

Evaluating sample size allocations� We now present a strategy for evaluating the e�ectiveness of

an allocation of sample sizes among the join samples for each relation� Our goal is to provide simple�

analytical bounds for the errors incurred by a broad class of queries�

We begin by considering the following simple characterization of a set� S� of queries with selects�

aggregates� group bys and foreign key joins� For each relation� Ri� we have the fraction� fi� of the

queries in S for which Ri is either the source relation in a foreign key join or the sole relation in a

query without joins� Next� we consider a range of representative 
single table� selectivities� Q� for

the predicates in queries� where the selectivities are based on the single table materialized foreign key

join� 
Such selectivities are the additional predicate selectivities beyond any join selectivities�� These

selectivities could be determined by the query mix� but for simplicity and generality� we will assume

representative selectivities of q � Q� � f���� ���� ���� ��� ��� ��� �g�
�For queries with non�foreign�key joins� we resort to the �much weaker� multi�table formulas from �Haa����

��



In what follows� we restrict our attention to the count aggregate� this aggregate may be the most

important for Aqua since it is used to provide size estimates for all set�valued queries� in addition

to its use in aggregate queries� It is also fairly simple to analyze� We measure the e�ectiveness

of a sample for a count aggregate by the size of its relative error bound� For concreteness� we

use Hoe�ding�based error bounds that provide bounds on the relative error that are guaranteed to

hold with ��� probability� Consider a predicate with 
unknown� selectivity q followed by a count�

on a relation of m tuples� Let Errorq
n� be the relative error bound for the estimate based on a

sample of size n � m� Let n� be the number of sampled tuples that satisfy the predicate� Then
�n �

m
n � n� is an unbiased estimator for the unknown count q �m� and Hoe�ding �Hoe�
� showed that

Pr
�
j�n � q �mj � m

q
�
�n ln

�
��p
�
� p 
see Appendix A�� Dividing through by q � m to get relative

error and taking p � �� yields

Errorq
n� �

p
ln
���

q
p
�n

	 ����
q
p
n
�

Thus the relative error bound for count decreases with the square root of the sample size�

Let Error
n� be the average relative error bound over the representative selectivities Q� i�e��

Error
n� � �
jQj
P

q�Q Errorq
n�� Using the example representative selectivities Q�� we have that

Error
n� 	 ����
�
p
n
�
X
q�Q�

�

q
�

����p

n
�

Thus the average relative error bound decreases with the square root of the sample size� and is

independent of the relation size m� Moreover� roughly �K samples su�ce to have an average error

bound within a factor of ���

Finally� we evaluate an allocation of sample sizes over all relations 
for count aggregates� as the

weighted sums of the average relative error bounds� Let n�� n�� � � � � nt be the sample sizes allocated to

the relations R�� R�� � � � � Rt in the schema for join samples� Then the weighted average relative error

is
tX

i	�

fi � Error
ni� 	 
����
tX

i	�

fip
ni
�

� Using biased samples

Group by operators can pose di�culties for sampling�based estimation� Groups with relatively few

members in the relation are expected to have relatively few members 
possibly none� in a uniform

random sample� this implies that the accuracy of estimations for such groups can be quite poor�

Hellerstein et al �HHW��� dealt with this problem in their work on online aggregation� providing a

special B�tree�based indexing mechanism to allow di�erent�sized groups to be accessed at equal rates�

In Aqua� we can improve the accuracy of approximations under group bys without special indexing

mechanisms or 
random� disk accesses� by biasing our samples according to the groups� In this

approach� we assume that we have a priori knowledge of the group by attributes� but no other

information about how the groups are populated 
e�g�� we do not know which groups are empty�� The

�Note that this sample size is based on Hoe�ding bounds� which are often quite conservative�

�




technique works well for group bys on attributes in source relations of queries� for other group bys� the

update time overheads to maintain the biased samples may be too large� 
This is similar to �HHW����

where an a priori knowledge of groups is necessary to ensure that a B�tree exists on the appropriate

attributes� and the scheme does not work well with joins��

Consider one such a priori group by� We maintain a table of the groups that have occurred� together

with a count of the number of tuples currently in the group� To ensure adequate representation in the

sample for small groups� we will sample at a higher rate for such groups�

When a new tuple is inserted into a relation� we determine its group� If it is an existing group�

we increment the count for the group� Otherwise� we add a new entry to the table� with count �� We

add the tuple to the sample according to the desired sample rate for a group of its size�

Since each group is its own uniform random sample� we have considerable �exibility in deciding

sample rates 
e�g�� we need not be fair�� If we wish to maintain a constant total sample size n� divided

evenly among the 
unknown number of� groups� we perform reservoir sampling �Vit��� on each group

such that if we have observed g groups� we maintain a target sample size of n�g for each group� When

a new group appears� we decrease the target sample size and 
lazily� evict random tuples from each

existing group� If the number of groups becomes large� we may wish to keep track of only the most

popular groups� As which particular groups are and are not the most popular may change over time�

we can use the algorithm in �GM��� to maintain a list of the 
approximately� most popular groups�

Quantifying the advantages of biased samples� We can quantify analytically the advantages of

biased samples in producing smaller con	dence intervals for aggregates� Consider a sample of size n

from a relation of size m 
 n� Consider count� sum� and avg over expressions in the relation and

let min � � and max be lower and upper bounds on the expression� The advantages arise from 
��
maintaining the counts of each group� 
�� ensuring that all groups are represented in the sample� and



� allowing for more balanced sample sizes for each group� We consider each advantage in turn�

Maintaining the count� m�� of each group not only allows for accurate count answers� but also
improves the Hoe�ding�based con	dence bounds for sum from m � max

q
�
�n ln

�
��p to m

� � 
max �
min�

q
�
�n� ln

�
��p � where n

� � � is the number of sample tuples in the group 
see Appendix A��
The second advantage can be considered independently of the 	rst by assuming that counts of

groups are maintained in both the uniform and biased sampling cases� In a uniform random sample�

each group of size m� is expected to appear in the sample m� � nm times� and will fail to appear in the
sample with probability � 
� � m�

m�n�
n 	 e�m

�n�m� For example� a group of size m� � m
�
n has over

a ��� probability of not occurring in the sample� For any group not appearing in the sample 
i�e�

n� � ��� then m � max
q

�
�n ln

�
��p is a sanity 
upper� bound for sum and sum is deterministically in

�m� � min�m� � max�� All that can be said for avg is that it is deterministically in �min�max�� With
biased sampling� we can ensure that all groups 
or the most popular groups� if there are too many

groups� have some minimum representation in the sample� at the expense of less samples for the larger

groups�

The third advantage can be considered independently of the 	rst two by assuming that we add

a single random representative of each group to the uniform sample� The advantage can be seen

by considering the avg aggregate� By Hoe�ding�based bounds for avg due to Haas �Haa��� 
see

��



Table Name � of Columns Cardinality

Customer � ��K

Lineitem �� ���K

Nation 
 ��

Order � ���K

Part � ��K

Partsupp � ��K

Region � �

Supplier � �K

Table �� Features of relations in the TPC�D benchmark�

Appendix A�� the average con	dence bound over g � n groups is proportional to �
g

Pg
i	�

�p
ni
� where

ni is the size of the sample for group i� This is minimized by taking ni �
n
g for all i� which can be

achieved with biased sampling using the reservoir sampling approach described above� With uniform

sampling� the ni are expected to be proportional to the group size� and hence can vary widely� In the

worst case of a single representative for all but one of the groups� the average con	dence bound is a

factor of 	 pn�g worse with uniform sampling than with biased sampling that takes ni � n
g �

� Experimental evaluation of Aqua

In this section� we present the results of an experimental evaluation of the Aqua system� Using

uniformly distributed as well as skewed data from the TPC�D benchmark� we show the e�ectiveness

of Aqua in providing guaranteed and highly�accurate answers�

The rest of this section is organized as follows� We begin by describing our experimental testbed�

We then evaluate the performance of Aqua in answering queries approximately using both join samples

and samples on base relations� We 	nally show that join samples can be maintained with very little

overhead and that they can be used to provide very good approximate answers� even when updates

signi	cantly change the characteristics of the underlying data�

��� Experimental testbed

We ran our experiments on data from the TPC�D decision support benchmark� We used a scale factor

of ��� for generating our test data� This results in a database that is approximately ��� megabytes�

Table � summarizes the important features of the � relations in the TPC�D database� The default

data generator used in the TPC�D benchmark generates uniformly distributed data� In addition to

this we modi	ed the generator in order to generate databases in which some of the attributes were

skewed according to Zip	an distributions�

Our experiments were run on a lightly loaded ���MHz UltraSPARC�II machine having ��� megabytes

of memory and running Solaris ���� All data was kept on a local disk with a streaming throughput of

about � megabytes�second�

��
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Figure �� This �gures shows approximate answers and con�dence bounds �at ��� con�dence� while

computing an aggregate value of an attribute from a base relation� The estimates and con�dence bounds

for the �select� case have been shifted slightly to the right for visual clarity�

��� Computing aggregates on base relations

We 	rst considered the e�ectiveness of samples when computing aggregate values directly from base

relations� The query we use is a piece of Query Q�� in the TPC�D benchmark and corresponds to the

SQL query�

select avg�l quantity� from lineitem

where l shipdate �� DATE �indate�


�indate� is an input parameter supplied to the query�� Figure � shows the results from evaluating

the query using samples of various sizes� on uniformly distributed data� The results for skewed data

were substantively identical� The 	gure attests to the fact that one can obtain accurate estimates

even from relatively small samples� In addition to plotting the actual value 
which� of course� does

not change with sample size�� the 	gure plots reported aggregates and bounds for the case when the

select condition is applied� as well as for the case when there is no select condition� Note that the

con	dence bounds are not as good for the case when the select condition is applied since the select

e�ectively reduces the sample size�

��� Computing aggregates on results of joins

In this section� we consider an aggregate that is computed on the result of a complex select�join query�

The query we use is based on query Q� in the TPCD benchmark and is an aggregate that is computed

�We can provide approximate answers for all the aggregates in Query Q�� We have presented results for one of the

aggregates to keep the resulting graph simple�
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Figure �� Behavior of di�erent strategies for allocating samples among base relations samples and join

samples shown against increasing total space for the samples�

on the join of Lineitem� Customer� Order� Supplier� Nation and Region� Of the six relations involved

in the join� the Nation and Region relations are sampled in their entirety by Aqua because of their

low cardinality� This e�ectively makes the query as di�cult as estimating an aggregate from a 
still

complex� four�way join� The SQL statement for the query is�

select avg�l discount� from customer� order� lineitem� supplier� nation� region

where c custkey � o custkey and o orderkey � l orderkey

and l suppkey � s suppkey and c nationkey � s nationkey

and s nationkey � n nationkey and n regionkey � r regionkey

and r name � �region�

and o orderdate �� DATE �date� and

o orderdate � DATE �date� � interval ��� year

This query computes the average discount given by suppliers in a nation to customers who are in

the same nation� The select conditions take two input parameters that restrict suppliers and customers

to be within a speci	c region and focus on business conducted within a speci	c time interval�

We considered four strategies for dividing up a sample space among base relations samples and

join samples� The sample space was speci	ed in terms of the number of tuples that could be kept in

the sample�� The four strategies that we considered were�

� Eq Base� which divides up the sample equally amongst the base relations involved in the query�

� Prop Base� which divides up the sample amongst the base relations such that each base relation

was allocated a sample that was proportional to its size�

� Eq Join� which is like Eq Base� except that it also allocates space to the join sample� and�

� Prop Join� which is like Prop Base� except that it also allocates space to the join sample�

�This is a simpli	cation of the actual problem� since di�erent relations have di�erent sizes�

��



Figure � shows the results from an experiment we conducted to study the behavior of the di�erent

strategies� We evaluate these strategies in terms of� 
a� the accuracy of the approximate result that

they produce and 
b� the time that they take to compute the approximate answer� Figure �
a� shows

that computing the aggregate from a join sample not only produces lesser deviation from the actual

aggregate value but also provides tighter con	dence bounds� For smaller sample sizes� sampling the

base relations alone fails to generate any output  Eq Base produces output only beyond ������

tuples�


This query e�ectively demonstrates the need for maintaining join samples� Each join that the

Lineitem table undergoes reduces the output of the query by a factor that is proportional to the

sampling fraction of the table that Lineitem is being joined with� The result is that even large samples

on the base relations simply do not yield any output tuples� This is in stark contrast to the case where

even small join samples are very e�ective in answering aggregate queries very e�ectively�

Figure �
b� plots the time taken by the various strategies to execute the query� It took ���
 seconds

to execute the query on the base data 
not shown�� As expected� the response times increase with

increasing sample size but are still negligible compared to the time taken to generate the actual result

from the base relations� This demonstrates that it is possible to obtain extremely fast query responses

at marginal loss in accuracy�

��� Maintenance of join samples

In this section� we show experimental results demonstrating that join samples can be maintained with

very minimal overhead� Such join samples can give very good approximate answers even when updates

signi	cantly change the nature of the underlying data� We base this section on a join between the

Lineitem and Order tables� The query used retrieves the average quantity of lineitems that have a

particular orderstatus� The SQL statement for the query is�

select avg�l quantity� from lineitem� order

where l orderkey � o orderkey and o orderstatus � F

In order to maintain a sample of the join between Lineitem and Order as Lineitem tuples are

inserted� we sample the Lineitem tuples that are inserted using a reservoir sampling algorithm� The

sampled Lineitem tuples are joined with the base 
not sampled�� table of the Order relation to update

the join sample 
in accordance with the algorithm in Section ����� Figure �
a� plots the aggregate

values computed from join samples of di�erent sizes� Even for extremely small sample sizes� the join

sample is able to track the actual aggregate value quite closely despite signi	cant changes in the data

distribution� Figure �
b� then shows that maintenance of join samples is very inexpensive� by plotting

the average fraction of the inserted Lineitem tuples that are actually inserted into the join sample� As

is clear from the 	gure� this number is a small fraction of the total number of tuples inserted� 
For

example� when maintaining a sample of ���� tuples and processing ���� ��� inserts� we go to the base

data only ���� times��

	Prop Base fails to produce any result for the entire range studied� and thus is not shown�
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a� Result Accuracy 
b� Maintenance Cost

Figure �� The left side of the �gure shows aggregate values computed from join samples of various sizes�

The right side shows the cost of online maintenance of the samples� Both of them are plotted against

���� ��� updates to the Lineitem table�

��� Experimental conclusions

The experimental results in Sections ���!��� empirically demonstrate several important hypotheses

that Aqua is based on� The 	rst is that small samples of relations� especially join samples� can give

extremely quick answers of very high quality for many queries� The second is that maintenance of

these samples� even join samples� can be performed easily and e�ciently� Such samples provide good

approximate answers even when the underlying data is rapidly changing in character�

� Previous related work

Hellerstein et al� �HHW��� proposed a framework for approximate answers of aggregation queries

called online aggregation� in which the base data is scanned in a certain order at query time and the

approximate answer for an aggregation query is updated as the scan proceeds 
continuous reporting��

A graphical display depicts the answer and a 
decreasing� con	dence interval as the scan proceeds�

so that the user may stop the process at any time� The only synopses maintained are the indexes

to enable special treatment of small sets in group bys� Since the reported tuples are retrieved from

the base data at query time� the response time will be orders of magnitude slower than in Aqua� If

the scan order for a group is random� then randomly�selected certain tuples with guaranteed accuracy

measures will be reported� Moreover� considering all groups� biased�selected certain tuples will be

reported with the bias in favor of the small sets� as desired� The disadvantage of a random scan order

is that the response time is even slower� If the scan order is the order of the data on the disks� then

the response time is faster than with random order� but now the reported tuples are arbitrary certain

tuples with heuristic accuracy measures 
which can be quite inaccurate��

Other systems support limited on�line aggregation features� e�g�� the Red Brick system supports

running count� avg� and sum 
see �HHW����� Since the scan order used to produce these aggregations

is not random� only heuristic accuracy measures are possible� and the accuracy can be quite poor�

��



Table 
� Some related work� evaluated as approximate query engines�

system design goal�coverage response time accuracy update time footprint

�HHW��� random online aggregation quite slow good if no joins fast small

�HHW��� scan online aggregation slow poor fast small

Red Brick running count� avg� sum slow poor very fast none

Oracle Rdb� �BM��� fast��rst on any query fairly slow poor very fast none

approximate �VL��� general approx� query eng� slow poor fairly fast small

Aqua general approx� query eng� fast good modest modest

The response time is slow since the tuples are retrieved from the base data at query time� however�

since there are no synopses to maintain� there are no overheads at update time and no footprint for

synopses�

There have been several recent works on �fast�	rst� query processing� whose goal is to quickly

provide a few tuples of the query answer� Bayardo and Miranker �BM��� devise techniques for opti�

mizing and executing queries using pipelined� nested�loops joins in order to minimize the latency until

the 	rst answer is produced� The Oracle Rdb system �AZ��� provides support for running multiple

query plans simultaneously� in order to provide for fast�	rst query processing� These systems report

arbitrary certain representative tuples� by accessing the base data at query time� No size estimates or

other meta�information are provided with the representative tuples� No synopses need be maintained�

In the approximate query processor� developed by Vrbsky and Liu �VL�
�� an approximate answer

to a set�valued query is any superset of the exact answer that is a subset of the cartesian product�

The goal of the query processor is to produce monotonically improving approximate answers� by

decreasing the superset as the processing proceeds� The query processor uses various class hierarchies

to iteratively fetch blocks relevant to the answer� producing tuples certain to be in the answer while

narrowing the possible classes that contain the answer� There are no bounds provided on the accuracy�

no size estimates or other meta�information� and the representative tuples are arbitrary certain tuples�

Other related query processors 
see the references in �VL�
�� likewise operate on the base data at

query time and de	ne an approximate answer for set�valued queries to be subsets and supersets that

converge to the exact answer�

Table 
 provides a summary of the comparison between these previous works and Aqua� evaluating

the systems using the metrics for approximate query engines described in Section ���� This comparison

is of course unfair� since none of these other systems 
other than approximate� were designed to be

approximate query engines� However� it re�ects the state�of�the�art in approximate query engines

prior to Aqua�

Barbar"a et al� �BDF���� present a survey of data reduction techniques� these can be used for a

variety of purposes� including providing approximate query answers� Gibbons and Matias �GM���

introduced two sampling�based synopses� concise samples and counting samples� that can be used to

obtain larger samples for the same footprint and to improve approximate query answers for hot list

queries� Maintenance algorithms were presented for both concise and counting samples� Olken and

Rotem �OR��� presented techniques for maintaining random sample views� Matias et al� �MVN�
�

MVY��� MSY��� proposed and studied approximate data structures that provide fast approximate

��



answers� These data structures have linear space footprints�

Other works on incremental maintenance of approximate synopses include �FM�
� FM��� WVZT���

HNSS��� AMS��� GMP��b� GP���� Finally� there has been considerable work on sampling�based

estimation algorithms for use within a query optimizer 
e�g�� �H#OT��� H#OT��� LN��� LN��� LNS���

H#OD��� HS��� LS��� LNSS�
� HNSS�
� HNS��� LN��� HNSS��� GGMS�����

None of this previous work uses the new techniques described in this paper�

	 Conclusions

This paper describes the Aqua system� for fast� highly�accurate approximate query answers� It is well

known that join operators seriously degrade estimation accuracy� so we have devised special techniques

for handling the multi�way foreign key joins that are popular in OLAP� Group bys can also degrade

estimation accuracy� so we have presented a biased sampling technique for handling group bys� Aqua

provides approximate answers using small� precomputed synopses of the underlying base data� we have

developed e�cient algorithms for incremental maintenance of all synopses used in the current Aqua

system� The system provides accuracy guarantees without any a priori assumptions on either the data

distribution� the order in which the base data is loaded� or the layout of the data on the disks�

Analytical bounds and experimental results on TPC�D queries demonstrate Aqua�s e�ectiveness�

even in the presence of data distribution changes� Aqua is the 	rst system to provide fast 
no accesses

to the base data at query time�� highly�accurate approximate answers for a broad class of queries that

arise in data warehousing scenarios�

Since Aqua provides answers typically without accessing the base data� it can be physically distant

from the data warehouse during query time� allowing for considerable �exibility� For example� unlike

previous systems 
such as those in Table 
�� Aqua can provide approximate answers even when the

base data is unavailable�

While the current system focuses on answers to broad classes of queries� special features can

be added to Aqua to improve the accuracy of speci	c classes of queries� such as those reported

in �AMS��� GMP��b� BDF���� GP��� GM���� Further details can be found in the Aqua Project

White Paper �GMP��a��
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A Hoe
ding�based bounds

In this appendix� we summarize Hoe�ding�based upper bounds for t such that P 
j�n � �j � t� � p�

where � is the precise result to an aggregate� and �n is an estimate based on n samples�

In order to apply these bounds� we maintain in Aqua�

� for a relation R� a count of the number of tuples� m� and a uniform random sample of n � m

tuples�

��



� for an attribute A in a relation R that may be used in an avg or sum aggregate� an upper bound�
max� and a lower bound min � �� i�e�� the attribute values are nonnegative values in �min�max��

Queries we consider are the aggregates avg� sum� count after join and group by operators� and

predicates� Aggregates may be of arbitrary expressions with nonnegative values� We compute upper

and lower bounds for the expression by considering the max and min of the individual attributes in the

expression and how they may combine in the worst case� Group by into k groups is solved by applying

the bounds separately to each group with an appropriate predicate that 	lters out that group�

Single relation with no predicates� Aggregate over an expression with values in �min�max��

min � �� with sample size n and relation size m�

Aggregate Bound Estimate Ref�

avg 
max�min�
q

�
�n ln

�
��p

sum of sample
n �Hoe�
�

sum m
max�min�
q

�
�n ln

�
��p

m
n � 
sum of sample� �Hoe�
�

count � m trivial

Single relation with predicates� Aggregate over an expression such that the values of the expres�

sion for tuples that satisfy the predicate are in �min�max�� min � �� These min and max may not be
known 
for instance� they cannot be determined from the sample�� Conservatively� the min and max

of the expression over the entire relation can be used� and to the extent that the predicate limits the

min and max of any subexpression in the expression� better bounds can be used� Sample size is n�

relation size is m� and n� � � is the number of sampled tuples that satisfy the predicate�

Aggregate Bound Estimate Ref�

avg 
max�min�
q

�
�n� ln

�
��p

sum of sample satisfying pred�
n� �Haa���

sum m �max
q

�
�n ln

�
��p

m
n � 
sum of sample satisfying pred�� �Hoe�
�

count m
q

�
�n ln

�
��p

m
n � n� �Hoe�
�

When the number� m�� of tuples that satisfy the predicate is known� then we can obtain better
bounds for sum 
and trivially� for count�� This case arises� for example� when Aqua maintains the

size of the groups for an a priori group by� The bounds we obtain arise by viewing this scenario as a

sample of n� � � from a relation of m�� and then applying the �no predicate� bounds above�

Aggregate Bound Estimate

sum m� � 
max�min�
q

�
�n� ln

�
��p

m�

n� � 
sum of sample satisfying pred��
count � m�

When n� � �� then when m� is unknown� the estimated sum and count are zero and the bound
reported in the table for m� unknown is a sanity 
upper� bound on the aggregate� All that can
be said for avg is that it is deterministically in �min�max�� When n� � � and m� is known� then

��



m�max
q

�
�n ln

�
��p is a sanity 
upper� bound for sum and sum is deterministically in �m

� �min�m� �max��
The estimated count is trivially m��

Multiple relations
 samples on base relations� Consider two relations� R� and R�� with m� and

m� tuples� respectively� and an aggregate over an expression on the tuples in R� � R� that satisfy a

predicate� 
The predicate includes the join criterion� and may or may not include other selectivity

criteria ! the bounds are the same in either case�� If we have a precomputed sample of R� � R�� then

we can apply the single relation bounds given above� If instead all we have are samples� s� and s�� of

the individual relations� then the following 
weaker� bounds apply� Let n� and n� be the number of

tuples in s� and s�� respectively� let n � min
n�� n��� and let n
� � � be the number of tuples in s� � s�

that satisfy the predicate� Let min and max be such that the values of the expression for tuples in

R� � R� that satisfy the predicate are in �min�max�� min � ��

Aggregate Bound Estimate Ref�

avg avg is deterministically in �min�max� sum of s� � s� sat� pred�
n� trivial

sum m� �m� �max
q

�
�n ln

�
��p

m�m�

n�n�
� 
sum of s� � s� sat� pred�� �Haa���

count m� �m�

q
�
�n ln

�
��p

m�m�

n�n�
� n� �Haa���

Obtaining good bounds for avg seems to be a di�cult problem and none are known �Haa���� so we

state the trivial bound in the above table�

The bounds in the table can be extended to K � � relations in the obvious manner� e�g�� the

estimate for count is m�m����mK

n�n����nK � n�� where n� is the number of tuples in s� � s� � � � � � sK that

satisfy the predicate� When n� � �� the estimated sum and count are zero and the bound reported
in the table above is a sanity 
upper� bound on the aggregate�
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