
Aqua Project White Paper

Phillip B� Gibbons� Yossi Matiasy Viswanath Poosalaz

Information Sciences Research Center

Bell Laboratories

��� Mountain Avenue

Murray Hill NJ �����

December ��� ����

Abstract

In large data recording and warehousing environments� it is often advantageous to provide

fast� approximate answers to queries� whenever possible� The goal is to provide an estimated

response in orders of magnitude less time than the time to compute an exact answer� by avoiding

or minimizing the number of accesses to the base data�

This white paper describes the Approximate QUery Answering �AQUA� Project underway

in the Information Sciences Research Center at Bell Labs� We present a framework for an

approximate query engine that observes new data as it arrives and maintains small synopsis

data structures on that data� These data structures are used to provide fast� approximate

answers to a broad class of queries� We describe metrics for evaluating approximate query

answers� We also present new synopsis data structures� and new techniques for approximate

query answers� We report on the goals and status of the Aqua project� and plans for future

work�

�Email� gibbons�research�bell�labs�com�
yCurrent address is Tel�Aviv University� Ramat Aviv� Tel�Aviv ����� Israel� Email� matias�math�tau�ac�il�
zEmail� poosala�research�bell�labs�com�

�

� Introduction

Traditional query processing has focused solely on providing exact answers to queries� in a manner

that seeks to minimize response time and maximize throughput� However� there are a number of

environments for which the response time for an exact answer is often slower than is desirable� First�

in large data recording and warehousing environments� providing an exact answer to a complex

query can take minutes to hours� due to the amount of disk I�O required� For environments with

terabytes or more of data� even a single scan of the data can take tens of minutes�� Second�

in distributed data recording and warehousing environments� some of the data may be remote�

resulting in slow response times� and may even be currently unavailable� so that an exact answer

is not an option until the data again becomes available �FJS���� Finally� in environments with

stringent response time requirements� even a single access at a particular level of the storage

hierarchy may be unacceptably slow� e�g�� for sub�millisecond response time� a single disk access is

too slow�

Environments for which providing an exact answer results in undesirable response times moti�

vate the study of techniques for providing approximate answers to queries� The goal is to provide

an estimated response in orders of magnitude less time than the time to compute an exact answer�

by avoiding or minimizing the number of accesses to the base data�

There are a number of scenarios for which an exact answer may not be required� and a user

may prefer a fast� approximate answer� For example� during a drill�down query sequence in ad�hoc

data mining� the earlier queries in the sequence are used solely to determine what the interesting

queries are �GM�	� HHW���� An approximate answer can also provide feedback on how well�

posed a query is� Moreover� it can provide a tentative answer to a query when the base data is

unavailable� Another example is when the query requests numerical answers� and the full precision

of the exact answer is not needed� e�g�� a total� average� or percentage for which only the
rst few

digits of precision are of interest �such as the leading few digits of a total in the millions� or the

nearest percentile of a percentage�� Finally� note that techniques for fast approximate answers can

also be used in a more traditional role within the query optimizer to estimate plan costs
 such an

application demands very fast response times but not exact answers�

Despite some recent work in approximate query answers �e�g�� �GM�	� HHW��� GM��a� GP�����

the state�of�the�art is quite limited in its scope and accuracy� and further research is greatly needed�

This white paper describes the Approximate QUery Answering �AQUA� Project under�

way in the Information Sciences Research Center at Bell Labs� The goals of the project are to

provide a framework for approximate query answering� new techniques for improving the speed

and accuracy of approximate answers� and a working prototype� In this paper� we present a frame�

work for an approximate query engine that observes new data as it arrives and maintains small

synopsis data structures on that data� These data structures are used to provide fast� approximate

answers to a broad class of queries� We describe metrics for evaluating approximate query answers�

We also present new synopsis data structures� and new techniques for approximate query answers�

Finally� we report on the status of the Aqua project and plans for future work�

�For example� scanning 	 TBs of data using parallel reads from
�� disks at a time with ��MB
s from each disk

takes �� minutes�

�

� A framework for approximate query answering

Figure � depicts a traditional data warehouse set�up� in which the base data resides in a data

warehouse that is updated as new data arrives� and each query is answered exactly using the data

warehouse� In contrast� Figure � depicts a set�up for approximate query answering� which includes

an approximate query engine in addition to the data warehouse� To facilitate in answering queries�

Data

Warehouse

 New Data

Queries

Responses

Data

Warehouse

 New Data

Queries

Responses

 Approx.
 Answer
 Engine

Figure �� A traditional data warehouse�
Figure �� Data warehouse set�up for providing ap�

proximate query answers�

the approximate query engine can store various summary information on the data� which we denote

synopsis data structures �GM��b��� Examples of synopses for a relational data warehouse include

histograms and sample rows of large relations and all the rows of small relations� projected on the

columns of interest� These synopses can be maintained by�

� observing the new data as it is loaded into the data warehouse�

� periodically returning to the data warehouse to update the information� and�or

� returning to the data warehouse at query time�

Queries are sent to the approximate answer engine� Whenever possible� the engine uses its

synopsis data structures to promptly return a query response� consisting of an approximate answer

and an accuracy measure �e�g�� a �	� con
dence interval for numerical answers��

� In continuous reporting � the engine proceeds to provide a series of happroximate answer�
accuracy measurei pairs for the query� with each subsequent pair providing a more accurate
answer �e�g� �HHW�����

� In discrete reporting � only one or a few such pairs are provided by the engine�

The engine can also return an estimated time for computing an exact answer� as determined by the

approximate answer engine and�or a traditional query optimizer� The user posing the query can

decide whether to abort the query processing and be content with the current approximate answer

or to proceed to the next approximation or to an exact answer from the base data�

There are further interactions between a user and an approximate query engine that can be

explored� For instance� a user may use the approximate answer as a tentative answer� and go on

�tentatively� to the next query in a drill�down sequence without aborting the previous query� The

purpose of having the previous query continue is two�fold� First� it serves to verify the accuracy

�A synopsis data structure captures the important
highlight information on the data in a concise representation�

i�e�� it provides a �synopsis� of the data�

�

The exact answer An approximate answer

region type avg� sales min� sales region type avg� sales min� sales

eastern retail ����	 ���	 eastern retail ����� � ��� ���� � ���
eastern outlet ���� ���� eastern outlet ���� � ��� ���� � ���
central retail ����� ���� central retail ��	�� � ��� ���� � ���
western retail ����� ���� central outlet � 	�� � 	��

western outlet ���� ��� western retail ����� � ��� ���� � ���
western outlet ���� � ��� � 	��

Figure �� An example approximate answer for a group by query�

of the approximate answer� Second� a re
ned answer can be used to enable a correction process

�e�g�� additional queries for the missing part�� For example� suppose that an approximate answer is

���� �� and based on using ��� as the tentative answer� the next query is a selection query whose
range is ����� ����� If it turns out that ��� is the exact answer �or the more likely answer�� the user

may decide that the range of interest is actually ����� ����� and can obtain the rest of the range by

submitting a supplementary selection query whose range is ����� �����

��� What is an approximate answer�

For queries whose answer is an aggregate value �e�g�� the result of avg� count� max� min� sum��

the notion of an approximate answer is an intuitive one� it is simply an estimated value for the

answer and an accuracy measure� This can be extended to a collection of aggregate values� such as

arises with an SQL group by operation� an approximate answer is an hestimated value� accuracy
measurei pair for each such aggregate value� labeled with the attributes that de
ne the aggregate
�the group�� An example is given in Figure �� In this example� the approximate answer provides

accuracy measures as con
dence intervals for each estimate� for some con
dence probability that

would also be speci
ed �e�g�� �	� con
dence intervals�� Note that in several cases an upper bound�

denoted a sanity bound � is provided instead of an estimate� Finally� note that an approximate

answer can include rows not in the exact answer� as in this example �for the central outlet group��

and vice�versa�

For more general queries� it is less intuitive what an approximate answer should be� We consider

queries that return a set of tuples� Since the number of tuples in the exact answer may be quite

large� we often do not want to return a tuple for each tuple in the exact answer� In order to

ensure very fast response times� we seek to return only a small number of representative tuples�

together with meta�information on the entire set of tuples� Thus an approximate answer consists

of both estimates on meta�information for the exact answer� including a count or an estimate of

the number of tuples in the exact answer� and representative tuples from the exact answer� Each

meta�information estimate includes an accuracy measure� Representative tuples can be classi
ed

as�

� actual � the tuple is in the output of the exact answer� or

� tentative� the tuple may be in the output of the exact answer�

�

Tentative tuples are reported along with some measure of their similarity to actual tuples�

Examples include tuples that are actual tuples with a given con
dence probability or tuples that

may not meet a selection criterion �such as min or max� that is computed by the query� but are

close to it� Actual tuples are preferred to tentative tuples� Actual tuples can be classi
ed as�

� randomly�selected � the tuples reported are a uniform random sample of the set of output

tuples�

� biased�selected � the tuples reported are biased according to a speci
c criterion� or

� arbitrary �

Randomly�selected tuples have the advantage that they are uniformly representative of the entire

set of output tuples� Biased�selected tuples have the advantage if the bias criterion is in line with the

�most interesting� output tuples� e�g�� the query requests tuples that lie above a certain threshold

and the reported tuples are biased towards those that exceed the threshold by the largest amount�

In such cases� biased�selected may be preferred to randomly�selected� On the other hand� if the

criterion for what makes an output tuple interesting is not known� or there are con�icting criteria�

then a uniform random sample is a natural choice�

Representative tuples may or may not contain all of the attributes in the full tuple�

There are a number of possible accuracy measures for an approximate answer� depending on

the type of query� For numerical answers� a natural accuracy measure is a con
dence interval�

consisting of an accuracy interval �a� b� and a con
dence probability p� The con
dence interval

asserts that the exact value is between a and b with probability at least p� Con
dence is ideally

absolute� reporting that an approximate answer is surely within a given interval �the case where

p � ��� Absolute con
dence often arises when rounding techniques are in use �e�g�� �MVY����� In

the context of synopsis data structures� we should expect that in most cases con
dence would not

be absolute� and the goal is to minimize the accuracy interval while maximizing the con
dence

probability� This trade�o� can often be expressed parametrically� e�g�� the exact value is x � �y

with probability at least � � e��z for all � � �� It may also be useful to have the approximate

answer be an unbiased estimator of the exact value� that is� the expected value of the approximate

answer is equal to the exact value�

Accuracy measures and similarity measures can be classi
ed as�

� guaranteed � or

� heuristic�

with guaranteed measures �such as con
dence intervals� preferred� On the other hand� in some

cases� approximate answers with high accuracy guaranteed measures may be too expensive to

compute� and heuristic measures are more suitable�

Table � summarizes the requirements for approximate answers�

��� Metrics for evaluating approximate query engines

Approximate query engines can be evaluated according to the following
ve metrics�

� coverage� the range of queries for which approximate answers can be provided�

	

Table �� Approximate answers�

Exact answer Approximate answer

aggregate values for each aggregate value�

�� estimated value or sanity bound

�� accuracy measure

set of tuples �� estimated meta�information on the output�

i�e�� a collection of hvalue� accuracy measurei pairs�
�� representative tuples� either�

a� randomly�selected actual

b� biased�selected actual� with criterion

c� arbitrary actual� or

d� tentative� with similarity measure

� response time� the time to provide an approximate answer for a query�

� accuracy � the accuracy of the answers provided� and the con
dence in that accuracy�

� update time� the overheads in keeping its synopses up�to�date�

� footprint � the storage requirements for its synopses�

Typically� there will be trade�o�s among these metrics� e�g�� with continuous reporting� the

additional response time for each subsequent answer results in greater accuracy�

Synopsis data structures� The same metrics � coverage� response time� accuracy� update

time and footprint � can be applied to each potential synopsis� In particular� small footprints are

desirable in order to minimize response time and not to consume too much of the system memory�

To handle many base tables and many types of queries� a large number of synopses may be needed�

Moreover� for fast response times that avoid disk access altogether� synopsis data structures should

be memory�resident�� Thus we evaluate the e�ectiveness of a synopsis as a function of its footprint�

For example� it is common practice to evaluate the e�ectiveness of a histogram in estimating range

selectivities as a function of the number of histogram buckets� Although machines with large main

memories are becoming increasingly commonplace� this memory remains a precious resource� as it is

needed for query�processing working space �e�g�� building hash tables for hash joins� and for caching

disk blocks� Moreover� small footprints are more likely to lead to e�ective use of the processor�s

L� and�or L� cache
 e�g�� a synopsis that
ts entirely in the processor�s cache enables even faster

response times�

�Various synopses can be swapped in and out of memory as needed� For persistence and recovery� combinations

of snapshots and
or logs can be stored on disk� alternatively� the synopsis can often be recomputed in one pass over

the base data�

�

� The Aqua approach

The Aqua project focuses on an approximate query engine that provides highly�accurate answers

with minimal response time by�

� maintaining a number of synopses on the data�

� updating these synopses primarily by observing the new data as it is loaded into the data

warehouse�

� providing discrete reporting�

� ensuring guaranteed accuracy measures� and

� having a footprint orders of magnitude smaller than the data warehouse�

A goal of the Aqua project is to develop e�ective synopsis data structures with minimal foot�

prints and new techniques for using them for approximate query answers� Synopses are maintained

primarily by observing the new data as it is loaded into the data warehouse� since this can enable

highly�accurate answers with minimal response time� Observing the new data ensures that the

synopses are kept up�to�date� Relying solely on periodic �e�g�� daily� scans of the data warehouse

to update the synopses would mean that the approximate answers would not take into account the

most recent trends in the data �i�e�� those occurring subsequent to the last scan�� and hence could

greatly decrease the accuracy guarantees �see� e�g�� �GMP����� Moreover� such scans can be quite

time�consuming� and with the trend towards �� �� operation of data warehouses� there is often no
�idle� time during which the updates could be performed �Sch����

Update time overheads in Aqua can be minimized in two ways�

�� Bulk updating� Aqua can bu�er the new data as it arrives� and then periodically �e�g�� every

few minutes� or on demand in response to a query� update its synopses using the data in the

bu�er�

�� Update sampling� Aqua can sample from the sequence of updates� ignoring all but the sampled

updates� For example� sampling ��� of the updates can reduce the update time overheads by

a factor of ��� Note that we have decoupled the use of sampling as a means to lower update

times from any use of sampling to maintain a small footprint� since the requirements di�er�

update sampling rates of ��� or higher are reasonable� while a footprint that is ��� or more

of the data warehouse size is very likely unacceptable� We studied the e�ectiveness of update

sampling� in the context of maintaining approximate histograms� in �GMP����

Note that observing �nearly� all the data can be important for maintaining high�quality syn�

opses� For example� the number of distinct values for an attribute in a relation of size n can be

maintained quite accurately in O�lgn� bits of memory by observing all the data �FM�	�� but it is

quite di�cult to estimate using only samples of the data �HNSS�	��

As discussed in the previous section� small footprints are good for response times and update

times� A goal for Aqua is to have memory�resident any synopsis that is frequently updated and�or

frequently used to respond to queries� in order to minimize these times�

�

Although heuristic accuracy measures for estimation procedures are common in commercial

databases� they are not quite satisfying� This is particularly true for approximate query answers�

since the approximate answer is reported to the user� One of the goals of the Aqua project is to

push from heuristic con
dence to guaranteed con
dence�

Aqua provides for discrete reporting� instead of continuous reporting� as a trade�o� for faster

update and response times� Discrete reporting can be supported using an approximate engine with

simpler synopses and a modest size footprint� since only a single level �or a few levels� of accuracy

are to be reported� Continuous reporting� on the other hand� requires a means for reporting answers

with increasing accuracy� resulting in greater complexity and either a su�ciently large footprint to

support the highest level of accuracy or a very slow response time if the base data must be heavily

accessed� We consider a user interface in which a query is posed� and the Aqua engine replies

�whenever possible� with an approximate answer and an estimate of the time to compute an exact

answer� The user can then decide whether or not to proceed to the exact answer�

� Approximate answers using samples

In this section� we describe our base Aqua system� for a relational data warehouse� This system is

used for comparison with versions of Aqua that employ the enhancements described in subsequent

sections�

For the base system� we establish a threshold M on the maximum number of tuples�rows

retained in the approximate query engine for any one relation� For each relation� we select which

attributes�columns to retain� Examples of attributes not retained are descriptive strings such as

street address or part description�

The base system maintains the following synopses�

� For each relation� we maintain a counter of the number of tuples in the relation�

� For relations with at most M tuples� we store all the tuples in the relation� For each such

tuple� we store only the selected attributes�

� For relations with more than M tuples� we store a random sample of �target� size M of the

tuples in the relation� For each such tuple� we store only the selected attributes�

The counters can be maintained by incrementing them as tuples are inserted and decrementing

them as tuples are deleted� The random samples can be maintained as tuples are inserted and

deleted using the algorithm discussed in Section 	���

Reporting approximate answers� In response to a query� the approximate query engine

executes the query on the synopsis data� scales the results as needed� and reports the answer� The

accuracy measure is calculated based on the type of query� the size of M � and the sizes of each

relation in the query with more than M tuples� Note that the accuracy of the approximate answer

improves with M� the size of the samples�

�

� New maintenance techniques

In this section� we present a number of new techniques for maintaining important synopsis data

structures as new data arrives�

��� Maintaining random samples

In most uses of random samples in estimation� whenever a sample of size n is needed� it is extracted

from the base data� either the entire relation is scanned to extract the sample� or n random disk

blocks must be read �since tuples in a disk block may be highly correlated�� In Aqua� we eliminate

these large response time overheads by maintaining a random sample at all times� As argued

in �GMP���� maintaining a random sample allows for the sample to be packed into consecutive

disk blocks or in consecutive pages of memory� Moreover� for each tuple in the sample� only the

attribute�s� of interest are retained� for an even smaller footprint and faster retrieval�

A backing sample is a uniform random sample of a relation that is kept up�to�date in the

presence of updates to the relation� For each tuple� the sample contains the unique row id and

one or more attribute values� At any given time� the backing sample for a relation R needs to be

equivalent to a random sample of the same size that would be extracted from R at that time� Thus

the sample must be updated to re�ect any updates to R� but without the overheads of such costly

extractions�

In �GMP���� we advocated the use of a backing sample and presented techniques for maintaining

a provably random backing sample of R based on the sequence of updates to R� while accessing R

very infrequently �R is accessed only when an update sequence deletes about half the tuples in R��

The algorithm is presented next�

Let S be a backing sample of target size n maintained for a relation R� We
rst consider

insertions to R� We use Vitter�s reservoir sampling technique �Vit�	�� The algorithm proceeds by

inserting the
rst n tuples into a �reservoir�� Then a random number of new tuples are skipped�

and the next tuple replaces a randomly selected tuple in the reservoir� Another random number of

tuples are then skipped� and so forth� The distribution function of the length of each random skip

depends explicitly on the number of tuples so far� and is chosen such that at any point each tuple

in the relation is equally likely to be in the reservoir� We extend this technique to handle modify

and delete operations� as follows� Modify operations are handled by updating the value
eld�s�� if

the tuple is in the sample� Delete operations are handled by removing the tuple from the sample�

if it is in the sample� However� such deletions decrease the size of the sample from the target size

n� and moreover� it is not known how to use subsequent insertions to obtain a provably random

sample of size n once the sample has dropped below n� Instead� we maintain a sample whose size

is initially a prespeci
ed upper bound U � and allow for it to decrease as a result of deletions of

sample items down to a prespeci
ed lower bound L� If the sample size drops below L� we rescan the

relation to re�populate the random sample� In �GMP���� we showed that such rescans are expected

to be infrequent for large relations� and moreover� for databases with infrequent deletions� no such

rescans are expected� Even in the worst case where deletions are frequent� the cost of any rescans

can be amortized against the cost of the �expected� large number of deletions required before a

rescan becomes necessary�

We proved in �GMP��� that this algorithm maintains the property that S is a uniform random

�

sample of a relation R such that min�jRj� L� � jSj � U �

Optimizations� There are several techniques that can be applied to lower the overheads of the

algorithm� First� a hash table of the row ids of the tuples in S can be used to speed up the test

of whether or not an id is in S� Second� if the primary source of delete operations is to delete
from R all tuples before a certain date� as in the case of many data warehousing environments

that maintain a sliding window of the most recent transactional data on disk� then such deletes

can be processed in one step by simply removing all tuples in S that are before the target date�

Third� and perhaps most importantly� we observe that the algorithm maintains a random sample

independent of the order of the updates to the database� Thus we can �rearrange� the order to

suit our needs� until an up�to�date sample is required by the application using the sample� We can

use lazy processing of modify and delete operations� whereby such operations are simply placed in

a bu�er to be processed as a batch whenever the bu�er becomes full or an up�to�date sample is

needed� Likewise� we can postpone the processing of modify and delete operations until the next

insert that is selected for S� Speci
cally� instead of �ipping a biased coin for each insert� we select a
random number of inserts to skip� according to the criterion of Vitter�s Algorithm X �this criterion

is statistically equivalent to �ipping the biased coin each insert�� At that insert� we
rst process all

modifys and deletes that have occurred since the last selected insert� then we have the new insert

replace a randomly selected tuple in S� Another random number of inserts are then skipped� and

so forth� Note that postponing the modifys and deletes is important� since it reduces the problem

to the insert�only case� and hence the criterion of Algorithm X can be applied to determine how

many inserts to skip�

With these optimizations� inserts and modifys to attributes not of interest are processed with

minimal overhead� whereas deletes and modifys to attributes of interest can require a somewhat

larger overhead �due to the batch processing of testing whether the id is in the sample��

��� Maintaining approximate histograms

The most common technique used in commercial database systems for estimating selectivities is

maintaining histograms on the frequency distribution of an attribute� We describe new techniques�

presented in �GMP���� for maintaining approximate equi�depth and Compressed histograms�

����� Equi�depth histograms

In an equi�depth histogram with � buckets� contiguous ranges of attributes are grouped into �

buckets such that the number of tuples in each bucket is jRj��� where jRj is the number of tuples
in the relation R� An approximate equi�depth histogram approximates the exact histogram by

relaxing the requirement on the number of tuples in a bucket and�or the accuracy of the counts

associated with the buckets� Such histograms can be evaluated based on how close the buckets are

to jRj�� tuples and how close the counts are to the actual number of tuples in their respective

buckets�

In �GMP���� we presented the
rst low overhead algorithm for maintaining highly�accurate

approximate equi�depth histograms� The algorithm relies on using a backing sample S such that
jSj � �� ln� �� An approximate equi�depth histogram can be computed from S by sorting S and

��

then taking every �jSj����th tuple as a bucket boundary� with the bucket counts set to jRj��� Our
algorithm minimizes the overheads by performing this recomputation from S only when necessary�

The algorithm works in phases� At each phase there is a threshold T � d�� � ��N ���e� where
N � is the number of tuples in R at the beginning of the phase� and � � �� is a tunable performance
parameter� Larger values for � allow for greater imbalance among the buckets in order to have fewer

bucket boundary changes and fewer recomputations from S� The number of tuples in any given
bucket is maintained below the threshold T � �Recall that the ideal target number for a bucket

size would be jRj���� As new tuples are added to the relation� we increment the counts of the

appropriate buckets� When a bucket�s count reaches the threshold T � we split the bucket in half�

In order to maintain the number of buckets �
xed� we merge two adjacent buckets whose total

count is less than T � if such a pair of buckets can be found� When such a merge is not possible� we

recompute the approximate equi�depth histogram from S�
The operation of merging two adjacent buckets is quite simple� we sum the counts of the two

buckets and dispose of the boundary between them� The splitting of a bucket is less straightforward�

an approximate median value in the bucket is selected to serve as the bucket boundary between the

two new buckets� using the backing sample� The split and merge operation is illustrated in Figure

�� Note that split and merge can occur only for � � ��

F
R
E
Q
U
E
N
C
Y

ATTRIBUTE VALUES MEDIAN

Buckets

INSERT THRESHOLD

2.Merge

1.Split

Figure �� Split and merge operation during equi�depth histogram maintenance

Also at each phase� there is a lower threshold T� � bN ������ � ����c� where N � is the number

of tuples in R at the beginning of the phase� and �� � �� is a tunable performance parameter�
The number of tuples in any given bucket is maintained above the threshold T�� As tuples are

deleted from R� we decrement the counts of the appropriate buckets� If a bucket�s count drops to

the threshold T�� we merge the bucket with one of its adjacent buckets and then split the bucket

B� with the largest count� as long as its count is at least ��T����� �Note that B
� may be the newly

merged bucket�� If no such B� exists� we recompute the approximate equi�depth histogram from

S� The merge and split operation is illustrated in Figure 	�
For modify operations� if the modify results in the tuple changing buckets� then we update the

histogram by treating the modify as a delete followed by an insert�

��

F
R
E
Q
U
E
N
C
Y

ATTRIBUTE VALUES MEDIAN

Buckets

INSERT THRESHOLD

DELETE
THRESHOLD

1. Merge

2. Split

Figure 	� Merge and split operation during equi�depth histogram maintenance

����� Compressed histograms

In an equi�depth histogram� values with high frequencies can span a number of buckets
 this is a

waste of buckets since the sequence of spanned buckets for a value can be replaced by a single bucket

with a single count� resulting in the same information within a smaller footprint� A Compressed

histogram has a set of such singleton buckets and an equi�depth histogram over values not in

singleton buckets� Our target Compressed histogram with � buckets has �� equi�depth buckets and

� � �� singleton �high�biased� buckets� where � � �� � �� such that the following requirements

hold� �i� each equi�depth bucket has N ���� tuples� where N � is the total number of tuples in equi�

depth buckets� �ii� no single value �spans� an equi�depth bucket� i�e�� the set of bucket boundaries

are distinct� and conversely� �iii� the value in each singleton bucket has frequency � N ����� An

approximate Compressed histogram approximates the exact histogram by relaxing one or more of

the three requirements above and�or the accuracy of the counts associated with the buckets�

In �GMP���� we presented the
rst low overhead algorithm for maintaining highly�accurate

approximate Compressed histograms� The algorithm relies on using a backing sample S� as with
the equi�depth algorithm� An approximate Compressed histogram can be computed from S as

follows� Let m� initially jSj� be the number of tuples tentatively in equi�depth buckets� We consider
the ��� most frequent values occurring in S� in order of maximum frequency� For each such value�

if the frequency f of the value is at least m divided by the number of equi�depth buckets� we create

a singleton bucket for the value with count f jRj�jSj� and decrease m by f � Otherwise� we stop

creating singleton buckets and produce an equi�depth histogram on the remaining values� using

the approach of the previous subsection� but setting the bucket counts to �jRj�jS� � �m����� Our

algorithm minimizes the overheads by performing this recomputation from S only when necessary�
Similar to the equi�depth algorithm� the algorithm works in phases� where each phase has an

upper threshold for triggering equi�depth bucket splits and a lower threshold for triggering bucket

merges� The steps for updating the bucket boundaries are similar to those for an equi�depth

histogram� but must address several additional concerns�

�� New values added to the relation may be skewed� so that values that did not warrant singleton

buckets before may now belong in singleton buckets�

�� The threshold for singleton buckets grows withN �� the number of tuples in equi�depth buckets�

Thus values rightfully in singleton buckets for smaller N � may no longer belong in singleton

buckets as N � increases�

��

�� Because of concerns � and � above� the number of equi�depth buckets� ��� grows and shrinks�

and hence we must adjust the equi�depth buckets accordingly�

�� Likewise� the number of tuples in equi�depth buckets grows and shrinks dramatically as sets

of tuples are removed from and added to singleton buckets� The ideal is to maintain N ����

tuples per equi�depth bucket� but both N � and �� are growing and shrinking�

Brie�y and informally� our algorithm addresses each of these four concerns as follows� To address

concern �� we use the fact that a large number of updates to the same value v will suitably increase

the count of the equi�depth bucket containing v so as to cause a bucket split� Whenever a bucket is

split� if doing so creates adjacent bucket boundaries with the same value v� then we know to create

a new singleton bucket for v� To address concern �� we allow singleton buckets with relatively

small counts to be merged back into the equi�depth buckets� As for concerns � and �� we use

our procedures for splitting and merging buckets to grow and shrink the number of buckets� while

maintaining approximate equi�depth buckets� until we recompute the histogram� The imbalance

between the equi�depth buckets is controlled by the thresholds T and T� �which depend on the

tunable performance parameters � and ��� as in the equi�depth algorithm�� When we convert an

equi�depth bucket into a singleton bucket or vice�versa� we ensure that at the time� the bucket

is within a constant factor of the average number of tuples in an equi�depth bucket �sometimes

additional splits and merges are required�� Thus the average is roughly maintained as such equi�

depth buckets are added or subtracted�

The requirements for when a bucket can be split or when two buckets can be merged are more

involved than in the equi�depth algorithm� A bucket B is a candidate split bucket if it is an equi�

depth bucket whose count is at least ��T� � �� or a singleton bucket whose count is bounded by

��T� � �� and T��� � ��� A pair of buckets� Bi and Bj � is a candidate merge pair if ��� either

they are adjacent equi�depth buckets or they are a singleton bucket and the equi�depth bucket in

which its singleton value belongs� and ��� the sum of their counts is less than T � When there are

more than one candidate split bucket �candidate merge pair�� the algorithm selects the one with

the largest �smallest combined� respectively� bucket count�

����� Analytical and experimental studies

In �GMP���� we presented analytical and experimental studies of these algorithms� which showed

the following�

� The new techniques are very e�ective in approximating equi�depth and Compressed his�

tograms� They are equally e�ective for relations orders of magnitude larger� In fact� as the

relation size grows� the relative overheads decrease�

� Very few recomputations from the backing sample are incurred for a large number of updates�

proving that our split�merge techniques are quite e�ective in minimizing the overheads due

to recomputation�

� Histograms maintained using these techniques remain highly e�ective in estimating range
selectivities� unlike all previous approaches�

The CPU� I�O and storage requirements for these techniques are negligible for insert�mostly and

sliding window data warehouses�

��

��� Maintaining frequency moments

Consider a data set R of size n with values from a domain D� and for each i � D� let mi be the

frequency of value i in R� For each k � �� the kth frequency moment � Fk� is
P

i�Dmk
i � In particular�

F� is the number of distinct values in R� F� � n is the size of the data set� and F� is the repeat rate

or self�join size of R� The maximum frequency � F�� is maxi�Dfmig�
In �AMS���� we obtained tight bounds for the minimum possible footprint required to approxi�

mate the numbers Fk to within a
xed constant� as follows� Let m � jDj� We proved that for every
k � � and any constant success probability greater than ���� Fk can be approximated to within a

xed relative constant randomly using at most O�m����k lgm� memory bits� We further showed

that for k � �� any �randomized� approximation algorithm for Fk requires at least �m
����k�

memory bits�

In addition� we showed that for any nonnegative integer k �� �� both approximation and ran�

domization are necessary for approximating Fk to within a relative constant if only o�min�n�m��

memory bits are used� We also presented an �lgm� lower bound on the memory bits required

to approximate F� to within a relative constant� matching the upper bound of �FM��� FM�	��

Moreover� we presented an �lg lg n� lower bound on the memory bits required to approximate F�
to within a relative constant� matching the upper bound of �Mor����

In �AGMS���� we extended the algorithm for maintaining Fk in the presence of inserts to the data

set to handle deletions as well� The algorithm maintains a constant number of random samples

of target size t � !�m����k�� For each item selected for a sample� we maintain a count of the

number of items with the same value that are subsequently inserted into R minus the number of

items with the same value that are subsequently deleted� Note that the same value may occur

multiple times in the same sample and in di�erent samples� with a separate counter for each such

occurrence� For each sample Si� let c�� c�� � � � � ct be the counts associated with the sample� and

let Xi �
n
t

Pt
j���c

k
j � �cj � ��k�� We estimate Fk by reporting the median of the Xi over all the

samples� We proved that for each counter� cj � the expected value of n�c
k
j � �cj � ��k� is Fk
 the

additional counters are used solely to reduce the variance in the estimator�

Maintaining the self�join size F�� The algorithm presented above for general Fk provides an

algorithm for F� that uses O�
p
m�lgm � lgn�� memory bits� In �AMS���� we presented another

algorithm� the tug�of�war algorithm� for approximating F� in the presence of insertions to R using

only O�lgm � lg lgn� memory bits� This matches the �lgm � lg lgn� lower bound we showed�

In �AGMS���� we extended the algorithm to handle deletions� and presented experimental results

comparing this algorithm with the algorithm in the preceding paragraph�

In the tug�of�war algorithm� we consider the family H of ��wise independent mappings from

the domain D to f��� �g� For each randomly selected hi � H� we maintain a sum Zi as follows�

On an insert to R of value v� we add hi�v� to Zi
 on a delete� we subtract hi�v� from Zi� We

proved that F� is the expected value of Z
�
i � To reduce the variance and obtain an estimate that is

provably within a constant factor with probability � ���� we select a constant number of hi and

estimate F� by reporting the median of the average of the Z
�
i � similar to above� We use O�lgm�

bits to represent and compute the functions hi
 the number of bits for the sums Zi can be reduced

to O�lg lgn� by using approximate counting �Mor����

��

Maintaining the maximum frequency F�� We also showed in �AMS��� that any �deterministic

or randomized� algorithm for approximating the frequency of the mode F� of a given data set to

within a constant factor �with probability � ����� using only a constant number of passes over the

data� requires �m� memory bits in the worst case� This lower bound was obtained by reducing

the problem to an appropriate multi�party communication complexity problem� and then proving

the result for the communication complexity problem�

� New synopsis data structures

In this section we describe two new sampling�based synopses� concise samples and counting samples�

and present techniques for their fast incremental maintenance regardless of the data distribution�

These results are reported in detail in �GM��a��

Both concise samples and counting samples can greatly increase the number of sample points

over traditional samples for the same footprint� Since the accuracy of an approximate answer

improves with the size of the samples� using concise or counting samples can signi
cantly improve

the accuracy over using traditional samples�

��� Concise samples

Consider the class of queries that ask for the frequently occurring values for an attribute in a

relation of size n� One possible synopsis is a uniform random sample of the tuples in the relation

projected on the attribute� An approximate answer to the query would then be hvalue� counti pairs
for any value occurring frequently in the sample� where the reported counts are n�m times the

frequency in a sample of size m �for example� by Cherno� bounds� any value occurring k � �lgn�

times in a sample of size m can be accurately estimated to occur k � n�m times in the data set

w�h�p��� However� note that any value occurring frequently in the sample is a wasteful use of the

footprint� We can represent k copies of the same value v as the pair hv� ki� and �assuming that
values and counts use one unit of space each�� we have freed up space for k � � additional sample
points� This simple observation leads to the following new sampling�based synopsis�

� A concise sample is a uniform random sample of the data set such that values appearing more

than once in the sample are represented as a value and a count�

This simple idea is quite powerful� and to the best of our knowledge� has never before been studied�

For simplicity� we describe concise samples in terms of a single attribute� although the approach

applies equally well to pairs of attributes� etc�

Since a concise sample represents sample points occurring more than once as hvalue� counti
pairs� the true sample size may be much larger than its footprint �it is never smaller�� De
ne the

sample�size of a concise sample S � fhv�� c�i� � � � � hvj � cji� vj��� � � � � v�g to be � � j �
Pj

i�� ci� For

simplicity� we assume that values and counts contribute one unit of space each to the footprint� so

that the footprint of S is �� j� In general� variable�length encoding could be used for the counts�

so that only dlg xe bits are needed to store x as a count� further reducing the footprint��
Note that if a data set of size n has at most m�� distinct values� then a concise sample of

sample�size n has a footprint at most m �i�e�� in this case� the concise sample is the exact histogram

�Approximate counts �Mor��� could be used as well� for an even smaller footprint�

�	

of all hvalue� counti pairs for the data set�� Thus� the sample�size of a concise sample may be
arbitrarily larger than its footprint� For any footprint m � �� there exists data sets for which the

sample�size of a concise sample is n�m times larger than its footprint� where n is the size of the

data set�

Maintaining concise samples� We describe a fast algorithm for maintaining a concise sample

within a given footprint bound as new data is inserted into the data warehouse� Since the number

of sample points provided by a concise sample depends on the data distribution� unlike traditional

samples� the problem of maintaining a concise sample as new data arrives is more di�cult than

with traditional samples� The approach described in Section 	�� relies heavily on the fact that

we know in advance the sample�size �which� for traditional samples� equals the footprint�� With

concise samples� the sample�size depends on the data distribution to date� and any changes in the

data distribution must be re�ected in the sampling frequency�

Our maintenance algorithm is as follows� We set up an entry threshold � �initially �� for new

tuples to be selected for the sample� Let S be the current concise sample and consider a new tuple

being inserted into the data warehouse� with value v� With probability ��� � we add v to S� To

add v to S� we
rst do a look�up on v in S� If it is represented by a pair� we increment its count�

Otherwise� if v is a singleton in S� we create a pair� or if it is not in S� we create a singleton� In

these latter two cases we have increased the footprint by �� so if the footprint for S was already

equal to the prespeci
ed footprint bound� then we need to evict existing sample points to create

room�

In order to create room� we raise the threshold to some � � and then subject each sample point

in S to this higher threshold� Speci
cally� if m is the sample�size of S then each of the m sample

points in S is evicted with probability ��� �� We expect to have m��� ��� �� sample points evicted�

Note that the footprint is only decreased when a hvalue� counti pair reverts to a singleton or when
a value is removed altogether� If the footprint has not decreased� we raise the threshold and try

again� Subsequent inserts are selected for the sample with probability ��� ��

In �GM��a�� we proved that for any sequence of insertions to the data warehouse� the above

algorithm maintains a concise sample� The algorithm maintains a concise sample regardless of the

sequence of increasing thresholds used� Thus� there is complete �exibility in deciding� when raising

the threshold� what the new threshold should be� A large raise may evict more than is needed to

reduce the sample�s footprint below its upper bound� resulting in a smaller sample�size than when

the sample�s footprint matches the upper bound� On the other hand� evicting more than is needed

creates room for subsequent additions to the concise sample� so the procedure for creating room

runs less frequently� A small raise also increases the likelihood that the footprint will not decrease

at all� and the procedure will need to be repeated with a higher threshold�

Note that instead of �ipping a coin for each insert into the data warehouse� we can �ip a coin

that determines how many such inserts can be skipped before the next insert that must be placed in

the sample �as in Vitter�s reservoir sampling described in Section 	���� the probability of skipping

over exactly i elements is �� � ����i � ������ Likewise� since the probability of evicting a sample
point is typically small �i�e�� � ��� is a small constant�� we can save on coin �ips and decrease the

update time by using a similar approach when evicting� We proved in �GM��a� that this algorithm

incurs a constant amortized expected update time per new tuple inserted into the data warehouse�

��

regardless of the data distribution�

The expected sample�size increases with the skew in the data� We showed above that the

advantage is unbounded for certain distributions� In �GM��a�� we further quanti
ed the advantage

in sample�size� both analytically and experimentally� For example� we showed that for the family

of exponential distributions�

Pr�v � i� � 	�i�	� ��� i � �� �� � � � �

	 � �� and any footprint m � �� the expected sample�size of a concise sample with footprint m is

at least 	m��� Thus for exponential distributions� the advantage is exponential� Figures � and �

depict experimental results quantifying the advantage for a wide range of Zipf distributions� These

plots show the sample�sizes for traditional samples �i�e�� ������ for concise samples produced by the

above algorithm� and for concise samples produced by an o"ine algorithm that extracts sample

points from the data set until the target footprint of ���� is exceeded� Thus in addition to showing

the large advantage of concise samples over traditional samples� the
gures demonstrate that our

maintenance algorithm yields concise samples whose sizes are nearly optimal�

0

100000

200000

300000

400000

500000

600000

0 0.5 1 1.5 2 2.5 3

sa
m

pl
e-

si
ze

zipf parameter

 Data: 500000 values
 in [1,5000]
 Footprint = 1000

concise offline
concise online

traditional

0

2000

4000

6000

8000

10000

12000

14000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

sa
m

pl
e-

si
ze

zipf parameter

 Data: 500000 values
 in [1,50000]
 Footprint = 1000

concise offline
concise online

traditional

Figure �� Concise vs� traditional Figure �� Concise vs� traditional

��� Counting samples

Counting samples are a variation on concise samples in which the counts are used to keep track

of all occurrences of a value inserted into the data warehouse since the value was selected for the

sample�� Their de
nition is motivated by a sampling�and�counting process of this type from a

static data warehouse�

� A counting sample with threshold � for a data set R is any subset of R obtained as follows�

For each value v occurring c � � times in R� we �ip a coin with probability ��� of heads

until the
rst heads� up to at most c coin tosses in all
 if the ith coin toss is heads� then v

occurs c� i� � times in the subset� else v is not in the subset� Each value v occurring c � �

times in the subset is represented as a pair hv� ci� and each value v occurring exactly once is
represented as a singleton v�

�In other words� since we have set aside space for a count� why not count the subsequent occurrences exactly�

��

Extracting a concise sample from a counting sample� Although a counting sample is not in

general a uniform random sample of the data set R� it can be used to obtain such a sample without

any further access to R� Speci
cally� a concise sample can be obtained from a counting sample by

considering each pair hv� ci in the counting sample in turn� and �ipping a coin with probability ���
of heads c� � times and reducing the count by the number of tails� The footprint decreases by one
for each pair whose coin �ips are all tails�

Maintaining counting samples� We describe a fast algorithm for maintaining a counting sample

within a given footprint bound as data is inserted into or deleted from the data warehouse�

We set up an entry threshold � �initially �� for new tuples to be selected for the counting

sample� Let S be the current counting sample and consider a new tuple being inserted into the

data warehouse� with value v� We do a look�up on v in S� If it is represented by a pair� we

increment its count� If it is a singleton in S� we create a pair� Otherwise� v is not in S and we add

it to S with probability ��� �

If the footprint for S now exceeds the prespeci
ed footprint bound� then we need to evict

existing values to create room� As with concise samples� we raise the threshold to some � �� and

then subject each value in S to this higher threshold� The process is slightly di�erent for counting

samples� since the counts are di�erent� For each value in the counting sample� we �ip a biased coin�

decrementing its count on each �ip of tails until either the count reaches zero or a heads is �ipped�

The
rst coin toss has probability of heads ��� �� and each subsequent coin toss has probability of

heads ��� �� Values with count zero are removed from the counting sample
 other values remain in

the counting sample with their �typically reduced� counts� The overall number of coin tosses can

be reduced to a constant per value using an approach similar to that described for concise samples�

since we stop at the
rst heads �if any� for each value�

An advantage of counting samples over concise samples is that we can maintain counting samples

in the presence of deletions to the data warehouse� Maintaining concise samples in the presence of

such deletions is di�cult� If we fail to delete a sample point in response to the delete operation�

then we risk having the sample fail to be a subset of the data set� On the other hand� if we always

delete a sample point� then the sample may no longer be a random sample of the data set� With

counting samples� we do not have this di�culty� For a delete of a value v� we do a look�up to see

if v is in the counting sample� and decrement its count if it is�

In �GM��a�� we proved that for any sequence of insertions or deletions� the above algorithm

maintains a counting sample� The algorithm maintains a counting sample regardless of the sequence

of increasing thresholds used� If the threshold is raised by a constant factor each time� we showed

in �GM��a� that this algorithm incurs a constant amortized expected update time per tuple inserted

into or deleted from the data warehouse� regardless of the data distribution�

Let R be a data set and � be the current threshold for a counting sample S� We proved

in �GM��a� the following three properties of counting samples� �i� Any value v that occurs at least

� times in R is expected to be in S� �ii� any value v that occurs f times in R will be in S with

probability �� �� � �

� �
f � and �iii� for all 	 � �� if f � 	 � � � then with probability � � � e��� the

value will be in S and its count will be at least f � 	� �

��

��� Accurate and e�cient histogram techniques

In Section 	��� we presented results on maintaining two important classes of histograms� equi�depth

and Compressed histograms on individual attributes� In this section� we discuss the need for new

classes of histograms� and e�cient techniques for computing them�

In their current form� histograms su�er from the following drawbacks�

� They are mostly used for approximating individual attributes and hence do not provide
accurate estimates for multi�attribute queries�

� There has been very little work on accuracy measures �error analysis� for histogram�based
estimates� i�e�� estimates are often provided with no knowledge about their accuracy�

� There are no known e�cient techniques for computing the important class of V�Optimal his�
tograms� which have been shown to be highly accurate for several estimation problems �PIHS����

We have worked on all the above aspects in extending the work on histograms �MPS��a�

MPS��b�� Our main contributions are as follows�

�� We have identi
ed novel and highly�accurate classes of multidimensional histograms and

provided a uniform framework for computing optimal histograms �i�e�� those minimizing an

error metric for a given footprint�� The main feature of this framework is that it can be

used for optimizing a large class of error metrics� even in the presence of a combination of

approximation techniques �e�g�� histograms and splines in di�erent regions of the data��

�� We have also devised solutions for the dual problem� namely� identifying histograms for a given

bound on the error� In addition� we have incorporated auxiliary information into histogram

buckets in order to provide better accuracy measures for an estimation�

�� We have designed the
rst known e�cient algorithm for computing one�dimensional V�

Optimal histograms �a direct outcome of our framework mentioned above��

��� Statistics selection and data cube approximation

Users of on�line analytical processing �OLAP� systems
nd it useful to organize data along several

dimensions of a multidimensional data cube and perform aggregate analysis on �possibly subsets

of� the dimensions �GBLP���� The cells of the data cube contain the corresponding value of a

measured attribute� In �GP���� we proposed and studied the use of histograms to summarize the

multidimensional data cube in order to provide quick and approximate answers to aggregate queries�

An important issue in the use of any synopsis for the data cube is determining a con
guration

that maximizes estimation accuracy for queries over the data cube� i�e� selecting the attribute

combinations to build statistics on and the types of statistics� and allocating the resources �mainly�

the available footprint� among them� This is particularly critical for data cube approximation due

to the large data volumes and the potentially very high accuracy requirements�

In �GP���� we studied the histogram con
guration problem for minimizing the average and

maximum errors in answering aggregate queries involving selections and projections� We also

studied the dual problem of minimizing the space required to satisfy a priori error bounds� We

��

provided e�cient space allocation algorithms for many of these problems with guarantees on the

quality of their solutions and exploited the interactions between attribute combinations to reduce

the space requirements of the con
gurations� Experiments on the TPC�D and synthetic databases

showed that these algorithms result in highly�accurate and concise histogram con
gurations� and

justi
ed the use of histograms for approximate query answering�

� Improvements in approximate query answering� An example

In this section� we consider a concrete example of how Aqua can provide highly�accurate approxi�

mate answers to an important class of queries recognized as di�cult to approximate� Speci
cally�

we consider the problem of hot list queries� i�e�� queries that request an ordered set of hvalue� counti
pairs for the k most frequently occurring data values� for some k�

An example hot list is the top selling items in a database of sales transactions� In various

contexts� hot lists of k pairs are denoted as high�biased histograms �IC��� of k � � buckets� the

rst k mode statistics� or the k largest itemsets �AS���� Hot lists can be maintained on singleton

values� pairs of values� triples� etc� # e�g�� they can be maintained on c�itemsets for any speci
ed

c� and used to produce association rules �AS��� BMUT���� Hot lists capture the most skewed �i�e��

popular� values in a relation� and hence have been shown to be quite useful for estimating predicate

selectivities and join sizes �see �Ioa��� IC��� IP�	��� In a mapping of values to parallel processors or

disks� the most skewed values limit the number of processors or disks for which good load balance

can be obtained� Hot lists are also quite useful in data mining contexts for real�time fraud detection

in telecommunications tra�c �Pre���� and in fact an early version of the algorithm described below

has been in use in such contexts for over a year�

Hot list queries can be answered exactly by maintaining a histogram of hvalue� counti pairs
for all distinct values in the data set� However� the number of distinct values can often be quite

large� so that most of the histogram should be or must be stored on disk� This implies high update

time overheads� as each update to the data set can require a separate disk access to update the

histogram� Since the number of distinct values can be on the order of the size of the data set� the

histogram can incur a large disk footprint� The response time can be minimized by storing the top

k pairs as a synopsis within the approximate answer engine�

Our goal is to provide� to a certain accuracy� an ordered set of hvalue� counti pairs for the most
frequently occurring values in a data set� in potentially orders of magnitude smaller footprint than

needed to maintain the counts for all values� Note that the di�culty in incremental maintenance

of hot lists is in detecting when values that were infrequent become frequent ��hot�� due to a

shift in the distribution of the newer data� Such detection is di�cult since the synopsis maintains

information on only a few values in the data set� in order to remain within the footprint bound�

Approximate answers to hot list queries� In �GM��a�� we presented the
rst low overhead

algorithms for providing highly�accurate approximate answers to hot list queries� One algorithm

is based on using concise samples and another is based on using counting samples� These are

compared with an algorithm using traditional samples� All three algorithms maintain their accuracy

in the presence of ongoing insertions to the data warehouse
 the algorithm using counting samples

maintains its accuracy also in the presence of deletions�

��

For concise and traditional samples� we report hvalue� counti pairs for the k pairs with highest
counts in the sample� as long as the counts are greater than or equal to a con
dence threshold

 � �� If m is the sample�size� then the reported counts are scaled by jRj�m� For counting samples�
we augment the counts by $c instead of scaling them� where $c is roughly half the current threshold

� for the counting sample� This augmentation of the counts serves to compensate for inserts of a

value into the data warehouse prior to the successful coin toss that placed it in the counting sample�

We report hvalue� counti pairs for the k pairs with highest counts in the counting sample� as long
as the augmented counts are at least � �

Our analytical and experimental studies in �GM��a� of the three algorithms showed the follow�

ing�

� Using counting samples is the most accurate� and far superior to using traditional samples

using concise samples falls in between� nearly matching counting samples at high skew but

nearly matching traditional samples at very low skew�

� On the other hand� the overheads are the smallest using traditional samples� and the largest
using counting samples�

0

50000

100000

150000

200000

5 10 15 20

** Data: 500000 values in [1,500]
Zipf parameter 1.5
** Footprint: 100

most frequent values |

Using full histogram
Using concise samples

Using counting samples
Using traditional samples

Figure �� Comparison of algorithms for a hot list query

An example of the relative accuracy of the algorithms is depicted in Figure �� This
gure plots

the most frequent values in the data warehouse in order of nonincreasing counts� together with

their counts� The x�axis depicts the rank of a value �the actual values are irrelevant here�
 the

y�axis depicts the count for the value with that rank� The exact counts are plotted as histogram

boxes�

Our algorithms report less than k values for certain data distributions� The lower bound in

Section 	�� implies that even for k � �� any algorithm for answering approximate hot list queries

��

based on a synopsis whose footprint is sublinear in the number of distinct values will fail to be

accurate for certain data distributions� Thus in order to report only highly�accurate answers� it is

inevitable that less than k values are reported for certain distributions�

Note that the problematic data distributions are the nearly�uniform ones with relatively small

maximum frequency �this is the case in which the lower bound in Section 	�� is proved�� Fortunately�

it is the skewed distributions� not the nearly�uniform ones� that are of interest� and the algorithms

above report good results for skewed distributions�

� Previous related work

Hellerstein et al� �HHW��� proposed a framework for approximate answers of aggregation queries

called online aggregation� in which the base data is scanned in a certain order and the approximate

answer for an aggregation query is updated as the scan proceeds� A graphical display depicts the

answer and a �decreasing� con
dence interval as the scan proceeds� so that the user may stop the

process at any time� Special treatment is given to small sets in group by operations to ensure

that tuples in such sets are observed early in the scan order� In the taxonomy of Section �� this

work provides continuous reporting for aggregation queries� The only synopses maintained are the

indexes to enable the special treatment of small sets� so the footprint can be quite small� The

reported tuples are retrieved from the base data at query time� Thus the response time will be

orders of magnitude slower than in Aqua� If the scan order for a group is random� then randomly�

selected actual tuples with guaranteed accuracy measures will be reported� Moreover� considering

all groups� biased�selected actual tuples will be reported with the bias in favor of the small sets� as

desired� The disadvantage of a random scan order is that the response time is even slower� If the

scan order is the order of the data on the disks� then the response time is faster than with random

order� but now the reported tuples are arbitrary actual tuples with heuristic accuracy measures

�which can be quite inaccurate�� In summary� the coverage is aggregation queries� the response

time is quite slow� the accuracy is good only if a random order scan is used� the update time is

fast� and the footprint is small�

Olken and Rotem �OR��� presented techniques for maintaining random sample views� They did

not consider concise or counting samples�

Matias et al� �MVN��� MVY��� MSY��� proposed and studied approximate data structures

that provide fast approximate answers� For example� a priority queue data structure supports

the operations insert�
ndmin� and deletemin
 their approximate priority queue supports these

operations with smaller overheads while reporting an approximate min in response to
ndmin and

deletemin operations� These data structures have linear space footprints�

The design of sampling�based estimation algorithms is a popular area of research �H%OT���

H%OT��� LN��� LN��� LNS��� H%OD��� HS��� LS��� LNSS��� HNSS��� HNS��� LN�	� HNSS�	�

GGMS���� Results in �LNS��� H%OD��� HS��� HNS��� and elsewhere demonstrate the practicality

of estimation procedures based on sampling by showing that the time taken to compute the estimate

is a small fraction of the time taken to compute the actual query�

Studies of the relative merits of various types of histograms in estimating selectivities and join

sizes include �MO��� Koo��� Chr��� PSC��� KK�	� Lyn��� MCS��� MD��� Ioa��� IC��� IP�	�

PIHS���� Using histograms for estimating selectivities in multi�dimensional queries was studied

��

in �MD��� PI����

A number of probabilistic techniques have been previously proposed for various counting prob�

lems� Morris �Mor��� �see also �Fla�	�� �HK�	�� showed how to approximate the sum of a set of n

values in ����m� using only O�lg lgm� lg lgn� bits of memory� Flajolet and Martin �FM��� FM�	�

designed an algorithm for approximating the number of distinct values in a relation in a single pass

through the data and using only O�lgn� bits of memory� Other algorithms for approximating the

number of distinct values in a relation include �WVZT��� HNSS�	�� Probabilistic techniques for

fast parallel estimation of the size of a set were studied in �Mat����

None of this previous work uses the new techniques described in this paper�

	 Project status and future directions

We are in the process of implementing the base Aqua system� A simple query processor has been

implemented for comparing approximate answers against actual answers�

We have also begun work on various enhancements beyond the base Aqua system� We have

implemented our new techniques for maintaining samples �Section 	���� approximate equi�depth

and Compressed histograms �Section 	���� and second frequency moments �Section 	���� We have

also implemented concise samples �Section ���� and counting samples �Section ���� and their uses

in hot list queries �Section ��� Finally� we have implemented the histogram techniques described

in Section ��� and Section ����

Techniques for adding skew to the TPC�D benchmark data have been developed and imple�

mented� to test the e�ectiveness of our techniques under the more realistic scenario in which the

data is skewed�

The next steps are�

�� Complete the implementation of the base Aqua system�

�� Determine an accuracy measure calculus for the base Aqua system�

�� Measure the accuracy of the base Aqua system on the TPC�D benchmark queries�

�� Incorporate the implemented enhancements into the Aqua system�

	� Measure the accuracy of the enhanced Aqua system on the TPC�D benchmark queries� quan�

tifying the e�ectiveness of the various enhancements relative to each other and the base

system�

Future work includes�

� Look at each TPC�D query and see where additional types of synopses �either known ones or
new ones� would improve accuracy and coverage�

� Develop and study improved techniques for maintaining important synopses with lower over�
heads�

��

Acknowledgements

The Aqua project is part of the umbrella Databases Incorporating Guaranteed EStima�

tion Techniques �DIGEST� project by the authors �http���www�bell�labs�com�project�digest���

Noga Alon and Mario Szegedy were collaborators on the work reported in Section 	��� S� Muthukr�

ishnan and Torsten Suel were collaborators on the work reported in Section ���� Venkatesh Ganti

was a collaborator on the work reported in Section ����

References

�AGMS��� N� Alon� P� B� Gibbons� Y� Matias� and M� Szegedi� Dynamic� probabilistic maintenance

of self�join sizes in limited storage� Manuscript� March �����

�AMS��� N� Alon� Y� Matias� and M� Szegedi� The space complexity of approximating the

frequency moments� In Proc� ��th ACM Symp� on the Theory of Computing� pages

������ May �����

�AS��� R� Agrawal and R� Srikant� Fast algorithms for mining association rules in large

databases� In Proc� ��th International Conf� on Very Large Data Bases� pages ��������

September �����

�BMUT��� S� Brin� R� Motwani� J� D� Ullman� and S� Tsur� Dynamic itemset counting and impli�

cation rules for market basket data� In Proc� ACM SIGMOD International Conf� on

Management of Data� pages �		����� May �����

�Chr��� S� Christodoulakis� Estimating record selectivities� Information Systems� �������	���	�

�����

�FJS��� C� Faloutsos� H� V� Jagadish� and N� D� Sidiropoulos� Recovering information from

summary data� In Proc� ��rd International Conf� on Very Large Data Bases� pages

����	� August �����

�Fla�	� P� Flajolet� Approximate counting� a detailed analysis� BIT� �	��������� ���	�

�FM��� P� Flajolet and G� N� Martin� Probabilistic counting� In Proc� ��th IEEE Symp� on

Foundations of Computer Science� pages ������ October �����

�FM�	� P� Flajolet and G� N� Martin� Probabilistic counting algorithms for data base applica�

tions� J� Computer and System Sciences� ����������� ���	�

�GBLP��� J� Gray� A� Bosworth� A� Layman� and H� Pirahesh� Data cube� A relational aggre�

gation operator generalizing group�by� cross�tabs� and sub�totals� In Proc� ��th IEEE

International Conf� on Data Engineering� pages �	���	�� February�March �����

�GGMS��� S� Ganguly� P� B� Gibbons� Y� Matias� and A� Silberschatz� Bifocal sampling for skew�

resistant join size estimation� In Proc� ���	 ACM SIGMOD International Conf� on

Management of Data� pages �������� June �����

��

�GM�	� P� B� Gibbons and Y� Matias� August ���	� Presentation and feedback during a Bell

Labs�Teradata presentation to Walmart scientists and executives on proposed improve�

ments to the Teradata DBS�

�GM��a� P� B� Gibbons and Y� Matias� New sampling�based summary statistics for improving

approximate query answers� Technical report� Bell Laboratories� Murray Hill� New

Jersey� November �����

�GM��b� P� B� Gibbons and Y� Matias� Synopsis data structures� concise samples� and mode

statistics� Manuscript� July �����

�GMP��� P� B� Gibbons� Y� Matias� and V� Poosala� Fast incremental maintenance of approxi�

mate histograms� In Proc� ��rd International Conf� on Very Large Data Bases� pages

������	� August �����

�GP��� V� Ganti and V� Poosala� Space�e�cient approximation of the data cube� Technical

report� Bell Laboratories� Murray Hill� New Jersey� November �����

�HHW��� J� M� Hellerstein� P� J� Haas� and H� J� Wang� Online aggregation� In Proc� ACM

SIGMOD International Conf� on Management of Data� pages �������� May �����

�HK�	� M� Hofri and N� Kechris� Probabilistic counting of a large number of events� Manuscript�

���	�

�HNS��� P� J� Haas� J� F� Naughton� and A� N� Swami� On the relative cost of sampling for join

selectivity estimation� In Proc� ��th ACM Symp� on Principles of Database Systems�

pages ������ May �����

�HNSS��� P� J� Haas� J� F� Naughton� S� Seshadri� and A� N� Swami� Fixed�precision estimation

of join selectivity� In Proc� ��th ACM Symp� on Principles of Database Systems� pages

�������� May �����

�HNSS�	� P� J� Haas� J� F� Naughton� S� Seshadri� and L� Stokes� Sampling�based estimation of

the number of distinct values of an attribute� In Proc� ��st International Conf� on Very

Large Data Bases� pages �������� September ���	�

�H%OD��� W��C� Hou� G� %Ozsoyo&glu� and E� Dogdu� Error�constrained COUNT query evaluation

in relational databases� In Proc� ACM SIGMOD International Conf� on Management

of Data� pages �������� May �����

�H%OT��� W��C� Hou� G� %Ozsoyo&glu� and B� K� Taneja� Statistical estimators for relational algebra

expressions� In Proc�
th ACM Symp� on Principles of Database Systems� pages ����

���� March �����

�H%OT��� W��C� Hou� G� %Ozsoyo&glu� and B� K� Taneja� Processing aggregate relational queries

with hard time constraints� In Proc� ACM SIGMOD International Conf� on Manage�

ment of Data� pages ������ June �����

�	

�HS��� P� J� Haas and A� N� Swami� Sequential sampling procedures for query size estimation�

In Proc� ACM SIGMOD International Conf� on Management of Data� pages ����� June

�����

�IC��� Y� E� Ioannidis and S� Christodoulakis� Optimal histograms for limiting worst�case

error propagation in the size of join results� ACM Transactions on Database Systems�

�������������� �����

�Ioa��� Y� E� Ioannidis� Universality of serial histograms� In Proc� ��th International Conf� on

Very Large Data Bases� pages �	������ August �����

�IP�	� Y� E� Ioannidis and V� Poosala� Balancing histogram optimality and practicality for

query result size estimation� In Proc� ACM SIGMOD International Conf� on Manage�

ment of Data� pages �������� May ���	�

�KK�	� N� Kamel and R� King� A model of data distribution based on texture analysis� In

Proc� ACM SIGMOD International Conf� on Management of Data� pages ������	�

May ���	�

�Koo��� R� P� Kooi� The Optimization of Queries in Relational Databases� PhD thesis� Case

Western Reserve University� September �����

�LN��� R� J� Lipton and J� F� Naughton� Estimating the size of generalized transitive closures�

In Proc� ��th International Conf� on Very Large Data Bases� pages ��	����� August

�����

�LN��� R� J� Lipton and J� F� Naughton� Query size estimation by adaptive sampling� In

Proc� �th ACM Symp� on Principles of Database Systems� pages ������ April �����

�LN�	� R� J� Lipton and J� F� Naughton� Query size estimation by adaptive sampling� J�

Computer and System Sciences� 	���������	� ���	�

�LNS��� R� J� Lipton� J� F� Naughton� and D� A� Schneider� Practical selectivity estimation

through adaptive sampling� In Proc� ACM SIGMOD International Conf� on Manage�

ment of Data� pages ����� May �����

�LNSS��� R� J� Lipton� J� F� Naughton� D� A� Schneider� and S� Seshadri� E�cient sampling

strategies for relational database operations� Theoretical Computer Science� ������

�����	����� �����

�LS��� Y� Ling andW� Sun� A supplement to sampling�based methods for query size estimation

in a database system� SIGMOD Record� ����������	� �����

�Lyn��� C� A� Lynch� Selectivity estimation and query optimization in large databases with

highly skewed distributions of column values� In Proc� ��th International Conf� on

Very Large Data Bases� pages �����	�� August �����

�Mat��� Y� Matias� Highly Parallel Randomized Algorithmics� PhD thesis� Tel Aviv University�

Israel� �����

��

�MCS��� M� V� Mannino� P� Chu� and T� Sager� Statistical pro
le estimation in database systems�

ACM Computing Surveys� �������������� �����

�MD��� M� Muralikrishna and D� J� Dewitt� Equi�depth histograms for estimating selectivity

factors for multi�dimensional queries� In Proc� ACM SIGMOD International Conf� on

Management of Data� pages ������ June �����

�MO��� T� H� Merrett and E� J� Otoo� Distribution models of relations� In Proc� �th Interna�

tional Conf� on Very Large Data Bases� pages ������	� October �����

�Mor��� R� Morris� Counting large numbers of events in small registers� Communications of the

ACM� ����������� �����

�MPS��a� S� Muthukrishnan� V� Poosala� and T� Suel� Highly e�cient partitioning schemes for

approximating low�dimensional data� Manuscript� November �����

�MPS��b� S� Muthukrishnan� V� Poosala� and T� Suel� On histogram�based selectivity estimation

with bounded errors� Manuscript� November �����

�MSY��� Y� Matias� S� C� Sahinalp� and N� E� Young� Performance evaluation of approximate pri�

ority queues� Presented at DIMACS Fifth Implementation Challenge� Priority Queues

Dictionaries
 and Point Sets� organized by D� S� Johnson and C� McGeoch� October

�����

�MVN��� Y� Matias� J� S� Vitter� and W��C� Ni� Dynamic generation of discrete random variates�

In Proc� �th ACM�SIAM Symp� on Discrete Algorithms� pages �������� January �����

�MVY��� Y� Matias� J� S� Vitter� and N� E� Young� Approximate data structures with applica�

tions� In Proc� �th ACM�SIAM Symp� on Discrete Algorithms� pages �������� January

�����

�OR��� F� Olken and D� Rotem� Maintenance of materialized views of sampling queries� In

Proc� �th IEEE International Conf� on Data Engineering� pages �������� February

�����

�PI��� V� Poosala and Y� Ioannidis� Selectivity estimation without the attribute value inde�

pendence assumption� In Proc� ��rd International Conf� on Very Large Data Bases�

pages ������	� August �����

�PIHS��� V� Poosala� Y� E� Ioannidis� P� J� Haas� and E� J� Shekita� Improved histograms

for selectivity estimation of range predicates� In Proc� ACM SIGMOD International

Conf� on Management of Data� pages ������	� June �����

�Pre��� D� Pregibon� Mega�monitoring� Developing and using telecommunications signatures�

October ����� Invited talk at the DIMACS Workshop on Massive Data Sets in Telecom�

munications�

�PSC��� G� Piatetsky�Shapiro and C� Connell� Accurate estimation of the number of tuples

satisfying a condition� In Proc� ACM SIGMOD International Conf� on Management of

Data� pages �	������ June �����

��

�Sch��� D� Schneider� The ins � outs �and everything in between� of data warehousing� August

����� Tutorial in the ��rd International Conf� on Very Large Data Bases�

�Vit�	� J� S� Vitter� Random sampling with a reservoir� ACM Transactions on Mathematical

Software� ���������	�� ���	�

�WVZT��� K��Y� Whang� B� T� Vander�Zanden� and H� M� Taylor� A linear�time probabilistic

counting algorithm for database applications� ACM Transactions on Database Systems�

�	������������ �����

��

