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Abstract

Recently there has been an increasing interest in models of
parallel computation that account for the bandwidth lim-
itations in communication networks. Some models (e.g.,
BSP and LOGP) account for bandwidth limitations using
a per-processor parameter g > 1, such that each pro-
cessor can send/receive at most h messages in g - k time.
Other models (e.g., PRAM(m)) account for bandwidth lim-
itations as an aggregate parameter m < p, such that the
p processors can send at most m messages in total at each
step.

This paper provides the first detailed study of the
algorithmic implications of modeling parallel bandwidth
as a per-processor (local) limitation versus an aggregate
(global) limitation. We consider a number of basic prob-
lems such as broadcasting, parity, summation and sort-
ing, and give several new upper and lower time bounds
that demonstrate the advantage of globally-limited mod-
els over locally-limited models given the same aggregate
bandwidth (i.e., p- é = m). In general, globally-limited
models have a possible advantage whenever there is an
imbalance in the number of messages sent/received by
the processors. To exploit this advantage, the processors
must schedule the sending of messages so as to respect
the aggregate bandwidth limit. We present a new paral-
lel scheduling algorithm for globally-limited models that
enable an unknown, arbitrarily-unbalanced set of mes-
sages to be sent through the limited bandwidth within a
(1+4¢) factor of the optimal offline schedule w.h.p., even if
the penalty for overloading the network is an exponential
function of the overload. We also present a near-optimal
algorithm for the case where long messages must be sent
as flits in consecutive time steps, as well as for the case
where new messages to be sent arrive dynamically over
an infinite time line. These results consider both message
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passing (distributed memory) and shared memory scenar-
ios, and improve upon the best locally-limited model re-
sults by a factor of ©(g). Finally, we present results quan-
tifying the power of concurrent reads in a globally-limited
bandwidth setting, including showing an Q(%g—’g) time
separation between the exclusive-read and the concurrent-
read PRAM(m) models, which, when m < p, greatly im-

proves upon the 28V1g p) separation known previously.

1 Introduction

Recently there has been an increasing interest in high-
level models for general-purpose parallel computing that
account for the bandwidth limitations in communication
networks. Some models, such as the well-studied Bsp [42]
and LOGP [17] models, assume that the primary band-
width limitation in the network is captured by a local re-
striction on the rate at which an individual processor can
send or receive messages. In the BSP model, processors
communicate through h-relations, in which each proces-
sor sends and receives at most h messages, at a cost of g-h,
where ¢ is a bandwidth parameter. In the LOGP model,
processors are charged o overhead to send or receive a
message and can only send a message every g steps. Thus
in both models, a large value for the parameter g models
a per-processor restriction on network bandwidth. Other
models, such as the PRAM(m) model [37], assume that the
primary bandwidth limitation in the network is captured
by a global restriction on the rate at which messages can
traverse the network. In the PRAM(m) model, there are m
memory cells that can be used to communicate between
the processors. A value for the parameter m that is much
smaller than the number of processors models an aggre-
gate restriction on network bandwidth. The LOGP model
also provides a capacity constraint on the network, but
this is modeled as a per-processor restriction bounding
the number of messages simultaneously in transit to or
from any one processor.

Whether a local or a global bandwidth limitation is
more suitable depends on the communication network of
the machine being modeled. Local bandwidth limitations
seem more suitable for networks in which each processor
has access to its “share” of the network bandwidth and
no more. Also, if the primary bandwidth bottleneck is in
the processor-network interface, then bandwidth should
be modeled on a per-processor basis. Global bandwidth
limitations seem more suitable for networks in which pro-
cessors can “steal” unused bandwidth, by routing along
alternative paths. If the primary network bottleneck is
the bisection bandwidth, and this bandwidth can be di-
vided among any subset of the processors, then bandwidth
should be modeled on an aggregate basis.



As an example of the impact of local versus global
bandwidth restrictions, consider the problem of a sin-
gle processor sending a distinct message to each of the
p—1 other processors (one-to-all personalized communica-
tion [31]). Suppose that a processor can send at most one
message per time step. Then with a per-processor band-
width parameter ¢ > 1, bandwidth restrictions impose a
lower bound of g(p—1) time. On the other hand, with an
aggregate bandwidth parameter m, the bandwidth is not
the bottleneck for any m > 1, and we have a lower bound
of only p — 1.

Contributions of this paper. This paper provides
the first detailed study of the algorithmic implications of
modeling parallel bandwidth as a per-processor limitation
(locally-limited) versus an aggregate limitation (globally-
limited). For concreteness, we consider the following four
models:

e The BSP model [42], a message-passing model with
a per-processor bandwidth parameter g, denoted in
this paper as the BSP(g) model.

e The QsM model [22], a shared-memory model with
a per-processor bandwidth parameter g, denoted in
this paper as the QsM(g) model.

e The BsP(m) model (defined in this paper), similar
to the BSP(g) but with an aggregate bandwidth pa-
rameter m.

e The QsM(m) model (defined in this paper), similar
to the QsM(g) but with an aggregate bandwidth pa-
rameter m.

Each of these models assumes that a processor can pipeline
its messages or memory requests. Unlike, e.g., the capac-
ity constraints of the PRAM(m) and the LOGP, the BsP(m)
and the QsM(m) impose a penalty for overloading the
network that grows with the amount of overload. For
lower bounds, we assume that the penalty is only linear
in the overload, whereas for upper bounds, we assume
(pessimistically) that the penalty is exponential in the
overload. The four models are bulk-synchronous mod-
els, although many of our results extend to more asyn-
chronous models.

We identify situations where strictly better algorith-
mic results can be obtained if the bandwidth limitation is
global, rather than local. First, we consider a number of
basic problems such as broadcasting, parity, summation,
list ranking and sorting, and give several new upper and
lower time bounds that demonstrate and quantify the ad-
vantage that globally-limited models such as the Bsp(m)
and QsM(m) have over locally-limited models such as the
BSP(g) and QsM(g). The comparison applies to a range of
values of m and g, but for simplicity, we will assume in
this paper that both types of models have the same aggre-
gate bandwidth (i.e., p- é = m). Some of our lower bound
results are obtained using a new technique for converting
lower bounds for the CRCW PRAM into lower bounds for
the BSP(g) and the qsm(g).

Next, we consider the general (unbalanced) routing
problem, in which each processor has an arbitrary number
of messages to send to other processors. In locally-limited
models, bandwidth restrictions impose a lower bound of

g-h, where h is the maximum number of messages sent or
received by any one processor. In globally-limited models,
bandwidth restrictions and the fact that each processor
can send or receive only one message at a time impose a
lower bound of max(Z, k), where n is the total number

of messages to be sent. Note that when m = %, we have

that max(Z,h) = max(g - %,h) < g - h. Thus the lo-
cal bandwidth lower bound is at best equal to the global
bandwidth lower bound and it is worse by a factor of ¢
whenever there is a significant imbalance (kb > g - %)

To exploit this inherent advantage, the processors in
globally-limited models must schedule (i.e., stagger) the
sending of messages so as to respect the aggregate band-
width limit. (Note that no special scheduling is needed for
locally-limited models.) When the communication pat-
tern is known in advance, careful offline scheduling can
be done. However, in general, this may not be the case,
and we present the following three parallel scheduling al-
gorithms for globally-limited models. (The results are
stated for the BsP(m), but similar results are shown for
the QsM(m) in the full paper). Here, the parameter L
is the periodicity parameter from the BsP model, which
reflects message latency plus synchronization overheads.
Let € < 1 be a small positive constant.

e A randomized algorithm for scheduling an unknown,
arbitrarily-unbalanced h-relation on the BSP(m) that
runs in max{(1 + €)n/m,h, L} 4+ 7 time, with high
probability, where n is the total number of messages
sent and 7= O(p/m + L + Llgm/lg L) is the time
to compute and broadcast the value of n. For the
important case where n >> p and max(n/m,h) > L,
7 is negligible, and hence this algorithm is roughly
within a (1+4¢) factor of the optimal offline schedule.
Alternatively, if n is known by all the processors,
then 7 = 0, and again, we are within a (1+€) factor
of optimal.

e Second, we consider the case where processors send
messages of arbitrary lengths, and the flits of a long
message must be sent in consecutive time steps. We
provide a randomized algorithm for scheduling an
unknown, arbitrarily-unbalanced h-relation on the
BSP(m) that runs in max{(2+€)n/m, b, L}+O(p/m+
L+ Llgm/lg L) time, with high probability, where
h is the maximum total length of messages sent or
received by any one processor and n is the total
length of all the messages sent.

e Third, we consider a dynamic scenario in which new
messages to be sent by the processors are generated
according to an Adversarial Queuing Theory model
over an infinite time line. We present a randomized
algorithm that can successfully schedule and send
messages through the limited bandwidth up to an
arrival rate that is within a constant factor of opti-
mal.

We also show how the second algorithm given above can
be employed in situations where a processor incurs a non-
unit start-up cost in initiating or receiving a message (e.g.,
as modeled by the overhead parameter, o, in the LOGP
model). Such start-up costs are often the motivation for
sending long messages, and we show that the second algo-
rithm can be adapted to handle such costs with a running



time within a (2+4¢€) factor of optimal in many cases. One
implication of the efficient running times of these rout-
ing protocols is that we can, in many scenarios, consider
models with global bandwidth restrictions that do not
force the algorithm designer to explicitly schedule mes-
sage transmission times.

Finally, we present results quantifying the power of
concurrent-read versus exclusive-read and queue-read in
a globally-limited bandwidth setting. Among our results
is an Q(%g—’g) time separation between the exclusive-read

and the concurrent-read PRAM(m) models, which, when
m & p, greatly improves upon the best previously known

separation of 2VI8P) from [1].

Outline. The rest of the paper is organized as follows.
Section 2 presents the definitions of the models we con-
sider. Section 3 describes the related work in detail. Sec-
tion 4 considers a number of basic problems for which
we quantify the gap in time between locally-limited and
globally-limited models. Section 5 presents our results re-
lating concurrent-read and exclusive- or queue-read. Our
results for sending unbalanced h-relations are given in
Section 6.

2 Modeling parallel bandwidth

The BSP model. The Bulk-Synchronous Parallel (BsP)
model [42; 43] consists of p processor/memory compo-
nents communicating by sending point-to-point messages.
The interconnection network supporting this communica-
tion is characterized only by a per-processor throughput
parameter g and a latency parameter L. A BSP computa-
tion consists of a sequence of “supersteps” separated by
bulk synchronizations. In each superstep the processors
can perform local computations and send and receive a
set of messages. Messages are sent in a pipelined fashion,
and messages sent in one superstep will arrive prior to the
start of the next superstep. The time charged for a super-
step is calculated as follows. Let w; be the amount of local
work performed by processor ¢ in a given superstep. Let
s; (ri) be the number of messages sent (received) by pro-
cessor 1. Let w = max!_, w;, and b = max?_, max(s;, ;).
Then the cost, T, of the superstep is defined to be

T =max(w, g -h, L) .

Intuitively the communication throughput parameter, g,
is the best sustainable gap between message sends issued
by each individual processor; therefore 1/g represents the
available bandwidth per processor. In this paper, we de-
note the BspP model as the BsP(g) model, to make explicit
its per-processor bandwidth parameter g.

The BSP(m) model. We now consider a variant of
the BsP model that replaces the per-processor bandwidth
parameter g by an aggregate bandwidth parameter m.
We denote this globally-limited BSP model as the BSp(m)
model. Let w and h be defined as in the Bsp(g). At
each step t of a superstep, each processor may initiate
at most one message send. The interconnection network
is assumed to handle up to m message sends in a step;
exceeding this limit results in a larger charge for the step.
Let m: be the number of message sends initiated in step
t of a given superstep. Let f,, be a function of m: that
equals 0 when m; = 0, equals 1 when 1 < m; < m, and

such that when m; > m, fyn(m¢) > m¢/m is an increasing
function of m;. Let 7 be the number of steps in a given
superstep, and let ¢, = 2;1 fm(my). Then the time
cost, T', for the superstep is defined to be

T =max(w, h, ¢m, L) .

The definition allows for a choice of functions f,, when
m¢ > m. For lower bounds, we will assume the min-
imum (linear) charge fm,(m:) = ffn(mt) = m¢/m; in-
tuitively, this models a network that can absorb arbi-
trary message injection rates and sustain a throughput
of m messages at a time: there is no penalty for over-
loading the network. For upper bounds, we will assume
fm(my) = fo(my) = e 1 when m, > m; intuitively,
this models a network that suffers an exponential penalty
for injecting more messages than the network’s aggregate
bandwidth limit. We view this as representative of the
maximum charge likely to be incurred in a network.! Note
that f2(m:) > fh(m.) for all m and all m, > m.

Both the BSP(y) and the BsP(m) models can be ex-
tended to variable length messages by replacing “mes-
sages” with “flits/packets” in the definition above, and
viewing a long message as a sequence of flits to be sent
between a pair of processors. We consider both the case
where flits of a long message must be injected in consec-
utive time steps and the case where they need not be.
The latter case thus reduces to the fixed-sized message
case. The same g is used for both short and long mes-
sages; see [3, 9, 30] for examples of models that use dis-
tinct throughput parameters for short and long messages.
Note that the BSP(g) model does not insist that flits of
long messages be injected in consecutive time slots.

A simplified cost metric. We also briefly mention a
variant of the BsP(m) model where we ignore the exact
sending times within a superstep and charge

T = max(w,h,n/m, L)

for any superstep that transmits n messages (where w,
h and L are defined as before).2 We refer to this as the
self-scheduling BSP(m) model. By using the results we
prove in Section 6, we can show that any algorithm .4
that has running time ¢ on the p-processor self-scheduling
BSP(m) can be implemented on a p-processor BsP(m) in
time (14€)t with very high probability. Thus, we shall see
that in most situations, it is sufficient to consider the self-
scheduling variant of the BsP(m) model. The simplicity
of this model eases the task of algorithm design.

The QSM model. The Queuing Shared Memory (qQsm)
model [22] consists of p processors, each with its own pri-
vate memory, communicating by reading and writing lo-
cations in a shared memory. The interconnection net-
work supporting this communication is characterized by
a per-processor throughput parameter g. Processors exe-
cute a sequence of bulk-synchronous phases (supersteps),
each consisting of an arbitrary interleaving of the follow-
ing operations: (i) Shared-memory reads: Each proces-
sor ¢ copies the contents of r; shared memory locations
into its private memory. The value returned by a shared-
memory read can only be used in a subsequent phase.

ITWith this pessimistic measure, m represents the breaking point
at which the performance of the network deteriorates drastically.

2This is similar to a model where the cost of a superstep is
gin/p + g2h, as proposed in the conclusion of [33].



(ii) Shared-memory writes: Each processor i writes to w;
shared-memory locations. (iii) Local computation: Each
processor ¢ performs ¢; RAM operations, involving only its
private state and private memory.

Concurrent reads or writes (but not both) to the same
shared-memory location are permitted in a phase. In the
case of multiple writers to a location x, an arbitrary write
to © succeeds in writing the value present in z at the
end of the phase. Each shared memory location can be
read or written by any number of processors. Let the
mazimum contention of a QSM phase be the maximum,
over all locations z, of the number of processors reading
z or the number of processors writing .

Consider a QsM phase with maximum contention k.
Let w = max;{c;} for the phase, i.e. the maximum over all
processors ¢ of its number of local operations, and likewise
let B = max;{r;,w;} for the phase. Then the time cost,
T, of the superstep is defined to be

T =max(w, ¢g-h, ).

Note that although the model charges g per shared mem-
ory request at a given processor (the g-h term in the cost
metric), it only charges 1 per shared memory request at
a given location (the x term in the cost metric). In this
paper, we denote the QsM model as the QsM(g) model, to
make explicit its per-processor bandwidth parameter g.

The QSM(m) model. Lastly, we consider a variant of
the QsM(g) model that replaces the per-processor band-
width parameter g by an aggregate bandwidth param-
eter m. We denote this globally-limited QSM model as
the @sM(m) model. Let w, x and h be defined as in the
QsM(g). Let m; be the number of shared memory read
or write requests initiated in step t of the given phase
(superstep), and let the function f,, and the quantity ¢,
be defined as in the Bsp(m). Then the cost, T, of the
superstep is defined to be

T =max(w, h, K, ¢m) .

3 Related work

Several authors have pointed out that the BSP(g) model
does not accurately reflect the cost of sending unbalanced
communication patterns, and experimental evidence mea-
suring this inaccuracy is provided in [45]. Modifications
to the BSP(g) model to more accurately reflect communi-
cation costs have been proposed, for example the E-BSP
of [33] as well as the Y-BsP of [19]. An early work that
proposed and studied an abstract model that addressed
bandwidth considerations is the DRAM model of Leiser-
son and Maggs [35], which assesses communication costs
in terms of the congestion of messages across every cut in
the underlying network. The DRAM, as well the Y-BSP and
the E-BSP incorporate cost measures which vary greatly
depending on the underlying network architecture, and
both the Y-BsP and the E-BSP incorporate cost measures
designed to capture network proximity. Although this
approach can provide a more accurate estimation of run-
ning time, the complexity of the resulting models makes
it difficult to isolate the relative effects of local and global
bandwidth restrictions, and thus these models are not
well suited for the study presented here. These models

also differ from the globally-limited models we study here
in that they do not provide an advantage to algorithms
that schedule communication within a superstep so as to
avold exceeding the capacity of the network. However,
as we shall see in Section 6, there is a simple algorithm
for scheduling messages to avoid exceeding the network
capacity, and thus this is a less significant difference.

Many previous works have studied the total-exchange
(also called complete exchange and all-to-all personalized
communication) primitive in which each processor has a
distinct message to send to every other processor (see,
e.g., [8, 11, 14, 26, 28, 29, 31, 36, 40, 41]). The total-
exchange primitive has been incorporated into communi-
cation libraries such as the Collective Communication Li-
brary provided with the 1BM sP-2 [7]. Tt is used in matrix
transposition, two-dimensional Fourier Transform, con-
version between storage schemes (remapping of arrays in
HPF compilers), shuffle permutation, N-body problems,
matrix-vector multiplication, Ascend and Descend algo-
rithms, and routing h-relations. Efficient total-exchange
algorithms have been studied for complete networks, hy-
percubes and tori, d-dimensional mesh of busses, circuit-
switched butterflies, the ocpc, multi-port fully-connected
message-passing models, etc. Unlike previous work, this
paper considers the total-exchange on an abstract, but
bandwidth-limited model, the BsP(m). Moreover, whereas
most previous work has considered only the case in which
the messages sent between processors are the same length,
we consider the more general unbalanced total-exchange
problem (unbalanced h-relation), in which each message
may be of a different nonnegative length.

Bhatt et al. [11] have studied the unbalanced total-
exchange problem (which they call “chatting”) on leveled
networks. They consider a scenario in which (1) commu-
nication is performed in rounds, so that all messages in
an unbalanced total-exchange are routed before any new
messages are generated, (2) each message travels through
the network as a contiguous stream of flits, (3) the routing
is oblivious, and (4) there are no buffers or queues in the
network. In this paper, we consider essentially the same
scenario, except that we consider a model, the BspP(m),
which abstracts away the topology and buffering consid-
erations of the network. Specifically, we consider rounds
as in (1), and present a schedule of injecting messages
such that a message of length z;; consumes a unit of (bi-
section) bandwidth for z;; time steps, in the spirit of (2)
and (4). The algorithm of Bhatt et al. first combines all
p? (source, destination, length) triples in a single proces-
sor that computes an efficient schedule and then broad-
casts the schedule to all the processors; collecting these
triples takes ©(p? + L) time on the BSP(m). This contrasts
with our algorithm, which only computes and broadcasts
n, the sum of the lengths of all the messages; this can be
done in O(p/m + L + Llgm/lg L) time on the BsP(m).

Routing the dynamic case of the total-exchange prob-
lem (where the messages to be sent arrive dynamically
over an infinite time line) has been considered in the
context of routing messages through multiple Ethernet-
like channels by Raghavan and Upfal [39] and Goldberg
and MacKenzie [23]. These works study the problem of
scheduling the transmission of messages from p proces-
sors to m communication channels. The arrival times of
the messages are typically determined by a simple ran-
dom process, such as a Bernoulli distribution, and the



objective is to successfully route the messages over the
requested channels. Different routing protocols are ana-
lyzed, and the primary concern is to show that the proto-
cols are stable for sufficiently low arrival rates of messages.
These results can be used to provide dynamic unbalanced
total-exchange algorithms for the case where the message
arrival times are chosen randomly, and at most m chan-
nels are utilized at any time step. We here consider the
case where a malicious adversary chooses the message ar-
rival times, instead of an oblivious random process.

Also, the models we consider here are incomparable
to the multiple channel model. In the multiple channel
model, if more than one processor tries to send simultane-
ously using the same channel, no processor is successful,
but the channel is clear at the next time step. Thus, algo-
rithms designed for the multiple channel model have the
advantage over our model that a single bad step does not
cost more than one unit of time, and can provide feed-
back for use at the next step. In the BSP(m) model we
consider, on the other hand, a single bad step can require
time em~!. On the other hand, algorithms designed for
the models considered here have the advantage that pro-
cessors are not required to choose a specific channel and
that any attempted transmission is guaranteed to even-
tually be successful. For example, consider the algorithm
where every processor attempts to send a message at ev-
ery time step until it is successful. In the multiple channel
model; if more than m processors have messages to send,
this algorithm never terminates. In our model, the algo-
rithm is successful after one (possibly very slow) step.

Algorithms for the PRAM(m) and closely related mod-
els have appeared in [44, 5, 37, 2, 1]. The most significant
difference between the PRAM(m) and the BsP(m) and the
QsM(m) is that the PRAM(m) model includes a separate,
concurrently readable Read Only Memory that contains
the input to any problem being solved. This means that in
this model, distributing the entire input to the processor
occurs without charge. Also, all the work in the PRAM(m)
model has been in a CRCW framework, with the exception
of [2], which assumed that reading was either exclusive
or queued. Due to these features, this model does not
seem to have an efficient emulation on lower level models
such as the Bsp, or BsP(m). On the other hand, algorithm
design for the PRAM(m) is complicated by the fact that
there are only m shared memory locations.

We finally mention that several groups have been re-
cently involved in implementations and experimentations
of parallel algorithms, using bandwidth-limited general
purpose models (see, e.g., [6,12, 15,17, 18, 21, 25, 27, 38]).

4 Separation results between locally-limited and globally-

limited models

In this section we present some algorithmic results and
lower bounds for certain problems that establish various
time separations of the @QsM(m) and BSP(m) model with
latency L from the QsM(g) model and BSP(g) model with
latency L respectively. In the following, we assume that
the gap and the aggregate bandwidth are related by g =
p/m, where p is the number of processors. We note that
any QsM(g) algorithm can be emulated on the Qsm(m)
with the same asymptotic time bound, as can a BSP(g)

algorithm on a BSP(m). Our results are tabulated in Table
1 for the case when p = n, the size of the input.

All of the upper bounds for gsm(m) and Bsp(m) with
the exception of the results for sorting follow from the
following observation. Given an EREW PRAM algorithm
that runs in time ¢(n) and work w(n) it can be converted
into a QsM(m) algorithm that runs in time O(n/m +
t(n) + w(n)/m) as follows. We distribute the input el-
ements evenly into the first m processors in time n/m,
and then simulate the PRAM algorithm on m processors
in time O(w(n)/m + t(n)) by a naive simulation of the
PRAM algorithm on the QsM(m). This is possible since
the simulation will generate at most m memory accesses
per step. This method will usually generate a bound of
O(t(n) + w(n)/m) since w(n) > n for most nontrivial
problems. We can map this onto the BSP(m) to run in
time O(L - t(n) + w(n)/m) by pipelining the computa-
tions in each of the ¢(n) steps.

For the problem of sorting n keys, upper bounds of
O(n/m) in the qsM(m) and O(n/m + L) for the Bsp(m)
hold whenever m = O(n'™) for some ¢ > 0. The algo-
rithm that achieves these bounds routes the input keys to
a subset of mlg n processors. We can then sort these keys
using the deterministic sorting algorithm from [2], which
is an adaptation of columnsort. When m = O(n'~¢), the
running time of this algorithm is within a constant of the
time required to route a permutation of the n keys that is
balanced on the subset of mlg n processors. This requires
time O(n/m) and O(n/m+ L) on the QsM(m) models and
BSP(m) models respectively. The keys are then routed to
the processors that need to output them. For larger val-
ues of m, we can get a bound of O((nlgn)/m +1gn) on
the @sM(m) (valid for all values for m) by using the gen-
eral strategy described above of mapping regular PRAM
algorithms onto the QsM(m), and on the BsP(m) a bound
of O((n/m + L)lgn) derivable either from the qsm(m)
algorithm or the BsP(g) algorithm.

4.1 Converting CRCW PRAM lower bounds into BsP(g)
lower bounds

We note that a time lower bound of Q(¢(n)) for p pro-
cessors with unlimited local computational powers on the
CRCW PRAM implies a time lower bound for the same prob-
lem of (g-t(n)) for p processors with unlimited local com-
putational powers on the QsM(g). However on a qsm(m)
it translates into a lower bound of only Q(¢(n)). Thus the
CRCW lower bound result of Beame and Hastad [10] gives
a lower bound for the n-element parity, summation, list
ranking and sorting problems of (g -lgn/lglg n) time on
the qsM(yg) for deterministic and randomized algorithms
when the number of processors is polynomial in n.

The result of [10] is also used to derive the lower
bounds for the BsP(g) model. Any lower bound of the
form t(n) for the number of steps required on the crcw
PRAM (with unlimited local computation, and a polyno-
mial number of processors) gives a lower bound of the
form Q(gt(n)) for the BsP(g). To prove this, it is sufficient
to show that we can realize an h-relation on the CRCW in
time O(h). Given this, we can simulate any BSP(g) super-
step requiring time T'(n) for communication using time
O(T(n)/g) on the cRcw PRAM. Thus, any algorithm that
requires time ¢ - ¢(n) for communication on the BSP(g)



Separation Results

problem stronger model weaker model time separation (for n = p)
One-to-all QsMm(m): ©(p) QsM(g): ©(gp) O(g)
communication | BSP(m): O(p + L) BSP(g): ©(gp + L) O(g)
Broadcasting | QsM(m): O(Igm + p/m) QsM(yg): ©(glgp/lgg) O(gp/lgyg)
BSP(m):/ o(L lgLT/lg L+ | Bsp(g): ©(Llgp/lg(L/g)) O(lg Llgp/(Ig(L/g)1g m))
p/m +
Parity, QsMm(m): ©(lgm + n/m) QsM(yg): Qglgn/lglgn) Q(gn/lglgn)
Summation BSP(m):/O(L lgLn)z/lg L+ | Bsp(g): ©(Llgn/lg(L/g)) O(lg Llgn/(1g(L/g)lg m))
n/m —+
List ranking QsM(m): O(lgm + n/m) QsM(yg): Qglgn/lglgn) Q(gn/lglgn)
BsP(m): O(Llgm + n/m) | BsP(g): Q(glgn/lglgn + L) Q(lgn/lglgn)
Sorting QsM(m): ©(n/m) QsM(yg): Qglgn/lglgn) O(lgn/lglgn)
(m=0(n'"%) | BsP(m): O(n/m + L) BSP(g): Q(glgn/lglgn + L) O(lgn/lglgn)

Table 1: Some results separating the globally-limited models from the corresponding locally-limited models.

Here, ¢ is the

gap parameter, I is the latency, p is the number of processors, n is the size of the input, and m = p/g is the bandwidth
parameter in QsM(m) and BspP(m). The separation results are for n = p, and for suitable values of L and g.

gives an algorithm with ¢(n) steps on the CRCW PRAM.

An h-relation can be realized on a CRCW PRAM with
a simple deterministic algorithm that runs in O(h) time
using polynomial space and polynomial number of pro-
cessors:

e Compute m, the max number of messages to be sent
by any processor (a simple constant time computa-
tion with p? Processors).

e Use a p by m - p array, where the ¢th row is for
messages to be sent to the sth processor. Partition
each row into p blocks of m elements each. The jth
processor will write the messages destined for the
1th processor in the jth block of row 2. This write
is done in < h steps.

e Repeat:

— Find the leftmost nonzero entry in each row
in parallel (a constant time computation with
polynomial number of processors).

— Transmit this information to the corresponding
destination processor.

— Zero out this leftmost nonzero entry in each
row until no row has any nonzero entry

Each iteration of the repeat loop can be done in con-
stant time, so the repeat loop takes O(h) time.

Furthermore, any randomized lower bound of the form
t(n) for the number of steps required on a p processor
CRCW PRAM (with unlimited local computation) gives a

randomized lower bound of the form g-#(n)-min( ngg'*gp, )

for the BsP(g). This follows from the fact that the h-
relation problem can be solved on the CRCW PRAM in
O(h +1g* p) time and linear work with high probability,
by using approximate integer sorting from [24]. In the
case that L > glg* p, a bound of ¢(n) for the cRCW PRAM
becomes a bound of ¢ - ¢(n), and for all values of L and g,
we get a lower bound of at least g - ¢t(n)/1g* p.

Also, any deterministic lower bound on time of the
form ¢(n) for a (plglg p)-processor CRCW PRAM (with un-
limited local computation and the Arbitrary rule for re-
solving concurrent writes) provides a deterministic lower
bound of the form g-t(n) for the p-processor BsP(g). This
follows since we can realize an h-relation on a (plglg p)-
processor Arbitrary CRCW PRAM with a deterministic al-
gorithm that runs in O(h) time. The details are left to
the full version of the paper.

4.2 A lower bound for broadcasting

The lower bound listed in the table for broadcasting in
the BsP(g) has been shown in [32] for a model where pro-
cessors are not allowed to obtain information from non-
receipt of messages. We can use a sensitivity argument,
as developed in [16], to derive a lower bound for broad-
casting both on the Bsp(g) and the QsM(g) that accounts
for non-receipt of messages. We here present the lower
bound for the broadcast problem in the BSP(g) model.
In this model, the importance of considering non-receipt
of messages is demonstrated by the following algorithm,
that uses non-receipt of messages to broadcast a single bit
in time g[lg, p], provided L < g.

Initially, processor 1 has a single bit b that is to be
broadcast to processors 2 through p. We maintain the
invariant that at the start of step ¢« > 1, processors 1
through 3'~* know the value of b. During step i, processor
7 < 37! sends a message to processor j + 371 if b =0
and to processor j + 2-3°"1 if b = 1. After each step,
processors synchronize. This is enough information to
maintain the invariant, and thus after [lg, p] such steps,
every processor knows the value of b.

Theorem 4.1 Any deterministic algorithm for the broad-

cast problem on the BsP(gy) model requires at least time
Llgp
21g(2L/g+1) *

Proof. We consider algorithms that broadcast a sin-
gle bit; this provides a lower bound for the more general
problem of an arbitrary number of bits. Let S(¢,5) be



the set of possible states that processor ¢ can be in during
step j of any possible execution of a given broadcast algo-
rithm. Since we are considering deterministic algorithms,
and the input to the problem consists of only one bit,
there are exactly two possible program executions, and
thus for any 4,5 |S(z,7)| < 2. We say that processor i is
sensitive at step j if |S(¢,j)| = 2. Let S(t) be the set of
processors that are sensitive during any step of superstep
t. Note that any algorithm for the single bit broadcast
problem cannot complete before there exists some ¢ for

which |S(t)| = p.

Let z; be the maximum number of messages sent by
any processor during the tth superstep of the broadcast
algorithm when the input is a 1. Let #; be the maximum
number of messages sent by any processor during the tth
superstep of the broadcast algorithm when the input is a
0. Both z; and #; are defined to be 0 for ¢ larger than the
respective running times of the algorithm.

Claim 4.2 [S(t+1)| < (¢ + 5 + 1)|S(1)].

Proof. A processor ¢ can only be sensitive during super-
step t + 1 if either it was sensitive during superstep ¢, or
some sensitive processor k sends a message to processor
1 during some possible execution of the algorithm. How-
ever, since there are only two possible executions of the
algorithm, the total number of processors that a sensitive
processor k can possibly send a message to during any
execution of the tth super step is at most z; + ;. L]

Thus, in order for a broadcast algorithm to success-
fully terminate on both inputs in n steps, we require that

n

t=1

The stated lower bound follows by mimizing the following
expression for the worst case running time of the algo-
rithm, subject to the requirement given above.

max Z max(L, gz.), Z max(L, g&i)
t=1 t=1

5 The power of concurrent read in limited bandwidth

In this section, we discuss the power provided by con-
current access to data in a limited bandwidth setting.
When bandwidth is not limited, there is a separation of
O(lg p) between concurrent reading and exclusive read-
ing; this section discusses the analogous separation when
bandwidth is limited. This question is relevant when the
primary bandwidth bottleneck is either a global restric-
tion, or a local restriction. Since the ability to sort p keys
efficiently is used in most simulations of concurrent read
using exclusive or queued read, the results on the sepa-
ration between globally-limited and locally-limited band-
width restrictions for the problem of sorting (discussed in
Section 4) have an important impact on this problem.

An example of a setting where processors have concur-
rent read access to limited bandwidth is a set of processors

that communicate over a shared broadcast bus with in-
sufficient bandwidth to handle communication by every
processor at every clock cycle. When the processors are
able to access the bus at every time step, this is an en-
vironment with concurrent read and a global bandwidth
restriction. If, on the other hand, there is a high local
cost for accessing the bus, this is an environment with
concurrent read and a local bandwidth restriction.

We here consider the problem of simulating concurrent
read with exclusive or queued read in a globally-limited
bandwidth setting. To model concurrent read limited
bandwidth, we use the cRcw PrRAM(m) of [37]. In the
CRCW PRAM(m), the processors communicate through a
shared memory consisting of m shared memory cells that
can be read and written concurrently. The input to the
problem resides in a separate Read Only Memory which
processors can also read concurrently.

Theorem 5.1 One read step of the CRCW PRAM(m ) can
be simulated on the QsM(m) in time O( £ 41g m), provided

m=0(p' "), e > 0.

Proof. We describe here how to perform a read, but
writing is similar. Each processor i writes the pair (j,1)
into an array A of size p, where j is the address of the
memory location that processor i reads. The array A is
sorted using the sorting algorithm of the previous section,
and the sorted values are stored in array B. Every proces-
sor ¢ reads the i¢th location of B; processor ¢ determines
the value stored in the memory location which has an ad-
dress stored in B[i]. Once this has been accomplished,
the processor that appears in B[i] can informed of this
value by using another %p steps.

Each of the m processors ¢, where 1 is congruent to 0
mod 2 reads the memory location whose address appears
in B[:] by using the standard EREW PRAM simulation of
a step of a CRCW PRAM algorithm. This value is written
to location ¢/ Z of a third array C, along with the ad-
dress of the memory location that was read to produce
this value. For the next £ steps, called crucial read steps
at step j, processor ¢ reads location [¢/ £ | of C' when ¢ is
congruent to jy mod Z. If the memory location address
which appears in C is not the same address that proces-
sor ¢ read from the array B, then processor ¢ reads that
memory location directly. After n/p steps, every proces-
sor ¢ knows the value appearing in the memory location
with the address that it read from the array B.

This algorithm requires O(Z 4 Igm) steps, and re-
quires at most m memory accesses at any step. Thus, it
suffices to show that no more than 1 processor accesses
any memory location at any step. To see that this is
the case, note that both the EREW PRAM algorithm and
the sorting algorithm consist of only exclusive accesses.
Furthermore, during the crucial read steps, processor @
only reads from the shared memory outside the array C
if processor i is reading a different memory location than
processor |i/Z | read. Since the addresses of the memory
locations read are sorted, there can be no conflict on such
a step either. =

This can be seen to be optimal by comparing the time
to broadcast in the two models. The broadcast problem
also shows that there is a gap between the QsM(yg) and the



CRCW PRAM(m) of at least glgp/lgg. Also note that in
the QsM(g) model, any simulation of the CRcwW PRAM(m)
that requires sorting the memory locations accessed re-
quires time at least Q(glgp/lglgp). Note that directly
using the EREW PRAM simulation of a CRCW PRAM leads
to a QsM(m) simulation with slowdown 2 lgm.

In the PrRAM(m), limited bandwidth does not affect
the cost of distributing the input to the processors. How-
ever, we show that the difference between exclusive and
concurrent read is not just a function of efficiently dis-
tributing the input to the processors. We show that if we
add to the @sM(m) model a Read Only Memory contain-
ing the input, the simulation with slowdown O(Z£) is still
close to optimal. The same result can be used to show
a gap between the ER PRAM(m) and the cR PRAM(m) of

Q(%g—’g), which, when p >» m, greatly improves the best

previous gap shown between the two models of 28lg p)
by [1].

Theorem 5.2 The worst case time to simulate one step

. lgm
of the CRCW PRAM(m ) on the QsM(m ) is Q(537).

We show that for the following problem, even if every
processor in the QsM(m) model is given the entire input
in advance, the CRCW PRAM(m) is faster than the qsm(m)

by a factor of Q(%‘ligﬂp). The proof uses lower bound tech-

niques developed in [2].

Definition 5.1 The Leader Recognition problem.

o Input: p memory locations, one contains the value
1, and the rest contain the value 0.

o Output at each processor: the address of the memory
location that contains the value 1.

Let w be the number of bits contained in any mem-
ory cell. Note that the previously described simulation
assumes that w = Q(lgp +1g M), where M is an upper
bound on the size of the shared memory. The theorem
follows from the following lemma, and the fact that the
leader recognition problem can be solved in the crcw
PRAM(m) in time lg p/w, by every processor reading a dis-
tinct input cell, after which the one processor that finds a
1 broadcast its processor number to the remainder of the
Processors.

Lemma 5.3 Any algorithm that solves the leader recog-
nition problem in the QSM(m ) requires average case time
at least Q(M), even if every processor knows the entire

R . mw
input in advance.

The proof of the lemma, which uses techniques devel-
oped in [2], follows from the following claim:

Claim 5.4 Any processor that solves the leader recogni-
tion problem either examines at least plg m/2mw inputs
on average, or on average receives at least lgm/2 bits of
communication from the other processors.

Proof. (of claim — sketch) Consider any processor @
that examines less than % inputs to the problem. We
can model the actions of a processor by a decision tree,
where all the initial branching in the decision tree occurs
as a result of reading bits of communication (call this the
communication branching portion of the tree) and the re-
mainder of the branching occurs as a result of reading
inputs to the problem (call this input branching). Call
each maximal subtree that contains only input branching
a mazimal input subtree. In order to always respond cor-
rectly to the problem, processor ¢+ must produce at least
p distinct results, and thus must have at least p leaves in
this decision tree.

However, any input to this problem contains exactly
one 1, and thus if a processor examines k inputs to the
problem, the number of distinct leaves in any maximal
input subtree is also at most k, since there is at most one
leaf for each of the k different locations where the 1 in
the input could appear. Therefore, the communication
branching portion of the tree must partition the p inputs
to the problem into sets of size at most k, and thus must
contain at least p/k leaves. Thus, the number of commu-
nication bits must on average be at least 1g(£). The claim
follows by using k = plg m/2mw. .

Proof. (of lemma) If there exists some processor that
on average examines at least plg m/2mw inputs to the
problem, then the average running time of the algorithm
must also be at least plgm/2mw. Otherwise, the aver-
age total number of communication bits read is at least
plgm/2. Since at most wm bits can be read at any time
step, at least plg m/2mw steps are required. =

6 Sending unbalanced h-relations

In this section, we consider the general (unbalanced) rout-
ing problem, in which each processor has an arbitrary
number of messages to send to other processors. We
present three randomized parallel algorithms for schedul-
ing an unknown, arbitrarily-unbalanced h-relation on a
BSP(m) that are quite close to optimal; these algorithms
handle the short messages, the varying-length messages
and the dynamically-arriving messages cases. In irregu-
lar applications, processors can have varying amounts of
messages to send due to skew in the inputs, skew in the
fraction of data that is already local to the processor (e.g.,
sorting a nearly-sorted list or list-ranking a nearly-ordered
list), skew in the amount of new values produced by the
processors (e.g., an intermediate result of a join opera-
tion), skew in the number of new tasks spawned by the
processors (e.g., in a nested parallel language), etc. More-
over, when m < p, the limited bandwidth of the Bsp(m)
makes the standard PRAM techniques for fast balancing of
this skew unacceptably slow.

6.1 The Static Problem

We consider the following routing problem: Each pro-
cessor ¢, ¢t = 1,...,p, has x; messages to send. Let
n = Zle x; and T = maxf=1 z;. Let y; be the number of
messages destined for processor 7, and let § = max?_, y;.



Each processor ¢ knows z;, but n, Z, y; and g are un-
known.

A lower bound for the problem on the Bsp(g) of ©(g(z+
y) + L) is obtained directly from the definition of the
problem, and a matching upper bound is obtained by a
straightforward execution. We devise simple algorithms
for the BsP(m, L) that take O(n/m + (z + 3) + L(1 +
lgm/lg L)) with very high probability in m. This algo-
rithm is similar to techniques used for wormhole routing
(see for example [20]).

Algorithm Unbalanced-Send

e Processors perform a prefix sum and a broadcast to
inform every processor of the value n.

e For each processor u:

—If z; < (1 + €)n/m for some small €, then
processor ¢ selects, uniformly at random, some
Ji from the interval [1,...,(1 4 €)n/m]. Let
Ji= (14 ¢en/m—ji +1. Processor i sends
min(z;, j/) messages consecutively starting at
time step ji, and max (0, ; — j!) messages con-
secutively starting at time step 1 (i.e., the mes-
sages are sent consecutively (mod (1 + €)n/m)
in the z; locations starting at ]l)

— If £; > (1 4+ ¢)n/m then processor i sends all
messages consecutively starting at time 1.

Theorem 6.1 Let 0 = max((1 + €)n/m,z,y) + O(L +
Llgm/lgL). Algorithm Unbalanced-Send completes

in time o with probability at least 1 — 6_9(627"), provided

n < e®™ where o is a constant determined by the analy-
s18. Also, for any k, the probability that algorithm Unbal-
anced-Send requires more than time ko is at most k1—4~
S_Q(€2m).

Proof.  The prefix sum and broadcast require time O(L+
Llgm/lg L). The total number of sending steps required
by the remainder of the algorithm is at most max((1 +
e)n/m,z), and thus it suffices to show that with proba-

bility at least 1 — 6_9(627"), no more than m messages are
sent at every step of the algorithm. Since the number of
processors with more than n/m messages to send can be
at most m, this must be the case for any time slot larger

than (1+ €)n/m.

Consider a time slot 7,1 <7 < (1+¢€)n/m. Let r; be
an indicator random variable that is a 1 if a message is
being sent by processor ¢ at time slot 7, and a 0 otherwise.
The probability that a message from processor 1 is being
sent at time slot 7 is Pr[r; = 1] = p; = min(1, z;/((1 +
€)n/m)). The expected number of messages being sent at
time 7 is hence Zl pi <n/((1+€)n/m)=m/(1+¢€). The
r;s are mutually independent. By Chernoff Bounds, the
number of messages at time 7 exceeds m with probability
at most exp(—¢?m/3), and hence the number of messages
at all times is at most m with probability 1 —(1+€)n/m-
exp(—e*m/3).

We also show that for any k, the probability that al-
gorithm Unbalanced-Send requires more than time ko

is at most 13—46_9(627"). We see from the Chernoff Bound

Pr [Z ri > (14 5)u] <(e/(1+ e))‘SM , which holds when-
ever 6 > e, that for any [, and any time step 7, the prob-
ability that the number of messages sent does not exceed
Im is at least 1 — e~(<™) Such a time step requires
time at most e!~!. Thus, the probability that the algo-

. . . . — 2
rithm requires more time than oe! is at most ge e m),

which when n < e®*™, is at most (e')™* e (M) "
The exponential bound on the probability that the
running time of the algorithm exceeds ko assures us that
the expected running time is also O(s). The bound will
also be used in our analysis of the dynamic problem.
Note that the Unbalanced-Send algorithm can be easily
adapted to any other sending pattern, such as if we insist
on having a certain separation between every two mes-
sages sent by the same processor. We can use the same
algorithm on any sending pattern “template”, where the
sending times are chosen by cyclically shifting the tem-
plate by j slots. We elaborate on this further below.

We next consider a slight modification of the previ-
ous algorithm, called Unbalanced-Consecutive-Send.
This algorithm has the advantage that it can be used in
scenarios where a processor must send long messages us-
ing consecutive time steps. This is useful in the case where
there are large message startup costs. This algorithm is
the same as Unbalanced-Send with the modification
that if ; < (1 + €)n/m, then processor i sends all its
messages starting at time j;. Let X be the set of pro-
cessors that have no more than (1 4 €)n/m messages to
send. Let 2’ be the maximum number of messages any
processor in X has to send. The proof of the following
theorem proceeds along the same lines as the analysis of
the algorithm Unbalanced-Send.

Theorem 6.2 Algorithm Unbalanced-Consecutive-
Send completes in time max((1+€¢)n/m+z’,z,§)+O(L+
Llgm/lg L) with probability at least 1 — 6_9(627"), pro-
vided that n < e®™, where a is a constant determined by
the analysis.

The restriction about n being limited by ¢“™ can be

replaced by a restriction on p instead, which may be more
reasonable. To obtain this, the algorithm is slightly mod-
ified as follows. Let t' be the average over the z;s, that
is, t' = n/p. For analysis purposes, let us “pad” each =;
that is smaller than ¢’ to become equal to t’. This results
with getting n at most twice its original value. Let ¢ be
some constant.

Algorithm Unbalanced-Granular-Send
e Processors perform a prefix sum and a broadcast to
inform every processor of the value n.

e For each processor 1:

— If z; < n/m then processor ¢ selects at random
some j from the interval 0, ..., (en/m—x;)/t —
1, and sends all messages consecutively starting
at time slot 5 -¢ + 1.

— If z; > n/m then processor i sends all messages
consecutively starting at time 1.

Theorem 6.3 There exists a constant ¢ such that algo-
rithm Unbalanced-Granular-Send completes in time



cn/m with probability at least 1 — 6_9(627"), provided that
p < e*™ where o is a constant determined by the analy-
58

Finally, we mention (without providing details) two
other settings in which a variant of Unbalanced-Send
algorithm may be useful. First, we consider the situation
in which a processor has messages of various sizes to be
sent. The Unbalanced-Send algorithm is used with the
following modification. If a certain long message of length
£is allocated with time 5, j+1,...,(14+€)n/m,1,..., (1+
€)n/m — 1, then instead we send it in time slots j,j +
1,...,74+¢—1. The additive time factor due to this change
is at most Z, which is an upper bound over the length
of the various messages (some further improvements are
possible here if the messages are of different lengths). This
is a better bound than the z’ additive bound obtained for
the Unbalanced-Consecutive-Send algorithm.

A second situation, is where a certain gap, o, is re-
quired between two consecutive messages being sent. (Such
gap may be associated with the overhead of initiating a
message, as in the LOGP model.) Let £ be the average size
of a message over all messages, and let n' = (1 + 0/f). A
simple approach is to apply the variant described above
for long messages where each message is now prepended
with a dummy message of length o, and n is replaced by
n’. The (14 e)n/m + ¢ component is then replaced by
(1+¢)(1+0/fn/m + i+ 0. A better result may be ob-
tained by a more careful refinement, which is not included
here.

6.2 The Dynamic Problem

We consider here the case of the unbalanced routing prob-
lem where the messages to be sent are introduced to the
system dynamically over an infinite time line. We consider
the case where the introduction times of the messages, as
well as their destinations are determined by an Adver-
sarial Queuing Theory model, as introduced in [13], and
studied further in [4]. In this model, there is an adversary
that injects messages into the system, but there is a set
of restrictions, rules that the adversary must adhere to.
We wish to find a protocol, if one exists, for sending the
messages in the system such that for any adversary that
adheres to the restrictions, the system is stable. By sta-
ble we mean that there is a value v, (which is allowed to
depend on any parameters in the system except the time
t), such that as ¢ approaches oo, the expected number of
messages in the system at time ¢ is bounded above by v.

We consider the following restrictions on the adver-
sary. There is a parameter w, called the window size, a
parameter «, called the global arrival rate, as well as a
parameter [, called the local arrival rate. For any set of
L > w consecutive time steps, the adversary is allowed to
inject up to [a L] point-to-point messages into the system.
Furthermore, the adversary can request at most [SL] of
these messages to be sent from any given processor, and
at most [$L] messages can be destined for any given pro-
cessor. Note that the adversary only informs the message
source of the existence of a message. Also, note that the
adversary is non-adaptive: the strategy taken by the ad-
versary 1s allowed to depend on the algorithm, but not on
any random choices made by the algorithm.

In the BSP(g) model, it is straightforward to show that

if o >8> é, then there exists an adversary where the

system is not stable for any algorithm, but if g < é,

there is a simple algorithm that is stable for any adver-
sary. Thus, in the BSP(g) model, the global arrival rate
only effects the algorithm if it is smaller than the local
arrival rate. When we have a globally-limited model, on
the other hand, both arrival rates become interesting. We
show that in the globally-limited models, we can handle a
much higher local arrival rate, while maintaining a global
arrival rate that is within a constant factor of the opti-
mal described above. For simplicity, we assume here that
w > L. It is straightforward to incorporate the parameter
L into the analysis for the more general case.

Theorem 6.4 Let A be an algorithm that always solves
the synchronous unbalanced routing problem when n is
known, where A completes in time o = max(ax,bT,bg)
with probability at least 1 — r for any a,b > 1, and any
r < 1. Furthermore, for any k, the probability that A re-
quires more than time ko is at most k1—41“. There is an al-
gorithm B for the BsP(m) which is stable for the dynamic

unbalanced routing problem provided that o < & — &%
a

and f < § — 2% where u > [1.21rw] + 1. Furthermore,

the expected service time of any arrival is O(w? Ju).

Proof.  We use the following algorithm B. We partition
the time line into consecutive intervals of size w. During
the first interval, no sending occurs. The messages that
arrive during the ith interval are sent using algorithm A
using the value n = [aw], starting at time max({1, t2),
where t; 1s the start of the ¢ 4 1st interval, and %2 is the
first time step after algorithm A completes sending the
¢ — 1st interval.

We call an interval ¢ successful if algorithm A, when
sending the messages that arrive during i, requires time
at most w — w. In each interval, the adversary is con-
strained so that for the routing problem that A must
solve, n < 2= 7 < #2% and § < #5*. Thus, each in-
terval ¢, regardless of the outcomes of previous intervals,
is successful with probability at least 1 — r. The adver-
sary has some control over the amount of time required to
run algorithm A (and can thus create some dependence
on previous outcomes), but is not able to cause the al-
gorithm to run longer than time w — u with probability
more than 7. We need to show that even when some of
the intervals are not successful, the system is stable.

We show that the following equivalent system S is sta-
ble, where each arrival to a FIFO server corresponds to
one set of messages received during an interval. There is
one arrival to this queue every w time steps. The service
time of this arrival may depend on both previous arrivals,
as well as the arrival time, but given all previous arrivals,
with probability at least 1 —r, any arrival has service time
at most w — u. Furthermore, given all previous arrivals,
the service time of any arrival is at most k(w — u) with
probability at least 1 — r/k*.

Let S1 be the distribution of the service time for the
first arrival. Let S; be the distribution of the service
time for the ith arrival, given the service times of the
1st through 7 — 1st arrivals. Let S§ represent the dis-
tribution that takes on the value w — w with probability



exactly 1 — r,; and, for any integer k£ > 1, takes on the
value k(w —u) with probability exactly r/(k —1)* —r/k*.
We see that for any i, S§ >« Si, where by >, we mean
stochastically dominates. Thus, we can analyze the sys-
tem S’, which is identical to S, except that every service
time is determined by drawing an independent sample
from the distribution S5. The expected queue length at
any time ¢ in the system S’ is at least as large as the ex-
pected queue length at time ¢ in the system S. Thus, if
S’ is stable, then so is S. The theorem follows from the
following claim. .

Claim 6.5 S’ is stable. Furthermore, the expected ser-
vice of any arrival to S' is O(w? /2).

Proof. We see that the expected number of intervals
(of size w) that an arrival will be in the system is equal
to the expected service time of an arrival in the following
system S”: there is an arrival to a FIFO server at each
step independently of all previous steps with probability
r. The service time of this arrival is drawn from the dis-
tribution S§, which, for all integers k > 1 takes on value
kw/w with probability 1/k* —1/(k 4+ 1)*. To see that the
two systems are equivalent, note that in system S’ we do
not change the amount of work at the FIFO queue by giv-
ing priority to any arrival with service time w — w. Thus,
S’ can be viewed as a system where the only arrivals are
the ones which have service time at least 2(w — u), and
each of these only receives u units of service out of every
w time steps. The system S” is equivalent to a scaled
version of this system.

However, we see that the system S” is just an M/G/1
queue, which is well known to be stable whenever the
product of the service time and the arrival rate is strictly
less than 1. We see that the arrival rate is r, and the
expected service time is < w/u) ~ & < 1.21w/u. For
our choice of u, we have that 1.21wr/u < 1.

Furthermore, we can now bound the expected service
time of any arrival. The average queue size at customer

2(22_—“;), where r is the ar-
rival rate, i is the expected service time, and g2 is the
second moment of the service-time distribution (see for
example [34]). In the system S”, this evaluates to ap-

2.42wru—0.18w?r?
2u2 —2.42wru

in the system of an arrival in the system S’ is at most

2 2.42w?ru—0.18w>r? . .
2.42w* Ju + TV BT P The expected service time

in the system S is no higher. .

departure instants is rj +

proximately Thus, the expected time

7 Conclusions

We have shown that for a number of basic problems, mod-
els that impose aggregate restrictions on bandwidth enjoy
a considerable advantage over models that impose per-
processor restrictions on bandwidth. In addition, we have
demonstrated randomized on-line algorithms that sched-
ule the transmission times of an arbitrarily-imbalanced
set of messages in an aggregate bandwidth setting. These
algorithms considerably improve upon the best possible
results that can be achieved in models with per-processor
restrictions. These results imply that it is important to

use models that impose the type of restriction on band-
width that most accurately reflects the machine in ques-
tion. The routing results also indicate that the models
with an aggregate bandwidth parameter, in most situa-
tions, can be replaced by the analogous model with the
simplified cost metric discussed in Section 2.
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