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Abstract

Many data sets to be sorted consist of a limited number of distinct keys.
Sorting such data sets can be thought of as bundling together identical keys
and having the bundles placed in order; we therefore denote this as bundle
sorting. We describe an efficient algorithm for bundle sorting in external
memory that requires at most c(N/B) logM/B k disk accesses, where N is
the number of keys, M is the size of internal memory, k is the number of
distinct keys, B is the transfer block size, and 2 < c < 4. For moderately
sized k, this bound circumvents the Θ((N/B) logM/B(N/B)) I/O lower
bound known for general sorting. We show that our algorithm is optimal
by proving a matching lower bound for bundle sorting. The improved
running time of bundle sorting over general sorting can be significant in
practice, as demonstrated by experimentation. An important feature of the
new algorithm is that it is executed “in-place”, requiring no additional disk
space.

1 Introduction

Sorting is a frequent operation in many applications. It is used not only to
produce sorted output, but also in many sort-based algorithms such as grouping
with aggregation, duplicate removal, sort-merge join, as well as set operations

∗A preliminary version of this paper was presented Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA) 2000 [MSV00].

† School of Computer Science, Tel-Aviv University, Tel-Aviv 69978 Israel. This work was supported in part by an Alon
Fellowship, by the Israel Science Foundation founded by The Academy of Sciences and Humanities, and by the Israeli
Ministry of Science. Email: matias@cs.tau.ac.il.

‡Department of Computer Science, Stanford University, Stanford, CA 94305. Much of this work was done while the
author was at Tel-Aviv University. Email: eran@cs.stanford.edu.

§Department of Computer Science, Purdue University, West Lafayette, IN 47907-2066. Much of this work was done
while the author was on sabbatical at I.N.R.I.A. in Sophia Antipolis, France and was supported in part by Army Research
Office MURI grant DAAH04–96–1–0013 and DAAD19–01–1–0725 and by the National Science Foundation research
grant CCR–9522047. Email: jsv@purdue.edu.

1



2

including union, intersect, and except [Gra93, IBM95]. In this paper, we identify
a common external memory sorting problem, present an algorithm to solve
it while circumventing the lower bound for general sorting for this problem,
prove a matching lower bound for our algorithm, and demonstrate the improved
performance through experiments.

External mergesort is the most commonly used algorithm for large-scale
sorting. It has a run formation phase, which produces sorted runs, and a merge
phase, which merges the runs into sorted output. Its running time, as in most
external memory algorithms, is dominated by the number of I/Os performed,
which is O((N/B) logM/B(N/B)), where N is the number of keys, M is the
size of internal memory, and B is the transfer block size. It was shown in [AV88]
(see also [Vit99]) that there is a matching lower bound within a constant factor.

The number of passes over the sequence performed by sorting algorithms is
dlogM/B(N/B)e in the worst case. When the available memory is large enough
compared to the size of the sequence, the sorting can be performed in one or two
passes over the sequence (see [ADADC+97] and references therein). However,
there are many settings in which the available memory is moderate, at best. For
instance, in multi-threading and multi-user environments, an application, process,
or thread which may execute a sorting program, might only be allocated a small
fraction of the machine memory. Such settings may be relevant to anything from
low-end servers to high-end decision support systems. For moderate size memory,
logM/B(N/B) may become large enough to imply a significant number of passes
over the data. As an example, consider the setting N = 256 GB, B = 128 KB,
and M = 16 MB. Then we have logM/B(N/B) = 3, and the number of I/Os per
disk block required by merge sort is at least 6. For smaller memory allocations,
the I/O costs will be even greater.

Our contributions. Data sets that are to be sorted often consist of keys taken
from a bounded universe. This fact is well exploited in main memory algorithms
such as counting sort and radix sort, which are substantially more efficient than
general sort. In this paper we consider the extent to which a limit, k, on the number
of distinct keys can be exploited to obtain more effective sorting algorithms in
external memory on massive data sets, where the attention is primarily given
to the number of I/Os. Sorting such data sets can be thought of as bundling
together identical keys, and having the bundles placed in order; we therefore
denote this as bundle sorting. It is similar to partial sorting which was identified
by Knuth [Knu73] as an important problem. While many algorithms are given
for partial sorting in main memory, to the best of our knowledge, there exist no
efficient algorithms to solve the problem in external memory. As we shall see,
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bundle sorting can be substantially more efficient than general sorting.
A key feature of bundle sorting is that the number of I/Os performed per

disk block depends solely on the number k of distinct keys. Hence, in sorting
applications in which the number of distinct keys is constant, the number of I/Os
performed per disk block remains constant for any data set size. In contrast, merge
sort or other general sorting algorithms will perform more I/Os per disk block as
the size of the data set increases. In settings in which the size of the data set is
large this can be significant. In the example given earlier, six I/Os per data block
are needed to sort in the worst case. For some constant k < 100, bundle sorting
performs only two I/Os per disk block and for some constant k < 10000, only
four I/Os per disk block regardless of the size of the data set.

The algorithm we present requires at most 3 logM/B k passes over the se-
quence. it performs the sorting in-place, meaning that the input data set can be
permuted as needed without using any additional working space in external mem-
ory. When the number k of distinct keys is less than N/B, our bundle sorting
algorithm circumvents the lower bound for general sorting. The lower bound for
general sorting is derived by a lower bound for permuting the input sequence,
which is an easier problem than general sorting. In contrast to general sorting,
bundle sorting is not harder than permuting; rather than requiring that a particu-
lar key is to be moved to a specific location, it is required that the key is to be
moved to a location within a specified range, which belongs to its bundle. This
so-called bundle-permutation consists of a set of permutations, and implementing
bundle-permutation can be done more efficiently than implementing a particular
permutation.

For cases in which k � N/B, the improvement in the running time of bundle
sorting over general sorting algorithms can be significant in practical sorting
settings, as supported by our experimentation done on U.S. Census data and on
synthetic data. In fact, the number of passes over the sequence executed by our
algorithm does not depend at all on the size of the sequence, in contrast to general
sorting algorithms.

To complement the algorithmic component, we prove a matching lower
bound for bundle sorting. In particular, we show that the number of I/Os
required in the worst case to sort N keys consisting of k distinct key values is
Ω((N/B) logM/B k). This lower bound is realized by proving lower bounds on
two problems that are both easier than bundle sorting, and the combination of the
lower bounds gives the desired result. The first special case is bundle permutation
and the second is a type of matrix transposition. Bundle permutation is the special
case of bundle sorting in which we know the distribution of key values beforehand,
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and thus it is easier than bundle sorting for much the same reason that permuting
is easier than general sorting. The other special case of bundle sorting is a type of
matrix transposition, in which we transpose a k × N/k matrix, but the final order
of the elements in each row is not important. This problem is a special case of
bundle sorting of N keys consisting of exactly N/k records for each of k different
keys and is thus easier than bundle sorting. Interestingly, these two problems,
when combined, capture the difficulty of bundle sorting.

Our bundle sorting algorithm is based on a simple observation: If the available
memory, M , is at least kB, then we can sort the data in three passes over the
sequence, as follows. In the first pass, we count the size of each bundle. After
this pass we know the range of blocks in which each bundle will reside upon
termination of the bundle sorting. The first block from each such range is loaded
to main memory. The loaded blocks are scanned concurrently, while swapping
keys so that each block is filled only with keys belonging to its bundle. Whenever
a block is fully scanned (i.e., it only contains keys belonging to its bundle), it is
written back to disk and the next block in its range is loaded. In this phase, each
block is loaded exactly once (except for at most k blocks in which the ranges
begin), and the total number of accesses over the input sequence in the entire
algorithm is hence 3. Whenever memory is insubstantial to hold the k blocks in
memory, we group bundles together into M/B super-bundles, implementing the
algorithm to sort the super-bundles to M/B sub-sequences, and re-iterate within
each sub-sequence, incurring a total of logM/B k iterations over the sequence to
complete the bundle sorting.

There are many applications and settings in which bundle sorting may be
applied, resulting in a significant speed-up in performance. For instance, any
application that requires partial sorting or partitioning of a data set into value
independent buckets can take advantage of bundle sorting since the number of
buckets (k in bundle sorting) is small thus making bundle sorting very appealing.
Another example would be accelerating sort join computation for suitable data
sets: Consider a join operation between two large relations, each having a
moderate number of distinct keys; then our bundle sorting algorithm can be used
in a sort join computation, with performance improvement over the use of general
sort algorithm;

Finally, we consider a more performance-sensitive model that, rather than just
counting the number of I/Os as a measurement for performance, differentiates
between a sequential I/O and a random I/O and assigns a reduced cost for
sequential I/Os. We study the tradeoffs that occur when we apply bundle sorting
in this model and show a simple adaptation of bundle sorting that results in an
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optimal performance. In this sense, we also present a slightly different algorithm
for bundle sorting that is more suitable for sequential I/Os.

The rest of the paper is organized as follows. In Section 2 we explore
related work. In Section 3 we describe the external memory model in which we
will analyze our algorithm and prove the lower bound. Section 4 presents our
algorithm for bundle sorting along with the performance analysis. In Section 5
we prove the lower bound for external bundle sorting. In Section 6 we consider
a more performance-sensitive model which takes into account a reduced cost
for sequential I/Os and shows the modifications in our bundle sorting algorithm
required to achieve an optimal algorithm in that model. Section 7 describes the
experiments we conducted and Section 8 is our conclusions.

2 Related work

External memory sorting is an extensively researched area. Many efficient in-
memory sorting algorithms have been adapted for sorting in external memory such
as merge sort, and much of the recent research in external memory sorting has
been dedicated to improving the run time performance. Over the years, numerous
authors have reported the performance of their sorting algorithms and implemen-
tations (cf [Aga96, BBW86, BGK90]). We note a recent paper [ADADC+97]
which shows external sorting of 6 GB of data in under one minute on a network of
workstations. For the problem of bundle sorting where k < N/B we note that our
algorithm will reduce the number of I/Os that all these algorithms perform and can
hence be utilized in benchmarks. We also consider a more performance-sensitive
model of external memory in which rather than just counting the I/Os for deter-
mining the performance, there is a reduced cost for sequential I/Os compared to
random access I/Os. We study the tradeoffs there, and show the adaptation in our
bundle sorting algorithm to arrive at an optimal algorithm in that model. We also
note that another recent paper [ZL98] shows in detail how to improve the merge
phase of the external merge sort algorithm, a phase that is completely avoided by
using our in-place algorithm.

In the general framework of external memory algorithms, Aggarwal and Vitter
showed a lower bound of Ω((N/B) logM/B(N/B)) on the number of I/Os needed
in the worst case for sorting [AV88, Vit99]. In contrast, since our algorithm relies
on the number k of distinct keys for its performance, we are able to circumvent
this lower bound when k � N/B. Moreover, we prove a matching lower bound
for bundle sorting which shows that our algorithm is optimal.

Finally, sorting is used not only to produce sorted output, but also in many
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sort-based algorithms such as grouping with aggregation, duplicate removal, sort-
merge join, as well as set operations including union, intersect, and except [Gra93,
IBM95]. In many of these cases the number of distinct keys is relatively small
and hence bundle sorting can be used for improved performance. We identify
important applications for bundle sorting, but note that since sorting is such a
common procedure, there are probably many more applications for bundle sorting
that we did not consider.

3 External memory model

In our main bundle sorting algorithm and in the lower bound we prove, we use the
external memory model from Aggarwal and Vitter [AV88] (see also [Vit99]). The
model is as follows. We assume that there is a single central processing unit, and
we model secondary storage as a generalized random-access magnetic disk (For
completeness, the model is also extended to the case in which the disk has some
parallel capabilities). The parameters are

N = # records to sort;

M = # records that can fit into internal memory;

B = # records transferred in a single block;

D = # blocks that can be transferred concurrently,

where 1 ≤ B ≤ M/2, M < N , and 1 ≤ D ≤ bM/Bc. For brevity we consider
only the case of D = 1, which corresponds to a single conventional disk.

The parameters N , M , and B are referred to as the file size, memory size,
and transfer block size, respectively. Each block transfer is allowed to access
any contiguous group of B records on the disk. We will consider the case where
D = 1, meaning that there is no disk parallelism. Performance in this model is
measured by the number of I/O accesses performed where the cost of all I/Os is
identical. In Section 6 we consider a more performance-sensitive model in which
we differentiate between costs of sequential and random-access I/Os and assign a
reduced cost for sequential I/Os.

4 External bundle sorting algorithm

In this section we present our bundle sorting algorithm which sorts in-place a
sequence that resides on disk and contains k distinct keys. We start by defining
the bundle sorting problem:
Input: A sequence of keys {a1, a2, . . . , an} from an ordered universe U of size k.
Output: A permutation {a′

1, a
′
2, . . . , a

′
n} of the input sequence such that: a′

1 ≤
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a′
2 · · · ≤ a′

n.
In our algorithm, it will be easy, and with negligible overhead, to compute

and use an order preserving mapping from U to {1, . . . , k}; we discuss the
implementation details of this function in Section 4.2; this enables us to consider
the problem at hand as an integer sorting problem in which the keys are taken
from {1, . . . , k}. Hence, we assume that U = {1, . . . , k}.

We use the external memory model from Section 3, where performance is
determined by the number of I/Os performed. Our goal is to minimize the number
of disk I/Os. In Section 6 we consider a more performance-sensitive model in
which rather than simply counting I/Os as a measurement of performance we
differentiate between a sequential I/O and a random I/O and assign a reduced cost
to sequential I/Os. We show the necessary modifications to the bundle sorting
presented in this section required to achieve an optimum in that model.

4.1 {1, . . . , k} Integer sorting
We start by presenting “one-pass sorting”—a procedure that sorts a sequence into
µ = bM/Bc distinct keys. It will be used by our bundle sorting algorithm to
perform one iteration that sorts a chunk of data blocks into µ ranges of keys.

The general idea is this: Initially we perform one pass on the sequence, loading
one block of size B at a time, in which we count the number of appearances of
each of the µ distinct keys in the sequence. Next, we keep in memory µ blocks
and a pointer for each block, where each block is of size B. Using the count pass,
we initialize the µ blocks, where the ith block is loaded from the exact location in
the sequence where keys of type i will start residing in the sorted sequence. We set
each block pointer to point to the first key in its block. When the algorithm runs,
the ith block pointer is advanced as long as it encounters keys of type i. When
a block pointer is “stuck” on a key of type j, it awaits for the jth block pointer
until it too is ’stuck’ (this will happen since a block pointer only yields to keys
of its block), in which case a swap is performed and at least one of the two block
pointers may continue to advance. When any of the µ block pointers reaches the
end of its block, we write that block back to disk to the exact location from which
it was loaded and load the next contiguous block from disk into memory (and of
course set its block pointer again to the first key in the block). We finish with
each of the µ blocks upon crossing the boundaries of the next adjacent block. The
algorithm terminates when all blocks are done with. See Figure 1.

LEMMA 4.1. Let S be a sequence of N keys from {1, . . . , µ}, let B be the transfer
block size and let M be the available memory such that M ≥ µB . Then the
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sequence can be sorted in-place using the procedure “one-pass sorting” with a
total of d3N/B + 2M/Be I/Os.

Proof. We first show that the algorithm indeed sorts the input sequence. The
algorithm allocates one pointer in memory for each of the µ distinct keys, and the
i-th such pointer only writes contiguous blocks of records whose keys consist
solely of the i-th key. Thus, to show that the sequence is sorted by “one-
pass sorting”, it suffices to show that the algorithm terminates and that upon
termination the i-th pointer writes its blocks in a physical location that precedes
the blocks written by any j pointer for j > i. The ordering between the pointers
is ensured by setting the contiguous block of the i-th pointer to write to the exact
location where keys of its type should reside in the sorted sequence. This location
is derived from the first pass in which we count the number of appearances of each
of the µ distinct keys. Termination is guaranteed since at each step at least one of
the pointers encounters keys of its type, or a swap will be performed and at least
one of the pointers can proceed. Note that such a swap will always be possible
since if the i-th pointer is “stuck” on a key of type j, then the j-th pointer will
necessarily get “stuck” at some step. Since at each step one of the keys is written
and there are N keys, the algorithm will terminate.

For computing the number of I/Os, note that the first counting pass reads each
block once and thus requires dN/Be I/Os. All the µ pointers combined read and
write each block once, adding another d2N/Be I/Os. Finally, if the number of
appearances of each distinct key is not an exact multiple of B, then every pair of
consecutive pointers may overlap by one block at the boundaries, thus requiring
an additional d2M/Be I/Os.

We now present the complete integer sorting algorithm. We assume that the
sequence contains keys in the range 1, . . . , k where k is the number of distinct
keys. In Section 4.2 we discuss the adaptation needed if the k distinct keys are
not from this integer range. We use the above “one-pass sorting” procedure. The
general idea is this: We initially perform one sorting iteration in which we sort the
sequence into k′ = bM/Bc keys. We select a mapping function f such that for all
1 ≤ i ≤ k we have f(i) = dik′/ke, and we apply f to every key when the key is
examined. This ensures that we are actually in the range of 1, . . . , k ′. Moreover, it
will create sorted buckets on disk such that the number of distinct keys in each of
the buckets is roughly k/k′. We repeat this procedure recursively for each of the
sorted blocks obtained in this iteration until the whole sequence is sorted. Each
sorting iteration is done by calling the procedure for one-pass sorting. We give a
pseudo code of the algorithm below, followed by an analysis of its performance.
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Figure 1: Initialization of the M/B blocks in “one-pass sorting”. After the
counting pass, we know where the sorted blocks reside and load blocks from these
locations. Swaps are performed in memory. When any of the blocks is full, we
write it to disk to the location from which it was loaded and load the next block
from disk.

The integer sorting algorithm

procedure sort (sequence, k, M, B)
k′ = max(bM/Bc, 2) // compute k′

if (k > 2) then
call one-pass sorting (sequence, k′, M, B)
for i = 1 to k′

bucket = the ith bucket sorted
call sort (bucket, dk/k′e, M, B)

THEOREM 4.1. Let S be a sequence of N keys from {1, . . . , k}, let M be the
available memory and let B be the transfer block size. Then we can in-place sort
a sequence residing on disk using the bundle sorting algorithm, while the number
of I/Os is at most

⌈

3N

B
logbM/Bc k

⌉

+ 4k

⌊

M

B

⌋

.

Proof. We first show that bundle sorting results in a sorting of the input sequence.
Since we map each key i to dik′/ke, it follows from the correctness of the “one-
pass sorting”, that after the first call to one-pass sorting, the sequence will be
sorted such that for all i, keys in the range {d(i − 1)k′/ke + 1, . . . , dik′/ke}
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precede all keys greater than dik′/ke. Each of the resulting range of keys is then
recursively sorted. After at most logbM/Bc k recursive iterations, the number of
distinct keys will be less than k′, in which case the one-pass sorting will result in
a full sorting of the sequence.

For the number of I/Os, we can view the bundle sorting algorithm as
proceeding in levels of recursion, where at the first level of recursion bundle
sorting is applied once, at the second level it is applied k′ times, and at the
i-th level it is applied k′i−1 times. The total number of levels of recursion is
logbM/Bc k. Even though at the i-th recursive level, bundle sorting is applied k ′i−1

times, each application is given a disjoint shorter sequence than N as input, and
all applications of bundle sorting at the same recursive level cover the N input
sequence exactly once. Thus, the counting pass of all applications at the same
recursive level will still require dN/Be I/Os, and all such applications will result
in a read and write of each block, incurring an additional d2N/Be I/Os. Finally,
since in general the number of distinct keys will not be a multiple of B, there
might be an overlap of at most one block between every pair of consecutive
pointers in one-pass sorting. Thus, we require an additional 2bM/Bc I/Os for
each application of one-pass sorting. One-pass sorting is called once for the first
level of recursion, k′ for the second level, and k′i−1 for the i-th level, and thus the
total number of times that one-pass sorting is called is k′1+log

k′
k−1

k′−1
= k′k−1

k′−1
≤ 2k.

Hence, we add an additional 4kbM/Bc I/Os, which results in the desired bound
on the number of I/Os.

4.2 General bundle sorting
In Section 4.1 we assumed that the input is in the range 1, . . . , k, where k is the
number of distinct keys in the sequence. We now discuss how to construct a
mapping function when the input is not in this range.

In the simple case where the input is from a universe that is not ordered, (i.e.,
the sorting is done just to cluster keys together) we can simply select any universal
hash function as our mapping function. This ensures that the number of distinct
keys that will be distributed to each bucket is fairly equal and our algorithm
performs without any loss of performance.

For the general case we assume that the input is from an ordered universe U
and consists of k distinct keys. We show how to construct a mapping function
from U to 1, . . . , k. More specifically, we need a way to map the keys into the
range [1, M/B] at every application of the one-pass sorting procedure. A solution
to this mapping is to build an M/B-ary tree, whose leaves are the k distinct keys
in sorted order and each internal node stores the minimum and the maximum
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values of its M/B children. Each application of one-pass sorting in integer sorting
corresponds to an internal node in the tree (starting from the root) along with
its children, so the tree provides the appropriate mapping. This is because in
each run of one-pass sorting the keys are within the range of the minimum and
maximum values stored in the corresponding internal node, and the mapping into
1, . . . , M/B is done according to the ranges of the internal node’s children.

Constructing the sorted leaves can be done via count sort, in which we are
given a sequence of size N with k distinct keys and we need to produce a sorted list
of the k distinct keys and their counts. An easy way to do count sort is via merge
sort, in which identical keys are combined together (and their counts summed)
whenever they appear together. In each merge sort pass, the output run will never
be longer than k/B blocks. Initially, the runs contain at most M/B blocks. After
logM/B(k/B) passes, the runs will be of length at most k/B blocks, and after
that point the number of runs decrease geometrically and the running time is thus
linear in the number of I/Os. The rest of the tree can be computed in at most one
extra scan of the leaves-array and lower order post-processing. We can show the
following:

LEMMA 4.2. ([WVI98]) We can count-sort a sequence of size N consisting of
k distinct keys, using a memory of size M and block transfer size B, within an I/O
bound of

2N

B
logM/B

k

B
.

An interesting observation is that by adding a count to each leaf representing
its frequency in the sequence, and a count to each internal node which is the
sum of the counts of its children, we can eliminate the count phase of the one-
pass sorting procedure in the integer sorting algorithm. Thus, the general bundle
sorting algorithm is as follows. Initially, we use count sort and produce the tree.
We now traverse the tree, and on each internal node we call one-pass sorting where
the mapping function is simply the ranges of values of the node’s M/B children.
By combining Theorem 4.1 and Lemma 4.2 we can prove the bound for general
bundle sorting.

THEOREM 4.2. Let S be a sequence of size N which consists of k distinct keys,
let M be the available memory and let B be the transfer block size. Then we can
in-place sort S using the bundle sorting algorithm, while the number of I/Os is at
most

2N

B

(

logbM/Bc k + logbM/Bc

k

B

)

.
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For all k < B2, this bound would be better than the bound for integer sorting.
Note that we can traverse the tree in either BFS or DFS. If we choose BFS, the
sorting will be done concurrently and we get an algorithm that gradually refines
the sort. If we choose DFS, we get fully sorted items quickly while the rest of the
items are left completely unsorted. The overhead we incur by using the mapping
will be in memory, where we now have to perform a search over the M/B children
of the internal node that we are traversing in order to determine the mapping of
each key into the range 1, . . . , M/B. Using a simple binary search over the ranges,
the overhead will be an additional log2(M/B) memory operations per key.

5 Lower bound for external bundle sorting

In this section we present a lower bound for the I/O complexity of bundle sorting.
We let k be the number of distinct keys, M be the available memory, N be the
size of the sequence, B be the transfer block size and differentiate between two
cases:

1. k/B = BΩ(1) or M/B = BΩ(1). We prove the lower bound for this case by
proving a lower bound on bundle permutation which is an easier problem
than bundle sorting.

2. k/B = Bo(1) and M/B = Bo(1). We prove the lower bound for this case
by proving a lower bound on a special case of matrix transposition which is
easier than bundle sorting.

Lower bound using bundle permutation. We assume that k/B = BΩ(1) or
M/B = BΩ(1) and use a similar approach as in the lower bound for general
sorting of Aggarwal and Vitter [AV88] (see also [Vit99]). They proved the
lower bound on the problem of computing an arbitrary permutation, which is
easier than sorting. Bundle sorting is not necessarily harder than computing
an arbitrary permutation, since the output sequence may consist of one out of
a set of permutations, denoted as a bundle-permutation. A bundle permutation
is an equivalence class of permutations, where two permutations can be in the
same class if one can be obtained from the other by permuting within bundles.
Computing a permutation from an arbitrary bundle permutation, which we will
refer to as the bundle permutation problem, is easier than bundle sorting.

LEMMA 5.1. Under the assumption that k/B = BΩ(1) or M/B = BΩ(1), the
number of I/Os required in the worst case for sorting N data items of k distinct
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keys, using a memory of size M and block transfer size B, is

Ω

(

N

B
logM/B k

)

.

Proof. Given a sequence of N data items consisting of k bundles of sizes
α1, α2, . . . , αk, the number of distinct bundle permutations is

N !

α1! · α2! . . . · αk!
≥

N !
((

N
k

)

!
)k

;

the inequality is obtained using convexity argument.
For the bundle-permutation problem we measure, for each t ≥ 0, the number

of distinct orderings that are realizable by at least one sequence of t I/Os. The
value of t for which the number of distinct orderings first exceeds the minimum
orderings needed to be considered is a lower bound on the worst-case number of
I/Os needed for the bundle permutation problem and thus on the bundle sorting on
disks.

Initially, the number of different permutations defined is 1. We consider the
effect of an output operation. There can be at most N/B + t − 1 full blocks
before the tth output, and hence the tth output changes the number of permutations
generated by at most a multiplicative factor of N/B + t, which can be bounded
trivially by N log N .

For an input operation, we consider a block of B records input from a specific
block on disk. The B data keys in the block can intersperse among the M
keys in the internal memory in at most

(

M
B

)

ways, so the number of realizable
orderings increases by a factor of

(

M
B

)

. If the block has never before resided in
internal memory, the number of realizable orderings increases by an extra factor
of B!, since the keys in the block can be permuted among themselves. This extra
contribution can only occur once for each of the N/B original blocks. Hence, the
number of distinct orderings that can be realized by some sequence of t I/Os is at
most

(B!)N/B

(

N log N

(

M

B

))t

.

We want to find the minimum t for which the number of realizable orderings
exceeds the minimum orderings required. Hence we have

(B!)N/B

(

N log N

(

M

B

))t

≥
N !

((

N
k

)

!
)k

.
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Taking the logarithm and applying Stirling’s formula, with some algebraic manip-
ulations, we get

t

(

log N + B log
M

B

)

= Ω

(

N log
k

B

)

.

By solving for t we get

number of IOs = Ω

(

N

B
logM/B

k

B

)

.

Recall that we assume either k/B = BΩ(1) or M/B = BΩ(1). In either case, it is
easy to see that logM/B(k/B) = Θ(logM/B k), which gives us the desired bound.

Lower bound using a special case of matrix transposition. We now assume
that k/B = Bo(1) and M/B = Bo(1) (the case not handled earlier) and prove a
lower bound on a special case of matrix transposition, which is easier than bundle
sorting. Our proof is under the normal assumption that the records are treated
indivisibly and that no compression of any sort is utilized.

LEMMA 5.2. Under the assumption that k/B = Bo(1) and M/B = Bo(1), the
number of I/Os required in the worst case for sorting N data items of k distinct
keys, using a memory of size M block transfer size B, is

Ω

(

N

B
logM/B k

)

.

Proof. Consider the problem of transposing a k × N/k matrix, in which the final
order of the elements in each row is not important. More specifically, let us assume
that the elements of the matrix are originally in column-major order. The problem
is to convert the matrix into row-major order, but the place in a row to where the
element goes can be arbitrary as long as it is transferred to the proper row. Each
element that ends up in row i can be thought of as having the same key i. This
problem is a special case of sorting N keys consisting of exactly N/k records for
each of the k distinct keys. Hence, this problem is easier than bundle sorting. We
now prove a lower bound for this problem of

Ω

(

N

B
logM/B min(k, B)

)
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I/Os. Under our assumption that k/B = Bo(1) this proves the desired bound for
bundle sorting.

We can assume that k ≤ N/B since otherwise bundle sorting can be executed
by using any general sorting algorithm. We assume, without loss of generality, by
the indivisibility of records assumption, that there is always exactly one copy of
each record, and it is either on disk or in memory but not in both. At time t, let
Xij, for 1 ≤ i ≤ k and 1 ≤ j ≤ N/B, be the number of elements in the jth block
on disk that need to end up on the ith row of the transposed matrix. At time t, let
Yi be the number of elements currently in internal memory that need to go on the
ith row in the transposed matrix. We use the potential function f(x) = x log x, for
all x ≥ 0. Its value at x = 0 is f(0) = 0. We define the overall potential function
POT to be

POT =
∑

i,j

f(Xij) +
∑

i

f(Yi).

When the algorithm terminates, we have Yi = 0 for all i and the final value of
potential POT is

N

B
(B log B) + 0 = N log B.

The initial potential if k < B is

N

B
k

(

B

k
log

B

k

)

= N log
B

k
;

otherwise, if k ≥ B, the initial potential is 0.
Note that our potential function satisfies

f(a + b) = (a + b) log(a + b) ≥ f(a) + f(b)

for all a, b ≥ 0. Consider an output operation that writes a complete block of
size B from memory to disk. If we write xi records that need to go to the ith
row and there were yi such records in memory, then the change in potential is
∑

i

(

f(xi) + f(yi)− f(xi + yi)
)

≤ 0. Hence, output operations can only decrease
the potential so we only need to consider how much an input operation increases
the potential.

If we read during an input operation a complete block of B records that
contains xi records that need to go to the ith row and there are yi such records
already in memory, then the change in the potential is

∑

1≤i≤k

(f(xi + yi) − f(xi) − f(yi)) .
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By a convexity argument, this quantity is maximized when xi = B/k and
yi = (M − B)/k for each 1 ≤ i ≤ k, in which case the change in potential
is bounded by B log(M/B).

We get a lower bound on the number of read operations by dividing the
difference of the initial and final potentials by the bound on the maximum change
in potential per read. For k < B, we get the I/O bound

N log B − N log B
k

B log M
B

=
N

B
logM/B k.

For k ≥ B, we get the I/O bound

N log B − 0

B log M
B

=
N

B
logM/B B.

We have thus proved a lower bound of Ω((N/B) logM/B min(k, B)) I/Os. Under
our assumption that k/B = Bo(1), this gives us an I/O lower bound for this case
of bundle sorting of

Ω

(

N

B
logM/B k

)

.

Theorem 5.1 for the lower bound of bundle sorting follows from Lemmas 5.1
and 5.2, since together they cover all possibilities for k, M , and B.

THEOREM 5.1. The number of I/Os required in the worst case for sorting N data
items of k distinct keys, using a memory of size M and block transfer size B, is

Ω

(

N

B
logM/B k

)

.

6 The disk latency model

In this section we consider the necessary modifications in the external bundle
sorting algorithm in order to achieve an optimum number of I/Os in a more
performance sensitive model as in [FFM98]. In this model, we differentiate
between two types of I/Os: sequential I/Os and random I/Os, where there is a
reduced cost for sequential I/Os. We start by presenting the model, followed
by the modifications necessary in the bundle sorting as presented in Section 4.2.
We also provide an additional, slightly different integer sorting algorithm that,
depending on the setting, may enhance performance by up to 33% in this model
for the integer sorting problem.
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6.1 The model
The only difference between this model and the external memory model presented
in Section 3 is that we now differentiate between costs of two types of I/O:
sequential and random I/Os. We define ` to be the latency to move the disk
read/write head to a new position during a random seek. We define r to be the
cost of reading a block of size B into internal memory once the read/write head is
positioned at the start of the block.

The parameters N , M , and B, as before, are referred to as the file size, memory
size, and transfer block size, respectively, and they satisfy 1 ≤ B ≤ M/2 and
M < N . We will consider the case where D = 1, meaning that there is no
disk parallelism. It should be clear, from the above parameters, that the cost of a
random I/O that loads one transfer block into memory is ` + r and the cost of a
sequential I/O is simply r.

6.2 Optimal bundle sorting in the disk latency model
The modification for bundle sorting is based on the observation that in the worst-
case scenario of the algorithm as described in Section 4.2, every I/O in the sorting
pass can be a random I/O. This is because we are loading bM/Bc blocks from disk
into bM/Bc buckets and in the worst case they may be written back in a round
robin fashion resulting solely in random I/Os. However, if we decide to read more
blocks into each bucket, we will increase the total number of I/Os, which will
result in the worst case with sequential I/Os in addition to random I/Os.

Let α be the number of blocks that we load into each bucket, where clearly,
1 ≤ α ≤ (M/2B). Thus, in each call to one-pass sorting of bundle sorting we
sort into bM/(αB)c distinct keys resulting in a total of logM/(αB) k passes over
the sequence. However, we are now sure that at least (α − 1)/α of the I/Os are
sequential. We differentiate between the I/Os required in the external count-sort
in which we only perform sequential I/Os and the sorting pass in which we also
have random I/Os. Using Theorem 4.2, the performance is now

2N

B

(

1

α
(` + αr) logM/αB k + r logM/B

k

B

)

I/Os, and the optimal value of α can be determined via an optimization procedure.
In Section 7 we show experimentally how the execution time varies in this model
as we change α.
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7 Experiments

We conducted several experiments with various data sets and settings, while
changing the size of the data sets N , the available memory M , the transfer block
size B, and the number of distinct items k. The data sets were generated by the
IBM test data generator (http://www.almaden.ibm.com/cs/quest). In all
our experiments, the records consisted of 10-byte keys in 100-byte records. All
experiments were run on a Pentium2, 300 Mhz, 128 MB RAM machine.

We first demonstrate an important feature of bundle sorting: As long as the
number k of distinct keys remains constant, it performs the same number of I/O
accesses per disk block with no dependence on the size of the data set. This is in
contrast to general sort algorithms such as merge sort, which require more I/Os
per disk block as the size of the data set increases. See Figure 2: The parameter
B was set to 10 KB and we tested for a memory of 1 MB and a memory of
20 MB. In both these cases merge sort, as expected, increases the number of
I/Os per disk block as the size of the data set increased. In contrast, bundle sort
performed a constant number of I/O accesses per disk block. As N increases, the
improvement in performance becomes significant, demonstrating the advantages
of bundle sorting. For instance, even when k = 10000, and the available memory
is 20 MB, the break-even point occurs at N = 1 GB. As N increases, bundle
sorting will perform better. If k ≤ 500, then in the setting above, the break-even
point occurs at N = 10 MB, making bundle sorting most appealing.

The next experiments demonstrate the performance of bundle sort as a
function of k. See Figure 3. We set N at a fixed size of 1 GB and B at 10 KB. We
ran the tests with a memory of 1 MB and 20 MB and counted the number of I/Os.
We let k vary over a wide range of values from 2 to 109 (k ≤ N is always true).
Since merge sort does not depend on the number of distinct keys, it performed the
same number of I/O accesses per disk block in all these settings. In all these runs,
as long as k ≤ N/B, bundle sort performed better. When k is small the difference
in performance is significant.

As for the disk-latency model, we show the optimal α values for various
settings. Recall that in this model we attribute different costs to sequential and
random I/Os. See Figure 4. We measured α for different ratios between `, the
cost of moving the disk reader to a random location (the latency), and r, the
cost of reading a transfer block of size B. Parameter α also depends on the
relation between M and B, so we plot M/B on the x-axis of the graph. As can
be seen, when the ratio is 1, the optimal algorithm is exactly our bundle sorting
algorithm which only counts I/Os (hence it assumes that the cost of a random and
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Figure 2: Bundle sorting vs. regular sorting (best merge sort, for instance). The
x-axis is the size of the data set drawn on a log-scale. The y-axis is the number of
I/Os performed per block of input. As can be seen, in contrast to merge sort, the
number of I/Os per block in bundle sorting remains the same for a constant k as
N increases.

a sequential I/O are equivalent). As this ratio increases, α increases, calling for a
larger adaptation of our algorithm. Also affecting α, but in a more moderate way,
is M/B. As this ratio increases, the optimum is achieved for a larger α.

8 Conclusions

We considered the sorting problem for large data sets with moderate number of
distinct keys, which we denote as bundle sorting, and identified it as a problem that
is inherently easier than general sorting. We presented a simple, in-place sorting
algorithm for external memory which may provide significant improvement over
current sorting techniques. We also provided a matching lower bound, indicating
that our solution is optimal.

Sorting is a fundamental problem and any improvement in its solution may
have many applications. For instance, consider the sort join algorithm that
computes join queries by first sorting the two relations that are to be joined, after
which the join can be done efficiently in only one pass on both relations. Clearly,
if the relations are large and their keys are taken from a universe of moderate size,
then bundle sorting could provide more efficient execution than general sort.

It is interesting to note that the nature of the sorting algorithm is such that after
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Figure 3: Bundle sorting vs. regular sorting (best merge sort, for instance). The
x-axis is the number of distinct keys (k) in the sequence drawn on a log-scale. The
y-axis is the number of I/Os per disk block. As can be seen, for k ≤ N/B, bundle
sorting performs better than merge sort and the difference is large as k is smaller.

the ith pass over the data set, the sequence is fully sorted into (bM/Bc)i keys. In
effect, the sequence is gradually sorted, where after each pass a further refinement
is achieved until finally, the sequence is sorted. We can take advantage of this
feature and use it in applications that benefit from quick, rough estimates which
are gradually refined as we perform additional passes over the sequence. For
instance, we could use it to produce intermediate join estimates, while refining
the estimates by additional passes over the sequence. We can estimate the join
after each iteration over the data set, improving the estimate after each such pass,
and arrive at the final join after bundle sorting has completely finished.

Bundle sorting algorithm can be adapted efficiently and in a most straightfor-
ward way in the parallel disk model (PDM) described in [Vit99]. We now assume,
in the external memory model, that D > 1, meaning that we can transfer D blocks
into memory concurrently. This is like having D independent parallel disks. As-
sume that the data to be stored is initially located on one of the disks. In the first
step we sort the data into exactly D buckets, writing each bucket into a distinct
disk. Next, we sort, in parallel on each of the disks, the data set that was parti-
tioned into each of the disks. Except for the initial partitioning step we make full
utilization of the parallel disks, thus enhancing performance by a factor of nearly
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Figure 4: Optimum bundle sorting in the disk latency model—resolving α as a
function of r, `, and M/B.

D over all the bounds given in this paper. Note that extending bundle sorting to
fit the PDM model was straightforward because of its top-down nature. Bundle
sorting can also be utilized to enhance the performance of general sorting when
the available working space is substantially smaller than the input set.

Bundle sorting is a fully in-place algorithm, which in effect causes the
available memory to be doubled as compared to non-in-place algorithms. The
performance gain from this feature can be significant. For instance, even if
M/B = 1000, the performance gain is 10% and can be much higher for a smaller
ratio. In some cases, an in-place sorting algorithm can avoid the use of high cost
memory such as virtual memory.

We considered the disk latency model, which is a more performance-sensitive
model where we differentiate between two types of I/Os—sequential and random
I/Os—with a reduced cost for sequential I/Os. This model can be more realistic for
performance analysis, and we have shown the necessary adaptation in the bundle
sorting algorithm to arrive at an optimal solution in this model.

We have shown experimentation with real and synthetic data sets, which
demonstrates that the theoretical analysis gives an accurate prediction to the actual
performance.
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