
On the Temporal HZY Compression Scheme

Z. Cohen � Y. Matias y S. Muthukrishnan z S. C. S. ahinalp x J. Ziv �

The HZY compression scheme. We consider ��� ��-HZY
compression scheme with temporal ordering. Given an in-
put string T � T �� � n� from a constant sized alpha-
bet, the ��� ��-HZY scheme compresses T as follows. T is
partitioned into disjoint blocks (substrings) of size �, T �� �
��� T �� � � � ���� � � �. For � � k � n��, the kth block
T ��k � ��� � � � k�� is then replaced by its codeword
Ck, which is the integer pair �x� y�; here (i) x � �, is the
size of the context T ��k � ��� � x � �k � ���� where
T ��k�����x � k�� is the longest suffix of T �� � k�� occur-
ring in T �� � �k� ����, and (ii) y is the temporal rank of the
blockT ��k������ � k�� defined to be the number of distinct
occurrences of the context T ��k � ��� � x � �k � ���� be-
tween the leftmost occurrence of T ��k�����x � k�� and its
current occurrence. (When counting the number distinct oc-
currences of a context we only consider its occurrences with
distinct blocks following it.)
Comments on the HZY compression scheme. The HZY
scheme given above is a context-based compression method
recently proposed in [HZ98] and independently in [Yok95].
It is a one-pass algorithm as the codeword of a given block
T ��k � ��� � � � k�� depends only on the “past”, i.e., T �� �
�k � ����. The critical values of the parameters identified in
these works are: � � O��� in [Yok95]; � � O�log logn�
and � � O�logn� in [HZ98]. Also, �� � � � � must
hold in order to have compression. A detailed analysis of this
scheme is provided in [HZ98], which shows that on any in-
put generated by a stationary ergodic source, the output of
the temporal HZY scheme converges to the conditional en-
tropy of that source. No other one-pass compression scheme
is known to be optimal under this refined notion of informa-
tion content which makes this HZY scheme attractive. (See
[HZ98] for further details.)
Our Results. (i) We provide a tighter and more general
bound on the compression attained by the HZY scheme with
temporal ordering, (ii) we give the first known efficient al-
gorithm for implementing the scheme, and (iii) we provide

�Dept of EE, Technion, Israel; zeev@ee.technion.ac.il.
yDept of CS, Tel-Aviv University, Israel; supported by Alon Fellow-

ship, the Israel Science Foundation, and the Israeli Ministry of Science;
matias@math.tau.ac.il.

zAT&T Labs, NJ; muthu@research.att.com.
xDept of EECS, Case Western Reserve University;

cenk@eecs.cwru.edu.
�Department of EE, Technion, Israel; ziv@ee.technion.ac.il.

some preliminary experimental results that are promising.
Analysis of the compression ratio attained by the HZY
scheme. Our analysis here is for binary strings. Consider
the string T ��n � �� � T ��n�� � � � � T �	�� � � � � T ���, a
sliding-window of length n � � over the infinite string T �
� � � � T �	�� � � �� T ���. For any � � �� �� 
� � � � � O�logn�, let
EL�T �� � �� j T ��n � 	�� be the expected number of bits to
represent the codeword for block T �� � �� (in T ��n � 	�).
Theorem. EL�C�T �� � ��� j T ��n � 	�� � H�T �� �
�� j T ��t � 	�� � � log tmax � O�log logn�. Here t �
t�T ��n � ��� denotes the context of block T �� � ��, i.e., the
largest integer j � �� �� � � � such that T ��j � i � � � i� �
T ��j � �� for some i � �� �� � � �� n � j, and tmax denotes
maximum context size �.
Proof. (sketch) H�T �� � �� j T ��t � 	�� � H�T �� � ��� i �
t j T ��t � 	�� � H�i � t j T ��i � 	��. For every integer
	 � i � tmax, let NT �T �� � ��� i � t j T ��i � 	�� be the
first occurrence of T �� � ��� i � t among all instances in
T with the suffix T ��i � 	�. Then by the conditional Kac’s
Lemma proven in [HZ98]: E�NT �T �� � ��� i � t j T ��i �
	�� j T ��i � ��� i � t� � ��P �T �� � ��� i � t j T ��i � 	��.
Thus, by the convexity of the logarithmic function
E log�NT �T �� � ��� i � t j T ��i � 	�� j T ��i �
	�� � H�T �� � ��� i � t j T ��i � 	��. Therefore,
E log�NT ��n����T �� � �� j T ��t � 	��� � H�T �� � ��� i �
t j T ��t � 	��. But it is possible to generate a univer-
sally decodable code for NT ��n����T �� � �� j T ��t � 	��
whose length (in terms of number of bits) is no more than
log tmax�logNT ��n����T �� � �� j T ��t � 	���O�log logn�
(or log tmax � logmini�������tNT ��n����T �� � �� j T ��i �

	�� �O�log logn�).
This theorem is valid for any � � O�logn� hence is

more general than the analysis provided in [HZ98] (which
has the requirement that � � o�logn� and log logn � o���).
Also, our bounds are tighter and simpler to prove.
Corollary. It was demonstrated in [HZ98] that there exists
ergodic sources for which, for any universal noiseless en-
coder: EL�T �� � �� j T ��n � 	�� � H�T �� � �� j T ��t �
	��� O�log logn�. Thus, the HZY algorithm is optimal in a
min-max sense.
Efficient Algorithm for the HZY scheme. We present the
first efficient algorithm for implementing the HZY scheme.
At the high level, our algorithm works as follows. The string
T is read left to right, block by block. Say the current block
isBi � T �i � i�����. The data structure we maintain is the

1



trie of all substrings of the input string T �� � i� ��, of length
�� �. The string labeling the path from the root to a node u
is denoted �u. Each node in this trie has a suffix link which
we also maintain. In addition, at each node u, we maintain
the largest j such that T �j � i � �� has the prefix �u; this we
denote pos��u�.
Step 1. Find the node u, if any, such that �u is the context
of Bi; in what follows, we assume u exists (otherwise, the
compression is trivial).

This is done by starting at the node v such that �v is the
context of the previous block concatenated with the previous
block, and tracing down the path with stringT �i � i�����; if
the path ends at a node, we follow the suffix link of that node
and continue tracing the remainder of the string.
Step 2. Consider each string t of length � for which a node
v exists such that �v is precisely �ujjt. Recall that associ-
ated with node v is the largest position in T at which the
string �v appears is given by pos��v�. We determine the
rank of pos��ujjBi� amongst pos��ujjt� for all such strings
t; since �u is the context of Bi, block Bi is one of the
strings t for which v exists and therefore pos��ujjBi� is
well-defined. The compression algorithm outputs the pair
�j�uj� rank�pos�Bi���.

This step is done by starting at node u (recall that �u is
the context of Bi), and performing a depth-first-search of the
tree rooted at u. However, we only need to go down upto
paths of length at most �. Whenever we reach a node w that
traces a path of length � from u, we obtain pos��w�. One
such value obtained is for �w � �ujjBi and we find its rank
in the set of all values obtained.
Step 3. We insert the symbols of the current block in to our
data structure; the symbols are inserted one after another left
to right. For each symbol T �j�, we trace the path of the string
T �j������ � j��� in the trie; say the node thus reached is
v. We consider the envelope of v consisting of nodes reached
by any sequence of suffix links starting at v; note that the
envelope consists of at most � � � nodes. We consider the
nodes wi on the envelope in the increasing order of j�wj. If a
node wi on the envelope has a child with character T �j�, we
simply update pos��wi

� appropriately; otherwise, we create
such a child of wi and assign the appropriate pos value to it.
If a child of wi is created, its suffix link points to the child of
wi�� with symbol T �j�, and this is initialized too.

The complexity of our algorithm is summarized below;
the analysis is omitted here.
Theorem. The compression algorithm takes time O�n��

�

�
�

���. When � � O���, it follows that � � O��� as well,
and the running time is O�n�. When � � log� logn and
� � O�logn�, the running time is O�n logn�.
Preliminary Experimental Evaluation. Our algorithm
gives an efficient implementation which we use to compress

files from the Caterbury corpus benchmark suite. 1 Our ini-
tial results seem promising. For example, we obtain nearly
�� improvement in compression of a book of size 
�	K over
WinZip utility. The compression was done with � � � and
� � � on ascii alphabet. In the table below the compres-
sion (in percent) is the amount of file that was compressed, so
larger numbers indicate more compression. We demonstrate
results of a two step compression scheme in which the first
step is the HZY scheme and the second step is arithmetic cod-
ing; we also note our (percent) improvement over WinZip.

File Size HZY HZY+AC WinZip
bib 117541 71.4 71.2 +2.4

Book1 785393 64.9 64.7 +5.9
Book2 626490 70.3 70.1 +4.3

Pic 513216 85.4 84.7 -3.6
Trans 94487 78.0 77.8 -1.0
Progc 41098 67.5 66.7 +0.5
Progl 73890 75.9 75.5 -2.1
geo 102400 31.7 28.3 -1.3

Concluding Remarks. An interesting variation of the HZY
scheme is lexicographic (rather than temporal) ranking of
the contexts, for which efficient algorithms were provided
in [SMZ98]. This variant is simpler than temporal ranking,
but it is an open question whether its entropic properties will
match up to that of the temporal ranking.

Context based compression methods (such as PPM and
its variants) are known to achieve better compression ratios
in practice than the Lempel-Ziv methods, which are used in
most practical compression software. However, there has
been no thorough analysis of such schemes to quantify the
improved compression, and they are considerably slow. The
HZY scheme is a context based method which has already
been analyzed, and as we show, efficient implementations
are possible. It remains to perform a thorough experimental
study.

References

[HZ98] Y. Hershkovits and J. Ziv. On sliding window universal
data compression with limited memory. IEEE Transactionson
Information Theory, 1998.

[SMZ98] Y. Matias S. C. Sahinalp S. Muthukrishnan and J. Ziv.
Augmenting suffix trees with applications. In European Sym-
posium on Algorithms, 1998.

[Yok95] H. Yokoo. An adaptive data compression method based
on context sorting. In IEEE Data Compression Conference,
1995.

1Here bib is a bibliography file, book1 and book2 are fiction and non-
fiction books respectively, geo is geophysical data, pic is a black and white
fax picture, progc, progp, progl are source codes in C, Pascal, Lisp respec-
tively, and trans is transcript of a terminal session.

2


