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Abstract

This paper considers the following sequence shuffling problem: Given a biological sequence
(either DNA or protein) s, generate a random instance among all the permutations of s that
exhibit the same frequencies of k-lets (e.g, dinucleotides, doublets of amino acids, triplets etc.).
Since certain biases in the usage of k-lets are fundamental to biological sequences, effective
generation of such sequences is essential for the evaluation of the results of many sequence
analysis tools. This paper introduces two sequence shuffling algorithms: A simple swapping-
based algorithm is shown to generate a near-random instance and appears to work well, although
its efficiency 1s unproven; a generation algorithm based on Euler tours is proven to produce a
precisely uniform instance, and hence solve the sequence shuffling problem, in time not much

more than linear in the sequence length.



1 Introduction

Computational analysis of biological sequences (or “strings”) has become an invaluable tool
in modern molecular biology. FExamples include detecting relationships among genes, pro-
teins or species; constructing evolutionary trees; aligning sequences or sets of sequences;
recognizing coding regions of DNA: and prediction of protein secondary structure. In all
these applications the question of the statistical significance of the results is one of the most
important and difficult to address. For example, if two DNA sequences are found to share a
common subsequence of a certain length, does it imply that the two sequences are function-
ally or evolutionarily related? Clearly the answer depends on how “surprising” this finding
is. Since the alphabet of proteins consists of 20 amino acids, and the alphabet of DNA is
just the 4 nucleotides A, C, G, and T, certain repeats can (or must) occur by chance. The
significance of any finding must therefore be judged relative to a background level expected
by chance alone (Fitch [7]).

Mathematical results concerning significance level for sequence analysis algorithms are
very difficult to obtain and are known only in some special situations (Karlin and Bren-
del [13], Karlin and Altschul [12]). Therefore simulations are often used to provide a statis-
tical background. The basic idea is to compare the results of a run on “real” data to many
runs on “random” data.

The difficulty addressed here is how to construct an appropriate random data. For
example, note that two DNA sequences that are rich in C and G nucleotides are more
likely to have a common subsequence of a given length than two sequences in which the
4 nucleotides are equally frequent. While the mere fact that the two sequences are G,C
rich might be of some interest, we are usually interested in asking the next question: Given
that the two sequences are C,G rich, what is the significance of finding a certain common
subsequence?

To answer such questions it is natural to create random sequences that have the same
nucleotide decomposition as the original sequences. If the object is merely to produce a
uniformly random sequence with the same number of A’s, C’s, G’s and T’s as a given
sequence, there are two simple, efficient procedures available. One can either tally the
frequencies in the given sequence and generate a uniform permutation of the nucleotide
multiset; or, one can shuffle the given sequence until it is adequately mixed.

Both of these methods are familiar to players of the game of bridge. In a home game

the cards are shuffled by hand, but in a tournament the deals are randomly generated (by



computer). Both methods have their pitfalls; although shuffling is capable of producing very
nearly perfectly random deals (see, e.g., Bayer and Diaconis [3]), lazy shufflers produce non-
random effects which, owing to the way the cards are collected in bridge, result in relatively
tame deals. On the other hand a re-used seed for a random number generator resulted
recently in having to invalidate results from a major tournament when players recognized
the hands from a previous tournament [15].

In many cases, biological sequences are biased not only at the single letter level but also
at higher levels (see, e.g., Karlin et al. [14]). Doublets, triplets, etc. (generically called k-lets)
are counted in an overlapping manner, so that for example the sequence ACGAC contains
two AC dinucleotides, one CG, and one GA; and one copy each of the ACG, CGA, and GAC
trinucleotides. Certain biological sequences tend to have an excess of some k-lets, while others
are underrepresented; for example, the dinucleotide TA is broadly underrepresented. In
vertebrates, CG is underrepresented and TG and CA are overrepresented. The trinucleotides
CCA and TGG are overrepresented in eukaryotic sequences. The tetranucleotide CTAG is
underrepresented in bacterial and eukaryotic sequences.

The triplet frequency is of special interest since codons (triples of nucleotides in certain
regions of DNA that code for specific amino acids) are subject to many evolutionary and
functional pressures. Thus, as mentioned above, for many sequence analysis tools there is a
need to produce random sequences that maintain the specific biases of the original sequence.

In any case the problem is the same: for fixed k£ and given sequence s = s155...5,, let
X (s) be the set of all sequences which contain the same number of each type of k-let that s
does. We wish to obtain an element of X(s) chosen randomly from the uniform distribution.
We will assume for the remainder of this paper (unless specified otherwise) that the sequence
alphabet is of size 4, so that there are 4% k-let types. However, everything we do generalizes
in the obvious way.

It is not obvious, however, how to do either generation or shuffling when £ > 1. In
what follows we describe methods for both. Our shuffling method (the “swap”) is simple
and appears to work well, although its efficiency is unproven. Qur generation method is an
improvement of the method of Altschul and Erickson [2], and it produces a precisely uniform

member of X (s) in time not much more than linear in the sequence length n.



2 Previous Work

The first treatment of this problem appears to be due to Fitch [7]. Fitch noticed the con-
nection between the doublet problem and Euler tours, but suggested an algorithm which
does not generally achieve the uniform distribution among valid permutations. Altschul and
Erickson [2] presented an algorithm based on Euler tours which does generate uniform valid
permutations but relies on trial-and-error generation of random trees; we will show later how
to fix this potential bottleneck in a fast and elegant manner.

A brief outline of the “swap” algorithm for shuffling was given in (Unger et al. [18]),

without proof.

3 The Swapping Algorithm

The swapping algorithm to preserve k-lets is an extension of the simple swapping algo-
rithm for single character. Because of the dependence of characters in higher k-lets, a
simple swap of two characters at a time will generally change the k-let count; for example,
If TTACACTGATTCAAGTTAAT is swapped into TTACAAGGATTCACTTTAAT, the
doublet TG is destroyed while the doublet GG is created.

Instead, we endeavor to locate two substrings (contiguous subsequences of arbitrary
lengths) which are disjoint and flanked by the same (k — 1)-lets; that is, the & — 1 let-
ters at the left end of one substring must be the same as those on the left end of the other
substring, and similarly for the right ends. These substrings are then swapped.

The substrings need not be the same length, although if they are then that length must
be at least 2k — 1 for the swap to accomplish anything. In any case it is easy to see that the
k-let frequencies are preserved by such a swap.

For example, when k = 2

TTACACTGATTCAAGTTAAT

can be changed to

TTACAAGTTATTCACTGAAT

by a swap; the doublet count is not affected.
The swap algorithm entails running a Markov chain on the state space X (s) beginning at

state s. To step from a sequence t = t;...1,, we randomly and uniformly choose 4 positions



a, b, c,d along the sequence with 1 <a <b<e<d<n—k+2 Wethen check whether it
happens that

tata—l—l .. -ta—|—(k—2) = tctc-l—l .. 'tc—l—(k—Z)
and

Totoy1 -« top(k—2) = tatdtr - - - Lay(r—2)

It these conditions are met then the substrings ¢,...¢y 112 and t....t514_o are swapped;
otherwise we remain in state ¢. (In practice a more sophisticated data structure can be
maintained to make the selection of @, b, ¢ and d more efficient. It is important though to be
careful not to introduce any bias towards specific positions.)

Notice that the chosen substrings may overlap somewhat, in which case they will perforce
overlap an equal amount after swapping. The start-and-end conditions assure that the
overlap portion t....%11_o remains intact.

The swap defined above is not quite sufficient to move around Xj(s) in the special case
where s happens to begin and end with the same k-let. For example, ACGTAC and GTACGT
have the same triplet counts but neither permits a swap. To overcome this obstacle we
say that a sequence s = s183...5, is k-cyclic (or just “cyclic” when k is understood) if
S1...8k—1 = Sp_ga2 ---Sn, and if the given sequence s is cyclic our algorithm is preceded by
a random rotation as follows: a number m is chosen randomly and uniformly from {k, %k +

1,...,n} and s is replaced by the sequence

!
S = SmSm41 -+ Sn-150SkSk+1 -+ - Sm—1Sm « - + Sm+k—2

where the subscripts are reduced modulo n if necessary. Note that s’ is also cyclic and has
the same k-let count as s; it may be equal to s, even when m is not equal to 1.

An intuitive way to think of the random rotation is as follows: cut off the “head” (k—1)-
let of s and join the ends of the remaining sequence to make a necklace; then snip the
necklace at a random point and add a copy of the (k — 1)-let at its tail to the sequence’s
head, to get the new sequence s'. This procedure will always change the (k — 1)-let count.

The Markov chain then proceeds from s’ as above. Observe that swaps preserve both the
initial and final (k — 1)-let, hence in particular the sequences produced by the algorithm will
be either all cyclic or all acyclic depending on s.

It is useful to note that while the swap procedure for a given k preserves the j-let count
for all j <k, the rotation changes the (k — 1)-let count unless the head (k — 1)-let remains
the same (in which case we could have gotten to s’ by swaps). Let Yi(s) be the set of all



sequences with the same k-let counts as s and the same starting (k — 1)-let. Then we have

the following facts:

o Yi(s) C Xi(s) with equality when s is acyclic (and in the degenerate case when all

characters in s are the same).

o X;(s) = UYy(s') in the cyclic case, where the union is taken over all rotations of s, or

at least one rotation for each possible starting (k — 1)-let.

e Regardless of whether s is cyclic or not, Yj(s) is exactly the set of all sequences whose
j-let counts match s’s for all 7 < k; also the set of all sequences whose k-let counts and

(k — 1)-let counts match s’s.

Because of this last fact, in a given experiment it might well be deemed preferable to
obtain random sequences in Yj(s) rather than X;(s). This makes no difference in the acyclic
case, but when s happens to be cyclic it simplifies matters by obviating the necessity for a

random rotation.

4 Proving the Correctness of the Algorithm

While the algorithm is simple, to prove its correctness and efficiency we must show that:

1. The algorithm produces all the valid k-lets permutations (i.e., permutations that pre-

serve the same k-lets count) of the input sequence;

2. All possible outputs of the algorithm are obtained with (approximately) the same prob-
ability;

3. The required number of iterations of the algorithm is reasonable, e.g.., bounded by a

polynomial in the length n of the input sequence.

In the following sections we will prove the first two assertions and present empirical results

on behalf of the third.

4.1 Reaching all Valid Permutations

The fact that an individual swap step is k-let preserving does not of course imply that every

k-let preserving permutation is accessible using iterative application of random swaps. To



prove this crucial aspect of the algorithm, it suffices to show that there is a path of specific
swaps that can transform any given valid permutation to any other. We do this by defining
a metric p for Xj(s) with values in the set {0,1,...,n — 2k + 1}, then showing that for any
two distinct valid strings u and v there is a sequence u’ reachable by a swap from wu such
that p(v',v) < p(u,v).

It is convenient to denote by (G (s) the graph whose vertices consist of the valid sequences
which begin with the same (k — 1)-let as s, i.e. all sequences in Yi(s), with two sequences

adjacent in Gi(s) just when they can be obtained from each other by a single swap.

Theorem 1 For any sequence s of length n the graph Gy(s) is connected and has diameter
alt most n — 2k + 1.

Proof. The metric p is defined as follows: if j(u,v) is the least number for which wu; # v;,
then p(u,v) =n—k+2— j(u,v). Of course, in case that v = v we put p(u,v) = 0.

Note that since all vertices in G(s) begin with the same (k — 1)-let (namely s1...sk_1)
and end with the same (k—1)-let ($,_g42 ... S,), the range of j(u,v) when u # v is contained
in {k,k+1,...,n—k+1} and therefore the full range of p is contained in {0,1, ..., n—2k+1}
as promised. Thus, it suffices to prove that for any two distinct vertices u, v there is a swap
changing u to u’ such that j(u',v) > j(u,v).

In fact, we may assume j(u,v) = k because otherwise the first j(u,v) — k coordinates of
u and v can be ignored without loss, in effect replacing n by n — (j(u,v) — k). Letting o be
the common initial (k — 1)-let for the vertices of Gx(s), we have that u begins with auy and
v with avy, where uy # vy.

Let h be the largest index for which wpupyq ... up1k—1 = avg; this number exists, or
course, since u and v have the same k-let count. Let A be the set of all (k — 1)-lets which

occur in u before h and B after, that is,
A:=Aujupgp_e: 1< h}and B := {u;..ujpp_o: @ > h}.

We claim that A and B cannot be disjoint. To see this suppose otherwise and note that
in the sequence v the second (k — 1)-let, v ... vg, belongs to B; furthermore A includes at
least one (k — 1)-let which is not vy...vs_1, and thus somewhere later in v there is a k-let
of the form pa = yvy where 3 and 4 are (k — 1)-lets, and such that 3 is in B and ~ is not.

But there is no place in u for such a k-let, a contradiction.



Hence we may choose a common (k — 1)-let 6 € AN B, occurring say at positions ¢; and
1o with 1 < 23 < h < 13. Swapping in v in accordance with locations @« =1, b = 11, ¢ = h,

and d = 15 replaces uy by vy, increasing j(u,v) as desired and proving the theorem. a

It follows from the theorem that we can get from an acyclic s to any ¢t € Xj(s) in at most
n — 2k + 1 steps; if s is cyclic we first rotate to obtain an s’ with s} ...s._; = t1... {51,
then apply the theorem to the graph Gj(s’). We remark that the bound n — 2k + 1 for the
diameter of (Gx(s) is not tight, but a degree argument shows that it is not off by more than

a factor of function of k£ times logn.

4.2 The Limiting Probability of a Permutations

When s is acyclic the swap algorithm is exactly a “simple random walk” (see, for example,

n—k+1

) ) since we have in effect put in

[5]) on the graph Gy(s), which is regular of degree (
loops wherever the conditions for the locations a, b, ¢ and d are not met. The stationary
distribution for a simple random walk on a connected, regular graph that is not bipartite is
easily seen to be uniform. Note that (/x(s) can be bipartite only if all the possible swaps of s
are valid, which may be the case only if £ = 1 or if the sequence is short; both cases are not
very interesting in our context, but are nevertheless considered below. Thus a sufficiently
long walk on Gx(s) will end at as nearly a uniformly random sequence as desired.

If s is cyclic we have the additional task of showing a member v of Xj(s) with different
initial (k — 1)-lets o from s has the same probability as s in the limit. Let j be such that a
rotation by j transforms s to a sequence s’ beginning with . Then s’ has the same probability
as v, but also s’ has the same probability as s because rotation by 7 is a one-to-one bijection
on X;(s) and all rotations are equally likely.

We elaborate below on the proof that the limiting probability distribution of the swap
algorithm is uniform, using the ergodic theorem (see, for example, [11]). First, define the
matrix 7" of conditional probabilities, such that for any ¢,# € Xy(s), T(¢,t') is the condi-
tional probability that the sequence ¢ is obtained after m swap attempts, assuming that the
sequence 1’ was obtained after m — 1 swap attempts. The probability P () of obtaining
t after m swap attempts is therefore PU™ (1) = 32, T'(¢,#')P™=1(#"), or in more compact
notation P = T P("=1_ Tterating this equation m times, we can get the vector P from
the initial probability distribution of sequences: P = 7™ p©),

T is a stochastic matrix, i.e., it is nonnegative and >, T'(¢,#') = 1 for any ¢’. Since in

our case T'is symmetric, the uniform probability distribution P,(t) = 1/Ny(s) (where Ni(s)



is the number of sequences in X;(s)) is an eigenvector of T" with eigenvalue 1. Thus P, is
a stationary distribution of the Markov process. It can be shown [11], using theorems of
Perron [16, 17] and Frobenius [8, 9, 10], that 1 is a simple eigenvalue of T' (i.e. there is
a single eigenvector associated with this eigenvalue). This eigenvalue is also the dominant
one (i.e. there are no eigenvalues of modulus greater than 1). Moreover, T' has exactly one
eigenvalue of modulus 1 if and only if there is a power of T' which is positive. Hence if this
condition holds, P, is the only eigenvector of T" with eigenvalue 1.

The ergodic theorem states [11] that, under the same condition, our Markov process
approaches this uniquely defined distribution in the limit of an infinite number of swaps.
Therefore, the limiting distribution of the swapping algorithm is uniform if and only if there
is an integer [ such that 7" is positive. Positivity of all the elements of 7" means that
PW(t) > 0 for any sequence ¢ no matter what the initial distribution of sequences P is.
We have already shown (see section 4.1) that any sequence in Xj(s) can be brought into any
other sequence with a finite number of swaps. We denote the minimal number of swaps that
brings sequence t into sequence t' by [(¢,t'). Let us define | = max; [(£,%). To complete
our proof it is sufficient to show that the sequence ¢’ remains unchanged with a positive
probability from swap attempt [(¢,1') till swap attempt /.

This is obviously correct when k& > 1 and the sequence is long enough, since in such cases
there is always a positive probability of attempting to make illegal swaps (and hence rejecting
the attempt). A problem arises, however, when k = 1. All swaps are legal in this case, and
therefore none are rejected. As a result there is no integer / for which 7" is positive and
the swapping algorithm is not guaranteed to approach the uniform distribution. Consider,
for example, the sequences GT and TG. If we start with GT we obtain the sequence TG
with probability 1 after any odd number of swap attempts. After an even number of swap
attempts we get G'T with probability 1. The limiting distribution does not exist here; instead
we approach a limit two-cycle. In all cases where such a problem arises it is easily solved by
modifying the algorithm so that a swap attempt is rejected with a positive probability even
if it is legal.

In conclusion, the limiting distribution of sequences obtained using the swapping algo-
rithm is uniform, except when & = 1 or when the sequence is very short. In these cases a

minor modification of the algorithm restores ergodicity.



4.3 The Convergence Rate

We have shown that the swap algorithm works, in principle, to any desired degree of accuracy;
but to show that it is efficient we would need to prove that the number of swaps required
to reach near-uniformity is reasonable. Our empirical tests (illustrated below) and other
indications, such as the small diameter of G (s), lead us to guess that we have “polynomial

mixing time,” as follows:

Conjecture 1 For any fized k and alphabet size, there is a polynomial p = p(n) such that
for any sequence s of length n and any number m, a walk of mp(n) steps on Xy(s) will

produce a final distribution of variation distance less than 27 from uniform.

4.4 Some Empirical Results

We now demonstrate a certain mixing property in several executions of the swap algorithm.
The experimental results are consistent with conjecture 1, and provide positive indication
as to the convergence property of the swap algorithm. More experiments are necessary,
however, in order to constitute a rigorous empirical study on behalf of conjecture 1; these
are left for future research.

For actual biological sequences the number of valid k-lets is huge (see the end of section 5
for the actual count). Hence, it is not realistic to demonstrate the uniformity of the resulting
distribution just by sampling. Instead we measured a time dependent correlation function of
the generated sequences. To define this correlation function we first quantify the difference
between two sequences through the following metric:

okt

1
On(siss) = — Y 1 filsi) = fulsi)l,
=1

where o is the size of the alpha-bet, and fi(s;) is the frequency of the (k4 1)-let subsequent [
in sequence s;. This metric is a measure of the difference between the two sequences since it
compares their k+1-let counts (recall that the number of k-lets is preserved). For example, in
DNA sequences with doublet preserving (k = 2), we average the difference in the frequencies
of all the 64 possible triplets between the two sequences.

We compute (O(t)) by averaging Oy(sq, so) over different runs (i.e., (O(t)) represents the
ensemble average of Ok(sy, o) ), using the same starting sequence so. We used to following

procedure: 10 DNA sequences were randomly created ranging in size from 300 to 4800
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Figure 1: (O(t)) is plotted versus ¢ for 10 random sequences of different lengths from 300 to 4800.
Each sequence has undergone 10000 swap steps preserving the doublet distribution. For each sequence,
100 simulations were run, and the correlation function (O(t)) reflects the average difference in the triplet
distribution between the sequence after ¢ swap steps and the original sequence (see text). After time
shorter than the length of each sequence (the shortest sequence (300bp) appears on the top and the
longest (4800bp) on the bottom) a plateau in (O(t)) is reached. The results were fitted, using least

square method, into functions of the form A - e~ 4 (O,

10



(steps of 500). For each sequence we ran the swapping algorithm with doublet preserving
(k = 2) for 100 independent runs, each consisting of 10000 swap steps, and took (O(%)) as
the average over the computed O(sy, s0). Figure 1 shows (O(t)) vs. t for these sequences.
The curves show exponential behavior, and the plateau in each curve starts after a number
of steps which is smaller than the length of the sequence. These curves were fitted, using
least square method, into functions of the form A -e~/7 + C with a good fit (see Figure 1),
where A and (' are dependent of the length of the sequence, but are constants with respect
to t. Thus, 7 reflects the rate in which the curves approach their limiting values C.

We would like to show that the limiting values of these curves are indeed what is expected
from a comparison between random valid k-let permutations of a given sequence. That is,
to show that (O(t)) approaches the value Og(s,s’) averaged over all s’ in Xj(s). Again, as
the size of Xj(s) is too big, we used a sample to estimate the expected (O(t)). The sampling
was made from very long swapping simulations (1 million steps), randomly selecting 300
sequences, and calculating Og(s;, s;) for each pair of these sequences. In the case of the
sequence of length 800bp (O(t)) was calculated to be 0.00331 with standard deviation of
0.00047. This value exactly matches the limiting value C' = 0.00331 that was fitted to
the corresponding curve (the second curve from the top in Figure 1), implying that the
discrepancy is smaller than the numerical errors, which are of low order magnitude. So,
the correlation of the k£ 4 1-let count of the produced sequences with the original sequence
reached a fixed level which is similar to the one expected between any two random valid
k-let permutations of the sequence.

Figure 2 shows the near-linear correlation between 7 and the length of the sequence N,
with a best fit of 7 &~ 0.2 - N. Similar results were obtained for different sequences with
various sizes and using different preserving levels (e.g. & =3 and k = 4).

We conclude that the correlation of the initial random sequence sy with the sequence s;
decays exponentially in ¢, and after time 7 that scales linearly with N, only a small fixed
degree of correlation is left. Note that the empirical results do not preclude the possible
existence of “bad” initial sequences sy for which the convergence rate is slower, even for the
specific correlation properties considered here. The issue of identifying the convergence rate

in the worst case remains an open question.
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Figure 2: 7 is plotted versus V. The rate of increase of the correlation function (O(t)) for each sequence
(Figure 1) is reflected by 7. (Recall that T is taken from the functions of the form A -e~!/7 4+ C' which

were fitted to the data.) 7 scales linearly with the length of each sequence N which is consistent with

conjecture 1.
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5 Exact Sampling

The swap algorithm, although it appears to work well, produces valid sequences which are
only approximately uniform and does not (as yet) have a proof of efficiency. We now present
a provably efficient variation of the Altschul-Erickson algorithm [2] which yields an exactly
uniformly random valid sequence. This technique, which we dub the “Euler algorithm.,”
operates on a directed graph Dy(s) whose size is constant with respect to n instead of
exponential.

The vertices of Dy(s) are the distinct (k — 1)-lets which appear in s, thus |V (Dg(s))]| <
4F=1 Clearly, also |V(Dy(s))] < n—k+ 1. With each of the n — k+ 1 k-lets s;...s; +k — 1
we associate an arc e; from the vertex s;...s; + k — 2 to the vertex s;41...5, +k — 1. (A
k-let of the form XXX...X causes a loop.) Thus, |E(D(s))| <n—k+ 1.

Letting @ = s1...55_1 and = $,,_p42...5,, we see that the arc-sequence ey, ..., e, i1
constitutes an Euler trail from « to 3, that is, a directed path in Dy(s) which passes over
each arc exactly once. Conversely any directed trail in Dy(s) produces a sequence and if the
trail is Fulerian, the sequence is a valid k-permutation of s.

If there are two or more arcs in Dy(s) from, say, vertex v to vertex ¢, the choice of which
arc the Euler trail takes in first passing from v to 6 makes no difference in the sequence
generated. Hence the correspondence between Euler trails and valid sequences is not one-

to-one; however,

Lemma 1 Let fi,..., [, be the frequencies of those k-lets which are present in s. Then

every valid sequence in Xi(s) corresponds to exactly 172, fi! Fuler trails in Dy(s).

Proof. This is merely a matter of observing that the frequencies correspond to multiplicities

of arcs in Dy(s), and f; parallel arcs can be taken in any of their f;! possible orders. a

There is a slight subtlety in the statement of Lemma 1 which arises when s is cyclic. In
the acyclic case, the outdegree of o exceeds its indegree by one, and vice-versa for 3, so that
every Euler trail must begin at o and end at 3. But in the cyclic case a and 3 are the same
vertex, with equal indegree and outdegree like every other vertex of Dy (s). Here every Euler
trail is closed, but we still regard an Euler trail as having a start and (identical) finish rather
than as an endless circuit; otherwise we would not know how to begin the corresponding
sequence.

On account of Lemma 1 we have reduced the problem of generating a uniform valid

sequence to the problem of generating a uniform Euler trail in Dy(s). To do this we make

13



another reduction. Fix an FEuler trail £, and for any vertex v # /3 let e(y) be the arc from
~ taken in the last exit of £ from ~.

The set T'= T(FE) of such arcs form an inbound spanning tree, or arborescence, rooted
at . To see this it suffices to note that T has out-degree 1 at every vertex other than g and
has no cycles; for, the trail £ would have no way to last exit a cycle.

Conversely, let T' be any arborescence routed at 3 and for each v # 3 let us order all the
arcs leaving ~ other than the one belonging to T'; we also order all the arcs, if any, which
exit . Now we begin at a and walk according to the following rule: at each vertex we exit
by the first exit-arc not previously chosen, using the T-arc only when all the alternatives
are eliminated. When the tour ends (perforce at 3) we will have covered every arc, else we
could not have got from the vertices whose T-arcs have been used to the rest. From all this

we have:

Lemma 2 FEvery arborescence routed at 5 corresponds to exactly

dH (B ] (d* () —1)!
v#B
FEuler trails ending at 3 (and thus beginning at o), where d*(v) is the outdegree of v, i.ec.,

the number of exiting arcs.

Since it is very easy to generate random permutations of exit arcs, we are reduced now
to the problem of generating uniform random arborescences. This is done in [2] by choosing
random exit arcs from each v # [ and hoping the result is a tree, else repeating the procedure.
Unfortunately there may be many places in Di(s) where a cycle is likely, so that the expected
number of tries before achieving a tree could be as high as order net"

We can dilate this bottleneck with the help of the Matrix-Tree Theorem, (see e.g. [6] Thm
2.9) but a very fast and elegant alternative is now available thanks to recent work on random
walks. Aldous [1] and Broder [4] proved independently that a uniform random spanning tree
for an undirected graph can be obtained by taking a simple random walk on the graph and
marking the first edge used to reach each vertex. It turns out that their theorem can be
extended to Fulerian digraphs.

A digraph is said to be Eulerian if it is connected and d*(vy) = d~(v) for every vertex

7. Our Dy(s) is connected since it has an Euler trail, and is thus Eulerian if s is cyclic.

Otherwise we add a “phony” arc from 3 to « to produce the Eulerian alteration Dj(s).
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The method, for a general Eulerian digraph D, is as follows: We take a backward random
walk on D, beginning at the root vertex (/). At each vertex v we randomly and uniformly
choose among all arcs leading to v (loops can be ignored) and proceed next to the vertex
(say, 7"') at the tail of the chosen arc. If we have reached 4" for the first time, the arc just
traversed (which points from 4" to 7) is added to T'. The procedure terminates when D is

covered, that is, every vertex has been reached; clearly we then have an arborescence rooted

at f.

Theorem 2 The arborescence T constructed above is drawn precisely from the uniform dis-

tribution among all arborescences rooted at 3.

Proof. The proof follows the same lines as Aldous’, using the Fulerian property instead of
reversibility at the critical point.

Let {X;} be a doubly infinite (thus stationary) backward random walk on D and let T}
be the arborescence rooted at X; defined as above starting at time j.

Because indegree = outdegree for each vertex of D, the probability for each j that X;_; =
v given X; =~ is 1/d*(v).

Let () be the reverse-time transition matrix for the stationary tree-valued Markov chain
T;. If r(T') is the (out)degree of the root of T', then the probability Q7 1/ of proceeding to
T from T is 1/r(T) for exactly r(T) arborescences T, one rooted at each successor of the
root of T'.

On the other hand if 7' = T} is rooted at v = X; then for each successor 4’ of v there is
a unique tree 7" = Tj4q in which 4’ succeeds v, i.e. there are exactly r(T') trees T" for which
Qrr = 1/r(1"), and Q7 = 0 for all other trees 7"

Thus we have for each fixed T" that Y7 r(T)Qr 1 = r(T").

Since it is easily checked that @) is irreducible, we deduce that ) has stationary distribu-
tion proportional to r(7'). But the arborescence T; generated from time j has no dependence
on the past. It follows that if we begin a backward random walk on D at j, first-entries

provide a uniform random arborescence rooted at [3. a

Let us now review our Euler algorithm for generating a uniform random valid permutation

of s:

1. Construct the digraph Dy(s) from the k-let counts. (For small k£ and large n, this is

best done by recording the counts as arc multiplicities in a 457! x 4*~! matrix indexed

by all (k — 1)-lets.)

15



2. If s is cyclic, perform a random rotation to get a sequence s € Xy(s) as in the swap
algorithm, then put @ = § = s ...s)_;. If sisacyclic, add an arc from 8 = s,_j42 ... 35

to a = s1...5;_1 to make the digraph Eulerian.

3. Take a simple backward random walk from f until all other vertices have been hit.
Whenever a vertex v # /3 is reached for the first time, put the arc (v,4) just traversed
into T

4. For each vertex v of Dy(s), randomly order all the arcs exiting v except the one in T
in the case of 3, randomly order all the exiting arcs (but not the one added from j to

« in the acyclic case).

5. Read off the desired sequence by starting at o and, at each vertex ~, following the first

arc from + not yet used, using the T-arc last.

The number of vertices of Dy(s) is of course constant with respect to n, when k is held
fixed. Hence the computing time required for steps (1), (3) and (4) above is basically linear
in n (with, in theory, a penalty of a factor of logn for having to deal with numbers of size
about n). So the only remaining problem is to get a bound on the “cover time” of Dy(s),

that is, the expected time to hit all other vertices from .

Theorem 3 Let D be an FKulerian digraph consisting of n arcs on ¢ vertices. Then the

expected cover time of D is less than ¢*n.

Proof. We show first that if U is any proper subset of the vertices of D, then there is a
vertex v outside U from which the expected hitting time to U is at most n — 1. To see this,
note that the graph D/U obtained by contracting U to a single vertex and eliminating all
loops at U is still Eulerian, and thus (as in the proof of Theorem 2 above) the stationary
distribution for a random walk on D /U is proportional to the degrees of its vertices. Since
the sum of the (out)degrees is at most n and the degree of U is at least 1, the stationary
probability of U is at least 1/n. Thus the expected time to revisit U starting from U is at
most n, but the first step exits U; thus there must be a vertex v # U in D/U from which
the expected hitting time to U is no more than n — 1.

Next we argue that for any two vertices o and /3, the expected hitting time from «a to
is bounded by (¢ —1)(n —1). For, we may set U; := {3} and define U;11 := U; U {~;}, where

~; is a vertex not in U; from which expected access to U; takes at most n — 1 steps. Then
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U, contains all the vertices, o in particular; thus expected hitting time from « to 4 can not
be more than (¢ — 1)(n — 1).
Finally we conclude that expected cover time cannot exceed (¢ — 1)*(n — 1), even if we

insist that a subsequence of the walk contain all the vertices in a particular order. a

We thus have that the whole Euler algorithm is essentially linear in n when & (and the
alphabet size) are held constant. When &k = 3 the digraph Dy(n) has at most 16 vertices, so
there is nothing to prevent the Euler algorithm from being run with extremely long sequences.

Obviously the Euler algorithm can be used to generate a uniform random Fulerian trail
in any Eulerian digraph; interestingly no one seems to have found a way to do the same for
undirected graphs, where the neat relationship between spanning trees and Euler trails breaks
down. There is a way to generate uniform random Eulerian orientations of an undirected
graph [MW], but this cannot be used to generate trails because different Eulerian orientations
may have widely different numbers of trails.

Finally, we note that a variation of the Euler algorithm can be used to get an exact count
of |Yi(s)| (or of the number of Euler trails in an Eulerian digraph). To do this we use the
Matrix Tree Theorem to count the number ¢ of arborescences rooted at 3, then in the acyclic
case we have

Xe()] = td*(3) T @) = 1/ L7

V£B

where the f;’s are the k-let frequencies as in Lemma 1.
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