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Abstract

This paper considers the following sequence shu�ing problem� Given a biological sequence

�either DNA or protein� s� generate a random instance among all the permutations of s that

exhibit the same frequencies of k�lets �e�g� dinucleotides� doublets of amino acids� triplets etc���

Since certain biases in the usage of k�lets are fundamental to biological sequences� e�ective

generation of such sequences is essential for the evaluation of the results of many sequence

analysis tools� This paper introduces two sequence shu�ing algorithms� A simple swapping�

based algorithm is shown to generate a near�random instance and appears to work well� although

its e�ciency is unproven	 a generation algorithm based on Euler tours is proven to produce a

precisely uniform instance� and hence solve the sequence shu�ing problem� in time not much

more than linear in the sequence length�



� Introduction

Computational analysis of biological sequences �or �strings�� has become an invaluable tool

in modern molecular biology� Examples include detecting relationships among genes� pro�

teins or species� constructing evolutionary trees� aligning sequences or sets of sequences�

recognizing coding regions of DNA� and prediction of protein secondary structure� In all

these applications the question of the statistical signi�cance of the results is one of the most

important and di�cult to address� For example� if two DNA sequences are found to share a

common subsequence of a certain length� does it imply that the two sequences are function�

ally or evolutionarily related Clearly the answer depends on how �surprising� this �nding

is� Since the alphabet of proteins consists of �� amino acids� and the alphabet of DNA is

just the � nucleotides A� C� G� and T� certain repeats can �or must� occur by chance� The

signi�cance of any �nding must therefore be judged relative to a background level expected

by chance alone �Fitch �
���

Mathematical results concerning signi�cance level for sequence analysis algorithms are

very di�cult to obtain and are known only in some special situations �Karlin and Bren�

del ����� Karlin and Altschul ������ Therefore simulations are often used to provide a statis�

tical background� The basic idea is to compare the results of a run on �real� data to many

runs on �random� data�

The di�culty addressed here is how to construct an appropriate random data� For

example� note that two DNA sequences that are rich in C and G nucleotides are more

likely to have a common subsequence of a given length than two sequences in which the

� nucleotides are equally frequent� While the mere fact that the two sequences are G�C

rich might be of some interest� we are usually interested in asking the next question� Given

that the two sequences are C�G rich� what is the signi�cance of �nding a certain common

subsequence 

To answer such questions it is natural to create random sequences that have the same

nucleotide decomposition as the original sequences� If the object is merely to produce a

uniformly random sequence with the same number of A�s� C�s� G�s and T�s as a given

sequence� there are two simple� e�cient procedures available� One can either tally the

frequencies in the given sequence and generate a uniform permutation of the nucleotide

multiset� or� one can shu�e the given sequence until it is adequately mixed�

Both of these methods are familiar to players of the game of bridge� In a home game

the cards are shu�ed by hand� but in a tournament the deals are randomly generated �by
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computer�� Both methods have their pitfalls� although shu�ing is capable of producing very

nearly perfectly random deals �see� e�g�� Bayer and Diaconis ����� lazy shu�ers produce non�

random e�ects which� owing to the way the cards are collected in bridge� result in relatively

tame deals� On the other hand a re�used seed for a random number generator resulted

recently in having to invalidate results from a major tournament when players recognized

the hands from a previous tournament �����

In many cases� biological sequences are biased not only at the single letter level but also

at higher levels �see� e�g�� Karlin et al� ������ Doublets� triplets� etc� �generically called k�lets�

are counted in an overlapping manner� so that for example the sequence ACGAC contains

two AC dinucleotides� one CG� and one GA� and one copy each of the ACG� CGA� and GAC

trinucleotides� Certain biological sequences tend to have an excess of some k�lets� while others

are underrepresented� for example� the dinucleotide TA is broadly underrepresented� In

vertebrates� CG is underrepresented and TG and CA are overrepresented� The trinucleotides

CCA and TGG are overrepresented in eukaryotic sequences� The tetranucleotide CTAG is

underrepresented in bacterial and eukaryotic sequences�

The triplet frequency is of special interest since codons �triples of nucleotides in certain

regions of DNA that code for speci�c amino acids� are subject to many evolutionary and

functional pressures� Thus� as mentioned above� for many sequence analysis tools there is a

need to produce random sequences that maintain the speci�c biases of the original sequence�

In any case the problem is the same� for �xed k and given sequence s � s�s� � � � sn� let

Xk�s� be the set of all sequences which contain the same number of each type of k�let that s

does� We wish to obtain an element of Xk�s� chosen randomly from the uniform distribution�

We will assume for the remainder of this paper �unless speci�ed otherwise� that the sequence

alphabet is of size �� so that there are �k k�let types� However� everything we do generalizes

in the obvious way�

It is not obvious� however� how to do either generation or shu�ing when k 	 �� In

what follows we describe methods for both� Our shu�ing method �the �swap�� is simple

and appears to work well� although its e�ciency is unproven� Our generation method is an

improvement of the method of Altschul and Erickson ���� and it produces a precisely uniform

member of Xk�s� in time not much more than linear in the sequence length n�
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� Previous Work

The �rst treatment of this problem appears to be due to Fitch �
�� Fitch noticed the con�

nection between the doublet problem and Euler tours� but suggested an algorithm which

does not generally achieve the uniform distribution among valid permutations� Altschul and

Erickson ��� presented an algorithm based on Euler tours which does generate uniform valid

permutations but relies on trial�and�error generation of random trees� we will show later how

to �x this potential bottleneck in a fast and elegant manner�

A brief outline of the �swap� algorithm for shu�ing was given in �Unger et al� ������

without proof�

� The Swapping Algorithm

The swapping algorithm to preserve k�lets is an extension of the simple swapping algo�

rithm for single character� Because of the dependence of characters in higher k�lets� a

simple swap of two characters at a time will generally change the k�let count� for example�

If TTACACTGATTCAAGTTAAT is swapped into TTACAAGGATTCACTTTAAT� the

doublet TG is destroyed while the doublet GG is created�

Instead� we endeavor to locate two substrings �contiguous subsequences of arbitrary

lengths� which are disjoint and �anked by the same �k � ���lets� that is� the k � � let�

ters at the left end of one substring must be the same as those on the left end of the other

substring� and similarly for the right ends� These substrings are then swapped�

The substrings need not be the same length� although if they are then that length must

be at least �k� � for the swap to accomplish anything� In any case it is easy to see that the

k�let frequencies are preserved by such a swap�

For example� when k � �

TTACACTGATTCAAGTTAAT

can be changed to

TTACAAGTTATTCACTGAAT

by a swap� the doublet count is not a�ected�

The swap algorithm entails running a Markov chain on the state space Xk�s� beginning at

state s� To step from a sequence t � t� � � � tn� we randomly and uniformly choose � positions
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a� b� c� d along the sequence with � � a 
 b 
 c 
 d � n� k � �� We then check whether it

happens that

tata�� � � � ta��k��� � tctc�� � � � tc��k���

and

tbtb�� � � � tb��k��� � tdtd�� � � � td��k���

If these conditions are met then the substrings ta � � � tb�k�� and tc � � � td�k�� are swapped�

otherwise we remain in state t� �In practice a more sophisticated data structure can be

maintained to make the selection of a� b� c and d more e�cient� It is important though to be

careful not to introduce any bias towards speci�c positions��

Notice that the chosen substrings may overlap somewhat� in which case they will perforce

overlap an equal amount after swapping� The start�and�end conditions assure that the

overlap portion tc � � � tb�k�� remains intact�

The swap de�ned above is not quite su�cient to move around Xk�s� in the special case

where s happens to begin and end with the same k�let� For example� ACGTAC and GTACGT

have the same triplet counts but neither permits a swap� To overcome this obstacle we

say that a sequence s � s�s� � � � sn is k�cyclic �or just �cyclic� when k is understood� if

s� � � � sk�� � sn�k�� � � � sn� and if the given sequence s is cyclic our algorithm is preceded by

a random rotation as follows� a number m is chosen randomly and uniformly from fk� k �

�� � � � � ng and s is replaced by the sequence

s� � smsm�� � � � sn��snsksk�� � � � sm��sm � � � sm�k��

where the subscripts are reduced modulo n if necessary� Note that s� is also cyclic and has

the same k�let count as s� it may be equal to s� even when m is not equal to ��

An intuitive way to think of the random rotation is as follows� cut o� the �head� �k����

let of s and join the ends of the remaining sequence to make a necklace� then snip the

necklace at a random point and add a copy of the �k � ���let at its tail to the sequence�s

head� to get the new sequence s�� This procedure will always change the �k � ���let count�

The Markov chain then proceeds from s� as above� Observe that swaps preserve both the

initial and �nal �k����let� hence in particular the sequences produced by the algorithm will

be either all cyclic or all acyclic depending on s�

It is useful to note that while the swap procedure for a given k preserves the j�let count

for all j � k� the rotation changes the �k � ���let count unless the head �k � ���let remains

the same �in which case we could have gotten to s� by swaps�� Let Yk�s� be the set of all
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sequences with the same k�let counts as s and the same starting �k � ���let� Then we have

the following facts�


 Yk�s� � Xk�s� with equality when s is acyclic �and in the degenerate case when all

characters in s are the same��


 Xk�s� � �Yk�s�� in the cyclic case� where the union is taken over all rotations of s� or

at least one rotation for each possible starting �k � ���let�


 Regardless of whether s is cyclic or not� Yk�s� is exactly the set of all sequences whose

j�let counts match s�s for all j � k� also the set of all sequences whose k�let counts and

�k � ���let counts match s�s�

Because of this last fact� in a given experiment it might well be deemed preferable to

obtain random sequences in Yk�s� rather than Xk�s�� This makes no di�erence in the acyclic

case� but when s happens to be cyclic it simpli�es matters by obviating the necessity for a

random rotation�

� Proving the Correctness of the Algorithm

While the algorithm is simple� to prove its correctness and e�ciency we must show that�

�� The algorithm produces all the valid k�lets permutations �i�e�� permutations that pre�

serve the same k�lets count� of the input sequence�

�� All possible outputs of the algorithm are obtained with �approximately� the same prob�

ability�

�� The required number of iterations of the algorithm is reasonable� e�g�� bounded by a

polynomial in the length n of the input sequence�

In the following sections we will prove the �rst two assertions and present empirical results

on behalf of the third�

��� Reaching all Valid Permutations

The fact that an individual swap step is k�let preserving does not of course imply that every

k�let preserving permutation is accessible using iterative application of random swaps� To
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prove this crucial aspect of the algorithm� it su�ces to show that there is a path of speci�c

swaps that can transform any given valid permutation to any other� We do this by de�ning

a metric � for Xk�s� with values in the set f�� �� � � � � n� �k � �g� then showing that for any

two distinct valid strings u and v there is a sequence u� reachable by a swap from u such

that ��u�� v� 
 ��u� v��

It is convenient to denote by Gk�s� the graph whose vertices consist of the valid sequences

which begin with the same �k � ���let as s� i�e� all sequences in Yk�s�� with two sequences

adjacent in Gk�s� just when they can be obtained from each other by a single swap�

Theorem � For any sequence s of length n the graph Gk�s� is connected and has diameter

at most n� �k � ��

Proof� The metric � is de�ned as follows� if j�u� v� is the least number for which uj �� vj�

then ��u� v� � n� k � �� j�u� v�� Of course� in case that u � v we put ��u� v� � ��

Note that since all vertices in Gk�s� begin with the same �k � ���let �namely s� � � � sk���

and end with the same �k����let �sn�k�� � � � sn�� the range of j�u� v� when u �� v is contained

in fk� k��� � � � � n�k��g and therefore the full range of � is contained in f�� �� � � � � n��k��g

as promised� Thus� it su�ces to prove that for any two distinct vertices u� v there is a swap

changing u to u� such that j�u�� v� 	 j�u� v��

In fact� we may assume j�u� v� � k because otherwise the �rst j�u� v�� k coordinates of

u and v can be ignored without loss� in e�ect replacing n by n� �j�u� v�� k�� Letting � be

the common initial �k� ���let for the vertices of Gk�s�� we have that u begins with �uk and

v with �vk where uk �� vk�

Let h be the largest index for which uhuh�� � � � uh�k�� � �vk� this number exists� or

course� since u and v have the same k�let count� Let A be the set of all �k � ���lets which

occur in u before h and B after� that is�

A �� fui���ui�k�� � i 
 hg and B �� fui���ui�k�� � i 	 hg�

We claim that A and B cannot be disjoint� To see this suppose otherwise and note that

in the sequence v the second �k � ���let� v� � � � vk� belongs to B� furthermore A includes at

least one �k � ���let which is not v� � � � vk��� and thus somewhere later in v there is a k�let

of the form �x � y� where � and � are �k � ���lets� and such that � is in B and � is not�

But there is no place in u for such a k�let� a contradiction�
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Hence we may choose a common �k � ���let � � A	B� occurring say at positions i� and

i� with � 
 i� 
 h 
 i�� Swapping in u in accordance with locations a � �� b � i�� c � h�

and d � i� replaces uk by vk� increasing j�u� v� as desired and proving the theorem� �

It follows from the theorem that we can get from an acyclic s to any t � Xk�s� in at most

n � �k � � steps� if s is cyclic we �rst rotate to obtain an s� with s�� � � � s
�
k�� � t� � � � tk���

then apply the theorem to the graph Gk�s��� We remark that the bound n� �k � � for the

diameter of Gk�s� is not tight� but a degree argument shows that it is not o� by more than

a factor of function of k times log n�

��� The Limiting Probability of a Permutations

When s is acyclic the swap algorithm is exactly a �simple random walk� �see� for example�

���� on the graph Gk�s�� which is regular of degree
�
n�k��

�

�
since we have in e�ect put in

loops wherever the conditions for the locations a� b� c and d are not met� The stationary

distribution for a simple random walk on a connected� regular graph that is not bipartite is

easily seen to be uniform� Note that Gk�s� can be bipartite only if all the possible swaps of s

are valid� which may be the case only if k � � or if the sequence is short� both cases are not

very interesting in our context� but are nevertheless considered below� Thus a su�ciently

long walk on Gk�s� will end at as nearly a uniformly random sequence as desired�

If s is cyclic we have the additional task of showing a member v of Xk�s� with di�erent

initial �k � ���lets � from s has the same probability as s in the limit� Let j be such that a

rotation by j transforms s to a sequence s� beginning with �� Then s� has the same probability

as v� but also s� has the same probability as s because rotation by j is a one�to�one bijection

on Xk�s� and all rotations are equally likely�

We elaborate below on the proof that the limiting probability distribution of the swap

algorithm is uniform� using the ergodic theorem �see� for example� ������ First� de�ne the

matrix T of conditional probabilities� such that for any t� t� � Xk�s�� T �t� t�� is the condi�

tional probability that the sequence t is obtained after m swap attempts� assuming that the

sequence t� was obtained after m � � swap attempts� The probability P �m��t� of obtaining

t after m swap attempts is therefore P �m��t� �
P

t� T �t� t��P �m����t��� or in more compact

notation P �m� � T P �m���� Iterating this equation m times� we can get the vector P �m� from

the initial probability distribution of sequences� P �m� � Tm P ����

T is a stochastic matrix� i�e�� it is nonnegative and
P

t T �t� t�� � � for any t�� Since in

our case T is symmetric� the uniform probability distribution Pu�t� � ��Nk�s� �where Nk�s�
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is the number of sequences in Xk�s�� is an eigenvector of T with eigenvalue �� Thus Pu is

a stationary distribution of the Markov process� It can be shown ����� using theorems of

Perron ��	� �
� and Frobenius ��� �� ���� that � is a simple eigenvalue of T �i�e� there is

a single eigenvector associated with this eigenvalue�� This eigenvalue is also the dominant

one �i�e� there are no eigenvalues of modulus greater than ��� Moreover� T has exactly one

eigenvalue of modulus � if and only if there is a power of T which is positive� Hence if this

condition holds� Pu is the only eigenvector of T with eigenvalue ��

The ergodic theorem states ���� that� under the same condition� our Markov process

approaches this uniquely de�ned distribution in the limit of an in�nite number of swaps�

Therefore� the limiting distribution of the swapping algorithm is uniform if and only if there

is an integer l such that T l is positive� Positivity of all the elements of T l means that

P �l��t� 	 � for any sequence t no matter what the initial distribution of sequences P ��� is�

We have already shown �see section ���� that any sequence in Xk�s� can be brought into any

other sequence with a �nite number of swaps� We denote the minimal number of swaps that

brings sequence t into sequence t� by l�t� t��� Let us de�ne l � maxt�t� l�t� t
��� To complete

our proof it is su�cient to show that the sequence t� remains unchanged with a positive

probability from swap attempt l�t� t�� till swap attempt l�

This is obviously correct when k 	 � and the sequence is long enough� since in such cases

there is always a positive probability of attempting to make illegal swaps �and hence rejecting

the attempt�� A problem arises� however� when k � �� All swaps are legal in this case� and

therefore none are rejected� As a result there is no integer l for which T l is positive and

the swapping algorithm is not guaranteed to approach the uniform distribution� Consider�

for example� the sequences GT and TG� If we start with GT we obtain the sequence TG

with probability � after any odd number of swap attempts� After an even number of swap

attempts we get GT with probability �� The limiting distribution does not exist here� instead

we approach a limit two�cycle� In all cases where such a problem arises it is easily solved by

modifying the algorithm so that a swap attempt is rejected with a positive probability even

if it is legal�

In conclusion� the limiting distribution of sequences obtained using the swapping algo�

rithm is uniform� except when k � � or when the sequence is very short� In these cases a

minor modi�cation of the algorithm restores ergodicity�
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��� The Convergence Rate

We have shown that the swap algorithmworks� in principle� to any desired degree of accuracy�

but to show that it is e�cient we would need to prove that the number of swaps required

to reach near�uniformity is reasonable� Our empirical tests �illustrated below� and other

indications� such as the small diameter of Gk�s�� lead us to guess that we have �polynomial

mixing time�� as follows�

Conjecture � For any �xed k and alphabet size� there is a polynomial p � p�n� such that

for any sequence s of length n and any number m� a walk of mp�n� steps on Xk�s� will

produce a �nal distribution of variation distance less than ��m from uniform�

��� Some Empirical Results

We now demonstrate a certain mixing property in several executions of the swap algorithm�

The experimental results are consistent with conjecture �� and provide positive indication

as to the convergence property of the swap algorithm� More experiments are necessary�

however� in order to constitute a rigorous empirical study on behalf of conjecture �� these

are left for future research�

For actual biological sequences the number of valid k�lets is huge �see the end of section �

for the actual count�� Hence� it is not realistic to demonstrate the uniformity of the resulting

distribution just by sampling� Instead we measured a time dependent correlation function of

the generated sequences� To de�ne this correlation function we �rst quantify the di�erence

between two sequences through the following metric�

Ok�si� sj� �
�

�k��

�k��X

l��

jfl�si�� fl�sj�j�

where � is the size of the alpha�bet� and fl�si� is the frequency of the �k����let subsequent l

in sequence si� This metric is a measure of the di�erence between the two sequences since it

compares their k���let counts �recall that the number of k�lets is preserved�� For example� in

DNA sequences with doublet preserving �k � ��� we average the di�erence in the frequencies

of all the 	� possible triplets between the two sequences�

We compute hO�t�i by averaging Ok�st� s�� over di�erent runs �i�e�� hO�t�i represents the

ensemble average of Ok�st� s�� �� using the same starting sequence s�� We used to following

procedure� �� DNA sequences were randomly created ranging in size from ��� to ����
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Figure �� hO	t
i is plotted versus t for �� random sequences of di�erent lengths from ��� to 	
���

Each sequence has undergone ����� swap steps preserving the doublet distribution� For each sequence�

��� simulations were run� and the correlation function hO	t
i re�ects the average di�erence in the triplet

distribution between the sequence after t swap steps and the original sequence �see text�� After time

shorter than the length of each sequence �the shortest sequence ����bp� appears on the top and the

longest �	
��bp� on the bottom� a plateau in hO	t
i is reached� The results were �tted� using least

square method� into functions of the form A � e�t�� � C�
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�steps of ����� For each sequence we ran the swapping algorithm with doublet preserving

�k � �� for ��� independent runs� each consisting of ����� swap steps� and took hO�t�i as

the average over the computed Ok�st� s��� Figure � shows hO�t�i vs� t for these sequences�

The curves show exponential behavior� and the plateau in each curve starts after a number

of steps which is smaller than the length of the sequence� These curves were �tted� using

least square method� into functions of the form A � e�t�� � C with a good �t �see Figure ���

where A and C are dependent of the length of the sequence� but are constants with respect

to t� Thus� � re�ects the rate in which the curves approach their limiting values C�

We would like to show that the limiting values of these curves are indeed what is expected

from a comparison between random valid k�let permutations of a given sequence� That is�

to show that hO�t�i approaches the value Ok�s� s�� averaged over all s� in Xk�s�� Again� as

the size of Xk�s� is too big� we used a sample to estimate the expected hO�t�i� The sampling

was made from very long swapping simulations �� million steps�� randomly selecting ���

sequences� and calculating Ok�si� sj� for each pair of these sequences� In the case of the

sequence of length ���bp hO�t�i was calculated to be ������� with standard deviation of

������
� This value exactly matches the limiting value C � ������� that was �tted to

the corresponding curve �the second curve from the top in Figure ��� implying that the

discrepancy is smaller than the numerical errors� which are of low order magnitude� So�

the correlation of the k � ��let count of the produced sequences with the original sequence

reached a �xed level which is similar to the one expected between any two random valid

k�let permutations of the sequence�

Figure � shows the near�linear correlation between � and the length of the sequence N �

with a best �t of � � ��� � N � Similar results were obtained for di�erent sequences with

various sizes and using di�erent preserving levels �e�g� k � � and k � ���

We conclude that the correlation of the initial random sequence s� with the sequence st

decays exponentially in t� and after time � that scales linearly with N� only a small �xed

degree of correlation is left� Note that the empirical results do not preclude the possible

existence of �bad� initial sequences s� for which the convergence rate is slower� even for the

speci�c correlation properties considered here� The issue of identifying the convergence rate

in the worst case remains an open question�
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Figure �� � is plotted versus N � The rate of increase of the correlation function hO	t
i for each sequence

�Figure �� is re�ected by � � �Recall that � is taken from the functions of the form A � e�t�� �C which

were �tted to the data�� � scales linearly with the length of each sequence N which is consistent with

conjecture ��
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� Exact Sampling

The swap algorithm� although it appears to work well� produces valid sequences which are

only approximately uniform and does not �as yet� have a proof of e�ciency� We now present

a provably e�cient variation of the Altschul�Erickson algorithm ��� which yields an exactly

uniformly random valid sequence� This technique� which we dub the �Euler algorithm��

operates on a directed graph Dk�s� whose size is constant with respect to n instead of

exponential�

The vertices of Dk�s� are the distinct �k � ���lets which appear in s� thus jV �Dk�s��j �

�k��� Clearly� also jV �Dk�s��j � n� k� �� With each of the n� k�� k�lets si � � � si � k � �

we associate an arc ei from the vertex si � � � si � k � � to the vertex si�� � � � si � k � �� �A

k�let of the form XXX���X causes a loop�� Thus� jE�Dk�s��j � n� k � ��

Letting � � s� � � � sk�� and � � sn�k�� � � � sn� we see that the arc�sequence e�� � � � � en�k��

constitutes an Euler trail from � to �� that is� a directed path in Dk�s� which passes over

each arc exactly once� Conversely any directed trail in Dk�s� produces a sequence and if the

trail is Eulerian� the sequence is a valid k�permutation of s�

If there are two or more arcs in Dk�s� from� say� vertex � to vertex �� the choice of which

arc the Euler trail takes in �rst passing from � to � makes no di�erence in the sequence

generated� Hence the correspondence between Euler trails and valid sequences is not one�

to�one� however�

Lemma � Let f�� � � � � fm be the frequencies of those k�lets which are present in s� Then

every valid sequence in Xk�s� corresponds to exactly
Qm

i�� fi� Euler trails in Dk�s��

Proof� This is merely a matter of observing that the frequencies correspond to multiplicities

of arcs in Dk�s�� and fi parallel arcs can be taken in any of their fi� possible orders� �

There is a slight subtlety in the statement of Lemma � which arises when s is cyclic� In

the acyclic case� the outdegree of � exceeds its indegree by one� and vice�versa for �� so that

every Euler trail must begin at � and end at �� But in the cyclic case � and � are the same

vertex� with equal indegree and outdegree like every other vertex of Dk�s�� Here every Euler

trail is closed� but we still regard an Euler trail as having a start and �identical� �nish rather

than as an endless circuit� otherwise we would not know how to begin the corresponding

sequence�

On account of Lemma � we have reduced the problem of generating a uniform valid

sequence to the problem of generating a uniform Euler trail in Dk�s�� To do this we make

��



another reduction� Fix an Euler trail E� and for any vertex � �� � let e��� be the arc from

� taken in the last exit of E from ��

The set T � T �E� of such arcs form an inbound spanning tree� or arborescence� rooted

at �� To see this it su�ces to note that T has out�degree � at every vertex other than � and

has no cycles� for� the trail E would have no way to last exit a cycle�

Conversely� let T be any arborescence routed at � and for each � �� � let us order all the

arcs leaving � other than the one belonging to T � we also order all the arcs� if any� which

exit �� Now we begin at � and walk according to the following rule� at each vertex we exit

by the �rst exit�arc not previously chosen� using the T �arc only when all the alternatives

are eliminated� When the tour ends �perforce at �� we will have covered every arc� else we

could not have got from the vertices whose T �arcs have been used to the rest� From all this

we have�

Lemma � Every arborescence routed at � corresponds to exactly

d�����
Y
� ���

�d����� ���

Euler trails ending at � �and thus beginning at ��� where d���� is the outdegree of �� i�e��

the number of exiting arcs�

Since it is very easy to generate random permutations of exit arcs� we are reduced now

to the problem of generating uniform random arborescences� This is done in ��� by choosing

random exit arcs from each � �� � and hoping the result is a tree� else repeating the procedure�

Unfortunately there may be many places inDk�s� where a cycle is likely� so that the expected

number of tries before achieving a tree could be as high as order nc�k�� �

We can dilate this bottleneck with the help of the Matrix�Tree Theorem� �see e�g� �	� Thm

���� but a very fast and elegant alternative is now available thanks to recent work on random

walks� Aldous ��� and Broder ��� proved independently that a uniform random spanning tree

for an undirected graph can be obtained by taking a simple random walk on the graph and

marking the �rst edge used to reach each vertex� It turns out that their theorem can be

extended to Eulerian digraphs�

A digraph is said to be Eulerian if it is connected and d���� � d���� for every vertex

�� Our Dk�s� is connected since it has an Euler trail� and is thus Eulerian if s is cyclic�

Otherwise we add a �phony� arc from � to � to produce the Eulerian alteration D�
k�s��

��



The method� for a general Eulerian digraph D� is as follows� We take a backward random

walk on D� beginning at the root vertex ���� At each vertex � we randomly and uniformly

choose among all arcs leading to � �loops can be ignored� and proceed next to the vertex

�say� ���� at the tail of the chosen arc� If we have reached ��� for the �rst time� the arc just

traversed �which points from ��� to �� is added to T � The procedure terminates when D is

covered� that is� every vertex has been reached� clearly we then have an arborescence rooted

at ��

Theorem � The arborescence T constructed above is drawn precisely from the uniform dis�

tribution among all arborescences rooted at ��

Proof� The proof follows the same lines as Aldous�� using the Eulerian property instead of

reversibility at the critical point�

Let fXjg be a doubly in�nite �thus stationary� backward random walk on D and let Tj

be the arborescence rooted at Xj de�ned as above starting at time j�

Because indegree � outdegree for each vertex of D� the probability for each j that Xj�� �

� given Xj � �� is ��d��� ���

Let Q be the reverse�time transition matrix for the stationary tree�valued Markov chain

Tj� If r�T � is the �out�degree of the root of T � then the probability QT�T � of proceeding to

T � from T is ��r�T � for exactly r�T � arborescences T �� one rooted at each successor of the

root of T �

On the other hand if T � Tj is rooted at � � Xj then for each successor �� of � there is

a unique tree T � � Tj�� in which � � succeeds �� i�e� there are exactly r�T � trees T � for which

QT�T � � ��r�T ��� and QT�T � � � for all other trees T ��

Thus we have for each �xed T � that
P

T � r�T �QT�T � � r�T ���

Since it is easily checked that Q is irreducible� we deduce that Q has stationary distribu�

tion proportional to r�T �� But the arborescence Tj generated from time j has no dependence

on the past� It follows that if we begin a backward random walk on D at �� �rst�entries

provide a uniform random arborescence rooted at �� �

Let us now review our Euler algorithm for generating a uniform random valid permutation

of s�

�� Construct the digraph Dk�s� from the k�let counts� �For small k and large n� this is

best done by recording the counts as arc multiplicities in a �k�� � �k�� matrix indexed

by all �k � ���lets��

��



�� If s is cyclic� perform a random rotation to get a sequence s� � Xk�s� as in the swap

algorithm� then put � � � � s�� � � � s
�
k��� If s is acyclic� add an arc from � � sn�k�� � � � sn

to � � s� � � � sk�� to make the digraph Eulerian�

�� Take a simple backward random walk from � until all other vertices have been hit�

Whenever a vertex � �� � is reached for the �rst time� put the arc ��� � �� just traversed

into T �

�� For each vertex � of Dk�s�� randomly order all the arcs exiting � except the one in T �

in the case of �� randomly order all the exiting arcs �but not the one added from � to

� in the acyclic case��

�� Read o� the desired sequence by starting at � and� at each vertex �� following the �rst

arc from � not yet used� using the T �arc last�

The number of vertices of Dk�s� is of course constant with respect to n� when k is held

�xed� Hence the computing time required for steps ���� ��� and ��� above is basically linear

in n �with� in theory� a penalty of a factor of log n for having to deal with numbers of size

about n�� So the only remaining problem is to get a bound on the �cover time� of Dk�s��

that is� the expected time to hit all other vertices from ��

Theorem � Let D be an Eulerian digraph consisting of n arcs on q vertices� Then the

expected cover time of D is less than q�n�

Proof� We show �rst that if U is any proper subset of the vertices of D� then there is a

vertex � outside U from which the expected hitting time to U is at most n� �� To see this�

note that the graph D�U obtained by contracting U to a single vertex and eliminating all

loops at U is still Eulerian� and thus �as in the proof of Theorem � above� the stationary

distribution for a random walk on D�U is proportional to the degrees of its vertices� Since

the sum of the �out�degrees is at most n and the degree of U is at least �� the stationary

probability of U is at least ��n� Thus the expected time to revisit U starting from U is at

most n� but the �rst step exits U � thus there must be a vertex � �� U in D�U from which

the expected hitting time to U is no more than n� ��

Next we argue that for any two vertices � and �� the expected hitting time from � to �

is bounded by �q� ���n� ��� For� we may set U� �� f�g and de�ne Ui�� �� Ui �f�ig� where

�i is a vertex not in Ui from which expected access to Ui takes at most n � � steps� Then

��



Uq contains all the vertices� � in particular� thus expected hitting time from � to � can not

be more than �q � ���n � ���

Finally we conclude that expected cover time cannot exceed �q � ����n � ��� even if we

insist that a subsequence of the walk contain all the vertices in a particular order� �

We thus have that the whole Euler algorithm is essentially linear in n when k �and the

alphabet size� are held constant� When k � � the digraph Dk�n� has at most �	 vertices� so

there is nothing to prevent the Euler algorithm from being run with extremely long sequences�

Obviously the Euler algorithm can be used to generate a uniform random Eulerian trail

in any Eulerian digraph� interestingly no one seems to have found a way to do the same for

undirected graphs� where the neat relationship between spanning trees and Euler trails breaks

down� There is a way to generate uniform random Eulerian orientations of an undirected

graph �MW�� but this cannot be used to generate trails because di�erent Eulerian orientations

may have widely di�erent numbers of trails�

Finally� we note that a variation of the Euler algorithm can be used to get an exact count

of jYk�s�j �or of the number of Euler trails in an Eulerian digraph�� To do this we use the

Matrix Tree Theorem to count the number t of arborescences rooted at �� then in the acyclic

case we have

jXk�s�j � td�����
Y

� ���

�d����� ����
mY
i��

fi�

where the fi�s are the k�let frequencies as in Lemma ��

References

��� D�J� Aldous� The random walk construction for spanning trees and uniform labelled

trees� SIAM J� Discrete Math� �����
�	�� �����

��� S�F� Altschul and B�W� Erickson� Signi�cance of nucleotide sequence alignments� A

method for random sequence permutation that preserves dinucleatide and codon usage�

Mol� Biol� Evol�� ����	
���� �����

��� D� Bayer and P� Diaconis� Trailing the dovetail shu�e to its lair� Ann� Appl� Probab��

�����
���� �����

��� A� Broder� Generating random spanning trees� In Proc� ��th IEEE Symp� on Founda�

tions of Computer Science� pages ���
��
� �����

��



��� P�G� Doyle and J�L� Snell� Random Walks and Electric Networks� Mathematical Assoc�

of America� Washington� DC� �����

�	� S� Even� Graph Algorithms� Computer Science Press� Potomac� MD� ��
��

�
� W�M� Fitch� Random sequences� J� Mol� Biol�� �	���
�
�
	� �����

��� G� Frobenius� �Uber matrizen aus positiven elementen� Sitzber� Akad� Wiss� Berlin�

Phys� math� Kl�� pages �
�
�
	� �����

��� G� Frobenius� �Uber matrizen aus positiven elementen� Sitzber� Akad� Wiss� Berlin�

Phys� math� Kl�� pages ���
���� �����

���� G� Frobenius� �Uber matrizen aus nicht negativen elementen� Sitzber� Akad� Wiss� Berlin�

Phys� math� Kl�� pages ��	
�

� �����

���� F� R� Gantmacher� Application of the theory of matrices� Interscience Publishers� Inc��

New York� NY� �����

���� S� Karlin and S�F� Altschul� Methods for assessing the statistical signi�cance of molec�

ular sequence features by using general scoring schemes� Proc Natl Acad Sci U S A�

�
���	�
��	�� �����

���� S� Karlin and V� Brendel� Chance and statistical signi�cance in protein and dna sequence

analysis� Science� ��
���
��� �����

���� S� Karlin� I� Ladunga� and B�E� Blaisdell� Hetrogeneity of genomes� Measures and

calues� Proc Natl Acad Sci U S A� �������

������ �����

���� A�C�B�L� Bulletin �American Contract Bridge League�� May �����

��	� O� Perron� Grundlagen f�ur eine theorie des jacobischen kettenbruchalgorithmus� Math�

Ann�� 	���

	� ���
�

��
� O� Perron� Zur theorie der matrices� Math� Ann�� 	�����
�	�� ���
�

���� R� Unger� G� Avrahami� D� Harel� and J� L� Sussman� Simple general shu�ing scheme

which preserves fragment frequencies up to any required length� In Proc� Macro�

molecules� Genes� and Computers conf�� ���	�

��


