
Accounting for Memory Bank Contention and

Delay in High�Bandwidth Multiprocessors �

Guy E� Blelloch �

Yossi Matias y
Phillip B� Gibbons y

Marco Zagha �

� School of Computer Science

Carnegie Mellon University

Pittsburgh� PA ����������

fblelloch�marcozg�cs	cmu	edu

y AT
T Bell Laboratories

��� Mountain Avenue

Murray Hill� NJ �
�
�

fgibbons�matiasg�research	att	com

Abstract

For years� the computation rate of processors has been much faster than the

access rate of memory banks� and this divergence in speeds has been constantly

increasing in recent years� As a result� several shared�memory multiprocessors con�

sist of more memory banks than processors� The object of this paper is to provide

a simple model �with only a few parameters� for the design and analysis of irregu�

lar parallel algorithms that will give a reasonable characterization of performance

on such machines� For this purpose we extend Valiant�s bulk�synchronous parallel

�bsp� model with two parameters� a parameter for memory bank delay� the min�

imum time for servicing requests at a bank� and a parameter for memory bank

expansion� the ratio of the number of banks to the number of processors� We call

this model the �d�x��bsp� We show experimentally that the �d�x��bsp captures the

impact of bank contention and delay on the cray C�� and J�� for irregular access

patterns� without modeling machine�speci�c details of these machines� The model

has clari�ed the performance characteristics of several unstructured algorithms on

the cray C�� and J��� and allowed us to explore tradeo�s and optimizations for

these algorithms� In addition to modeling individual algorithms directly� we also

consider the use of the �d�x��bsp as a bridging model for emulating a very high�

level abstract model� the Parallel Random Access Machine �pram�� We provide

matching upper and lower bounds for emulating the erew and qrqw prams on

the �d�x��bsp�

�A preliminary version of this paper appeared in Proc� �th ACM Symp� on Parallel Algorithms and
Architectures� July �����



Index terms� Memory bank contention� memory delays� parallel machine models� per�

formance analysis� parallel algorithms� shared memory� multiprocessors	

Acknowledgements� The experiments were run on the cray C�� at the Pittsburgh

Supercomputing Center �PSC� and on a cray J�� at Cray Research	 We are grateful

to Charles Grassl at Cray and Raghurama Reddy at the PSC for their help running the

experiments and getting us exclusive access to the machines	 Thanks to Max Dechantsre�

iter at Tera and Patrick McGehearty at Convex for useful information on the Tera and

Convex	 Thanks to J	 for the papers	 The comments of the anonymous referees were

helpful in improving the presentation of this paper	

This research was supported in part by the Defense Advanced Research Projects

Agency �DARPA� under grant number F��������������� and in part by an NSF Young

Investigator Award	



� Introduction

In recent years several models have been designed with the goal of abstracting away from

details of parallel machines while still giving guidance in developing e�cient algorithms	

Examples of such models include the Bulk Synchronous Parallel �bsp� ���� and logp ����

models� which both aim to serve as high�level performance models of message�passing

machines	 The important feature of these two models is that they abstract away from

many details of the network� including topology� while still capturing important aspects

such as bandwidth and latency	 The purpose of the models is to help in optimizing

algorithms� to aid in understanding how algorithm scale� and to give guidance in choosing

among algorithms� all without needing to consider details of the machine	 They are often

used in conjunction with experimentation to account for aspects that are not considered

by the models� such as local computation times	 As such� they have been quite successful�

leading to practical designs of various algorithms ��� �� ��� ��� �
� ��� ��� ��� �
�	

In this paper we introduce and evaluate a model with similar goals� but for shared�

memory machines instead of message�passing machines	 Due to the wide variety of

shared�memory machines� we limit ourselves both in terms of the class of machines and

the class of algorithms we consider	 In particular we are concerned with the class of

machines that ��� have a high�bandwidth network between the processors and memory

banks� ��� allow for �ne�grained memory accesses� ��� have memory banks that are slower

than the processors and compensate by having more memory banks than processors�

and ��� can tolerate latency to the memory from processors by allowing for multiple

outstanding memory requests	 Such machines include both vector multiprocessors� such

as the cray C�� and J��� and multithreaded machines� such as the tera mta ���	 There

is also some evidence that Symmetric multiprocessors �smps� are converging on these

features� with increased bandwidth and better latency tolerating techniques	

This work was motivated by the study of algorithms with irregular memory access

patterns� such as sorting ����� sparse�matrix vector product �
� and graph algorithms ����

���� on the cray C��	 In our analysis we found previous models either quite detailed�

or inadequate for describing the key performance characteristics of the algorithms	 For

example� we found that a straightforward shared�memory variant of the bsp does not

properly account for contention at the banks since there is no way to account for relative

speed of memory banks and processors	 On the other hand� previous models of multibank

memory systems ��� �� ��� ��� ��� �� ��� ��� ��� �
� ��� ��� �
� ��� are highly detailed� and

the studies have only considered either regular or random access patterns	 In this paper

we are interested in modeling algorithms with irregular� but not necessarily random�

access patterns without requiring a complicated model	 We are particularly concerned

with capturing the e�ect of memory contention in these algorithms	 We assume that the

�



Procs Banks Expansion
Machine �p� �B� �x�
NEC SX�� � ���� ���
Tera MTA ��� ��� � �� ���
Cray C�� �� ���� ��
Cray J�� �� ��� � � ��
Convex C� � ��� ��
Meiko CS�� node � �� �
SGI Power Challenge �� �� � �	�

Table �� Expansion in the number of memory banks for various machines� In the current
Tera design� memory banks are organized into memory modules containing �� memory banks�
The Cray J�� memory banks are organized in pairs that share address and data paths� The
SGI Power Challenge memory is arranged as up to � modules with � banks each� The Meiko
CS�� node contains two Fujitsu ��VP vector processors�

parts of applications with regular memory access patterns can be analyzed with more

traditional approaches ���� �
�	

The model we consider is a shared�memory variant of the bsp	 It is based on assuming

a set of processors are connected through a pipelined interconnection network to a set of

memory banks	 In addition to the three parameters of the bsp�the number of processors

p� the throughput �bandwidth� parameter g� and the latency parameter L�our model has

two additional parameters�the bank delay d� and the expansion factor x	 The bank delay

is the throughput at a memory bank� and the expansion factor is the ratio of the number

of memory banks to the number of processors	 Table � lists several machines along

with their expansion factor	 Our experiments show that these additional parameters

are necessary for taking account of high contention on the cray C��� where the best

sustainable gap� g� between memory requests issued by each individual processor is less

than the best sustainable delay� d� between accesses to each individual memory bank	 As

with the bsp we assume a set of bulk synchronous steps	 During each step the processors

can execute either local operations or accesses to the global memory� but the memory

is not guaranteed to be coherent until the beginning of the next step	 We denote this

model as the �d�x��bsp �the �deluxe� bsp�	 Based on the �d�x��bsp model we show a

number of results� both experimental and theoretical	

We �rst show experimentally that the �d�x��bsp can predict the performance of the

cray vector multiprocessors with fairly good accuracy in many situations with irregular

access patterns� even though the model ignores details of the machines	� We show this

�We assume� however� that the code is mostly or fully vectorized so that memory tra�c is high� We

�



0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

T
im

e 
pe

r 
el

em
en

t 
(c

lo
ck

 p
er

io
ds

)

0.01 0.10 1.00
Fraction of requests at one location (k / pS)

(d,x)-BSP

BSP,LOGP

Figure �� Predicted and measured performance on a set of memory access patterns extracted
from a trace of Greiner	s algorithm for 
nding the connected components of a graph �����
Measured times on an � processor cray J�� for several patterns are shown with squares�
Predicted times are given for a direct shared�memory variant of the bsp and for the �d�x��
bsp as a function of contention�

both for the cray C��� which uses static ram �sram� and has a bank delay of � clock

cycles� and for the more modestly priced cray J��� which uses dynamic ram �dram�

and has a bank delay of �� clock cycles	 The �d�x��bsp has made it easier to analyze

several algorithms and has allowed us to predict various e�ects that cannot be predicted

without taking into account the bank delay	 For example� Figure � and later Figure ��

compare predicted and measured times for an implementation of a graph�connectivity

algorithm ���� and a sparse�matrix vector multiplication �
� algorithm	 These times are

compared with the predictions based on a direct shared�memory variant of the bsp that

does not account for the bank delay	 Although the �d�x��bsp does not model the time

exactly� due mostly to ignoring e�ects of the network� it more accurately captures the

e�ect of high contention	 Furthermore� the discrepancy between the bsp and �d�x��

bsp becomes larger as either the bank delay or the number of processors increases �the

experiment shown is for only � processors�	

Second� we study to what extent the e�ects of multiple memory locations residing in a

single bank can be ignored� when using random mappings of memory locations to memory

banks	 Many researchers have studied the e�ect of randomly mapping memory to banks

�e�g� ���� ��� ��� ��� �� ��� ��� ��� ����	 If there is su�cient parallel �slackness� �extra

parallelism� so that each bank is receiving multiple requests� it has been shown ���� ��� ���

��� that with high probability the memory references will be reasonably balanced across

the banks	 These results� however� assume that there is no contention at individual

do not claim that the model applies to programs that have large scalar components�

�



0.0

2.0

4.0

6.0

8.0

10.0

12.0

W
or

st
 c

as
e 

m
ap

 c
on

te
nt

io
n 

ra
ti

o 
(c

)

1 2 4 8 16 32 64
Expansion (x)

predicted
measuredJ90

C90

Figure �� The ratio of the time that includes the e
ect of multiple memory locations being
mapped to the same bank to the time that excludes the e
ect� when using random mapping�
This is given as a function of expansion and is for a worst�case reference pattern� For both
the cray C�� and J�� the actual expansion is �� and the other data points are taken by using
a subset of the banks� This shows the advantage of having an expansion greater than the
d�g �shown with the dotted vertical lines� that is needed to match the servicing bandwidth
at the banks with the issuing bandwidth at the processors�

memory locations	� If we allow for contention at memory locations then ignoring the

mapping of memory locations to banks can signi�cantly underpredict the running time

even for unbounded slackness	 This is because even when the number of memory requests

is large� the number of accessed locations could be small and not well balanced across the

memory banks	 We study the impact of the expansion factor on the balance of requests�

when only a small number of memory locations are accessed� and show that increasing

the expansion factor reduces the e�ect of ignoring the mapping of memory locations to

banks	 For the crayC��� which has a high expansion factor� we show both experimentally

and analytically that ignoring the mapping will underpredict running time by a factor

of about �	� for a worst case reference pattern and typically by much less	 The e�ect of

expansion for the cray C�� and cray J�� is shown in Figure �	

Third� we explore scenarios under which two very high�level models for algorithm

design� the erew pram �e�g� ����� and the stronger qrqw pram ����� can be e�ectively

mapped onto high�bandwidth machines �small g� when properly accounting for memory

bank delay	 For the case x � d�g� we observe that �d�x� is an inevitable work overhead

due to the insu�cient bandwidth at the memory banks� and provide an emulation of the

qrqw pram on the �d�x��bsp in which the overhead matches this factor	 For the case

�In the case of Ranade�s work 	
�� it is assumed that references to a single location are combined in
the network�

�



x � d�g� we present a work�preserving emulation of the qrqw pram on the �d�x��bsp�

assuming g is a small constant� where the e�ect of d on the slowdown of the emulation

is partially compensated for by the expansion factor x	 These two emulations assume a

random mapping of memory locations to memory banks� but often it su�ces to randomly

order the data at the beginning of an algorithm	 These pram emulations on the �d�x��

bsp generalize the pram emulations on the bsp given in ���� ���	

Finally� we experiment with four algorithms with irregular memory access patterns� a

qrqw binary search algorithm� a qrqw random permutation algorithm� a sparse matrix

multiply� and a crcw connected components algorithm	 The �d�x��bsp model is used

to predict the running time of each algorithm	

� Accounting for memory bank contention and delay

Our model is an extension of Valiant�s bsp model ����	 The bsp model was introduced

to be a �bridging� model between software and hardware in parallel machines� software

would be designed for this model and parallel machines would implement it	 Such a

standardized interface would allow software to be more easily ported to various hardware

platforms	 The bsp model consists of p processor�memory components communicating

by sending point�to�point messages	 The interconnection network supporting this com�

munication is characterized only by a throughput parameter g and a latency parameter

L	 The particular topology of the network is ignored and the cost to communicate among

processors is assumed to be uniform� independent of the identity of the processors	 A

bsp computation consists of a sequence of �supersteps� separated by bulk synchroniza�

tions �typically� a barrier synchronization among all the processors�	 In each superstep

the processors can perform local computations and send and receive a set of messages	

Messages are sent in a pipelined fashion �i	e	� each processor may issue messages and

continue with its computation prior to the receipt of those messages�	 Messages sent in

one superstep will arrive prior to the start of the next superstep	 The time charged for

a superstep is calculated as follows	 Let Wi be the amount of local work performed by

processor i in a given superstep	 Let Si �Ri� be the number of messages sent �received�

by processor i	 Let W � maxpi��Wi� S � maxpi�� Si� and R � maxpi��Ri	 Then the cost�

T � of a superstep is de�ned to be

T � max�W� g � S� g �R� L� �

Intuitively the communication throughput parameter� g� is the best sustainable gap

between message sends issued by each individual processor� therefore ��g represents the

available bandwidth per processor	 Intuitively the communication latency parameter�

�



L� called the �periodicity factor� in ����� is the worst case time to deliver a message

between two processors in an otherwise unloaded network plus the time to perform a

barrier synchronization	

The �d�x��bsp di�ers from the bsp described above as follows	 The �d�x��bsp is an

explicit shared�memory model	 Memory components �banks� are considered as separate

from the processors� and their number is accounted for in the model	 Instead of sending

and receiving messages� processors make global memory requests which are serviced di�

rectly by the memory banks	 To account for di�erences in speed of memory requests by

processors and responses by memory banks the �d�x��bsp also assigns a distinct through�

put parameter for the memory banks	

The �d�x��bspmodel	 The �d�x��bsp is depicted in Figure �	 It consists of p processors

communicating by reading and writing memory words from a separate set of B memory

banks� these memory banks are used as a shared memory by the processors	 In practice

these memory banks might be physically located next to the processors� but it is assumed

that the processors are not involved in handling incoming memory requests	 Processors

also have local memory for use with local operations� this accounts for registers� cache

memory� and main memory in each processor�s local environment	

A �d�x��bsp computation consists of a sequence of supersteps separated by barrier

synchronizations	 In each superstep the processors can perform local computations and

make a set of pipelined� global memory requests	 Requests made in one superstep will

complete prior to the start of the next superstep	 We include the same parameters as

included in the bsp model but add two more� the memory delay and the bank expansion

factor	 The parameters of the �d�x��bsp are summarized as follows�

L

d

g

x B = p 

p P
M

P
M

P
M

P
M

Figure �� The �d�x��bsp model�

�



p number of processors

g communication throughput parameter �gap�

L the periodicity parameter �latency � synchronization�

d memory bank throughput parameter �delay�

x memory bank expansion factor �assumed to be � ��

where the number of memory banks� denoted as B� is x �p	 Intuitively� the gap parameter

g is the best sustainable gap between memory requests �either reads or writes� issued

by each individual processor	 Intuitively� the periodicity parameter� L� is the worst case

time to complete a single memory read in an otherwise unloaded memory system plus

the time to perform a barrier synchronization	

The time charged for a superstep is calculated as follows	 Similar to the bsp� let W

be the maximum amount of local work performed by any one processor in the superstep�

and let S be the maximum number of global memory requests made �the maximum

memory request load� by any one processor	 Let Rj be the number of requests handled

by memory bank j� and let R � maxx�pj��Rj 	 Then the cost� T � of a �d�x��bsp superstep

is de�ned to be

T � max�W� g � S� d �R� L� �

We refer to a machine as �d�x��balanced if x � d�g	 This is the point where the total

bandwidth available at the processors and network for random access patterns matches

the total bandwidth available at the memories	 Although we have chosen to extend the

bspmodel� it should be straightforward to extend other related models� e�g� the logp ����

or dmm ���� models� with the d and x parameters	

The contention at a memory bank can be due to not only the contention at a particular

location in the bank� but also due to accesses to multiple locations within the bank	 In

the basic model we make no assumptions about how the memory locations are mapped

onto the memory banks	 This allows us to consider both scenarios where the mapping

is under user control and where the mapping is random	 To separate the two types

of contentions we make the following de�nitions� each of which is de�ned relative to a

single superstep	 Let the memory request contention� ki� to a location i be the number

of requests to i� and let k � maxi ki	 Let M j be the set of locations mapped to memory

bank j	 The size of this set is the module map contention� �j � jM jj� of bank j� and let

� � maxj �j 	 Then

Rj �
X
i�M j

ki

is the module load contention of bank j �see Figure ��	






B

k1=1 k3=2

= 3

k2=2

R=k1+k2+k3=5

p

memory
locations

Figure �� Memory request contention �k�� k�� k��� module map contention ���� and module
load contention �R��

Applicability of the model	 The model assumes several properties of a machine	 We

now discuss the scope and limitations of the model	

First� the model assumes that each processor has enough outstanding memory re�

quests to compensate for both network latency and bank delays	 Allowing for multiple

outstanding requests is relatively easy for memory writes� but more di�cult for memory

reads	 Techniques for allowing multiple outstanding reads� often called latency hiding

techniques� include vectorization� multithreading� prefetching� non�blocking caches� and

other methods for decoupling the request for the memory from its use	 Vectorization has

been used for over �� years to hide memory latency and has the advantage that it is sim�

ple to implement	 On the other hand it restricts the kinds of program that can be used	

Multithreading was suggested and implemented for hiding latency on the hep ���� and

was later used in the design of the tera and Sparcle ���	 Multithreading is more compli�

cated to implement than vectorization but permits the use of a wider class of programs	

Prefetching and non�blocking caches are becoming common on commodity processors�

although the number of outstanding requests currently allowed �typically between � and

� words or cache lines� probably cannot compensate for the latency to a large shared

memory	 If processors evolve so that they permit additional outstanding read requests�

then it is quite possible that the model will apply to commodity processors attached to

fast multi�bank memory systems	

Second� although the model accounts for contention at the processors and memory

banks� it does not account for contention within the network �similar assumptions are

also made by the bsp and logp models�	 The de�nition of the g parameter accounts for

network bandwidth under normal conditions� but in many networks it is possible to set

up particularly bad permutations	� In fact� in the next two sections we show that for the

�As discussed in the next section� we derive the g parameter assuming a random permutation of ad�

�



cray C�� and J��� the model breaks down under certain contrived conditions� however�

under a random mapping of memory locations to banks� these bad conditions are very

unlikely to occur	

Third� the model assumes that the memory banks are slower than the rate at which

processors can issue memory requests into the network �i�e�� d � g�	 With today�s

memory technology and processor speeds� the d parameter is typically on the order of ��

clock cycles	 For the g parameter to be less than that� the bandwidth into the network

per processor needs to be quite high	

Fourth� we assume that in each superstep of the �d�x��bsp� each processor injects

its memory requests into the network in a random order �although in practice we �nd

this is not necessary�	 This assumption is made since even if the requests are reasonably

distributed among the banks within the whole superstep� they might be badly distributed

over time during the superstep	 If we assume in�nite bu�ering in the network and at

the banks and assume that requests can overtake each other� then this may not be

a problem� but most networks have only limited bu�ering	 The limited bu�ering can

cause congestion that will back up future requests even though they are going to a non�

congested destination	 The problem can be compounded by processor�memory feedback

e�ects ����	 Our experiments on the cray J�� have shown slowdowns of over a factor of

�� using bad injection orders as compared to random injection	 We note� however� that

in practice it is often not necessary to spend extra time randomly ordering requests since

it is known that the requests are well distributed	

Fifth� the �d�x��bsp does not explicitly model the processors� local environments�

including cache behavior and local arithmetic operations	 As with the bsp and logp

models� the �d�x��bsp focuses on the interprocessor communication aspects of parallel

machines� as these are presumed to be the primary bottlenecks of parallel programs	

Since the �d�x��bsp can only model the local work within a rough estimate� experiments

are needed to get an accurate measure of this component	 Typically a small experiment

will su�ce to get an accurate prediction of work over a range of problem sizes and number

of processors ���� ��	

Another consideration regarding the local environment is in accounting for the use

of caches	 In cache�based Symmetric multiprocessors �smps�� understanding the cache

behavior is often necessary in order to obtain reasonably accurate performance prediction	

In the �d�x��bsp it is up to the user to determine� for each shared memory reference�

whether the value is present in its local cache or must be retrieved from the memory

�or some other processor�s cache�	 A local cache hit is accounted as a local operation� a

cache miss is accounted as a global operation	 Di�erent machines have di�erent cache

dresses� For certain regular permutations� the time through the network could be better than predicted�

�



policies� and the accuracy of the �d�x��bsp prediction depends in part on the extent to

which operations can be properly accounted as local or global	 Furthermore� it might

be necessary to account for memory tra�c caused by the cache coherence protocol itself	

Considerations of cache behavior or other uses for the local memory provided by the

�d�x��bsp do not arise in our experiments on the cray C�� and J��� since these machines

have adequate memory bandwidth� limited local memory� and no caches for vector data	

Finally� the model does not take account of the possibility of caching at the memory

banks� as available in the design of the tera ���� and suggested by Hsu and Smith ����	

Extending the model to account for caching at the bank is an interesting area of future

work	

� Case study� modeling the Cray

This section presents a qualitative and quantitative comparison of the cray C�� and

cray J�� to the �d�x��bsp	 The experiments in this section provide evidence that

the abstract model can produce realistic predictions of running times despite ignoring

many architectural details� such as the use of vector processors� the topology of the

interconnection network� the �ow control for the network� and the priority scheme on

the banks	 The experiments also show some cases where the model breaks down	 The

features of the cray vector machines that make them suitable for the model are the

following�

�	 The use of vector gather and scatter instructions to allow for multiple outstanding

memory requests to an arbitrary set of addresses	

�	 A high bandwidth interconnection network between the processors and the memory

banks that supports �ne�grained memory references	

�	 Memory banks that are signi�cantly slower than the rate at which processors can

issue memory requests	 The ratio d�g is � on the C�� and 
	
 on the J��	

However� to use the �d�x��bsp model for the cray vector machines we have to sep�

arate out the costs of regular versus irregular accesses	 In particular on the cray since

the bandwidth for unit stride accesses is very high �the bandwidth for two loads and a

store is the same as for an add� and the load across the banks is perfectly distributed for

such accesses� we count such unit stride accesses as part of the work W 	

Here we discuss the features of the cray C�� and J�� in more detail	 The instruction

set supports vector load and store instructions� which load or store up to ��� words per

��



4x4

P0 P1 P2 P3 P4 P5 P6 P7

4x44x4 4x4 4x4 4x4 4x44x4

subsections

banks

8x8 8x8 8x88x8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

1
x
8

sections

Figure �� Cray Y�MP interconnection network �adapted from Smith and Taylor ������

instruction ��� on the cray J���	 These instructions can either be strided for regular

access patterns� or can be based on a vector of addresses for indirect addressing	 In the

indirect loads and stores� often called gather and scatter� each address speci�es the loca�

tion of a single ���bit word allowing for �ne�grained memory accesses	 The processors

are connected to the memory banks with a multistage network �see Figure ��	 In the

largest memory con�guration of the crayC��� banks are divided into � �sections� at the

�rst level� which are each further subdivided into � �subsections�� each of which contains

�� memory banks	 Each processor has independent paths through the section and sub�

section� but processors can interfere with each other due to bank con�icts	 Sequential

memory locations are interleaved across memory banks� making regular� strided memory

access fast �except on strides which are large powers of two�	

The latency through the network is about � clock cycles each way	 When added to

the access time at the memory bank� the total latency for a load is between �� and ��

clock cycles� depending on the cray model and assuming no contention at the memory

bank	 This latency is usually hidden when using vector loads and stores since each load or

store requests multiple locations which are pipelined through the network	 Furthermore�

vector memory references can overlap so that one batch of ��� loads or stores can start

before the previous has �nished	

The cray has multiple memory ports per processor �� on the J�� and � ports on

the C���	 These ports have di�erent functions	 Some are for reading and some are for

writing� and only a subset of the ports can be used for gathers and scatters �� on the J��

and � on the C���	 This means that the bandwidth for irregular access patterns is not as

high as for regular access patterns	

Table � shows the �d�x��bsp parameters for the cray C�� and cray J��	 The

gap g is measured experimentally and the other values are available from the machine

��



C�� C�� J��
Processors �� �� ��
Banks ���� ��� ����
Memory sram sram dram

Clock period �	� nsec �	� nsec ��	� nsec
g �	� �	� �	�
d � � ��

Table �� The parameters for the cray C�� and cray J��� The gap and delay are measured
in clock periods� The C��� is the con
guration of the C�� available to us at the Pittsburgh
Supercomputing Center� which has only half the memory banks� memory ports and network
of a full con
guration�

speci�cations	 We are interested in the gap for irregular access patterns� in particular

ones that require gathers and scatters	 As mentioned earlier the regular accesses can be

counted in the work term	� We base the gap on the time for a scatter to random locations

using all the processors� where the destination addresses are loaded from memory	 The

time for a gather is almost the same �within ��!�	 Our measured gap is somewhat lower

than the theoretical peak performance for gather or scatter operations due to the fact

that the memory system is fairly saturated	 This saturation e�ect has also been noted

by Bucher and Simmons ����	 Our experiments show that the gap measured for random

access patterns reasonably model other irregular patterns	

We have performed several experiments of memory access patterns to quantitatively

compare the predictions given by the �d�x��bsp with running times on the crayC�� and

cray J��	 The experiments were selected to test various aspects and extremes of the

model	 Figure � summarizes the experiments	 For most experiments the measured times

closely match the predicted times	 For one of the experiments� �c� the numbers di�er

by up to a factor of �	� due to the e�ects of the network� which are discussed	 In all

our synthetic experiments we assume that the work term W can be ignored since on the

cray it is typically subsumed by the g �S term	 In our algorithm experiments described

in Section �� the work term is measured experimentally	

For all experiments we randomize the injection of memory requests within the proces�

sors	 All the experiments are based on using the scatter operation� although experiments

with the gather operation have given almost identical results	 The patterns we are inter�

ested in cannot be created with strided access�timings for various strided access patterns

can be found elsewhere ���� ���	 All experiments were run on a dedicated � processor

�In our experiments we only use unit stride regular loads and stores�

��



Exp� �

Exp� �

Exp� �

Exp� �a

Exp� �b

Exp� �c

Figure �� Summary of the experiments� Each bar represents the load on one memory bank�
A shaded bar �leftmost bar in Exp� �� represents multiple di
erent locations being written to
the bank while a clear bar �all others� represents a single location being written�

system	 All graphs are for the cray J�� except where noted�cray C�� results are

qualitatively similar	 For all experiments S � ��K and the periodicity parameter L is

negligible	

Experiment �� The �rst of the experiments is used to verify the �d�x��bsp time equa�

tion T � max�g � S� d � R� over a range of R	 The experiment consisted of writing one

location with load R� the remaining work is spread across B � � memory locations� one

memory location per remaining bank	 R is varied and S is kept constant	 For this

experiment� the model is accurate over a range of contentions� as shown in Figure 
	

However� at the knee of the curve� the measurements for the cray J�� are slightly higher

than predictions due to small additive e�ects of the memory and processor terms	

Experiment �� The second experiment is used to verify that the time is determined by

the maximum contention at a bank� independent of whether all the contention is to one

location within the bank or is to many locations	 The experiment consisted of sending

a single request to R di�erent locations within a single bank� the remaining work is

spread across B�� memory locations� one memory location per remaining bank	 Again�

R is varied and S is kept constant	 This di�ers from the previous experiment only in

��



0.1

0.2

0.5

1.0

2.0

4.0

8.0

16.0

T
im

e 
pe

r 
el

em
en

t 
(c

lo
ck

s 
pe

ri
od

s)

512 2048 8192 32768 131072 524288
R (maximum contention)

(d,x)-BSP

0.1

0.2

0.5

1.0

2.0

4.0

8.0

16.0

T
im

e 
pe

r 
el

em
en

t 
(c

lo
ck

s 
pe

ri
od

s)

512 2048 8192 32768 131072 524288
R (maximum contention)

(d,x)-BSP

�a� �b�

Figure 
� Experiment �� Measured and predicted times on �a� the cray J�� and �b� the
cray C�� over a range of contentions �log�log scale�� The measured time �shown with a
solid curve� is very close to the maximum of the time spent at the processors and memory�
The knee in the curve is where the dominant term switches�

0.1

0.2

0.5

1.0

2.0

4.0

8.0

16.0

T
im

e 
pe

r 
el

em
en

t 
(c

lo
ck

 p
er

io
ds

)

2048 8192 32768 131072 524288
R (maximum contention)

(d,x)-BSP
one location
several locations
entropy distribution

Figure �� Comparison on the cray J�� of experiment �� experiment �� and experiment
�� one measuring the time where each bank contains at most one active memory location�
one where the accesses to each bank are spread over many memory locations� and one using
successive andings of random keys� As expected� the curves are nearly identical�

��



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
T

im
e 

pe
r 

el
em

en
t 

(c
lo

ck
 p

er
io

ds
)

1 2 3 4 5 6 7 8
Number of hot banks (b)

Exp. 4c: same section

Exp. 4b: random sections

Exp. 4a: spread over sections

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e 
pe

r 
el

em
en

t 
(c

lo
ck

 p
er

io
ds

)

1 2 3 4 5 6 7 8
Number of hot banks (b)

Exp. 4c: same section

Exp. 4b: random sections

Exp. 4a: spread over sections

�a� �b�

Figure �� Time on �a� the cray J�� and �b� the crayC�� as a function of the number of
hot banks when R is constant �R � S � p��� The three curves are for di
erent distributions
of hot banks across the network and show the e
ect of network contention�

that the load on the �hot� bank is due to multiple memory locations rather than multiple

elements to the same location	 The results shown in Figure � verify that the performance

is not a�ected by whether the R term is dominated by location contention or module

map contention	

Experiment �� To verify that the running time can be accurately predicted for less

regular distributions of memory accesses� we constructed an experiment using the entropy

distributions suggested by Thearling and Smith ����	 The distributions are generated by

starting with a set of random keys and then bitwise anding together each key with

another key selected at random	 Iterating this process generates a family of distribu�

tions each with a higher contention than the previous and eventually all keys become �	

The experiment was run over the whole family	 Figure � shows the time as a function

of this maximum contention	 The predictions are slightly less accurate than those in

Experiments � and �� but are still within ��! of the measurements	

Experiment �� To verify that the running time is determined by the maximum con�

tention R� independent of the average contention and distribution of contention� we send

R requests to one location within each of b banks and send an equal portion of the re�

maining work to B�b locations all in di�erent banks	 R and S are kept constant� while b

is varied	 We tried three versions of this experiments di�ering in how the high�contention

banks are distributed across the network� �a� evenly distributed across the network� �b�

randomly distributed across the banks� and �c� all within the same section of the network	

��



Figure � shows the results of the experiment using the worst�case value for R	 Versions

�a� and �b� are quite close to the predicted performance	 Version �c�� however� is up to

a factor of �	� o� from the prediction because of congestion at one of the subsections of

the network	 A more re�ned model would be needed to take account of this ���� �
�� but

the experiment shows that even in what we expect to be the worst case the predictions

are not catastrophic	 Note that when memory is mapped at random into banks� an issue

that is discussed in the next section� the situation described in version �c� is unlikely	

� Using random memory mappings

Randomly mapping memory locations to memory banks is a standard technique to reduce

module map contention �contention due to multiple memory locations being mapped to

the same bank� in simulations of shared memory on machines with a �xed set of memory

modules �see� e�g�� ���� ��� ��� ��� �� ��� ��� ��� ��� ����	 The primary advantage of

random mapping is that it ensures that concurrently requested memory locations will

likely be distributed evenly across the banks	 In this section we study to what extent we

can ignore the module map contention ��� when randomly mapping memory to banks	

In particular we consider the ratio of the time including module map contention to the

time excluding it	 We call this ratio the map contention ratio �c�� and in the �d�x��bsp

it can be expressed as

c �
max�W� g � S� d �R� L�
max�W� g � S� d � k� L� ���

We are interested in how bad this ratio is for various machine parameters �p� g� d� x�

and memory access patterns	 We show that for the cray� which has a reasonably high

expansion factor� c is small	 The results in this section are generalized in the context of

the qrqw pram simulation in the next section	

To derive an equation that bounds the map contention ratio we consider the memory

access pattern in which all memory locations that are being accessed have the same

contention	 This pattern seems to maximize the map contention ratio for a given k

�maximum contention at any memory location�	 We call this a uniform distribution of

requests and assuming each processor is making S requests� then a total of m � Sp�k

locations are being accessed	 We are interested in the map contention ratio as a function

of m�the worst ratio over m will give us the worst overall ratio	 If we assume the cost

is dominated by the send and contention terms we can simplify equation � to

c�m� �
max�mz� ��

max�mz� ��

��



where z � g�dp� z is a constant of the machine	 The module map contention � can

be expressed in terms of the function Urn�m�n�� which is the expected maximum sized

bucket when throwing m balls into n buckets at random	 More speci�cally� let m balls

be thrown independently at random into n urns� and let y be the random variable rep�

resenting the maximum number of balls in any one urn� then� Urn�m�n� � E �y�� the

expected value of y	 We can estimate�

c�m� � max�mz�Urn�m�B��

max�mz� ��
���

Figure �� shows both the predicted and measured values of c as a function of m

for the cray C�� and the cray J��	 The measured ratio is based on the average over

�� trials	 The results show that for all m� c�m� is at most ��� on the C�� and ��� on

the J��� and for most patterns it is close to �	 This argues that for many practical

purposes we can ignore the module map contention when using random mappings on the

cray�inaccuracies in predictions from other sources are likely to dominate	 Intuitively�

the reason for the peak in the graph is that as we increase the number of �hot� locations

�m� past the peak� the load at each location decreases and eventually the �rst term in

the equation max�g � S� d � k� dominates	 As we decrease m below the peak� it becomes

less likely that multiple locations will be mapped to the same bank	 In particular when

m �
p
B it becomes less likely that more than one location will be mapped to a single

bank	 The slight di�erence between the predicted and measured times is due to e�ects

in the network as discussed in the previous section	 In particular� at these small m it is

reasonably likely that the locations are not only imbalanced across the banks� but are

also imbalanced across the sections in the network� causing backup at the source due to

section con�icts	

What is more interesting is to see how the worst case c is a�ected by the machine

parameters	 Equation � is maximized when mz � � �i�e�� m � dp�g�� giving

cmax � Urn
�
�

z
�B
�
� Urn

�
dp

g
� px

�
�

Figure � shows cmax as a function of x for d and g set to the parameters of the

crayC�� and crayJ�� and p set to ��	 As can be seen� it is helpful to have an expansion

factor beyond the �d�x��balanced ratio �x � d�g� in order to minimize the impact on the

running time of module map contention	

Pseudo�random memory mapping	 As with previous work� we assumed above that

the memory locations are hashed to memory banks using a truly random mapping	 In

practice� however� the mapping cannot be truly random� since it should be e�ciently

computable for every memory address	

�




0.0

0.5

1.0

1.5

2.0

2.5
m

ap
 c

on
te

nt
io

n 
ra

ti
o 

(c
)

1 2 4 8 16 32 64 128 256 5121024
Number of locations (m)

0.0

0.5

1.0

1.5

2.0

2.5

m
ap

 c
on

te
nt

io
n 

ra
ti

o 
(c

)

1 2 4 8 16 32 64 128 256 5121024
Number of locations (m)

�a� �b�

Figure ��� The measured and predicted map contention ratio c for �a� J�� and �b� C��� The
measured ratio is taken as the ratio of the measured running time on the cray to the equation
max�g �S� d �k�� which ignores module map contention �solid curves�� The predicted is given
by Equation �� This is for a uniform distribution to m locations using random mappings from
locations to banks� S is kept constant� p � ��

The tera design is planned to provide hardware support for hash functions to be

used for pseudo�random mapping of memory locations to memory banks� the Fujitsu uVP

on the Meiko node already has optional hardware hashing	 The cray does not supply

hardware to perform the pseudo�random mapping of the memory locations to banks	 For

some algorithms� however� it is possible to get the same e�ect by randomly permuting

the input and some of the intermediate results	 In others� the nature of the algorithm

results in random mapping without any additional steps �see examples in Section ��	 For

other algorithms� computing a pseudo�random hash in software is not prohibitive	

The actual evaluation costs for a variety of hash functions on the cray C�� are given

in Table �	 When hash functions are used for pseudo�random mapping of memory lo�

cations to memory banks� it is important that they exhibit favorable properties for any

given input �i�e� that they are �universal��	 The function h�a� which is called the multi�

plicative hashing scheme in ���� p	 ����� was recently shown by Dietzfelbinger et al� ����

to be ��universal in the sense of Carter and Wegman ����� for any two distinct numbers

x� y � �����u���� Prob �h�a�x� � h�a�y�� � ���m��� i�e�� the collision probability is approx�

imately the same as for a random mapping	 The actual choice of a hash function may

be in�uenced by several factors� including its degree of universality� its evaluation cost�

and its congestion behavior� both theoretically �see ����� and experimentally �see �����	

��



Hash Function T�n

Linear

h�a�b�x� 	 ��ax
 b� mod �u� div �u�m ��


h�a�x� 	 �ax mod �u� div �u�m ��


Quadratic

h�a�b�c�x� 	 ��ax� 
 bx
 c� mod �u� div �u�m ���

h�a�b�x� 	 ��ax� 
 bx� mod �u� div �u�m ���

Cubic

h�a�b�c�d�x�	 ��ax� 
 bx� 
 cx
 d� mod �u� div �u�m ���

h�a�b�c�x� 	 ��ax� 
 bx� 
 cx� mod �u� div �u�m ���

Table �� The evaluation cost of software implementations of various hash functions in terms
of clock cycles per element �for each cray C�� processor�� The functions map items x from
the domain �����u� into the range �����m�� and a� b� c� and d are odd numbers selected at
random from �����u � ���

� High�level programming model

In this section and the next� we explore scenarios under which a high�level model for

algorithm design� the qrqw pram� can be e�ectively mapped onto a �d�x��bsp and

hence onto high�bandwidth machines	

The qrqw pram ���� is a variant of the well�studied pram model �see e�g� ���� ����

that allows for concurrent reading and writing to shared memory locations� but as�

sumes that multiple reads�writes to a location queue up and are serviced one at a time

�named the �queue�read queue�write �qrqw�� contention rule in �����	 Speci�cally� the

qrqw pram consists of p processors communicating by reading and writing words from

a shared memory	 Processors also have local memory for use with local operations	 A

qrqw pram computation consists of a series of supersteps separated by barrier synchro�

nizations	 In each superstep the processors can perform local computations and make a

set of pipelined� global memory requests	 Requests made in one superstep will complete

prior to the start of the next superstep	 The time charged for a superstep is calculated as

follows	 Let W be the maximum amount of local work performed by any one processor

in the superstep� let S be the maximum number of global memory requests made by any

one processor� and let k be the maximum number of requests to any one location	 Then

the time for the superstep is max�W�S� k�	

The qrqw pram is an even simpler model than the �d�x��bsp	 Unlike the bsp

or �d�x��bsp models� the qrqw pram memory is not explicitly partitioned into mem�

ory banks�each processor has equal access to each memory location	 Furthermore the

��



qrqw pram has no g or L parameters	 The simulation of the qrqw pram on the �d�x��

bsp hides the latency L by using a factor of at least L more �virtual processors� on the

qrqw pram than are available on the �d�x��bsp	 The qrqw pram is more powerful

than the well�studied erew pram �which requires k � � at each step� but less powerful

than the well�studied crcw pram �which permits arbitrary k without charge�	 It was

argued in ���� that the qrqw contention rule more accurately re�ects the contention

capabilities of most machines than the erew or crcw contention rules	

The interesting question is under what conditions can one use the simplerqrqw pram

instead of the �d�x��bsp for modeling algorithms	 In this section we consider theoretical

results on when the �d�x��bsp can e�ectively emulate the qrqw	 Then in Section ��

we discuss experimental results regarding the implementation of two qrqw pram al�

gorithms from ���� on the cray	 These experimental results complement the general

emulation results� by demonstrating two of the scenarios under which the three metrics

�i�e� W�S� k� of the qrqw pram model are su�cient to accurately predict performance

on the cray	

Overview of the emulation results	 Recall that a machine is �d�x��balanced if

x � d�g� i�e� the total bandwidth available at the processors and network matches the

total bandwidth available at the memory banks	 Let dg be the bank delay normalized

to the gap parameter� i�e� dg � d�g	 We present in this section two emulations of the

qrqw pram on the �d�x��bsp� one for the case where x � dg and one for the case where

x � dg	 In the former case� we observe that any step�by�step emulation must incur an

overhead of g in the work performed� and we provide an emulation of the qrqw pram

on the �d�x��bsp that matches this work overhead	 Thus when g is a small constant� as

when modeling high�bandwidth machines� the emulation is work�optimal	 The slowdown

in the emulation is a nonlinear function of the parameters of the �d�x��bsp� the slowdown

is minimized when x � dg ��dg � in which case dg is only an additive term in the slowdown	

As for the case when x � dg� we observe that any emulation must also incur overhead

due to the insu�cient bandwidth at the memory banks� and we provide an emulation

whose work bounds match the lower bound that we prove	

All of our emulation results �upper and lower bounds� apply as well to the erew pram	

These results extend the previous results in ���� and ���� that showed that when g is a

small constant� there is a work�optimal emulation of the erew pram and qrqw pram�

respectively� on the original bsp model in which the slowdown in the emulation is

"�lg p� L�	

��



��� Work�optimal qrqw pram emulation on �d�x��bsp

The following theorem presents an emulation of the qrqw pram on a �d�x��bsp for the

case when x � d�g� where g is the gap parameter for the �d�x��bsp	 When g is a small

constant� the emulation is work�preserving �i�e� the work performed on the �d�x��bsp is

within constant factors of the work performed on the qrqw pram�	

Theorem 	�� �work�optimal QRQW simulation� Consider a p�processor �d�x��

bsp with gap parameter g and periodicity factor L� such that dg � x � p�c� for some

constant #c � �� where dg � d�g� Let

� �

����
���

dg if dg � x � �dg
dg� lg�x�dg� if �dg � x � dg�dg

� if x � dg�dg

Then for all p� � �� lg p�dg�L�p� each step of a p��processor qrqw pram algorithm

running in time t can be emulated on the p�processor �d�x��bsp in O�g � �p��p� � t� time

w�h�p�

Proof� The shared memory of the qrqw pram is randomly hashed onto the B � x � p
memory banks of the �d�x��bsp	 In the emulation algorithm� each �d�x��bsp processor

executes the operations of p��p qrqw pram processors	

We �rst assume that �dg � x � dg�dg � and therefore � � dg� lg�x�dg�	

Consider the ith step of the qrqw pram algorithm� with time cost ti	 Let c � � be

some arbitrary constant� and let � � maxfc� #c� �� eg	 We will show that this step can

be emulated on the �d�x��bsp in time at most �g�p��p�ti with probability �� p�c	

By the de�nition of the qrqw pram cost metric� we have that both the maximum

memory request contention k and the maximum memory request load S are at most

ti	 For the sake of simplicity in the analysis� we add dummy memory requests to each

processor as needed so that it sends exactly ti memory requests this step	 The dummy

requests for a processor are to dummy memory locations� with processor � sending all

its dummy requests to dummy location �	 In this way� the maximum memory request

contention k remains at most ti� and the total number of requests is Z � p�ti	

Let i�� i�� � � � � im be the di�erent memory locations accessed in this step �including

dummy locations�� and let kj be the number of accesses to location ij� � � j � m	 Note

that
Pm

j�� kj � Z	 Consider a memory bank 		 For j � �� � � � �m� let xj be an indicator

binary random variable which is � if memory location ij is mapped onto the memory bank

	� and is � otherwise	 Thus� Prob �xj � �� � ��B	 Let aj � kj�ti� aj is the normalized

��



contention to location j	 Since k � ti� we have that aj � ��� ��	 Let $� �
Pm

j�� ajxj�

$�� the normalized module load contention to bank 	� is the weighted sum of Bernoulli

trials	 The expected value of $� is

E �$�� �
mX
j��

aj
B

�
�

xp

mX
j��

kj
ti

�
�

xp
� Z
ti

�
p� ti
x p ti

�
p�

xp
�

To show that it is highly unlikely that the module load contention of bank 	 greatly

exceeds this expected value� we will use the following theorem by Raghavan and Spencer�

which provides a tail inequality for the weighted sum of Bernoulli trials�

Theorem 	�� �
���� Let a�� � � � � am be reals in ��� ��� Let x�� � � � � xm be independent

Bernoulli trials with E �xj� � 
j� Let $� �
Pm

j�� ajxj� If E �$�� � �� then for any � � �

Prob �$� � �� � ��E �$��� �

�
e�

�� � �������

�E�	��
� ���

We apply Theorem �	� with 
j � ��B� and set

� � �
x

dg
� � �

implying

�� � ��E �$�� � �
x

dg
� p

�

xp
�

�p�

dgp
� ���

Therefore�

Prob

�
$� �

�p�

dgp

�
���
���
�

�
e

�� � ��

������E�	��
���
�

�
�x

edg

�� �p�

dgp

� � e�
�
x

dg

���p�

dgp x � dg�
�
x

dg

���
dg

�� lgp�dg�L�

x � dg�
�
x

dg

���
dg

� lg p

�

�
x

dg

� ��
lg�x�dg�

lg p

� p��

� p��c��c��� �
p��c���

p�c

x � p�c

� p��c���

x
�

��



Note that R�� the module load contention to bank 	� is

R� �
mX
j��

xjkj � $� � ti �

Therefore�

Prob

�
R� �

�p� ti
dg p

�
�

p��c���

x
�

and hence

Prob

�
R �

�p� ti
dg p

�
� B �Prob

�
R� �

� p� ti
dg p

�
� B � p

��c���

x
� p�c �

The time of the �d�x��bsp step to emulate a qrqw step is T � max�W� g �S� d �R� L�	
Thus for step i� Ti � max��p��p�ti� g�p��p�ti� dR� L�	 Since p��p � L� it follows from the

above that

Prob �Ti � �g �p��p� ti� � �� p�c �

We next consider the case where dg � x � �dg� and therefore � � dg	 In this case we

take � � maxfc� #c� �� �eg� and the proof proceeds as above except that we make use

of the fact that

�
�x

edg

�� �p�

dgp

� �
� �p�

dgp � ��
�
�
�� lg p�dg�L� � ��� lgp � p�� �

It remains to consider the case where x � dg�
dg 	 Consider a partition of the memory

banks into x� � dg�dg sets� each denoted as a memory super�bank 	 The indicator random

variables xj and the module load contention are de�ned with respect to the memory

super�banks analogously to their original de�nitions� denote the latter as R�	 The above

analysis for R clearly holds for R�	 Since R � R�� the theorem follows	

The following observation shows that the overhead of g in the above emulation is

unavoidable� even for the erew pram	

Observation � Let p� � p� Any simulation of one step of a p��processor erew or qrqw

pram with time cost t on a p�processor �d�x��bsp requires maxfg�p��p�t� Lg time in the

worst case�

��



Proof� Consider a step in which each of the p� qrqw processors performs t memory

requests to distinct locations	 The time on the �d�x��bsp is at least maxfg�p��p�t� Lg	
The erew proof is the same� taking t � �	

��� qrqw pram emulation with small x

We next consider the case where the bandwidth at the memory banks is less than the

bandwidth at the processors and network� i�e� x � dg	 We present an emulation whose

work bound is within a constant factor of the best possible	

Theorem 	�� �QRQW simulation with small x� Consider a p�processor �d�x��bsp

with gap parameter g and periodicity factor L� such that � � x � minfdg� p�cg� for some

constant #c � �� where dg � d�g� Then for all p� � �x lg p � dg � L�p� each step of a p��

processor qrqw pram algorithm running in time t can be emulated on the p�processor

�d�x��bsp in O�max fg� d�xg � �p��p� � t� time w�h�p�

Proof� The theorem can be proved following the lines of the theorem given in ���� for

emulating the qrqw pram on the �standard� bsp� by generalizing the argument in ����

to handle the d and x parameters� and making the g parameter explicit in the analysis	

Instead� to unify the proofs of Theorem �	� and Theorem �	�� we prove the latter theorem

using an analysis similar to the proof of the former theorem� as follows	

As in the proof of Theorem �	�� the shared memory of the qrqw pram is randomly

hashed onto the B � x � p memory banks of the �d�x��bsp	 In the emulation algorithm�

each �d�x��bsp processor executes the operations of p��p qrqw pram processors	

Consider the ith step of the qrqw pram algorithm� with time cost ti	 Let c � � be

some arbitrary constant� and let � � maxfc� #c� �� �eg	 We will show that this step

can be emulated on the �d�x��bsp in time at most maxfg�p��p�ti� ��d�x��p��p�tig with

probability � � p�c	

The proof proceeds exactly as in the proof of Theorem �	�� we add dummy requests

as needed� de�ne indicator binary random variables xj for each memory bank j� de�ne

$�� and show that E �$�� � p���xp�	 We apply the Raghavan and Spencer theorem� but

with � � �� �	 This yields

Prob

�
$� �

�p�

xp

�
�

�
�

e

���p�

xp � � �e� ��
�
x �x lg p�dg�L�

� p�� � p��c��c���
x � p�c

�
p��c���

x
�

��



It follows as in the previous proof that

Prob

�
R �

�p� ti
x p

�
� p�c �

The time� Ti� of the �d�x��bsp step to emulateqrqw step i is max��p��p�ti� g�p��p�ti� dR� L�	

Since p��p � L� we have that

Prob

�
Ti � max

�
g � p

�

p
� ti � � � d

x

p�

p
� ti
	�

� �� p�c �

The theorem follows	

Note that Observation � shows that the overhead of g in the above emulation is

unavoidable	 The following observation shows that the overhead of d�x in the above

emulation is also unavoidable	

Observation � Let p� � p� Any simulation of one step of a p��processor erew or qrqw

pram with time cost t on a p�processor �d�x��bsp requires d � dtp��xpe time in the worst

case�

Proof� Consider a step in which each of the p� qrqw processors perform t memory

requests� such that all p�t requests are to distinct locations in the shared memory	 Since

there are m � p�t locations distributed among xp memory banks� then regardless of the

mapping of locations to banks� there exists at least one bank j such that �j � dm�xpe	
Therefore� the time on the �d�x��bsp is at least �jd � d � dtp��xpe	 The erew proof is

the same� taking t � �	

� Algorithm experiments

In this section� we present results of experiments on four algorithms� qrqw algorithms

for binary search and random permutation� and crcw algorithms for sparse matrix

multiplication and �nding connected components of a graph	 The �d�x��bsp model can

be used for accurately predicting the running time of each algorithm� and in the case of

the binary search� for determining a good setting for the �fatness� parameter	

The four problems considered � binary searching� graph connectivity� sparse ma�

trix vector multiply� and generating a random permutation � are intended to serve as

representative of the most basic unstructured problems	 Such core problems arise in a

��



number of unstructured applications� and are often the bottlenecks in such applications	

For example� the sparse matrix vector product is the dominant cost in the Conjugate

Gradient �CG� methods on unstructured meshes	 In fact our code on the Cray vector

multiprocessors is the fastest reported code for the NAS CG benchmark ����	 As another

example� the graph connectivity problem is the dominant cost in simulating Ising Spin

models using the Swendsen Wang algorithm ����	

The four problems arise from diverse domains� with the intention that the memory

access patterns of the algorithms studied will re�ect patterns exhibited by a large class

of unstructured algorithms	 Further experimentation is required to validate the extent

to which these four problems are indeed representative of a larger class of unstructured

algorithms	

Binary search� The �rst qrqw algorithm is a simple parallel binary search to look

up n keys in a balanced binary search tree of size m ����	 Such binary searching is an

important substep in several algorithms for sorting and merging �e�g� �����	 The algorithm

replicates nodes of the search tree to avoid contention� and at each level selects one of the

replicated nodes at random	 This is an interesting problem from the point of view of the

qrqw pram and the �d�x��bsp since the amount of replication needed will depend on

the contribution of the contention term to the running time� and in general will present

a tradeo�	 On the crcw pram there is no need for replication	

To design an optimized algorithm that uses binary searching we would like to use the

�d�x��bsp model to predict the running time of the binary search for di�erent amounts

of replication	 In the experiment� the root is replicated f times �the �fatness��� and each

level below the root is replicated half as many times as the level above	 Thus there are

max��i� f� nodes at level i of the fattened tree	 We consider for simplicity the case where

the number of nodes at each level is less than the number of banks	 Assuming an equal

number of lookups to each key� the expected time per lookup is�

dlgme��X
i��

max

�
cg � S
n

�
d �E �R�

n

�
�

dlgme��X
i��

max

�
cg

p
�

d

max��i� f�

�
�

where c is approximately �	� on the cray J�� and �	� on the C�� 	 Figure �� shows that

the predictions are very accurate	

Random permutation� The second qrqw algorithm generates random permutations

using a �dart throwing� algorithm	 The algorithm �rst generates n random indices in

the range ����cn� for some constant c �� in our experiments�	 Each element i then writes

its self�index into a destination array at the location speci�ed by the ith random�index	

Elements for which there are no collisions are considered done and drop out	 Elements

��



0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0
T

im
e 

pe
r 

el
em

en
t 

(c
lo

ck
 p

er
io

ds
)

1 2 4 8 16 32 64 128 256
Fatness (root replication factor)

(d,x)-BSP J90

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

T
im

e 
pe

r 
el

em
en

t 
(c

lo
ck

 p
er

io
ds

)

1 2 4 8 16 32 64 128 256
Fatness (root replication factor)

(d,x)-BSP

C90

�a� �b�

Figure ��� Predicted and measured times for a binary search fat�tree algorithms� as a
function of the �fatness� of the tree for a table of size ���� The solid curve shows measured
times on � processors of the �a� cray J�� and �b� cray C�� and the dotted curve shows
predicted times�

for which there are collisions repeat another round	 The rounds continue until there are

no elements left	 At this point the values written into the destination are packed into

contiguous locations� producing the index for the random permutation	 The algorithm

runs in O�n�p � lg n� time on a qrqw pram ����	

In our experiments we compare the running time of the algorithm to an algorithm

designed for the erew model �a sorting�based algorithm� which is the most practical

erew algorithm in the literature� to the best of our knowledge�	 The erew algorithm

is based on a radix sort that ranks keys with ��� � lg n bits and checks for duplicate keys	

This experiment illustrates that by allowing a controlled amount of contention to memory

locations� we can get a faster algorithm than in a scenario where we avoid such contention

altogether	 �A similar experiment� on the MasPar MP��� was reported in ����� for the

erew algorithm� the system sort was used	� Results of the experiments are shown in

Figure ��	 �The timings do not include the time for random number generation� however�

the two algorithms require approximately the same number of random bits	�

Using a performance model for radix�sort adapted from ����� the predicted running

time for the erew algorithm is given by�

tEREW � ������ �



��� � lg n

lg�n�p�� �

�
� ���� � 
 � g� � n�p ���

where the ��� comes from the number of bits� � comes from latency hiding �lg����� � ���

��� comes from arithmetic on buckets� and 
 comes from indirect operations for histogram

and permutation	 The predicted running time for the qrqw dart throwing algorithm

�




0.0

10.0

20.0

30.0

40.0

50.0

60.0

T
im

e 
pe

r 
el

em
en

t 
(c

lo
ck

 p
er

io
ds

)

16384 65536 262144 1048576
Permutation size

Optimized EREW Sort

QRQW Dart Throwing

Figure ��� Predicted and measured times on an � processor cray J�� comparing two algo�
rithms for generating a random permutation� a qrqw dart throwing algorithm and an erew
sorting�based algorithm� The qrqw algorithm performs better over a wider range of problem
sizes� and even a simple C implementation outperforms the erew version� which is based on
a highly�optimized radix sort ����� �The radix sort is currently the fastest implementation of
the NAS sorting benchmark ������ The predicted times are given by equations � and ��

can be derived from experimentally measured arithmetic computation costs� the number

of global references �using gather or scatter� and the expected total number of darts

thrown	 The time is linear in the problem size and is given by�

tQRQW � ������ � ����
 � � � g � w � �� � g � ������ � n�p
� ������ � ��
�� � ���� � g� � n�p ���

where w � ���� is the ratio of total darts thrown to the permutation size �there is less

than �! variation in w as n is varied	�

Sparse matrix multiplication� In our third algorithm experiment� we measured the

time to multiply a sparse matrix by a dense vector	 Our implementation uses a com�

pressed row format containing the number of non�zero elements in each row� and the

values of each non�zero matrix element along with its column index	 The computation is

vectorized using �segmented scan� operations �
�� a technique that allows the latency to

be hidden regardless of the structure of the matrix	 For the purposes of analyzing con�

tention� the most important characteristic of our implementation is that elements from

the input vector are gathered based on the column indices of the nonzero matrix element	

Elements of the input vector are typically read multiple times	 Thus� our formulation of

sparse matrix multiplication can be viewed as a crcw algorithm or as a qrqw algorithm

where the contention is equal to the number of elements in the densest column	 A dense

column can arise in practice from having a global constraint or bias� such as a circuit

��



0.0

0.5

1.0

1.5

2.0

2.5

T
im

e 
pe

r 
el

em
en

t 
(c

lo
ck

 p
er

io
ds

)

2048 7656 28622 106998
Length of longest column

Cray J90
(d,x)-BSP

BSP

CRCW

Figure ��� Time per nonzero element for sparse matrix vector multiplication on a matrix
with one dense column and an average row size of 
� Measured times are given for an �
processor cray J��� and predicted times are given for the �d�x��bsp� bsp� and crcw�

with many connections to ground	

In the experiment� we constructed a set of test matrices with one dense column and

an average row length of 
	 The number of rows and the total amount of work are held

constant� while the number of elements in the dense column is varied	 Except in the

dense column� column indices are selected at random	 The predicted running time on

the �d�x��bsp is�

max

�
c

p
� d �R

�
�

where c is a constant that accounts for the combined e�ect of the work and the gap	

Figure �� shows measured and predicted times as a function of the length of the dense

column� using the measured value c � ��� for the cray J��	

Connected components� Our �nal algorithm experiment measures the contention in

Greiner�s algorithm for �nding the connected components of a graph ����	 The algorithm

consists of several phases� hooking nodes together to form a forest� performing repeated

shortcutting operations to contract each tree to a single node� contracting the graph to

form a new graph that is processed recursively� and expanding the graph to propagate the

new labels	 Contention can occur in each step of the algorithm and varies considerably

depending on characteristics of the input graph and the method used for implementing

the contraction and expansion phases	 In our experiments� we used a variant of Greiner�s

suite of test graphs consisting of subsets of �d and �d toroidal graphs� random graphs

�i�e� subsets of complete graphs�� and �tertiary� graphs in which each node has three

��



random neighbors	 In order to reduce module map contention without hashing the data

structures� nodes and edges are randomly permuted and renumbered in a preprocessing

step	 To simplify the comparison of di�erent phases of the algorithm� we extracted

memory access patterns used and timed them on a simple �scatter� operation	 Note

that as discussed in Section �� under the circumstances of random memory mapping

�in this case� due to the nature of the algorithm� and su�ciently high expansion factor�

the module map contention can be ignored without substantial error in the prediction	

Figure � compares timings on the cray J�� to predictions generated using the �d�x��bsp

model� but ignoring module map contention	 These results have helped to clarify some of

the observed performance problems with scaling the crcw algorithm to a large number

of processors	 We are currently evaluating a number of heuristics for reducing contention

in the crcw algorithm ����	

� Discussion

This paper studies the e�ectiveness of using the �d�x��bsp as a simple model for shared

memory machines to analyze the memory performance of algorithms	 The model ac�

counts for memory bandwidth� memory latency� memory bank delay� and memory bank

expansion	 We have focused on modeling the e�ect of these features on unstructured

computations� where the memory access patterns are irregular and the lack of locality of

memory reference stresses the bandwidth limitations of the shared memory machine	 Al�

though the �d�x��bsp abstracts away many machine speci�c details� our results show that

it still gives useful guidance to algorithm designers by providing performance prediction

that is reasonably accurate	 More accurate predictions can surely be made using more

detailed models� but with the tradeo� of complicating analysis and making algorithm

design more machine speci�c and hence less portable	

We veri�ed that the �d�x��bsp reasonably explains the memory performance of the

cray C�� and J�� on irregular access patterns	 Our results can be summarized as follows�

� For low memory contention� high parallel slackness� and random mapping of mem�

ory locations to banks� we can typically ignore the e�ect of the bank delay	

� When memory contention is high we cannot ignore the e�ects of bank delay	 In

particular modeling the delay is quite important in analyzing the performance of

algorithms with high contention	

� An expansion factor beyond x � d�g can be used to better balance the load when

using random mapping of memory locations to banks	 This is particularly impor�

��



tant in conjunction with high memory contention	 The expansion on the cray is

such that the load is not a serious problem	

� The high�level erew or qrqw pram models can be emulated on the �d�x��bsp in

a work�preserving manner as long as x � d�g and g is a small constant	

� The �d�x��bsp can serve as a bridging model between the qrqw pram and high�

bandwidth multiprocessors	 Our results show that the qrqw model is adequate

for designing algorithms and generating rough predictions of running time	 When

necessary� predictions and implementations can be re�ned using the �d�x��bsp	

There are several issues that the �d�x��bsp does not capture� which would be needed

for a more re�ned model of the memory system	 These include the e�ects of the network�

the e�ects of caching at the memory banks �available on the tera and discussed by Hsu

and Smith ������ the e�ects of the order of injecting messages into the network� and any

di�erences between the cost of reads and writes	 Although the �d�x��bsp can model

local caches on processors� analyzing algorithms in this case would require that the user

know which memory references are cache misses and which are cache hits� and possibly

understanding tra�c due to the particular cache coherence protocol	

Another area for future work is to perform similar case studies on other machines�

comparing the actual performance to that predicted by the �d�x��bsp	 Finally� one could

study the performance of complete applications	

References

��� Anant Agarwal� John Kubiatowicz� David Kranz� Beng�Hong Lim� Donald Yeung� Godfrey
D�Souza� and Mike Parkin� Sparcle� An evolutionary processor design for large�scale
multiprocessors� IEEE Micro� pages �
���� June �����

��� R� Alverson� D� Callahan� D� Cummings� B� Koblenz� A� Porter�eld� and B� Smith� The
Tera computer system� In Proceedings ���� International Conference on Supercomputing�
pages ���� June �����

��� D� A� Bader and J� J�aJ�a� Practical parallel algorithms for dynamic data redistribution�
median �nding� and selection� In Proc� ��th International Parallel Processing Symposium�
pages �������� April �����

��� D� H� Bailey� Vector computer memory bank contention� IEEE Transactions on Computers�
C����������
� March ��
��

��� Forest Baskett and Alan J� Smith� Interference in multiprocessor computer systems with
interleaved memory� Communications of the ACM� �������������� June �����

��� R�H� Bisseling and W�F� McColl� Scienti�c computing on bulk synchronous parallel archi�
tectures� In Proc� ���th IFIP World Computer Congress� pages �������� �����

��



��� G� E� Blelloch� M� A� Heroux� and M� Zagha� Segmented operations for sparse matrix
computation on vector multiprocessors� Technical Report CMU�CS�������� School of Com�
puter Science� Carnegie Mellon University� August �����

�
� G� E� Blelloch� C� E� Leiserson� B� M� Maggs� C� G� Plaxton� S� J� Smith� and M� Zagha�
A comparison of sorting algorithms for the Connection Machine CM��� In Proc� �rd ACM

Symp� on Parallel Algorithms and Architectures� pages ����� July �����

��� F� A� Briggs and E� S� Davidson� Organization of semiconductor memories for parallel
pipelined processors� IEEE Transactions on Computers� C������������ February �����

���� I� Y� Bucher and M� L� Simmons� Measurement of memory access contentions in multiple
vector processors systems� In Proceedings Supercomputing���� pages 
���
��� November
�����

���� D� A� Calahan� Some results in memory con�ict analysis� In Proceedings Supercomput�

ing ���� pages ������
� November ��
��

���� L�J� Carter and M�N� Wegman� Universal classes of hash functions� Journal of Computer
and System Sciences� �
��������� �����

���� Donald Y� Chang� David J� Kuck� and Duncan H� Lawrie� On the e�ective bandwidth of
parallel memories� IEEE Transactions on Computers� C�����
���
�� May �����

���� T� Cheatham� A� Fahmy� D�C� Stefanescu� and L�G� Valiant� Bulk synchronous parallel
computing � a paradigm for transportable software� In Proc� IEEE ��th Hawaii Int� Conf�

on System Science� January �����

���� T� Cheung and J� E� Smith� A simulation study of the CRAY X�MP memory system�
IEEE Transactions on Computers� C��������������� July ��
��

���� D� Culler� R� Karp� D� Patterson� A� Sahay� K�E� Schauser� E� Santos� R� Subramonian�
and T� von Eicken� LogP� Towards a realistic model of parallel computation� In Proc� 	th

ACM SIGPLAN Symp� on Principles and Practices of Parallel Programming� pages �����
May �����

���� D� E� Culler� A� Dusseau� R� Martin� and K� E� Schauser� Fast parallel sorting under LogP�
from theory to practice� In Proc� Workshop on Portability and Performance for Parallel

Processing� Southhampton� England� July �����

��
� U� Detert and G� Hofemann� CRAY X�MP and Y�MP memory performance� Parallel

Computing� ����������� �����

���� M� Dietzfelbinger� J� Gil� Y� Matias� and N� Pippenger� Polynomial hash functions are
reliable� In Proc� ��th Int� Colloquium on Automata Languages and Programming
 Springer

LNCS ���� pages �������� July �����

���� M� Dietzfelbinger� T� Hagerup� J� Katajainen� and M� Penttonen� A reliable randomized
algorithm for the closest�pair problem� Technical Report Research Report ���� Universitat
Dortmund� December �����

���� C� Engelmann and J� Keller� Simulation�based comparison of hash functions for emulated
shared memory� In Proc� Parallel architectures and languages Europe
 Springer LNCS ��	�
pages ����� June �����

��



���� A� V� Gerbessiotis and C� J� Siniolakis� Deterministic sorting and randomized median
�nding on the BSP model� In Proc� Eighth Annual ACM Symposium on Parallel Algorithms

and Architectures� pages �������� June �����

���� P� B� Gibbons� Y� Matias� and V� Ramachandran� E�cient low�contention parallel algo�
rithms� In Proc� �th ACM Symp� on Parallel Algorithms and Architectures� pages ��������
June ����� To appear in Journal of Computer and System Sciences�

���� P� B� Gibbons� Y� Matias� and V� Ramachandran� The QRQW PRAM� Accounting for
contention in parallel algorithms� In Proc� �th ACM�SIAM Symp� on Discrete Algorithms�
pages ��
���
� January ����� Full version available as AT�T Bell Laboratories technical
report� September �����

���� M� Goudreau� K� Lang� S� Rao� T� Suel� and T� Tsantilas� Towards e�ciency and porta�
bility� Programming with the BSP model� In Proc� Eighth Annual ACM Symposium on

Parallel Algorithms and Architectures� pages ����� June �����

���� J� Greiner� A comparison of data�parallel algorithms for connected components� In Pro�

ceedings Symposium on Parallel Algorithms and Architectures� pages ������ Cape May�
NJ� June �����

���� D� T� Harper III� Block� multistride vector� and FFT accesses in parallel memory systems�
IEEE Transactions on Parallel and Distributed Systems� �������� January �����

��
� D� T� Harper III and Y� Costa� Analytical estimation of vector access performance in
parallel memory architectures� IEEE Transactions on Computers� �������������� May
�����

���� D� R� Helman� D� A� Bader� and J� J�aJ�a� Parallel algorithms for personalized communi�
cation and sorting with an experimental study� In Proc� Eighth Annual ACM Symposium

on Parallel Algorithms and Architectures� pages �������� June �����

���� W��C� Hsu and J� E� Smith� Performance of cached DRAM organizations in vector super�
computers� In Proc� ��th International Symp� on Computer Architecture� pages ��������
San Diego� CA� May �����

���� J� J�aJ�a� An Introduction to Parallel Algorithms� Addison�Wesley� Reading� MA� �����

���� A�R� Karlin and E� Upfal� Parallel hashing�an e�cient implementation of shared memory�
In Proc� ��th ACM Symp� on Theory of Computing� pages ������
� May ��
��

���� R� M� Karp and V� Ramachandran� Parallel algorithms for shared�memory machines�
In J� van Leeuwen� editor� Handbook of Theoretical Computer Science
 Volume A� pages

������� Elsevier Science Publishers B�V�� Amsterdam� The Netherlands� �����

���� D�E� Knuth� Sorting and Searching� volume � of The Art of Computer Programming�
Addison�Wesley Publishing Company� Inc�� Reading� Massachusetts� �����

���� F� T� Leighton� Methods for message routing in parallel machines� In Proc� �	th ACM

Symp� on Theory of Computing� pages ������ May ����� Invited paper�

���� K� Mehlhorn and U� Vishkin� Randomized and deterministic simulations of PRAMs by par�
allel machines with restricted granularity of parallel memories� Acta Informatica� �������
���� ��
��

��



���� R� Miller� A library for bulk�synchronous parallel programming� In Proc� of the British

Computer Society Parallel Processsing
 Specialist Group Workshop on General Purpose

Parallel Computing� December �����

��
� W� Oed and O� Lange� On the e�ective bandwidth of interleaved memories in vector
processor systems� IEEE Transactions on Computers� pages �������� October ��
��

���� P� Raghavan� Probabilistic construction of deterministic algorithms� approximating pack�
ing integer programs� Journal of Computer and System Sciences� ����������� ��

�

���� R� Raghavan and J� P� Hayes� On randomly interleaved memories� In Proceedings Super�

computing ���� pages ����
� November �����

���� A�G� Ranade� How to emulate shared memory� Journal of Computer and System Sciences�
����������� �����

���� B� Rau� Pseudo�randomly interleaved memory� In Proceedings Int� Symp� Computer Ar�

chitecture� pages ���
�� �����

���� J� H� Reif and L� G� Valiant� A logarithmic time sort for linear size networks� Journal of
the ACM� ������������ ��
��

���� Subhash Saini and David H� Bailey� NAS parallel benchmark results ������ Technical
Report NAS�������� NASA Ames Research Center� October �����

���� B� J� Smith� A pipelined� shared resource MIMD computer� In Proceedings International

Conference on Parallel Processing� ���
�

���� J� E� Smith and W� R� Taylor� Accurate modeling of interconnection networks in vector
supercomputers� In Proc� International Conference on Supercomputing� pages ��������
Cologne� Germany� June �����

���� J� E� Smith and W� R� Taylor� Characterizing memory performance in vector multipro�
cessors� In Proceedings International Conference on Supercomputing� pages ������ July
�����

��
� G� S� Sohi� High�bandwidth interleaved memories for vector processors � a simulation
study� IEEE Transactions on Computers� ������������ January �����

���� Robert H� Swendsen and Jian�Sheng Wang� Nonuniversal critical dynamics in Monte Carlo
simulations� Physical Review Letters� �
����
��

� January ��
��

���� K� Thearling and S� Smith� An improved supercomputer sorting benchmark� In Proceedings
Supercomputing ���� pages ������ November �����

���� Tetsutaro Uehara and Takao Tsuda� Benchmarking vector indirect load�store instructions�
Supercomputer� VIII��������� November �����

���� L�G� Valiant� A bridging model for parallel computation� Commun� ACM� ���
����������
�����

���� M� Zagha� E�icient irregular computation on pipelined�memory multiprocessors� Ph�D�
Thesis �In Preparation�� �����

���� M� Zagha and G� E� Blelloch� Radix sort for vector multiprocessors� In Proceedings

Supercomputing ���� pages �������� November �����

��


