The FKS Perfect Hashing Scheme
Yossi Matias

Perfect hashing.

We consider the following perfect hashing problem: Given a set S of n keys from a universe U,
build a look-up table T of size O(n) such that a membership query (given z € U, is ¢ € S)
can be answered in constant time.

We show that a perfect hash table can be built in linear expected time. The idea is to build
a two-level table (see Fig. 1). In the first level, a hash function f partitions the set S into n
subsets, denoted as buckets, By, B, ..., B,. For a bucket B;, we denote its size as b; = |B;|.
In the second level, each bucket B; has a separate memory array whose size is ©(b?), and a
separate hash function g; that maps the bucket injectively into that memory array. All the
memory arrays are placed in a single table 7', and for each bucket B; we maintain the offset
p;, which gives the position in 7" where B;’s memory array begins.

A high level description of the algorithm is as follows:

Step 1 Find a function f : U — [1..n], that partitions S into buckets Bi, By, ..., B, such
that 327, b? < Bn, where 3 is a constant that will be determined later.

=1 "4

Step 2 For each bucket B;, compute an offset p; = 22_1 ab?, and allocate a subarray M; of
size ab? in array T between positions p; + 1 and p;y; in T, where « is a constant that

will be determined later.

Step 3 For each bucket B; find a function g; : u — [1..ab?], such that g; is injective on B;.
For every key z € B;, place z in T[p; + gi(z)].

In Step 1, the function f is recorded. We use two additional arrays: P[1..n] to record the
offsets in Step 2, and GJ[l..n] to record the functions g; in Step 3. The table T is of size
aY ™ b2 < af -n, and the total memory required by the data structure is therefore O(n),

i=1"%%
as required. Given a key # € U, a membership query for # is supported in constant time as

follows:
1. Compute ¢ = f(z).
2. Read g; from GJi] and compute j = g;(z).

3. If T[P[i] + j] = « then answer “z € S”, and otherwise answer “z ¢ S”.

More details and analysis:

In our analysis we will use four basic facts from probability theory, and a property of universal

hash functions:

1. Boole’s inequality: For any sequence of events Ay, Ay, ..., Am, m > 1,

Pr(A;UA;---UA,) <Pr(4;)+Pr(4)+ -+ Pr(4n).

Data structures, Fall 1997 Dr. Yossi Matias

2. Markov inequality: Let X be a nonnegative random variable, and suppose that E (X)
is well defined. Then for all t > 0, Pr (X > ¢) < E(X)/t. Alternatively, for all 7 > 0,
Pr(X >7E (X)) <1/r.

3. Linearity of expectation: E(X +Y) = E (X) + E (Y); more generally,

4. Fzpectation in geometric-like distribution: Suppose that we have a sequence of Bernoulli
trials, each with a probability > p of success and a probability < 1 — p of failure. Then

the expected number of trials needed to obtain a success is at most 1/p.

5. Collisions in universal hash functions: If h is chosen from a universal collection of hash
functions and is used to hash N keys into a table of size B, the expected number of

collisions involving a particular key # is (N — 1)/B.
We can now provide more details on Step 1, which consists of the following sub-steps.
Step 1a Select at random a function f : U — [1..n] from a universal class of hash functions.

Step 1b Compute a hash-table T’ with chaining using the hash function f, so that insertion

takes constant time.

Step 1c Compute an array B2, so that B2[i] = b?.

1

Step 1d If -7, b2 > Bn then go to Step la; otherwise record the function f.

Analysis Step la takes constant time, Step 1b takes O(n) time and O(n) space, Step 1c
takes O(n) time using the table 7', and Step 1d takes O(n) time, using array B2. The time
complexity, Ty, of Step 1 is therefore O(tn), where t is the number of iterations, i.e., the
number of functions f selected before the condition Y7 ; b2 < fn is satisfied. The following
claim shows that for § > 4 we have E (1) = O(n).

Claim: If 8> 4 then E (¢) < 2.

Proof. Let C, be the number of collisions of a key & € S under f;i.e., the number of y € S,
y # z, for which f(z) = f(y). Due to the collision property of universal hash functions (with
N = B =n) we have E (C,) < 1.

We consider the total number of collisions C's in §. Specifically, let Cs be the number of
(ordered) pairs (z,y), z,y € S and ¢ # y, such that f(z) = f(y). Clearly, Cs = ¥ ,c5Cs.

Therefore, by linearity of expectation,

E(Cs)=> E(C,)<|S|-1=n . (1)
zeX

Data structures, Fall 1997 Dr. Yossi Matias

On the other hand, we note that collisions are defined among keys mapped into the same

buckets, and can be counted as:

Cs =Y H(e.w)} iy € Buw# 3| = Zb (bi-1) =38 - b

Therefore, since Y ;- ; b; = n,
Z bq,z = CS +n)

and by Eq (1)

(sz)— C,g +n<2n .

By Markov Inequality, applied to the random variable X = "7 ; b2,

Pr (be > 4n) <1/2 .

i=1
If 3 > 4, then for a function f selected at random the condition >.7 ; b? < 4n is satisfied
with probability at least 1/2. Therefore, the expected number, ¢, of functions f tried before
the condition is satisfied is at most 2. =
To compute Step 2, note that p; = p; _; +ab? ; for i > 1, and p; = 0. Therefore, p; can be
computed and recorded in array P by iterating for ¢ = 1,...,n. Step 2 takes To = O(n) time.
Finally, Step 3 consists of the following sub-steps, executed for all¢,i=1,...,n

Step 3a Initialize the subarray T[P[i] 4+ 1,..., P[i + 1]] to nal.
Step 8b Select at random a function g; : U — [1..ab?] from a universal class of hash functions.

Step 3¢ For each z € B;, if T[P[i]+ gi(z)] is not nil then go to Step 3a (g; is not injective
on B; and a new g; is to be selected); else write z into T'[P[i] + gi(z)].

Step 8d Record g; in GJi].

Analysis We analyze first Step 3 for bucket B;. Step 3a takes time O(b2). Step 3b takes
constant time. Step 3c can be implemented in O(b;) time, using the ¢’th list in the hash table
T’ computed in Step 1. Step 3d takes constant time. The time complexity of Step 3 for bucket
B; is therefore t; = O(sz), where 7; is the number of iterations, i.e., the number of functions
g; selected before an injective function is found for B;.

Comment: We could have each iteration take only O(b;) time by removing Step 3a, initializing
the table T in Step 2, and modify Step 3c as follows:

Step 3¢’ For each z € B;, if T[P[i] + gi(z)] is not nil then for all y € B; assign nil to
T[P[i] 4 gi(y)] and go to Step 3a; else write = into T'[P[¢] + g;(z)].

The following claim shows that for o > 2 we have E (¢;) = O(b2).

Data structures, Fall 1997 Dr. Yossi Matias 4

Claim: If oo > 2 then E (1) < 2.

Proof. Let C, be the number of collisions of a key z in B; under g;; i.e., the number of y € B;,
y # @, for which g;(z) = gi(y). Due to the collision property of universal hash functions (with
N =b; and B = ab?) we have

E (C;) < b;/(ab?) = 1/ab; .
By Markov Inequality,
Pr(C, > 1) <E(C;) <1/ab; . (2)

Therefore, by Boole’s inequality and Eq (2), the probability that there are any collisions in B;

is
Pr (3z € B; such that C, > 1) < b;- (1/ab;) = 1/ .

For o > 2, the function g; is injective with probability at least 1 —1/a > 1/2, and the expected
number of trials, 7;, required before an injective function is found is at most 2. "

For a > 2 we have
E (t;) = O(E (n)b}) = O(b}) .

The total time, T3, for Step 3 over all buckets is then

n

B(T3) = 3 (4 = ().) = (9

=1

The running time, T, of the entire algorithm can now be bounded as

Exercises

1. If h is chosen at random from an almost-universal collection of hash functions and is used
to hash N keys into a table of size B, the collision probability of any two particular keys
z and y is at most 2/B, and the expected number of collisions involving a particular key
z is at most 2(N — 1)/B.

Modify the algorithm above so that almost-universal functions are used instead of uni-

versal functions, and such that the expected running time remains O(n).

2. Modify the algorithm above and analyze it, so that the first level function f maps the

input set S into 2n buckets, instead of n buckets.

3. (%) Generalizing (2), modify the algorithm above and analyze it, so that the first level
function f maps the input set S into yn buckets, and select v that gives favorable

complexity (in terms of constants).

Fredman, Komlos, Szemeredi. Storing a sparse table with O(1) worst case access time, JACM, 31, 1984, pp 538-544.

