Perfect hashing.

We consider the following perfect hashing problem: Given a set S of n keys from a universe U, build a look-up table T of size $O(n)$ such that a membership query (given $x \in U$, is $x \in S$) can be answered in constant time.

We show that a perfect hash table can be built in linear expected time. The idea is to build a two-level table (see Fig. 1). In the first level, a hash function f partitions the set S into n subsets, denoted as buckets, $B_{1}, B_{2}, \ldots, B_{n}$. For a bucket B_{i}, we denote its size as $b_{i}=\left|B_{i}\right|$. In the second level, each bucket B_{i} has a separate memory array whose size is $\Theta\left(b_{i}^{2}\right)$, and a separate hash function g_{i} that maps the bucket injectively into that memory array. All the memory arrays are placed in a single table T, and for each bucket B_{i} we maintain the offset p_{i}, which gives the position in T where B_{i} 's memory array begins.

A high level description of the algorithm is as follows:
Step 1 Find a function $f: U \rightarrow[1 . . n]$, that partitions S into buckets $B_{1}, B_{2}, \ldots, B_{n}$ such that $\sum_{i=1}^{n} b_{i}^{2} \leq \beta n$, where β is a constant that will be determined later.

Step 2 For each bucket B_{i}, compute an offset $p_{i}=\sum_{j}^{i-1} \alpha b_{j}^{2}$, and allocate a subarray M_{i} of size αb_{i}^{2} in array T between positions $p_{i}+1$ and p_{i+1} in T, where α is a constant that will be determined later.

Step 3 For each bucket B_{i} find a function $g_{i}: u \rightarrow\left[1 . . \alpha b_{i}^{2}\right]$, such that g_{i} is injective on B_{i}.
For every key $x \in B_{i}$, place x in $T\left[p_{i}+g_{i}(x)\right]$.
In Step 1, the function f is recorded. We use two additional arrays: $P[1 . . n]$ to record the offsets in Step 2, and $G[1 . . n]$ to record the functions g_{i} in Step 3. The table T is of size $\alpha \sum_{i=1}^{n} b_{i}^{2} \leq \alpha \beta \cdot n$, and the total memory required by the data structure is therefore $O(n)$, as required. Given a key $x \in U$, a membership query for x is supported in constant time as follows:

1. Compute $i=f(x)$.
2. Read g_{i} from $G[i]$ and compute $j=g_{i}(x)$.
3. If $T[P[i]+j]=x$ then answer " $x \in S$ ", and otherwise answer " $x \notin S$ ".

More details and analysis:

In our analysis we will use four basic facts from probability theory, and a property of universal hash functions:

1. Boole's inequality: For any sequence of events $A_{1}, A_{2}, \ldots, A_{m}, m \geq 1$,

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cdots \cup A_{m}\right) \leq \mathbf{P r}\left(A_{1}\right)+\mathbf{P r}\left(A_{2}\right)+\cdots+\mathbf{P r}\left(A_{m}\right) .
$$

2. Markov inequality: Let X be a nonnegative random variable, and suppose that $\mathbf{E}(X)$ is well defined. Then for all $t>0, \operatorname{Pr}(X \geq t) \leq \mathbf{E}(X) / t$. Alternatively, for all $\tau>0$, $\operatorname{Pr}(X \geq \tau \mathbf{E}(X)) \leq 1 / \tau$.
3. Linearity of expectation: $\mathbf{E}(X+Y)=\mathbf{E}(X)+\mathbf{E}(Y)$; more generally, $\mathbf{E}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \mathbf{E}\left(X_{i}\right)$.
4. Expectation in geometric-like distribution: Suppose that we have a sequence of Bernoulli trials, each with a probability $\geq p$ of success and a probability $\leq 1-p$ of failure. Then the expected number of trials needed to obtain a success is at most $1 / p$.
5. Collisions in universal hash functions: If h is chosen from a universal collection of hash functions and is used to hash N keys into a table of size B, the expected number of collisions involving a particular key x is $(N-1) / B$.

We can now provide more details on Step 1, which consists of the following sub-steps.
Step $1 a$ Select at random a function $f: U \rightarrow[1 . . n]$ from a universal class of hash functions.
Step $1 b$ Compute a hash-table T^{\prime} with chaining using the hash function f, so that insertion takes constant time.

Step 1c Compute an array $B 2$, so that $B 2[i]=b_{i}^{2}$.
Step 1d If $\sum_{i=1}^{n} b_{i}^{2}>\beta n$ then go to Step 1a; otherwise record the function f.

Analysis Step 1a takes constant time, Step 1b takes $O(n)$ time and $O(n)$ space, Step 1c takes $O(n)$ time using the table T^{\prime}, and Step 1d takes $O(n)$ time, using array $B 2$. The time complexity, T_{1}, of Step 1 is therefore $O(t n)$, where t is the number of iterations, i.e., the number of functions f selected before the condition $\sum_{i=1}^{n} b_{i}^{2} \leq \beta n$ is satisfied. The following claim shows that for $\beta \geq 4$ we have $\mathbf{E}\left(T_{1}\right)=O(n)$.

Claim: If $\beta \geq 4$ then $\mathbf{E}(t) \leq 2$.

Proof. Let C_{x} be the number of collisions of a key $x \in S$ under f; i.e., the number of $y \in S$, $y \neq x$, for which $f(x)=f(y)$. Due to the collision property of universal hash functions (with $N=B=n$) we have $\mathbf{E}\left(C_{x}\right)<1$.

We consider the total number of collisions C_{S} in S. Specifically, let C_{S} be the number of (ordered) pairs $\langle x, y\rangle, x, y \in S$ and $x \neq y$, such that $f(x)=f(y)$. Clearly, $C_{S}=\sum_{x \in S} C_{x}$. Therefore, by linearity of expectation,

$$
\begin{equation*}
\mathbf{E}\left(C_{S}\right)=\sum_{x \in X} \mathbf{E}\left(C_{x}\right)<|S| \cdot 1=n \tag{1}
\end{equation*}
$$

On the other hand, we note that collisions are defined among keys mapped into the same buckets, and can be counted as:

$$
\left.C_{S}=\sum_{i=1}^{n} \mid\{\langle x, y\rangle\}: x, y \in B_{i}, x \neq y\right\} \mid=\sum_{i=1}^{n} b_{i} \cdot\left(b_{i}-1\right)=\sum_{i=1}^{n} b_{i}^{2}-\sum_{i=1}^{n} b_{i} .
$$

Therefore, since $\sum_{i=1}^{n} b_{i}=n$,

$$
\sum_{i=1}^{n} b_{i}^{2}=C_{S}+n
$$

and by Eq (1)

$$
\mathbf{E}\left(\sum_{i=1}^{n} b_{i}^{2}\right)=\mathbf{E}\left(C_{S}\right)+n<2 n .
$$

By Markov Inequality, applied to the random variable $X=\sum_{i=1}^{n} b_{i}^{2}$,

$$
\operatorname{Pr}\left(\sum_{i=1}^{n} b_{i}^{2} \geq 4 n\right) \leq 1 / 2 .
$$

If $\beta \geq 4$, then for a function f selected at random the condition $\sum_{i=1}^{n} b_{i}^{2} \leq 4 n$ is satisfied with probability at least $1 / 2$. Therefore, the expected number, t, of functions f tried before the condition is satisfied is at most 2 .

To compute Step 2, note that $p_{i}=p_{i-1}+\alpha b_{i-1}^{2}$ for $i>1$, and $p_{1}=0$. Therefore, p_{i} can be computed and recorded in array P by iterating for $i=1, \ldots, n$. Step 2 takes $T_{2}=O(n)$ time.

Finally, Step 3 consists of the following sub-steps, executed for all $i, i=1, \ldots, n$:
Step $3 a$ Initialize the subarray $T[P[i]+1, \ldots, P[i+1]$ to nil.
Step $3 b$ Select at random a function $g_{i}: U \rightarrow\left[1 . . \alpha b_{i}^{2}\right]$ from a universal class of hash functions.
Step 3c For each $x \in B_{i}$, if $T\left[P[i]+g_{i}(x)\right]$ is not nil then go to Step 3 a (g_{i} is not injective on B_{i} and a new g_{i} is to be selected); else write x into $T\left[P[i]+g_{i}(x)\right]$.

Step 3d Record g_{i} in $G[i]$.

Analysis We analyze first Step 3 for bucket B_{i}. Step 3a takes time $O\left(b_{i}^{2}\right)$. Step 3b takes constant time. Step 3c can be implemented in $O\left(b_{i}\right)$ time, using the i^{\prime} 'th list in the hash table T^{\prime} computed in Step 1. Step 3d takes constant time. The time complexity of Step 3 for bucket B_{i} is therefore $t_{i}=O\left(\tau_{i} b_{i}^{2}\right)$, where τ_{i} is the number of iterations, i.e., the number of functions g_{i} selected before an injective function is found for B_{i}.
Comment: We could have each iteration take only $O\left(b_{i}\right)$ time by removing Step 3a, initializing the table T in Step 2, and modify Step 3c as follows:

Step 3c' For each $x \in B_{i}$, if $T\left[P[i]+g_{i}(x)\right]$ is not nil then for all $y \in B_{i}$ assign nil to $T\left[P[i]+g_{i}(y)\right]$ and go to Step 3a; else write x into $T\left[P[i]+g_{i}(x)\right]$.

The following claim shows that for $\alpha \geq 2$ we have $\mathbf{E}\left(t_{i}\right)=O\left(b_{i}^{2}\right)$.

Claim: If $\alpha \geq 2$ then $\mathbf{E}\left(\tau_{i}\right) \leq 2$.

Proof. Let C_{x} be the number of collisions of a key x in B_{i} under g_{i}; i.e., the number of $y \in B_{i}$, $y \neq x$, for which $g_{i}(x)=g_{i}(y)$. Due to the collision property of universal hash functions (with $N=b_{i}$ and $B=\alpha b_{i}^{2}$) we have

$$
\mathbf{E}\left(C_{x}\right)<b_{i} /\left(\alpha b_{i}^{2}\right)=1 / \alpha b_{i} .
$$

By Markov Inequality,

$$
\begin{equation*}
\operatorname{Pr}\left(C_{x} \geq 1\right) \leq \mathbf{E}\left(C_{x}\right)<1 / \alpha b_{i} . \tag{2}
\end{equation*}
$$

Therefore, by Boole's inequality and Eq (2), the probability that there are any collisions in B_{i} is
$\operatorname{Pr}\left(\exists x \in B_{i}\right.$ such that $\left.C_{x} \geq 1\right) \leq b_{i} \cdot\left(1 / \alpha b_{i}\right)=1 / \alpha$.
For $\alpha \geq 2$, the function g_{i} is injective with probability at least $1-1 / \alpha \geq 1 / 2$, and the expected number of trials, τ_{i}, required before an injective function is found is at most 2.

For $\alpha \geq 2$ we have

$$
\mathbf{E}\left(t_{i}\right)=O\left(\mathbf{E}\left(\tau_{i}\right) b_{i}^{2}\right)=O\left(b_{i}^{2}\right)
$$

The total time, T_{3}, for Step 3 over all buckets is then

$$
\mathbf{E}\left(T_{3}\right)=\sum_{i=1}^{n} \mathbf{E}\left(t_{i}\right)=O\left(\sum_{i=1}^{n} b_{i}^{2}\right)=O(\beta n)
$$

The running time, T, of the entire algorithm can now be bounded as

$$
\mathbf{E}(T)=\mathbf{E}\left(T_{1}+T_{2}+T_{3}\right)=\mathbf{E}\left(T_{1}\right)+\mathbf{E}\left(T_{2}\right)+\mathbf{E}\left(T_{3}\right)=O(n) .
$$

Exercises

1. If h is chosen at random from an almost-universal collection of hash functions and is used to hash N keys into a table of size B, the collision probability of any two particular keys x and y is at most $2 / B$, and the expected number of collisions involving a particular key x is at most $2(N-1) / B$.

Modify the algorithm above so that almost-universal functions are used instead of universal functions, and such that the expected running time remains $O(n)$.
2. Modify the algorithm above and analyze it, so that the first level function f maps the input set S into $2 n$ buckets, instead of n buckets.
3. (*) Generalizing (2), modify the algorithm above and analyze it, so that the first level function f maps the input set S into γn buckets, and select γ that gives favorable complexity (in terms of constants).

Fredman, Komlos, Szemeredi. Storing a sparse table with O(1) worst case access time, JACM, 31, 1984, pp 538-544.

