Perfect hashing.

We consider the following perfect hashing problem: Given a set S of n keys from a universe U, build a look-up table T of size $O(n)$ such that a membership query (given $x \in U$, is $x \in S$) can be answered in constant time.

We show that a perfect hash table can be built in linear expected time. The idea is to build a two-level table (see Fig. 1). In the first level, a hash function f partitions the set S into n subsets, denoted as buckets, B_1, B_2, \ldots, B_n. For a bucket B_i, we denote its size as $b_i = |B_i|$. In the second level, each bucket B_i has a separate memory array whose size is $\Theta(b_i^2)$, and a separate hash function g_i that maps the bucket injectively into that memory array. All the memory arrays are placed in a single table T, and for each bucket B_i we maintain the offset p_i, which gives the position in T where B_i’s memory array begins.

A high level description of the algorithm is as follows:

Step 1 Find a function $f : U \rightarrow [1..n]$, that partitions S into buckets B_1, B_2, \ldots, B_n such that $\sum_{i=1}^{n} b_i^2 \leq \beta n$, where β is a constant that will be determined later.

Step 2 For each bucket B_i, compute an offset $p_i = \sum_{j=1}^{i-1} \alpha b_j^2$, and allocate a subarray M_i of size αb_i^2 in array T between positions $p_i + 1$ and p_{i+1} in T, where α is a constant that will be determined later.

Step 3 For each bucket B_i find a function $g_i : u \rightarrow [1..\alpha b_i^2]$, such that g_i is injective on B_i.

For every key $x \in B_i$, place x in $T[p_i + g_i(x)]$.

In Step 1, the function f is recorded. We use two additional arrays: $P[1..n]$ to record the offsets in Step 2, and $G[1..n]$ to record the functions g_i in Step 3. The table T is of size $\alpha \sum_{i=1}^{n} b_i^2 \leq \alpha \beta \cdot n$, and the total memory required by the data structure is therefore $O(n)$, as required. Given a key $x \in U$, a membership query for x is supported in constant time as follows:

1. Compute $i = f(x)$.
2. Read g_i from $G[i]$ and compute $j = g_i(x)$.
3. If $T[P[i] + j] = x$ then answer "$x \in S$", and otherwise answer "$x \notin S$".

More details and analysis:

In our analysis we will use four basic facts from probability theory, and a property of universal hash functions:

1. **Boole’s inequality**: For any sequence of events A_1, A_2, \ldots, A_m, $m \geq 1$,
 \[
 \Pr (A_1 \cup A_2 \cdots \cup A_m) \leq \Pr (A_1) + \Pr (A_2) + \cdots + \Pr (A_m).
 \]
2. **Markov inequality**: Let X be a nonnegative random variable, and suppose that $E(X)$ is well defined. Then for all $t > 0$, $\Pr(X \geq t) \leq E(X)/t$. Alternatively, for all $\tau > 0$, $\Pr(X \geq \tau E(X)) \leq 1/\tau$.

3. **Linearity of expectation**: $E(X + Y) = E(X) + E(Y)$; more generally, $E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$.

4. **Expectation in geometric-like distribution**: Suppose that we have a sequence of Bernoulli trials, each with a probability p of success and a probability $1 - p$ of failure. Then the expected number of trials needed to obtain a success is at most $1/p$.

5. **Collisions in universal hash functions**: If h is chosen from a universal collection of hash functions and is used to hash N keys into a table of size B, the expected number of collisions involving a particular key x is $(N - 1)/B$.

We can now provide more details on Step 1, which consists of the following sub-steps.

Step 1a Select at random a function $f : U \rightarrow [1..n]$ from a universal class of hash functions.

Step 1b Compute a hash-table T' with chaining using the hash function f, so that insertion takes constant time.

Step 1c Compute an array $B2$, so that $B2[i] = b_i^2$.

Step 1d If $\sum_{i=1}^{n} b_i^2 > \beta n$ then go to Step 1a; otherwise record the function f.

Analysis Step 1a takes constant time, Step 1b takes $O(n)$ time and $O(n)$ space, Step 1c takes $O(n)$ time using the table T', and Step 1d takes $O(n)$ time, using array $B2$. The time complexity, T_1, of Step 1 is therefore $O(tn)$, where t is the number of iterations, i.e., the number of functions f selected before the condition $\sum_{i=1}^{n} b_i^2 \leq \beta n$ is satisfied. The following claim shows that for $\beta \geq 4$ we have $E(T_1) = O(n)$.

Claim: If $\beta \geq 4$ then $E(t) \leq 2$.

Proof. Let C_x be the number of collisions of a key $x \in S$ under f; i.e., the number of $y \in S$, $y \neq x$, for which $f(x) = f(y)$. Due to the collision property of universal hash functions (with $N = B = n$) we have $E(C_x) < 1$.

We consider the total number of collisions C_S in S. Specifically, let C_S be the number of (ordered) pairs (x, y), $x, y \in S$ and $x \neq y$, such that $f(x) = f(y)$. Clearly, $C_S = \sum_{x \in S} C_x$. Therefore, by linearity of expectation,

$$E(C_S) = \sum_{x \in X} E(C_x) < |S| \cdot 1 = n.$$ \hfill (1)
On the other hand, we note that collisions are defined among keys mapped into the same buckets, and can be counted as:

\[C_S = \sum_{i=1}^{n} |\{(x,y) : x \in B_i, x \neq y\}| = \sum_{i=1}^{n} b_i \cdot (b_i - 1) = \sum_{i=1}^{n} b_i^2 - \sum_{i=1}^{n} b_i . \]

Therefore, since \(\sum_{i=1}^{n} b_i = n \),

\[\sum_{i=1}^{n} b_i^2 = C_S + n , \]

and by Eq (1)

\[\mathbb{E} \left(\sum_{i=1}^{n} b_i^2 \right) = \mathbb{E} (C_S) + n < 2n . \]

By Markov Inequality, applied to the random variable \(X = \sum_{i=1}^{n} b_i^2 \),

\[\mathbb{P} \left(\sum_{i=1}^{n} b_i^2 \geq 4n \right) \leq \frac{1}{2} . \]

If \(\beta \geq 4 \), then for a function \(f \) selected at random the condition \(\sum_{i=1}^{n} b_i^2 \leq 4n \) is satisfied with probability at least \(1/2 \). Therefore, the expected number, \(t_i \), of functions \(f \) tried before the condition is satisfied is at most 2.

To compute Step 2, note that \(p_i = p_{i-1} + \alpha b_{i-1}^2 \) for \(i > 1 \), and \(p_1 = 0 \). Therefore, \(p_i \) can be computed and recorded in array \(P \) by iterating for \(i = 1, \ldots, n \). Step 2 takes \(T_2 = O(n) \) time.

Finally, Step 3 consists of the following sub-steps, executed for all \(i, i = 1, \ldots, n \):

Step 3a Initialize the subarray \(T[P[i]+1, \ldots, P[i]+1] \) to \(\text{nil} \).

Step 3b Select at random a function \(g_i : U \rightarrow [1..\alpha b_i^2] \) from a universal class of hash functions.

Step 3c For each \(x \in B_i \), if \(T[P[i]+g_i(x)] \) is not \(\text{nil} \) then go to Step 3a (\(g_i \) is not injective on \(B_i \) and a new \(g_i \) is to be selected); else write \(x \) into \(T[P[i]+g_i(x)] \).

Step 3d Record \(g_i \) in \(G[i] \).

Analysis We analyze first Step 3 for bucket \(B_i \). Step 3a takes time \(O(b_i^2) \). Step 3b takes constant time. Step 3c can be implemented in \(O(b_i) \) time, using the \(i \)th list in the hash table \(T^v \) computed in Step 1. Step 3d takes constant time. The time complexity of Step 3 for bucket \(B_i \) is therefore \(t_i = O(\tau_i b_i^2) \), where \(\tau_i \) is the number of iterations, i.e., the number of functions \(g_i \) selected before an injective function is found for \(B_i \).

Comment: We could have each iteration take only \(O(b_i) \) time by removing Step 3a, initializing the table \(T \) in Step 2, and modify Step 3c as follows:

Step 3c' For each \(x \in B_i \), if \(T[P[i]+g_i(x)] \) is not \(\text{nil} \) then for all \(y \in B_i \) assign \(\text{nil} \) to \(T[P[i]+g_i(y)] \) and go to Step 3a; else write \(x \) into \(T[P[i]+g_i(x)] \).

The following claim shows that for \(\alpha \geq 2 \) we have \(\mathbb{E} (t_i) = O(b_i^2) \).
Claim: If $\alpha \geq 2$ then $E(\tau_i) \leq 2$.

Proof. Let C_x be the number of collisions of a key x in B_i under g_i; i.e., the number of $y \in B_i$, $y \neq x$, for which $g_i(x) = g_i(y)$. Due to the collision property of universal hash functions (with $N = b_i$ and $B = ab_i^2$) we have

$$E(C_x) < b_i/(ab_i^2) = 1/ab_i$$

By Markov Inequality,

$$Pr(C_x \geq 1) \leq E(C_x) < 1/ab_i \ .$$

Therefore, by Boole’s inequality and Eq (2), the probability that there are any collisions in B_i is

$$Pr(\exists x \in B_i \text{ such that } C_x \geq 1) \leq b_i \cdot (1/ab_i) = 1/\alpha$$

For $\alpha \geq 2$, the function g_i is injective with probability at least $1 - 1/\alpha \geq 1/2$, and the expected number of trials, τ_i, required before an injective function is found is at most 2.

For $\alpha \geq 2$ we have

$$E(t_i) = O(E(\tau_i) b_i^2) = O(b_i^2)$$

The total time, T_3, for Step 3 over all buckets is then

$$E(T_3) = \sum_{i=1}^{n} E(t_i) = O(\sum_{i=1}^{n} b_i^2) = O(\beta n)$$

The running time, T_1, of the entire algorithm can now be bounded as

$$E(T) = E(T_1 + T_2 + T_3) = E(T_1) + E(T_2) + E(T_3) = O(n)$$

Exercises

1. If h is chosen at random from an almost-universal collection of hash functions and is used to hash N keys into a table of size B, the collision probability of any two particular keys x and y is at most $2/B$, and the expected number of collisions involving a particular key x is at most $2(N - 1)/B$.

Modify the algorithm above so that almost-universal functions are used instead of universal functions, and such that the expected running time remains $O(n)$.

2. Modify the algorithm above and analyze it, so that the first level function f maps the input set S into $2n$ buckets, instead of n buckets.

3. (⋆) Generalizing (2), modify the algorithm above and analyze it, so that the first level function f maps the input set S into γn buckets, and select γ that gives favorable complexity (in terms of constants).

Fredman, Komlos, Szemeredi. Storing a sparse table with $O(1)$ worst case access time, JACM, 31, 1984, pp 538-544.