
�

Perfect hashing�

We consider the following perfect hashing problem� Given a set S of n keys from a universe U �

build a look�up table T of size O�n� such that a membership query �given x � U � is x � S�

can be answered in constant time�

We show that a perfect hash table can be built in linear expected time� The idea is to build

a two�level table �see Fig� ��� In the �rst level� a hash function f partitions the set S into n

subsets� denoted as buckets� B�� B�� � � � � Bn� For a bucket Bi� we denote its size as bi � jBij�

In the second level� each bucket Bi has a separate memory array whose size is 	�b�i �� and a

separate hash function gi that maps the bucket injectively into that memory array� All the

memory arrays are placed in a single table T � and for each bucket Bi we maintain the o
set

pi� which gives the position in T where Bi�s memory array begins�

A high level description of the algorithm is as follows�

Step � Find a function f � U � ����n
� that partitions S into buckets B�� B�� � � � � Bn such

that
Pn

i�� b
�
i � �n� where � is a constant that will be determined later�

Step � For each bucket Bi� compute an o
set pi �
Pi��

j �b�j � and allocate a subarray Mi of

size �b�i in array T between positions pi � � and pi�� in T � where � is a constant that

will be determined later�

Step � For each bucket Bi �nd a function gi � u � �����b�i 
� such that gi is injective on Bi�

For every key x � Bi� place x in T �pi � gi�x�
�

In Step �� the function f is recorded� We use two additional arrays� P ����n
 to record the

o
sets in Step �� and G����n
 to record the functions gi in Step �� The table T is of size

�
Pn

i�� b
�
i � �� � n� and the total memory required by the data structure is therefore O�n��

as required� Given a key x � U � a membership query for x is supported in constant time as

follows�

�� Compute i � f�x��

�� Read gi from G�i
 and compute j � gi�x��

�� If T �P �i
 � j
 � x then answer �x � S�� and otherwise answer �x �� S��

More details and analysis�

In our analysis we will use four basic facts from probability theory� and a property of universal

hash functions�

�� Boole�s inequality� For any sequence of events A�� A�� � � � � Am� m � ��

Pr �A� �A� � � � �Am� � Pr �A�� � Pr �A�� � � � �� Pr �Am��

The FKS Perfect Hashing Scheme
 Yossi Matias



Data structures� Fall ���� Dr� Yossi Matias �

�� Markov inequality� Let X be a nonnegative random variable� and suppose that E �X�

is well de�ned� Then for all t � �� Pr �X � t� � E �X��t� Alternatively� for all � � ��

Pr �X � �E �X�� � ��� �

�� Linearity of expectation� E �X � Y � � E �X� �E �Y �� more generally�

E �
Pn

i��Xi� �
Pn

i��E �Xi��

�� Expectation in geometric�like distribution� Suppose that we have a sequence of Bernoulli

trials� each with a probability � p of success and a probability � �� p of failure� Then

the expected number of trials needed to obtain a success is at most ��p�

�� Collisions in universal hash functions� If h is chosen from a universal collection of hash

functions and is used to hash N keys into a table of size B� the expected number of

collisions involving a particular key x is �N � ���B�

We can now provide more details on Step �� which consists of the following sub�steps�

Step �a Select at random a function f � U � ����n
 from a universal class of hash functions�

Step �b Compute a hash�table T � with chaining using the hash function f � so that insertion

takes constant time�

Step �c Compute an array B�� so that B��i
 � b�i �

Step �d If
Pn

i�� b
�
i � �n then go to Step �a� otherwise record the function f �

Analysis Step �a takes constant time� Step �b takes O�n� time and O�n� space� Step �c

takes O�n� time using the table T �� and Step �d takes O�n� time� using array B�� The time

complexity� T�� of Step � is therefore O�tn�� where t is the number of iterations� i�e�� the

number of functions f selected before the condition
Pn

i�� b
�
i � �n is satis�ed� The following

claim shows that for � � � we have E �T�� � O�n��

Claim� If � � � then E �t� � ��

Proof� Let Cx be the number of collisions of a key x � S under f � i�e�� the number of y � S�

y �� x� for which f�x� � f�y�� Due to the collision property of universal hash functions �with

N � B � n� we have E �Cx� � ��

We consider the total number of collisions CS in S� Speci�cally� let CS be the number of

�ordered� pairs hx� yi� x� y � S and x �� y� such that f�x� � f�y�� Clearly� CS �
P

x�S Cx�

Therefore� by linearity of expectation�

E �CS� �
X
x�X

E �Cx� � jSj � � � n � ���



Data structures� Fall ���� Dr� Yossi Matias �

On the other hand� we note that collisions are de�ned among keys mapped into the same

buckets� and can be counted as�

CS �
nX
i��

jfhx� yig � x� y � Bi� x �� ygj �
nX
i��

bi � �bi � �� �
nX
i��

b�i �
nX
i��

bi �

Therefore� since
Pn

i�� bi � n�

nX
i��

b�i � CS � n �

and by Eq ���

E

�
nX
i��

b�i

�
� E �CS� � n � �n �

By Markov Inequality� applied to the random variable X �
Pn

i�� b
�
i �

Pr

�
nX
i��

b�i � �n

�
� ��� �

If � � �� then for a function f selected at random the condition
Pn

i�� b
�
i � �n is satis�ed

with probability at least ���� Therefore� the expected number� t� of functions f tried before

the condition is satis�ed is at most ��

To compute Step �� note that pi � pi����b�i�� for i � �� and p� � �� Therefore� pi can be

computed and recorded in array P by iterating for i � �� � � � � n� Step � takes T� � O�n� time�

Finally� Step � consists of the following sub�steps� executed for all i� i � �� � � � � n�

Step �a Initialize the subarray T �P �i
 � �� � � � � P �i� �

 to nil�

Step �b Select at random a function gi � U � �����b�i 
 from a universal class of hash functions�

Step �c For each x � Bi� if T �P �i
 � gi�x�
 is not nil then go to Step �a �gi is not injective

on Bi and a new gi is to be selected�� else write x into T �P �i
 � gi�x�
�

Step �d Record gi in G�i
�

Analysis We analyze �rst Step � for bucket Bi� Step �a takes time O�b�i �� Step �b takes

constant time� Step �c can be implemented in O�bi� time� using the i�th list in the hash table

T � computed in Step �� Step �d takes constant time� The time complexity of Step � for bucket

Bi is therefore ti � O��ib
�
i �� where �i is the number of iterations� i�e�� the number of functions

gi selected before an injective function is found for Bi�

Comment� We could have each iteration take only O�bi� time by removing Step �a� initializing

the table T in Step �� and modify Step �c as follows�

Step �c� For each x � Bi� if T �P �i
 � gi�x�
 is not nil then for all y � Bi assign nil to

T �P �i
 � gi�y�
 and go to Step �a� else write x into T �P �i
 � gi�x�
�

The following claim shows that for � � � we have E �ti� � O�b�i ��



Data structures� Fall ���� Dr� Yossi Matias �

Claim� If � � � then E ��i� � ��

Proof� Let Cx be the number of collisions of a key x in Bi under gi� i�e�� the number of y � Bi�

y �� x� for which gi�x� � gi�y�� Due to the collision property of universal hash functions �with

N � bi and B � �b�i � we have

E �Cx� � bi���b
�
i � � ���bi �

By Markov Inequality�

Pr �Cx � �� � E �Cx� � ���bi � ���

Therefore� by Boole�s inequality and Eq ���� the probability that there are any collisions in Bi

is

Pr ��x � Bi such that Cx � �� � bi � ����bi� � ��� �

For � � �� the function gi is injective with probability at least ����� � ���� and the expected

number of trials� �i� required before an injective function is found is at most ��

For � � � we have

E �ti� � O�E ��i�b
�
i � � O�b�i � �

The total time� T�� for Step � over all buckets is then

E �T�� �
nX
i��

E �ti� � O�
nX
i��

b�i � � O��n�

The running time� T � of the entire algorithm can now be bounded as

E �T � � E �T� � T� � T�� � E �T�� �E �T�� �E �T�� � O�n� �

Exercises

�� If h is chosen at random from an almost�universal collection of hash functions and is used

to hash N keys into a table of size B� the collision probability of any two particular keys

x and y is at most ��B� and the expected number of collisions involving a particular key

x is at most ��N � ���B�

Modify the algorithm above so that almost�universal functions are used instead of uni�

versal functions� and such that the expected running time remains O�n��

�� Modify the algorithm above and analyze it� so that the �rst level function f maps the

input set S into �n buckets� instead of n buckets�

�� �	� Generalizing ���� modify the algorithm above and analyze it� so that the �rst level

function f maps the input set S into �n buckets� and select � that gives favorable

complexity �in terms of constants��

Fredman, Komlos, Szemeredi. Storing a sparse table with O(1) worst case access time, JACM, 31, 1984, pp 538-544.


