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� Introduction

Given a text string T � a compression algorithm C computes an output string� T �� whose representation is

smaller than that of T � and such that a corresponding decompression algorithm C� can take T � as input

and compute T � The most common compression algorithms used in practice are the dictionary schemes

�a�k�a� parsing schemes 	BCW
��� or textual substitution schemes 	Sto

��� These algorithms are based on

maintaining a dictionary of strings that are called phrases� and replacing substrings of an input text with

pointers to identical phrases in the dictionary� that are called codewords� The task of partitioning the text

into phrases is called parsing�

The dictionary can be constructed in static or dynamic fashion� In static schemes� the whole dictionary

is constructed before the input is compressed� All practical compression algorithms� however� use dynamic

schemes� introduced by Ziv and Lempel 	ZL��� ZL�
�� in which the dictionary is initially empty and is

constructed incrementally� as the input is read� some of its substrings are chosen as dictionary phrases

themselves� Most dynamic schemes �e�g�� 	ZL��� ZL�
� Wel
�� Yok
��� satisfy the pre�x property� for any

given phrase in the dictionary� all its pre�xes are also phrases in the dictionary� Some of them �e�g�� 	ZL���

Yok
��� satisfy the su�x property� for any given phrase in the dictionary� all its su�xes are also phrases in

the dictionary�

Dictionary based compression algorithms of particular interest are the LZ�
 method 	ZL�
�� its LZW

variant 	Wel
��� and the LZ�� method 	ZL���� The LZW scheme is the basis for unix compress� gif image

compression format� and most popular fax and modem standards� The LZ�� scheme is the basis for all zip

variants� including the unix gzip� All three algorithms are known to be asymptotically optimal for certain

sources� in the sense that their compression ratio approaches to the bit entropy of the input source� Recently�

it was shown in 	JS
�� LS
�� Sav
�� that the compression ratio of LZ�
 approaches the asymptotic optimality

faster than that of LZ�� �see appendix A�� for details�� The practical performances of these algorithms vary

however depending on the application� For example the LZ�� algorithm may perform better for English

text� and the LZ�
 algorithm may perform better for binary data� or DNA sequences�

Perhaps the most fundamental question regarding dictionary compression algorithms is to �nd good

dictionary construction schemes� i�e�� schemes that enable good encoding of the text with small redundancy�

Unfortunately� a simple counting argument shows that there cannot exist a single dictionary construction

scheme that is superior to other schemes for all inputs� If a compression algorithm performs well for one

set of input strings� it is likely that it will not perform well for others� The advantage of one dictionary

construction scheme over another can only apply with regard to restricted classes of input texts� Indeed�

numerous schemes have been proposed in the scienti�c literature and implemented in software products�

and it is expected that many more will be considered in the future� In this paper we do not consider the

question of dictionary construction scheme� Rather� we focus on the parsing method that is to be used once

a particular dictionary construction scheme is selected�

In particular� this paper considers the following question� Given a dictionary construction scheme� is

there an e�cient dynamic parsing method that achieves optimality with respect to this schemes on all input

strings� Note that unlike for the dictionary construction scheme� the question on optimality of the parsing

scheme is well de�ned� We concentrate here on dictionaries in which all codewords are represented with the

same number of bits� Hence� given a particular dictionary construction scheme� an optimal parsing scheme

would compute the compressed version of any input string with the smallest number of phrases possible�

Given a dictionary construction scheme and a given input text� it is possible to obtain an optimal parsing
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via a dynamic programming algorithm� However� such an algorithm uses time and the space quadratic with

the input size� and requires all the input to be available before the compression process starts� See 	SS
�� for

a study of optimal parsing schemes� see 	LH
�� Sto

� BCW

� BCW
�� for a detailed coverage of parsing

strategies and dictionary compression algorithms� For the static case only� a recent work 	FM
�� describes a

linear time optimal algorithm for dictionaries satisfying the pre�x property� As this algorithm requires the

entire input to be available before the compression process starts� it is not suitable for on�line settings or

dynamic applications�

Almost all dictionary based algorithms in the literature �e�g�� 	ZL��� ZL�
� Wel
�� MW
�� Yok
��� use

greedy parsing� which takes the uncompressed su�x of the input and parses its longest pre�x� which is

a phrase in the dictionary� The next substring to be parsed starts where the currently parsed substring

ends� �See 	BW
�� for a study of greedy parsing with static dictionaries�� Greedy parsing is fast and can

usually be applied on�line� and is hence very suitable for communications applications� However� it was

shown in 	GSS
�� that for static dictionaries greedy parsing can be quite far from optimal� there are strings

that can be parsed to m phrases using a given �static� dictionary� for which greedy parsing with the same

dictionary obtains ��m���� phrases� For the dynamic case� it has been an open question how well greedy

parsing compares to optimal parsing� This question is particularly important for several practical algorithms

including LZ�
� LZW� and some implementations of LZ��� where all codewords in the dictionary D are

represented by the same number of bits�

We present the following results� concentrating on dictionaries which satisfy the pre�x property�

� Greedy parsing can be far from optimal for dynamic dictionary construction schemes� there is a dictio�

nary scheme with the pre�x property� so that for any su�ciently large integer m� there exists a string

T which can be parsed to O�m� phrases� whereas the greedy parsing results with ��m���� phrases�

� Given any dictionary construction scheme with the pre�x property� there exists an e�cient dynamic

parsing method that achieves optimality on all input strings with respect to this scheme� interestingly�

the parsing method is a rather simple one� consisting on greedy steps with a single step lookahead� We

call this method �exible parsing� or FP�

The negative result for greedy parsing is given for LZ�
 and LZW dictionary construction methods� and

may therefore have considerable practical implications� For the positive result� we emphasize that the notion

of optimality is with respect to a speci�ed dictionary construction� For instance� the algorithm using the

LZ�
 dictionary together with �exible parsing inserts to the dictionary the exact same phrases as would the

original LZ�
 algorithm with greedy parsing� Thus� it entirely circumvents the question regarding the choice

of the dictionary construction scheme� On the other hand� it is relevant to any such scheme that is selected�

We present a novel data structure to implement the �exible parsing method e�ciently� in time and space

competitive with greedy parsing� For LZ�
 or LZW schemes� it runs in amortized O��� time per character�

and requires space proportional to the number of phrases in the dictionary�

In order to consider the issue of optimality� it is imperative to have a formal model that can represent

dynamic dictionary compression algorithms� We introduce such model� M� in which for every compression

algorithm C described by M� there is a corresponding decompression algorithm C� that is guaranteed to

correctly decompress any string previously compressed by C� An important property of C� is that it depends

only on the dictionary construction method� and not the parsing scheme� Hence� for two algorithms which

have identical dictionary construction rules yet di�erent parsing methods� the decompression algorithms

suggested by the model M are identical� Based on this model� we also provide a formal de�nition of
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latency in dictionary compression algorithms� and specify conditions for considering an algorithm on�line�

An interesting aspect of the model M is that it can be used to succinctly describe substantially all known

dictionary compression algorithms in the literature� and it may be useful to describe and study alternative

dictionary construction schemes� It also turns out that while the model speci�cation is quite detailed and

elaborated� it allows for rather concise proofs regarding the optimality of the parsing methods�

We generalize the optimality result of �exible parsing by showing that k�step greedy parsing �which is

greedy parsing with k � � lookaheads� is optimal for dictionaries D satisfying the �k����overlap property� in

which for any given string Rwhich can be obtained by concatenating k�� phrases fromD with overlaps� there

also exist at most k� � phrases whose concatenation without overlaps gives R� One interesting observation

is that for any static dictionary scheme with the �k � ���overlap property� optimal parsing implies certain

robustness� the di�erence in the number of phrases obtained by an optimal parser for two strings with edit

distance e is O�e��

Finally� we show that greedy parsing is optimal for dictionaries satisfying the su�x property� This

immediately implies that for any input string� LZ�� algorithm obtains the minimum number of phrases

�though not necessarily minimum number of bits� possible by any dictionary compression method� partially

resolving an open problem regarding the general case 	Ziv
���

� A model for on�line dictionary compression algorithms

In order to have a formal study of on�line dictionary compression algorithms� and in particular consider

questions about the optimality in the parsing method� it is required to specify precisely the algorithmic

framework� A recent paper 	SR
�� describes a �rather informal� framework for dictionary compression as

well� This framework is not suitable to our needs� since it cannot express some of the popular compres�

sion algorithms� moreover� algorithms that can be expressed by this framework do not necessarily have a

corresponding decompression algorithm�

In this section� we present a concrete model M that enables one to describe all known dictionary com�

pression algorithms in the literature� including LZ�
� LZW� LZ��� Miller�Wegman and Yokoo schemes� The

model will be used in the following sections to present and analyze the �exible parsing and the k�greedy

parsing scheme�

In the proposed model M� a dictionary compression algorithm C takes as input an alphabet �� and a

�nite string T which consists of characters from �� Denote by T 	h� the hth character of T � starting with

h � �� denote by T 	h � j�� the substring of T which starts at the hth character and extends until the jth

character� We denote the length of T by n� hence T � T 	� � n� ���

The compression algorithm C uses and possibly maintains a set of substrings D� denoted dictionary�

The elements of D are called phrases� and for each phrase S in D there is a unique label C�S�� which is

called the codeword that corresponds to S� The output of C is a sequence of codewords which is called the

compressed text and denoted as C�T �� The decompression algorithm C� takes as input a compressed text

C�T �� and maintains the same dictionary D as the compression algorithm C� It replaces the codewords in

C�T � to reconstruct the text T � We describe below both the compression and decompression algorithms�

Appendix A�� provides the concrete realizations of several popular compression algorithms� using the model

M�
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��� Incremental dictionary compression

The compression algorithm C can have one of the two types of dictionaries� static or dynamic� If C is a

static dictionary algorithm� then both the substrings in D and their corresponding codewords do not change

during the execution of C� If C is a dynamic dictionary algorithm� then during its execution C inserts some

of the substrings of T into D� C may also update some of the codewords of existing phrases in D�

The compression algorithmC parses the text T incrementally� starting with T 	��� C consists of n iterations�

If C is dynamic� then in each iteration i it reads T 	i�� �posslibly� updates D� and then �possibly� parses T

further for outputting codewords� We denote by Di the state of the dictionary D at the end of iteration i�

If C is static then D remains unchanged�

An important aspect of the model is that it distinguishes between the parsing process for constructing

the dictionary� and the parsing process for output computation� We call the �rst process dictionary parser

and denote it as Pd� we call the second process output parser and denote it as Po� A schematic �gure with

the di�erent components of the compression algorithm C is given in Figure ��

DPd

output: C(T)

output parserdictionarydictionary parser

input:  T

Po

Figure �� Model M for incremental dictionary compression algorithm C�

The purpose of the model is to give a general framework for describing incremental dictionary compression

algorithms by specifying what Pd and Po do in each iteration� We �rst describe the general operations of

Pd and Po at iteration i�

The dictionary parser Pd has three steps�

��� Pd determines some characters T 	j�� � � j � i� as starting positions of new dictionary phrases� and

assigns them codewords� we call the dictionary phrases whose ending positions are yet to be determined the

developing dictionary phrases�

�E�g� let T � a� b� c� d� e� � � �� in iteration �� Pd determines T 	�� � c as the starting position of a developing

phrase and assigns it the codeword 
��

��� Pd determines some characters T 	k�� k � i as ending positions of some of the developing dictionary

phrases� whose starting positions were determined in earlier iterations�

�E�g� �cont�d� in iteration �� Pd determines T 	�� � d as the ending position of the phrase with codeword 
�

resulting with C�cd� � 
��

�E�g� �cont�d� the phrase T 	� � �� � c� d is in D�� � i� � � j�� for all � � i � j��

��� Pd may update the codewords of existing dictionary phrases�

�E�g� �cont�d� in iteration �� say� Pd may change the codeword of �cd� from 
 to �� �

Given integers l� � l we denote by D�l�� l� the set of all dictionary phrases whose starting positions are

determined before iteration l�� and whose ending positions are determined before iteration l� Let T 	� � c�i��

be the compressed pre�x of T in iteration i of the algorithm�

The output parser Po has three steps�

��� Po reads the character T 	i��
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��� Po identi�es a �possibly empty� substring that we denote by Ti� where Ti � T 	c�i � �� � � � c�i��� for

some increasing function c�� for which c�i � �� � c�i� � i �if the substring is empty then c�i � �� � c�i��� If

Ti is a non�empty string then Po partitions it into some g�i� substrings� T �
i � T

�
i � � � � � T

g�i���
i � Each substring

T �
i � T 	c��i� � � � c����i��� for some c��i� � c��i� � � � � � cg�i����i� � cg�i�� where c��i� � c�i � �� and

cg�i��i� � c�i�� The partition is under the constraint that for � � � � g�i�� T �
i is in D�c����i� � �� c��i���

��� Po outputs the codewords C�
i � C

�
i � � � � C

g�i�
i � where C�

i corresponds to the substring T �
i in D�c����i� �

�� c��i���

�E�g� �cont�d� in iteration �� Po may identify T 	� � �� � c� d� and without further partitioning may directly

output its corresponding codeword 
��

Greedy parsing� In greedy parsing �with no lookaheads�� the objective is to maximize at each iteration

the length of the pre�x of T which is compressed until that point� Speci�cally� Po selects c�i� to be i � �

�i � ��� when T 	c�i� �� � � � i� �� is a phrase in Di��� but T 	c�i� �� � � � i� �� is not a phrase in Di� and

always assigns g�i� � ��

One feature of the model is that any compression algorithm C that can be described by the above model�

has a corresponding decompression algorithm C�� Given the compressed version C�T � of any string T � C�
is guaranteed to correctly compute T � We describe in the next subsection how C� works�

��� Incremental dictionary decompression

The input C�T � to the decompression algorithm C� is a sequence of codewords output by C�
C�
� � C

�
� � � �C

g���
� � � �C�

i � C
�
i � � �C

g�i�
i � � �� After reading each codeword Cl

i � C� replaces it with its correspond�

ing phrase T l
i � while building the exact same dictionary D that C builds for T � A schematic �gure with the

di�erent components of the decompression algorithm C� is given in Figure ��

compressed output: C(T)

dictionary parser dictionary output decoder

original input: T

Pd D

Figure �� The incremental dictionary decompression C��

The decompression algorithm C� maintains the invariant that after the codeword C�
i from the input is

decoded� the pre�x of the text already decompressed is T 	� � c��i��� The operation of C� works as follows�

By de�nition� T �
i is the phrase that corresponds to C�

i � Let T 	j � k� be an identical phrase to T �
i in D� If

T 	j � k� is in Dc����i�� then clearly C� can immediately replace C�
i with T �

i � Otherwise� by the description

of the model M� T 	j � k� should be in D�c����i� � �� c��i��� Therefore the value of j could be computed

once T 	� � c����i�� is completely available� which is the case by the invariant above� In this case� starting

from T 	j�� C� concatenates the characters T 	j � ��� T 	j � ��� � � � one by one �without knowing the value of

k� to the end of the already decompressed pre�x of T � Before C� reaches T 	k�� it is guaranteed to be able

to deduce the value of k� hence guaranteeing the correct decompression of any string compressed by C�

Lemma ��� �correct decompression� Given a dictionary compression algorithm C that can be described

by the model M� its corresponding decompression algorithm C� as described above is guaranteed to decom�

press the compressed version of any input string T �
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Proof� We show that in the procedure described above C�correctly computes the value of k before reaching

T 	k�� Indeed� in the model M we insist that a substring T 	c����i� � � � c��i�� is parsed and replaced by its

codeword C��i� �in the case of M � T 	j � k�� only if it is in D�cl���i� � �� cl�i��� By de�nition� T 	� � cl�i�� is

identical to the concatenation of T 	� � cl���i�� with T 	j � k�� hence once C� adds all characters of T 	j � k�

to the end of T 	� � cl���i�� �the already decompressed pre�x of T �� D�cl���i� � �� cl�i�� would be completely

computed� �

From Lemma ��� we obtain�

Corollary ��� �identical decompression� The decompression algorithm that corresponds to a given com�

pression algorithm only depends on its dictionary construction scheme� and is independent from its output

parser� Therefore� two compression algorithms which have the same dictionary construction scheme have the

same corresponding decompression algorithm�

Given the compression algorithm C and the input T 	� � n���� let the string T 	c�i��� � i�� the uncompressed

portion of T in iteration i� be denoted as the bu�ered string in iteration i� and ��i� � i� c�i�� the size of the

bu�ered string� be denoted as the delay of C in iteration i� We denote by �� the maximumdelay of C over all

iterations on input T � We call an algorithm on�line only if for any input T and at any iteration i� the bu�ered

string T 	c�i� � � � i� is later parsed to at most some � phrases� where � is a constant independent of the

length of T � On�line performance is particularly interesting in the context of communications applications�

� Optimal parsing in pre�x dictionaries

Consider a dynamic dictionary compression algorithm C� described in the modelM� with a dictionary parser

Pd that satis�es the pre�x property�

Theorem ��� Let m be a su�ciently large integer� If the output parser Po is a greedy parser then there

exists a string T which can be parsed to O�m� phrases� whereas the greedy parsing results with ��m����

phrases�

Theorem ��� There exists a dynamic parsing method Po that computes the optimal number of phrases with

respect to Pd� It runs in amortized O��� time per character� and requires space proportional to the number

of phrases in the dictionary�

Theorem ��� is proved in Section ���� Theorem ��� is proved in Section ��� and Section ����

��� Limits of greedy parsing

The following lemma shows that for LZW dictionary construction scheme� greedy parsing can be far from

the optimal�

Lemma ��� There are input strings which can be parsed to some O��� phrases� and be represented by

O�� log �� bits by using the LZW dictionary� for which LZW scheme with greedy parser obtains �������

phrases and outputs ������ log �� bits�
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Proof� We �rst construct such a string T which uses an arbitrarily large dictionary � � f�� �� � � � � k� k �
�� k � �� � � � � k �

p
kg� where k is a prime number� Let R be the substring �� � � � � k� and let Ri denote the

concatenation of i copies of the string R� Let S be the substring �� �� �� �� �� � � � � �� �� � � �� k� and let T be the

concatenation of �� S� k � �� �� R�� �� k� �� �� R�� �� � � � � k�
p
k� �� Rpk��� ��

The LZW dictionary scheme �rst processes the substring S� and inserts the substrings

����� ����� ����� ������ ����� � � �� ��� � � �k� in D with respective codewords k �
p
k� �� k�

p
k � �� � � � � �k� ��

Then it processes the substrings �k � i� �� Ri� �� for i � �� � � � �
p
k � �� for each such substring it �rst inserts

in D� ���k� i��� then inserts ��k � i��� � � � i� ��� and because k is prime� then inserts all substrings of Ri of

size i� �� Altogether there will be k � � insertions to D�

Notice that initially the size of the dictionary k �
p
k � �� and hence each possible codeword requires

more than log k bits for a unique representation� The maximum size of the dictionary is k����O�k�� hence

no more than ����� logk �O��� bits are required to represent a codeword at any iteration�

For each substring inserted in D� LZW outputs one codeword� hence the total number of codewords

output by LZW for T is at least k���� This implies that the total number of bits it outputs is at least

k��� log k�

An optimal parser still obtains �k�� phrases for S� however it obtains only one phrase for every occurrence

of R in T � Hence the number of phrases it outputs for each Ri is no more than i� �� and the total number

of phrases it outputs for T is no more than �k� and the total number of bits it outputs is no more than

�
���k log k � O�k��

The proof for binary strings �hence for any constant size �� follows after replacing all characters

�� �� � � � � k �
p
k with their binary representations� and adding to the beginning of T a training sequence

which would insert all binary substrings of size log�k �
p
k� to D� �

Lemma ��� There are input strings which can optimally be parsed to O��� phrases� and be represented by

O�� log �� bits� for which LZ�	 obtains ������� phrases and outputs ������ log �� bits�

Proof� The proof is similar to that of lemma ���� once T is set to be the concatenation of

S� �� R�� �� R�� � � � � �� Rpk� �

��� Optimality results for �exible parsing

A parsing scheme of particular interest is the ��step greedy parsing� which we call the �exible parsing� FP�
Rather than greedily parsing the longest advancing pre�x of the uncompressed portion of the text� FP uses

the �exibility of choosing the pre�x which results in the longest advancement in the next iteration� We

demonstrate in Table A�� and Figure � how the �exible parser can be used with the dictionary parser Pd

of the LZW compression algorithm on the same input used in Table �� The execution of the corresponding

decompression algorithm on the output of the compression algorithm is demonstrated in Table A���

A natural question is therefore whether FP is merely a �rst level improvement towards better parsing

schemes� Surprisingly� it turns out that FP obtains phrase optimality� and cannot be further improved with

respect to dictionary construction schemes with the pre�x property�

Lemma ��� �optimality for FP� For any dictionary construction scheme Pd within the model M which

builds a dictionary that satis�es the pre�x property at all iterations� �exible parsing obtains the minimum

number of phrases out of any input string T �
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Proof� Let Pd be a dictionary construction scheme that builds a dictionary satisfying the pre�x property

at all iterations� and let C and C� be the compression algorithms that respectively use FP � and any other

parsing scheme Po� together with Pd� Our claim is that the number of codewords output by C on any given

input T is at most that output by C��
We show by induction on i that e��cFP�i�� � cPo

�i�� The induction step for i�� is proven as follows� Since

T 	cFP�i��� � e��cFP�i��� is inD	cFP�i��� � e��cFP�i���� the pre�x property implies that T 	cFP�i��� � cPo
�i��

is in D	cFP�i��� � e��cFP�i���� Therefore by de�nition of the �exible parsing e��cFP�i���� � cPo
�i���� �

From the above lemma we can immediately infer the following�

Corollary ��	 �compression optimality� If a given Pd builds a dictionary which at every iteration 
��

satis�es the pre�x property 

� represents each codeword with the same number of bits� then the output of

the compression algorithm C�� which uses Pd and FP consists of the minimum number of bits achievable by

any compression algorithm C that uses Pd�

Corollary ��
 �compression optimality w�r�t� LZ
��LZW� Among the compression algorithms using

the LZ�	 or LZW dictionary construction schemes� the ones which use FP� outputs the minimum number

of bits on any input string�

We note that parsing methods based on lookaheads were considered in several contexts in compiler theory

and recently by Horspool 	Hor
��� for LZ�
 compression� However� the algorithm in 	Hor
�� builds a di�erent

dictionary from LZ�
 and hence can perform worse than the LZ�
 method �the number of codewords output

by this algorithm can be quadratic with that of the LZ�
 algorithm�� Also� it runs in time quadratic with

the input size�

��� An e�cient data structure for �exible parsing

It is possible to implement FP using the su�x trees data structure �see 	RPE
�� for the use of su�x trees

in on�line compression algorithms�� However� the space requirements of a su�x tree is substantial� it is

proportional to jT j� jDj� where jT j is the number of characters in the input string� and jDj is the number

of phrases in D� In contrast� the space requirement of our data structure �as well as the standard trie

used for greedy parsing� is proportional to the number of dictionary entries� In the case of LZW or LZ�
�

jDj � O�jT j� log jT j� and jDj � ��
p
jT j� 	Sto

��

In this section we describe a more e�cient data structure to implement the FP technique� Similar to

su�x trees� our data structure enables two basic operations� ��� insert a phrase ��� search for a phrase� The

running time for performing each of the operations is identical in both the su�x tree and our data structure�

However� the space requirement of our data structure is only O�jDj�� much smaller than that of the su�x

tree�

The standard data structure used in many compression algorithms is a compressed trie T which is a rooted

tree with the following properties� ��� each node with the exception of the root represents a dictionary phrase�

��� each edge is labeled with a substring of characters� ��� the �rst characters of two sibling edges can not be

identical� ��� the concatenation of the substrings of the edges from the root to a given node is the dictionary

phrase represented by that node� ��� each node is labeled by the codeword corresponding to its phrase�

Dictionaries with pre�x properties� such as the ones used in LZW and LZ�
 algorithms� build a regular trie






rather than a compressed one� The only di�erence is that in a regular trie the substrings of all edges are one

character long�

Our data structure still builds the trie� T � of phrases as described above� In addition to T � it also

constructs T r� the compressed trie of the reverses of all phrases inserted in the dictionary� Given a string

A � a�� a�� � � � � an� its reverse Ar is de�ned to be the string an� an��� � � � � a�� a�� Therefore for each node v

in T � there will be a corresponding node vr in T r which represents the reverse of the phrase represented by

v�

The data structure described above is used by FP in the following context� Given a string T 	k � l�� where

l � e��k� the maximal ��extension of position k� this data structure can e�ciently compute the maximum

position k � i � l� for which e��i� � e��m� for all k � m � l� We use the following lemma to compute i

e�ciently�

Lemma ��� For any given phrase A in D� the parent of the node for Ar in T r represents the longest su�x�

B� of A that is in D�

Proof� If a pre�x of Ar is represented in T r as a node� then it should be an ancestor of Ar by the

construction of T r� Also each ancestor of the node for Ar represents a pre�x of A which is in the dictionary�

by de�nition� Clearly the parent of the node for Ar is the longest one among them� �

Given T 	k � l�� the computation of i is performed in iterations� In the �rst iteration i is assigned to k� we

also note that e��i� � l by de�nition� By using the above lemma� we compute in constant time� the longest

su�x T 	i� � e��i�� of T 	i � e��i��� which is in D� for which i� � l� We make the assignment i � i�� and proceed

with the next iteration� The algorithm terminates if at any iteration no such i� exists�

Lemma ��
 The algorithm described above correctly computes the value of i�

Proof� The value of i computed by the algorithm above clearly satis�es k � i � l� Moreover� ��� there

can not exist a j� such that k � i � j � l� and e��j� � e��i�� as the algorithm would not have terminated at

this value of i� and ��� there can not exist a j� such that k � j � i � l� and e��j� � e��i�� as the algorithm

would have terminated before reaching i� A contradiction� �

Running time� Note that each character of the input is processed by the algorithm only once� hence the

running time of the algorithm will be O��� per character for performing the searches� The time for each

insertion is proportional with the number of characters in the inserted phrase� Hence the total running time

of the algorithm would be O�jT j� jDj��
Space considerations� The space requirement of our data structure is competitive with the original trie

approach� For e�cient representations of the substrings Ar of the edges in the reverse trie T r we keep

pointers at each such edge to the beginning and ending nodes of the substring A in the original trie T �

Hence the space required for our data structure is O�jDj��

� Optimality of greedy parsing and k�step greedy parsing

In this section we identify dictionaries �which may not have the pre�x property� that can be parsed optimally

by k�step greedy parsing� This generalized the optimality result of �exible parsing for pre�x dictionary� We






also show that �standard� greedy parsing provides optimal parsing for su�x dictionaries� which have some

interesting implications for the LZ�� scheme�

��� Optimality results for greedy parsing

The theorem below describes under which conditions greedy parsing with no lookaheads� GR� achieves

optimality�

Theorem ��� �optimality for GR� For any dictionary construction scheme Pd which builds a dictionary

that satis�es the su�x property at all iterations� GR obtains the minimum number of phrases out of any

input string T �

Proof� Let Pd be a dictionary scheme with the su�x property� and let C� and C� be the compression

algorithms that respectively use GR and some other parsing scheme Po� together with Pd� We show that

the number of codewords output by C on any given input T is at most that by C��
We prove by induction on i that cGR�i� � cPo

�i�� The induction step for i� � is proven as follows� Since

T 	cPo
�i� � � � cPo

�i � ��� is in D	cPo
�i� � � � cPo

�i � ���� the induction hypothesis and the su�x property

imply that T 	cGR�i� � � � cPo
�i � ��� is in D	cPo

�i� � � � cPo
�i � ���� and hence in D	cGR�i� � � � cPo

�i � ����

Therefore by de�nition of the greedy parsing cGR�i� �� � cPo
�i � ��� �

Corollary ��� Greedy parsing is optimal for the dictionary construction schemes of LZ�� and the Yokoo�

Lemma ��� �similarity of FP and GR� Given a dictionary scheme Pd which builds a dictionary that

satisfy the su�x property at all iterations� the compression algorithms C and C�� which respectively use GR
and FP together with Pd� parse any input string T identically�

Proof� We prove by induction on i that cGR�i� � cFP�i�� The induction step for i�� is proven as follows�

Because of the su�x property and the de�nition of greedy parsing� the set L�i � �� of candidate indices

consists of l � fcGR�i�� � � � � cGR�i � ��g� and the maximum extension of cGR�i � �� is greater than or equal

to that of any other candidate index in L�i � ��� �

Corollary ��� FP is optimal for dictionaries with the su�x property�

Theorem ��� The LZ�� algorithm 
with greedy parsing� parses any given input string to the minimum

number of phrases possible by any dynamic dictionary scheme�

Proof� Let C be an alternative dictionary algorithm which uses the parsing scheme Po and the dictionary

scheme Pd� We prove by induction on i that cLZ���i� � cPo
�i�� The induction step for i � � is proven as

follows� Since T 	cPo
�i��� � cPo

�i���� is in D	cPo
�i��� � cPo

�i����� the induction hypothesis and the su�x

property imply that T 	cLZ���i��� � cPo
�i���� is in DPo

	cPo
�i��� � cPo

�i����� and hence �as the dictionary

of LZ�� includes all substrings of T 	� � cLZ���i��� in DLZ��	cLZ���i� � � � cPo
�i� ���� Therefore by de�nition

of the greedy parsing cLZ���i � �� � cPo
�i� ��� �

��



��� Greedy parsing with k steps lookahead

Recall that greedy parsing maximizes at each iteration the length of the compressed pre�x of the input �

Greedy parsing with k lookaheads� or in short k�step greedy parsing� is based on the premise that by being

non�greedy in iteration i� one may get better progress in some later iteration i� k�

To de�ne k�step greedy parsing formally� we �rst give the de�nition of what we call the maximal k�

extension of a character� In order to provide some better intuition� we �rst de�ne this notion in the context

of static dictionaries� and then generalize it for the dynamic dictionaries�

Maximal k�extension of a character for static dictionaries� Given a static dictionary D� and an input

string T � the maximal k�extension of a character T 	i�� is de�ned to be the character T 	ek�i�� �ek�i� � i� such

that T 	i � ek�i�� is the longest pre�x of T 	i � n� �� which could be parsed to at most k phrases from D�

Maximal k�extension of a character for dynamic dictionaries� Given a character T 	j�� � � j � n���

its maximal k�extension is the character T 	ek�j��� for which T 	j � ek�j�� is the longest pre�x of T 	j � n � ��

which can be parsed into at most k phrases T 	j� � j� � ��� T 	j� � j� � ��� � � � � T 	jk�� � jk � ��� where j� � j�

jk � � � e�j�� and for all � � i � k� T 	ji � ji�� � �� is in D�ji� ji�� � ���

k�step greedy parsing� Given a su�x T 	i � n���� k�step greedy parsing parses its following pre�x� Consider

the substring T 	i � � � e��i��� where T 	e��i�� is the maximal ��extension of T 	i�� Among the characters of

T 	i� � � e��i��� consider the ones T 	m�� for which the substring T 	i � m � �� is a phrase in D� Suppose T 	j�

is the rightmost character among all such T 	m�� whose maximal k�extension� T 	ek�j��� is the furthest� i�e��

ek�j� is maximum among k�extensions of all such characters T 	m� in T 	i� � � e��i�� for which T 	i � m� �� is

a phrase in D� Then� k�step greedy parsing chooses to parse T 	i � j � ���

��� Properties for k�step greedy parsing

In this section we show our most general optimality result for parsing� that k�step greedy parsing is optimal

for dictionary schemes that satisfy the �k � ���overlap property� We then concentrate on robustness of

optimal parsers to small changes in the input�

Informally a dictionary D is said to satisfy the ��overlap property if for any given string R that can be

obtained by concatenating � phrases with overlaps� there also exists at most � phrases whose concatenation

without overlaps gives R� We provide the formal de�nition of this property below�

��overlap property� A dictionary D is said to have the ��overlap property if there exists phrases Q�� � � � � Q�

in D such that Qj � Pj� Sj� Pj�� for � � j � �� and Q� � P�� S�� for some possibly empty strings

P�� � � � � P�� then there should exist phrases Q��� � � � � Q
�
m in D� for which m � � and Q��� � � � � Q

�
m � R �

P�� S�� � � � � P���� S����

In the theorem below� we show that the � � �k � ���overlap property is crucial to a dictionary for which

k�step greedy parsing is optimal�

Theorem ��	 �optimality for k�step greedy parsing� Consider a dictionary construction scheme Pd

such that for all � � i � j � n � �� the dictionary D�i� j� satis�es the �k � ���overlap property� Then for

any string T � the k�step greedy parsing method Po obtains an optimal parsing with respect to Pd�

Proof� Let Pd be a dictionary scheme with the �k � ���overlap property and let C be the compression

algorithm that uses Pd and k�step greedy parsing� Let C� be a compression algorithm that uses Pd with an

��



updated �exible parsing FP�� which is de�ned as follows� given a su�x T 	i � n� ��� FP� parses the longest

pre�x T 	i � j � �� such that e��j� is the maximum among all e��m� for which T 	m� is in T 	i � � � e��i���

regardless of whether T 	i � j � �� is in D or not� Then C� represents T 	i � j � �� with the ��tuple C�T 	i �

e��i���� �e��i� � j��

Notice that due to Theorem ���� m� the total number of phrases obtained by C� on T � is at most that

obtained by an optimal parser for D on T � Also notice that m is equal to the number of phrases obtained by

C on T due to the �k����overlap property� Hence� the number of phrases obtained by C on T is optimal� �

Robustness� Given two strings T � and T �� the edit distance between them is de�ned to be the minimum

number of characters that are needed to insert in� delete from� and replace in T � in order to obtain T �� The

following lemma states that the compression algorithm C that uses a given static dictionary D which satis�es

the �k � ���overlap property� and the k�step greedy parser is robust to small changes in input text�

Lemma ��
 �phrase robustness� Let D be a static dictionary satisfying the �k � ���overlap property for

some k� Let C be the compression algorithm which uses D and k�step greedy parser� The di�erence in the

number of codewords output by C for any two input strings T and T � whose edit distance is e is O�e��

Proof� If the edit distance between T and T � is e� then we can write T � S�� c�� S�� c�� � � � � ce� Se��� and

T � � S�� c
�
�� S�� c

�
�� � � � � c

�
e� Se��� such that for each k� Sk is a possibly empty substring and ck and c�k are

di�erent characters� one of which can be null� The proof follows from the fact that for any given substring

Sk� if Sk	i � j� is a phrase parsed by C in T � there can not exist phrase Sk	i
� � j�� parsed by C in T � for which

i� � i and j � j�� i�e� Sk	i � j� is a proper substring of Sk	i� � j��� �

� Conclusions

We considered the question of optimality in parsing� which is relevant to any dictionary scheme used in

dynamic dictionary compression algorithms� Our main result focus on dictionaries that satisfy the pre�x

property� We show that the standard greedy parsing can be far from optimal in general� and in particular

for the important schemes of LZ�
 and LZW� On the positive size� we provide a scheme� FP� that is optimal

for any given dictionary scheme that has the pre�x property� We also present a data structure that can

support an implementation that is competitive with that of greedy parsing�

We show� on the other hand� that greedy parsing is optimal for dictionaries with the su�x property�

and in particular for the LZ�� scheme� From a practical point of view� the main contribution of the FP
scheme is for inputs for which the LZ�
 or LZW schemes provide better compressibility than to LZ���

Candidate classes of inputs include sequences of random �biased� bits� and an archive of DNA sequences� In

an experimental research in progress 	MRS

� we consider such classes� Our preliminary results indicate that

for the pseudo�random sequences� FP with the LZW dictionary scheme results with about ��� improvement

in compressibility over greedy parsing with the same dictionary �unix compress�� and about ��� over LZ��

�unix gzip�� For DNA sequences the respective improvements are about �� and about ���� �We expect

more extensive results to be available shortly at url http���www�math�tau�ac�il��matias�fp��

We identi�ed classes of dictionaries that can be parsed optimally by k�step greedy parsing� It remains

as an open problem to �nd universal parsing schemes for other types of dictionaries� It is interesting to

note� however� that any dictionary D implicitly de�nes a dictionary D� which consists of all the codewords

��



of D and all their pre�xes �i�e�� D� is a pre�x dictionary�� A codeword in D� can be represented by a pair

h�� �i� where � is a codeword from D and � is the length of the pre�x of �� This representation is quite

e�cient for all for dictionaries in which the number of codewords is signi�cantly larger than the lengths of

the codewords� Clearly� the number of phrases in an optimal parsing for D� �which can be obtained using

FP� would be at most the number of phrases in an optimal parsing for D�
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A Appendix

A�� Properties of LZ�	
 LZW and LZ�� algorithms

Lempel Ziv algorithms are the most common lossless compression methods� The LZ�
 �or more accurately

LZW� scheme is the basis for UNIX compress utility and is used in the most popular fax and modem

standards� LZ�� algorithm is the basis for all zip variants including MS�Windows win�pk�zip� and UNIX

gnu�zip� Both LZ�� and LZ�
 algorithms use greedy parsing and dynamic dictionary construction methods�

Both the LZ�� and LZ�
 �in addition to LZW� algorithms are ��� asymptotically optimal in the infor�

mation theoretic sense� ��� are very fast� with O��� processing time per input character� ��� require a single

��



pass over the input� and ��� can be applied on�line� The LZ�
 �and the LZW� can be implemented by the

use of simple trie data structure whose space complexity is proportional to the size of the output� In contrast

LZ�� builds a more complex su�x tree in an on�line fashion� whose space complexity is proportional to the

size of the input text�

Although it is generally accepted that LZ�� is usually better for compressing excerpts of natural or

computer languages� LZ�
 �or LZW� performs better in many other domains� In fact a number of recent

theoretical results show that LZ�
 approaches the asymptotic optimality faster than LZ��� the average

number of bits output by LZ�
 or LZW� for the �rst n characters of an input string created by an i�i�d�

source is only O��� logn� more than its entropy 	JS
�� LS
��� A similar �and stronger� result for more

general� uni�lar� sources has been obtained by Savari 	Sav
��� For the LZ�� algorithm� this redundancy is as

much as O�log logn� logn� 	Wyn
��� Another recent result by Kosaraju and Manzini 	KM
�� states that for

low entropy strings� the worst case compression ratio obtained by the LZ�
 algorithm is better �by a factor

of 
��� than that of the LZ�� algorithm� The LZ�
 and LZW algorithms are also of interest in several other

contexts� including data prefetching 	VK
�� KV
��� and DNA sequence classi�cation 	FNS�
���

We note that there are quite a few algorithms that were proposed to improve the compression ratio

attained by the LZ algorithms� and were presented as �on�line �often not according to our de�nition�� All

of these algorithms� including the ones by Miller and Wegman 	MW
��� and by Yokoo 	Yok
��� focus on

the e�ect of alternative dictionary construction schemes �see Section � for a detailed description of their

dictionary construction schemes�� and use greedy parsing for output generation�

A�� Concrete realizations of popular compression algorithms

We provide several concrete realizations of Pd and Po in some well known dictionary compression algorithms�

For all these algorithms� Po is the greedy parsing� We therefore need only to describe the dictionary parser

Pd�

A���� LZW algorithm

In LZW� D� consists of all possible single character substrings� The codeword of a single character substring

	 is j � �� where j is the lexicographic order of 	 in the alphabet �� In a given iteration i � �� Pd checks if

T 	c�i� �� � � � i� is in Di� Only if it is not the case� then Pd inserts T 	c�i� �� � � � i� in the dictionary with

the codeword jDij� Otherwise no action is taken�

We note that LZW is an on�line algorithm according to our de�nition as � � ��

We demonstrate how the LZW algorithm works on an example in Table �� and Figure ��

A���� LZ
� algorithm

In the LZ��
 algorithm D� again consists of all possible single character substrings� However� the codewords

of those substrings are a bit di�erent� Given a phrase� T 	k � l�� its codeword is a pair consisting of ��� a

so�called enumeration of T 	k � l � ��� and ��� the lexicographic rank of T 	l� in ��

Initially only the null string has an enumeration� which is �� Therefore the codeword for single character

substring 	 is ��� j�� where j is the lexicographic rank of 	 in �� In a given iteration i � �� Pd checks if

T 	c�i � �� � � � i� appears in Di� Only if it is not the case� then Pd enumerates T 	c�i � �� � � � i � ��� with

��



e � maximum enumeration� �� Finally� for each 	 � �� Pd inserts the substring T 	c�i� �� � � � i� ��	 in

D� assigning it the codeword �e� j�� where j is the lexicographic rank of 	 in ��

Notice that LZ��
 is an on�line algorithm as � � ��

A���� LZ�

 algorithm

In the LZ��� algorithm D� consists of all characters 	 � �� The codeword for the character 	 is the ��

tuple �j�j � j� ��� where j is the lexicographic order of 	 in �� In a given iteration i � �� Pd identi�es

the position T 	i� as the starting point of n � i � � developing phrases� and assigns them the ��tuple ��� ���

where the �rst entry denotes the relative location and the second entry denotes the length of the phrase� It

then identi�es the position T 	i� as the ending position of i� � developing phrases� whose starting characters

are �� �� � � � � i� Finally� it replaces the codeword �j� k� of each developing phrase in the dictionary with the

codeword �j � �� k� �� and each non�developing phrase in the dictionary with the codeword �j � �� k��

A���� Miller�Wegman algorithm

In the Miller Wegman algorithm�D� again consists of all possible single character substrings� The codeword

of a single character substring 	 is j � �� where j is the lexicographic order of 	 in the alphabet �� In a

given iteration i� �� Pd checks if T 	c�i� ��� � � i� is in Di� If it is not the case then it checks if there exists

a j � i� such that T 	c�i � �� � � � j� is in Dj � T 	j � � � i� is in Di� but T 	c�i � �� � � � j � �� is not in Dj���

Only if it is the case� then Pd inserts T 	c�i� �� � � � i� in the dictionary with the codeword jDij� Otherwise

no action is taken�

A���� Yokoo algorithm

Yokoo describes several schemes in 	Yok
��� In all such schemes� D� consists of all possible single character

substrings� Again� the codeword of a single character substring 	 is j � �� where j is the lexicographic order

of 	 in the alphabet �� In a given iteration i� Pd checks if T 	c�i� �� � � � i� is in Di� Only if it is not the

case� then in the �rst scheme described in 	Yok
��� Pd inserts each substring T 	j � i� for c�i� �� � j � i� in

the dictionary with the codeword jDij� j � c�i� ��� �� unless T 	j � i� is already a phrase in the dictionary

� otherwise no action is taken� In the latter schemes� among the substrings T 	j � i� for c�i� �� � j � i� only

a select few �such as the shortest one which is not in the dictionary� are inserted in the dictionary�

��



A�� Examples

We give here some examples for LZW� and LZW�FP algorithms�

Iteration� h T 	h� Dh�� nDh c�h� Output

� a ! �� !

� b ab � � � C�T 	� � ��� � �

� a ba � � � C�T 	� � ��� � �

� b ! � !

� a aba � � � C�T 	� � ��� � �

� b ! � !

� a ! � !

� a abaa � � � C�T 	� � ��� � �


 b ! � !


 a ! � !

�� a ! � !

�� b abaab � � �� C�T 	� � ���� � �

�� a ! �� !

�� a baa � � �� C�T 	�� � ���� � �

�� a aa � 
 �� C�T 	�� � ���� � �

�� b ! �� !

�� ! ! �� C�T 	�� � ���� � �

Table �� LZW compression algorithm for T � a� b� a� b� a� b� a� a� b� a� a� b� a� a� a� b� We have � � fa� bg�
D� � fa � �� b � �g� and Dh�� n Dh represent the phrases added to D in iteration h� with its corresponding

code word� The output is� C�T 	� � ���� � �� �� �� �� ������ ��

��



Iteration� i T 	i� Di�� nDi c�i� Output

� a ! �� !

� b ab � � �� !

� a ba � � � C�T 	� � ��� � �

� b ! � !

� a aba � � � C�T 	� � ��� � �

� b ! � !

� a ! � !

� a abaa � � � C�T 	� � ��� � �


 b ! � !


 a ! � !

�� a ! � !

�� b abaab � � � C�T 	� � ��� � �

�� a ! � !

�� a baa � � � !

�� a aa � 
 
 C�T 	� � 
�� � �

�� b ! 
 !

�� ! ! �� C�T 	�� � ���� � �� C�T 	�� � ���� � �

Table �� LZW�FP algorithm� We demonstrate how the �exible parser Po can be used with the dictionary

parser Pd of LZW As in the example of Table �� let T � a� b� a� b� a� b� a� a� b� a� a� b� a� a� a� b� � � fa� bg and

D� � fa � �� b � �g� The output of LZW dictionary with Flexible Parsing� C�T 	� � ���� � �� �� �� �� �� �� ��

Comparing the to the output of LZW algorithm in Table �� we observe that the FP output is one codeword

less �� compared to 
�� due to its more e�cient parsing of T 	� � ���� Speci�cally� by parsing a shorter pre�x

of T 	� � ��� �T 	� � 
� rather than T 	� � ����� FP parses a much larger string� T 	�� � ��� later� which is

represented by two codewords by greedy parsing�

�
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Figure �� Comparsion of FP and greedy parsing when used together with the LZW dictionary construction method�

on the input string T � a� b� a� b� a� b� a� a� b� a� a� b� a� a� a� b� used in Tables � and ��

Iteration� i Input Di�� nDi Output

� � ! a

� � ab � � b

� � ba � � ab

� � aba � � aba

� � abaa � � aba

� � abaab � �� baa � � abaa

� � aa � 
 ab

Table �� Decompression of LZW�FP algorithm� We demonstrate the execution of our decompression algo�

rithm on the output of the compression algorithm in the previous example� C�T 	� � ���� � �� �� �� �� �� �� ��

We show how our decompression algorithm obtains the original input to the compression� Initially

i � j � �� and the dictionary consists of characters a and b with respective codewords � and ��

T � a� b� a� b� a� b� a� a� b� a� a� b� a� a� a� b� Note that the decompression at iteration � is possible as the al�

gorithms knows the pre�x of � which is necessarily ab� Hence it outputs ab automatically and re�emulates

the dictionary parser�

�



