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1 Introduction

Given a text string 7', a compression algorithm C computes an output string, 7", whose representation is
smaller than that of T, and such that a corresponding decompression algorithm C* can take T' as input
and compute 7. The most common compression algorithms used in practice are the dictionary schemes
(a.k.a. parsing schemes [BCW90], or textual substitution schemes [Sto88]). These algorithms are based on
maintaining a dictionary of strings that are called phrases, and replacing substrings of an input text with
pointers to identical phrases in the dictionary, that are called codewords. The task of partitioning the text

into phrases is called parsing.

The dictionary can be constructed in static or dynamic fashion. In static schemes, the whole dictionary
is constructed before the input is compressed. All practical compression algorithms, however, use dynamic
schemes, introduced by Ziv and Lempel [ZL77, ZL78], in which the dictionary is initially empty and is
constructed incrementally: as the input is read, some of its substrings are chosen as dictionary phrases
themselves. Most dynamic schemes (e.g., [ZL77, ZL78, Wel84, Yok92]) satisfy the prefiz property: for any
given phrase in the dictionary, all its prefixes are also phrases in the dictionary. Some of them (e.g., [ZL77,
Yok92]) satisfy the suffiz property: for any given phrase in the dictionary, all its suffixes are also phrases in
the dictionary.

Dictionary based compression algorithms of particular interest are the LZ78 method [ZL78], its LZW
variant [Wel84], and the LZ77 method [ZL77]. The LZW scheme is the basis for UNIX compress, gif image
compression format, and most popular fax and modem standards. The LZ77 scheme is the basis for all zip
variants, including the UNIX gzip. All three algorithms are known to be asymptotically optimal for certain
sources, in the sense that their compression ratio approaches to the bit entropy of the input source. Recently,
it was shown in [JS95, LS95, Sav97] that the compression ratio of LZ78 approaches the asymptotic optimality
faster than that of LZ77 (see appendix A.1 for details). The practical performances of these algorithms vary
however depending on the application. For example the LZ77 algorithm may perform better for English
text, and the LZT78 algorithm may perform better for binary data, or DNA sequences.

Perhaps the most fundamental question regarding dictionary compression algorithms is to find good
dictionary construction schemes; i.e., schemes that enable good encoding of the text with small redundancy.
Unfortunately, a simple counting argument shows that there cannot exist a single dictionary construction
scheme that is superior to other schemes for all inputs. If a compression algorithm performs well for one
set of input strings, it is likely that it will not perform well for others. The advantage of one dictionary
construction scheme over another can only apply with regard to restricted classes of input texts. Indeed,
numerous schemes have been proposed in the scientific literature and implemented in software products,
and it is expected that many more will be considered in the future. In this paper we do not consider the
question of dictionary construction scheme. Rather, we focus on the parsing method that is to be used once

a particular dictionary construction scheme is selected.

In particular, this paper considers the following question: Given a dictionary construction scheme, is
there an efficient dynamic parsing method that achieves optimality with respect to this schemes on all input
strings? Note that unlike for the dictionary construction scheme, the question on optimality of the parsing
scheme is well defined. We concentrate here on dictionaries in which all codewords are represented with the
same number of bits. Hence, given a particular dictionary construction scheme, an optimal parsing scheme

would compute the compressed version of any input string with the smallest number of phrases possible.

Given a dictionary construction scheme and a given input text, it is possible to obtain an optimal parsing



via a dynamic programming algorithm. However, such an algorithm uses time and the space quadratic with
the input size, and requires all the input to be available before the compression process starts. See [SS82] for
a study of optimal parsing schemes; see [LH87, Sto88, BCW89, BCW90] for a detailed coverage of parsing
strategies and dictionary compression algorithms. For the static case only, a recent work [FM95] describes a
linear time optimal algorithm for dictionaries satisfying the prefix property. As this algorithm requires the
entire input to be available before the compression process starts, it is not suitable for on-line settings or

dynamic applications.

Almost all dictionary based algorithms in the literature (e.g., [ZL77, ZL78, Wel84, MW85, Yok92]) use
greedy parsing, which takes the uncompressed suffix of the input and parses its longest prefix, which is
a phrase in the dictionary. The next substring to be parsed starts where the currently parsed substring
ends. (See [BW94] for a study of greedy parsing with static dictionaries.) Greedy parsing is fast and can
usually be applied on-line, and is hence very suitable for communications applications. However, it was
shown in [GSS85] that for static dictionaries greedy parsing can be quite far from optimal: there are strings
that can be parsed to m phrases using a given (static) dictionary, for which greedy parsing with the same
dictionary obtains Q(m3/2) phrases. For the dynamic case, it has been an open question how well greedy
parsing compares to optimal parsing. This question is particularly important for several practical algorithms
including LZ78, LZW, and some implementations of LZ77, where all codewords in the dictionary D are

represented by the same number of bits.

We present the following results, concentrating on dictionaries which satisfy the prefix property:

e Greedy parsing can be far from optimal for dynamic dictionary construction schemes: there is a dictio-
nary scheme with the prefix property, so that for any sufficiently large integer m, there exists a string

T which can be parsed to O(m) phrases, whereas the greedy parsing results with Q(m?3/2) phrases.

o Given any dictionary construction scheme with the prefiz property, there exists an efficient dynamic
parsing method that achieves optimality on all input strings with respect to this scheme: interestingly,
the parsing method is a rather simple one, consisting on greedy steps with a single step lookahead. We
call this method flezible parsing, or FP.

The negative result for greedy parsing is given for LZ78 and LZW dictionary construction methods, and
may therefore have considerable practical implications. For the positive result, we emphasize that the notion
of optimality is with respect to a specified dictionary construction. For instance, the algorithm using the
LZ78 dictionary together with flexible parsing inserts to the dictionary the exact same phrases as would the
original LZ78 algorithm with greedy parsing. Thus, it entirely circumvents the question regarding the choice
of the dictionary construction scheme. On the other hand, it is relevant to any such scheme that is selected.
We present a novel data structure to implement the flexible parsing method efficiently, in time and space
competitive with greedy parsing: For LZ78 or LZW schemes, it runs in amortized O(1) time per character,

and requires space proportional to the number of phrases in the dictionary.

In order to consider the issue of optimality, it is imperative to have a formal model that can represent
dynamic dictionary compression algorithms. We introduce such model, M, in which for every compression
algorithm C described by M, there is a corresponding decompression algorithm C* that is guaranteed to
correctly decompress any string previously compressed by C. An important property of C* is that it depends
only on the dictionary construction method, and not the parsing scheme. Hence, for two algorithms which
have identical dictionary construction rules yet different parsing methods, the decompression algorithms

suggested by the model M are identical. Based on this model, we also provide a formal definition of



latency in dictionary compression algorithms, and specify conditions for considering an algorithm on-line.
An interesting aspect of the model M is that it can be used to succinctly describe substantially all known
dictionary compression algorithms in the literature, and it may be useful to describe and study alternative
dictionary construction schemes. It also turns out that while the model specification is quite detailed and

elaborated, it allows for rather concise proofs regarding the optimality of the parsing methods.

We generalize the optimality result of flexible parsing by showing that k-step greedy parsing (which is
greedy parsing with & > 0 lookaheads) is optimal for dictionaries D satisfying the (k+ 1)-overlap property, in
which for any given string R which can be obtained by concatenating k41 phrases from D with overlaps, there
also exist at most k 4 1 phrases whose concatenation without overlaps gives R. One interesting observation
is that for any static dictionary scheme with the (k + 1)-overlap property, optimal parsing implies certain
robustness: the difference in the number of phrases obtained by an optimal parser for two strings with edit
distance e is O(e).

Finally, we show that greedy parsing is optimal for dictionaries satisfying the suffix property. This
immediately implies that for any input string, LZ77 algorithm obtains the minimum number of phrases
(though not necessarily minimum number of bits) possible by any dictionary compression method, partially

resolving an open problem regarding the general case [Ziv97].

2 A model for on-line dictionary compression algorithms

In order to have a formal study of on-line dictionary compression algorithms, and in particular consider
questions about the optimality in the parsing method, it is required to specify precisely the algorithmic
framework. A recent paper [SR97] describes a (rather informal) framework for dictionary compression as
well. This framework is not suitable to our needs, since it cannot express some of the popular compres-
sion algorithms; moreover, algorithms that can be expressed by this framework do not necessarily have a

corresponding decompression algorithm.

In this section, we present a concrete model M that enables one to describe all known dictionary com-
pression algorithms in the literature, including LZ78, LZW, LZ77, Miller-Wegman and Yokoo schemes. The
model will be used in the following sections to present and analyze the flexible parsing and the k-greedy

parsing scheme.

In the proposed model M, a dictionary compression algorithm C takes as input an alphabet %, and a
finite string 7' which consists of characters from . Denote by T'[h] the ht* character of T, starting with
h = 0; denote by T[h : j], the substring of T' which starts at the h®* character and extends until the jt*
character. We denote the length of T by n, hence T =T[0: n — 1].

The compression algorithm C uses and possibly maintains a set of substrings D, denoted dictionary.
The elements of D are called phrases, and for each phrase S in D there is a unique label C(S), which is
called the codeword that corresponds to S. The output of C is a sequence of codewords which is called the
compressed tezt and denoted as C(T). The decompression algorithm C* takes as input a compressed text
C(T), and maintains the same dictionary D as the compression algorithm C. It replaces the codewords in
C(T) to reconstruct the text 7. We describe below both the compression and decompression algorithms.

Appendix A.2 provides the concrete realizations of several popular compression algorithms, using the model

M.



2.1 Incremental dictionary compression

The compression algorithm C can have one of the two types of dictionaries: static or dynamic. If C is a
static dictionary algorithm, then both the substrings in D and their corresponding codewords do not change
during the execution of C. If C is a dynamic dictionary algorithm, then during its execution C inserts some

of the substrings of T into D; C may also update some of the codewords of existing phrases in D.

The compression algorithm C parses the text T incrementally, starting with T'[0]. C consists of n iterations.
If C is dynamic, then in each iteration 4 it reads T[], (posslibly) updates D, and then (possibly) parses T
further for outputting codewords. We denote by D; the state of the dictionary D at the end of iteration 3.

If C is static then D remains unchanged.

An important aspect of the model is that it distinguishes between the parsing process for constructing
the dictionary, and the parsing process for output computation. We call the first process dictionary parser
and denote it as Py; we call the second process output parser and denote it as P,. A schematic figure with

the different components of the compression algorithm C is given in Figure 1.

dictionary parser dictionary output parser
==
Pd D Po

]

input: T output: C(T)
Figure 1: Model M for incremental dictionary compression algorithm C.

The purpose of the model is to give a general framework for describing incremental dictionary compression
algorithms by specifying what P4 and P, do in each iteration. We first describe the general operations of

P4 and P, at iteration z.

The dictionary parser P; has three steps:

(1) P4 determines some characters T[j], 0 < j < ¢, as starting positions of new dictionary phrases, and
assigns them codewords; we call the dictionary phrases whose ending positions are yet to be determined the
developing dictionary phrases.

(E.g. let T = a,b,c,d,e,...; in iteration 4, P4 determines T[2] = ¢ as the starting position of a developing
phrase and assigns it the codeword 8.)

(2) P4 determines some characters T[k], k& < 4 as ending positions of some of the developing dictionary
phrases, whose starting positions were determined in earlier iterations.

(E.g. (cont’d) in iteration 5, P4 determines T[3] = d as the ending position of the phrase with codeword 8,
resulting with C(cd) = 8.)

(E.g. (cont’d) the phrase T[2:3] =¢,disin D(4+ 4,5+ j), forall 1 <7< j.)

(3) P4 may update the codewords of existing dictionary phrases.

(E.g. (cont’d) in iteration 6, say, P4 may change the codeword of (¢d) from 8 to 3. )

Given integers I’ <! we denote by D(I’,1) the set of all dictionary phrases whose starting positions are
determined before iteration ', and whose ending positions are determined before iteration {. Let T'[1 : ¢(4)]

be the compressed prefix of T in iteration 7 of the algorithm.

The output parser P, has three steps:
(1) P, reads the character Tz].



(2) P, identifies a (possibly empty) substring that we denote by T;, where T; = T[c(¢ — 1) + 1 : ¢(3)], for
some increasing function ¢() for which ¢(z — 1) < ¢(2) < ¢ (if the substring is empty then ¢(s — 1) = ¢(3)). If
T; is a non-empty string then P, partitions it into some g(i) substrings, TP, T3, . . ., Tig(l)_l. Each substring
Tf = Tlee(i) + 1 : cg41(3)], for some co(3) < €1(3) < -+ < cgs)=1(%) < cg(s), Where co(z) = ¢(i — 1) and
cg(i)(i) = c(i). The partition is under the constraint that for 0 < £ < g(3), Tt is in D(cr—1(3) + 1, ce(3)).

(3) P, outputs the codewords C}, C?. ..,C’ig(l), where C! corresponds to the substring T in D(c,—1(3) +
1, ce(3)).

(E.g. (cont’d) in iteration 6, P, may identify T[2: 3] = ¢,d, and without further partitioning may directly

output its corresponding codeword 8.)

Greedy parsing: In greedy parsing (with no lookaheads), the objective is to maximize at each iteration
the length of the prefix of T which is compressed until that point. Specifically, P, selects ¢(¢) to be i — 1
(i > 0), when T[e(s — 1)+ 1:4— 1] is a phrase in D;_1, but T[e(¢ — 1) + 1 : ¢ — 1] is not a phrase in D;, and
always assigns g(7) = 1.

One feature of the model is that any compression algorithm C that can be described by the above model,

has a corresponding decompression algorithm C* . Given the compressed version C(T') of any string T, C*

is guaranteed to correctly compute 7. We describe in the next subsection how C* works.

2.2 Incremental dictionary decompression

The input C(T) to the decompression algorithm C¢ is a sequence of codewords output by C:
Ci,C?%.. .C’f(l) ...ch ez .C’ig(l) ... After reading each codeword C!, C* replaces it with its correspond-
ing phrase T}, while building the exact same dictionary D that C builds for T. A schematic figure with the

different components of the decompression algorithm C* is given in Figure 2.

dictionary parser dictionary output decoder
Pd D

) 1 |
compressed output: C(T) original input: T

Figure 2: The incremental dictionary decompression C* .

The decompression algorithm C*~ maintains the invariant that after the codeword Cf from the input is
decoded, the prefix of the text already decompressed is T[0 : ¢,(7)]. The operation of C* works as follows.
By definition, T} is the phrase that corresponds to C¢. Let T[j : k] be an identical phrase to T} in D. If
T[j : k] is in D,,_, (3), then clearly C*~ can immediately replace C! with T#. Otherwise, by the description
of the model M, T[j : k] should be in D(c;—1(%) + 1, ¢e(2)). Therefore the value of j could be computed
once T[0 : ¢¢—1(%)] is completely available, which is the case by the invariant above. In this case, starting
from T[j], C* concatenates the characters T[j + 1], T[j + 2], ... one by one (without knowing the value of
k) to the end of the already decompressed prefix of 7. Before C* reaches T'[k], it is guaranteed to be able

to deduce the value of k, hence guaranteeing the correct decompression of any string compressed by C.

Lemma 2.1 (correct decompression) Given @ dictionary compression algorithm C that can be described
by the model M, its corresponding decompression algorithm C* as described above is guaranteed to decom-

press the compressed version of any input string T.



Proof. We show that in the procedure described above C* correctly computes the value of k before reaching
T[k]. Indeed, in the model M we insist that a substring T[c,—1(2) + 1 : ¢;(4)] is parsed and replaced by its
codeword Cy(%) (in the case of M — T'[j : k]) only if it is in D(e;—1(%) + 1, ¢(%)). By definition, T[0 : ¢;(7)] is
identical to the concatenation of T[0 : ¢;_1(%)] with T[j : k], hence once C* adds all characters of T[j : k]
to the end of T'[0 : ¢;_1(4)] (the already decompressed prefix of T'), D(c;—1(3) + 1, c(%)) would be completely
computed. a

From Lemma 2.1 we obtain:

Corollary 2.2 (identical decompression) The decompression algorithm that corresponds to a given com-
pression algorithm only depends on its dictionary construction scheme, and is independent from its output
parser. Therefore, two compression algorithms which have the same dictionary construction scheme have the

same corresponding decompression algorithm.

Given the compression algorithm C and the input 70 : n—1], let the string T'[¢(¢)+1 : 7], the uncompressed
portion of T in iteration ¢, be denoted as the buffered string in iteration ¢, and ¢(z) = i — (%), the size of the
buffered string, be denoted as the delay of C in iteration 2. We denote by ¢, the maximum delay of C over all
iterations on input 7. We call an algorithm on-line only if for any input T" and at any iteration z, the buffered
string T[e(z) 4+ 1 : 7] is later parsed to at most some A phrases, where X is a constant independent of the

length of T'. On-line performance is particularly interesting in the context of communications applications.

3 Optimal parsing in prefix dictionaries

Consider a dynamic dictionary compression algorithm C, described in the model M, with a dictionary parser

Pg that satisfies the prefix property.

Theorem 3.1 Let m be a sufficiently large integer. If the output parser P, is a greedy parser then there
ezists a string T which can be parsed to O(m) phrases, whereas the greedy parsing results with Q(m3/ %)

phrases.

Theorem 3.2 There ezists a dynamic parsing method P, that computes the optimal number of phrases with
respect to Pg. It runs in amortized O(1) time per character, and requires space proportional to the number

of phrases in the dictionary.

Theorem 3.1 is proved in Section 3.1. Theorem 3.2 is proved in Section 3.2 and Section 3.3.

3.1 Limits of greedy parsing

The following lemma shows that for LZW dictionary construction scheme, greedy parsing can be far from

the optimal.

Lemma 3.3 There are input strings which can be parsed to some O({) phrases, and be represented by
O(Llogt) bits by using the LZW dictionary, for which LZW scheme with greedy parser obtains Q(£3/2)
phrases and outputs Q(£3/2log£) bits.



Proof.  We first construct such a string 7' which uses an arbitrarily large dictionary & = {0,1,...,k,k +
LeE+2,...,k+ \/E}, where k is a prime number. Let R be the substring 1,...,%, and let R; denote the
concatenation of 7 copies of the string R. Let S be the substring 1,2,1,2,3,...,1,2,...,k, and let T be the
concatenation of 0,5,k + 1,0, Ry, 1,k + 2,0, Ry, 1,...,k+ vk, 0, R g, 1.

The LZW dictionary scheme first processes the substring S, and inserts the substrings
(01),(12), (21), (123),(31),...,(12...k) in D with respective codewords k + vk + 1,k + vk +2,...,3k — 2.
Then it processes the substrings (k+4,0, R;,1) fori =1,.. .,vk — 1: for each such substring it first inserts
in D, (1(k + %)), then inserts ((k +4)01...7+ 1), and because k is prime, then inserts all substrings of R; of
size 1+ 1. Altogether there will be k + 2 insertions to D.

Notice that initially the size of the dictionary k + vk + 1, and hence each possible codeword requires
more than log k bits for a unique representation. The maximum size of the dictionary is k3/2 + O(k), hence

no more than (3/2)logk + O(1) bits are required to represent a codeword at any iteration.

For each substring inserted in D, LZW outputs one codeword, hence the total number of codewords
output by LZW for T is at least k3/2. This implies that the total number of bits it outputs is at least
k3/2log k.

An optimal parser still obtains 2k—1 phrases for S; however it obtains only one phrase for every occurrence
of R in T. Hence the number of phrases it outputs for each R; is no more than z + 2, and the total number
of phrases it outputs for T' is no more than 3k, and the total number of bits it outputs is no more than
(9/2)klogk + O(k).

The proof for binary strings (hence for any constant size X) follows after replacing all characters
0,1,...,k + vk with their binary representations, and adding to the beginning of T a training sequence
which would insert all binary substrings of size log(k + \/E) to D. ad

Lemma 3.4 There are input strings which can optimally be parsed to O(£) phrases, and be represented by
O(Llog ) bits, for which LZ78 obtains Q(£3/?) phrases and outputs Q(£3/%log ) bits.

Proof. The proof is similar to that of lemma 3.3, once T is set to be the concatenation of

5,0,Ro,0,Ry,...,0,R . O

3.2 Optimality results for flexible parsing

A parsing scheme of particular interest is the 1-step greedy parsing, which we call the flexible parsing, FP.
Rather than greedily parsing the longest advancing prefix of the uncompressed portion of the text, FP uses
the flexibility of choosing the prefix which results in the longest advancement in the next iteration. We
demonstrate in Table A.3 and Figure 3 how the flexible parser can be used with the dictionary parser Py
of the LZW compression algorithm on the same input used in Table 7. The execution of the corresponding

decompression algorithm on the output of the compression algorithm is demonstrated in Table A.3.

A natural question is therefore whether FP is merely a first level improvement towards better parsing
schemes. Surprisingly, it turns out that FP obtains phrase optimality, and cannot be further improved with

respect to dictionary construction schemes with the prefix property.

Lemma 3.5 (optimality for FP) For any dictionary construction scheme Py within the model M which
builds a dictionary that satisfies the prefiz property at all iterations, flexible parsing obtains the minimum

number of phrases out of any input string T.



Proof. Let Py be a dictionary construction scheme that builds a dictionary satisfying the prefix property
at all iterations, and let C and C' be the compression algorithms that respectively use FP, and any other
parsing scheme P,, together with P4. Our claim is that the number of codewords output by C on any given

input T is at most that output by C'.

We show by induction on ¢ that e1(czp(2)) > cp_(2). The induction step for i+1 is proven as follows: Since
Tlerp(i)+1 : e1(crp(?))] isin Dlerp(3)+1 : e1(crp(3))], the prefix property implies that T[czp()+1 : cp, (3)]
is in Dlerp(i)+1 : e1(cxrp(3))]. Therefore by definition of the flexible parsing e1(cxp(i+1)) > cp,(3+1). O

From the above lemma we can immediately infer the following.

Corollary 3.6 (compression optimality) If a given Py builds a dictionary which at every iteration (1)
satisfies the prefiz property (2) represents each codeword with the same number of bits, then the output of
the compression algorithm C', which uses Py and FP consists of the minimum number of bits achievable by

any compression algorithm C that uses Py.

Corollary 3.7 (compression optimality w.r.t. LZ78 /LZW) Among the compression algorithms using
the LZ78 or LZW dictionary construction schemes, the ones which use FP, outputs the minimum number

of bits on any input string.

We note that parsing methods based on lookaheads were considered in several contexts in compiler theory
and recently by Horspool [Hor95], for LZ78 compression. However, the algorithm in [Hor95] builds a different
dictionary from LZ78 and hence can perform worse than the LZ78 method (the number of codewords output
by this algorithm can be quadratic with that of the LZ78 algorithm). Also, it runs in time quadratic with

the input size.

3.3 An efficient data structure for flexible parsing

It is possible to implement FP using the suffix trees data structure (see [RPE81] for the use of suffix trees
in on-line compression algorithms). However, the space requirements of a suffix tree is substantial: it is
proportional to |T'| + |D|, where |T| is the number of characters in the input string, and |D| is the number
of phrases in D. In contrast, the space requirement of our data structure (as well as the standard trie
used for greedy parsing) is proportional to the number of dictionary entries. In the case of LZW or LZ78,
D] = O(|T|/ 10g |T1) and D] = 2(\/[T) [Stoss).

In this section we describe a more efficient data structure to implement the FP technique. Similar to
suffix trees, our data structure enables two basic operations: (1) insert a phrase (2) search for a phrase. The
running time for performing each of the operations is identical in both the suffix tree and our data structure.
However, the space requirement of our data structure is only O(|D|), much smaller than that of the suffix

tree.

The standard data structure used in many compression algorithms is a compressed trie 7 which is a rooted
tree with the following properties: (1) each node with the exception of the root represents a dictionary phrase;
(2) each edge is labeled with a substring of characters; (3) the first characters of two sibling edges can not be
identical; (4) the concatenation of the substrings of the edges from the root to a given node is the dictionary
phrase represented by that node; (5) each node is labeled by the codeword corresponding to its phrase.

Dictionaries with prefix properties, such as the ones used in LZW and LZ78 algorithms, build a regular trie



rather than a compressed one. The only difference is that in a regular trie the substrings of all edges are one

character long.

Our data structure still builds the trie, 7, of phrases as described above. In addition to 7T, it also
constructs 77, the compressed trie of the reverses of all phrases inserted in the dictionary: Given a string
A =aj,ay,...,0ay, its reverse A" is defined to be the string a,,an_1,...,a2,a;. Therefore for each node v
in T, there will be a corresponding node v" in 7" which represents the reverse of the phrase represented by

v.

The data structure described above is used by FP in the following context. Given a string T'[k : I], where
I = e1(k) the maximal 1-extension of position k, this data structure can efficiently compute the maximum
position k < ¢ < [, for which e;(¢) > e1(m) for all & < m < l. We use the following lemma to compute %
efficiently.

Lemma 3.8 For any given phrase A in D, the parent of the node for A" in T" represents the longest suffiz,
B, of A that is inD.

Proof. If a prefix of A" is represented in 77 as a node, then it should be an ancestor of A" by the
construction of 77. Also each ancestor of the node for A™ represents a prefix of A which is in the dictionary,

by definition. Clearly the parent of the node for A" is the longest one among them. a

Given T[k : I], the computation of ¢ is performed in iterations. In the first iteration ¢ is assigned to k; we
also note that e1(¢) = I by definition. By using the above lemma, we compute in constant time, the longest
suffix T[4’ : e1(3)] of T'[¢ : e1(4)], which is in D, for which ¢’ < [. We make the assignment ¢ = ¢’, and proceed

with the next iteration. The algorithm terminates if at any iteration no such ¢’ exists.

Lemma 3.9 The algorithm described above correctly computes the value of 7.

Proof.  The value of i computed by the algorithm above clearly satisfies & < 2 < I. Moreover: (1) there
can not exist a 7, such that k¥ <4 < j </, and e1(j) > e1(%), as the algorithm would not have terminated at
this value of ¢, and (2) there can not exist a j, such that £ < j < i <, and e1(j) > e1(4), as the algorithm

would have terminated before reaching 7. A contradiction. ad

Running time: Note that each character of the input is processed by the algorithm only once, hence the
running time of the algorithm will be O(1) per character for performing the searches. The time for each
insertion is proportional with the number of characters in the inserted phrase. Hence the total running time

of the algorithm would be O(|T| + |D|).

Space considerations: The space requirement of our data structure is competitive with the original trie
approach. For efficient representations of the substrings A™ of the edges in the reverse trie 7™ we keep
pointers at each such edge to the beginning and ending nodes of the substring A in the original trie 7.

Hence the space required for our data structure is O(|D]).

4 Optimality of greedy parsing and k-step greedy parsing

In this section we identify dictionaries (which may not have the prefix property) that can be parsed optimally

by k-step greedy parsing. This generalized the optimality result of flexible parsing for prefix dictionary. We



also show that (standard) greedy parsing provides optimal parsing for suffix dictionaries, which have some

interesting implications for the LZ77 scheme.

4.1 Optimality results for greedy parsing

The theorem below describes under which conditions greedy parsing with no lookaheads, GR, achieves

optimality.

Theorem 4.1 (optimality for GR) For any dictionary construction scheme Py which builds a dictionary
that satisfies the suffiz property at all iterations, GR obtains the minimum number of phrases out of any

input string T.

Proof. Let P4 be a dictionary scheme with the suffix property, and let C, and C’ be the compression
algorithms that respectively use GR and some other parsing scheme P,, together with P4. We show that
the number of codewords output by C on any given input 7' is at most that by C’.

We prove by induction on ¢ that cgr (3 ) > cp,(1). The induction step for ¢+ 1 is proven as follows: Since
Tlep,(3) + 1+ ep, (i + 1] is in Dlep, (i) + 1 : cp (i
imply that T[egr(z) + 1 :cp, (1 + 1)] isin D[C'pc( ;) +1:cp, (34 1)], and hence in D[egr () + 1 :ep (2 + 1)].
Therefore by definition of the greedy parsing cgr(i+ 1) > cp (i + 1). a

1+ 1)], the induction hypothesis and the suffix property

Corollary 4.2 Greedy parsing is optimal for the dictionary construction schemes of LZ77 and the Yokoo.

Lemma 4.3 (similarity of 7P and GR) Given @ dictionary scheme Py which builds a dictionary that
satisfy the suffiz property at all iterations, the compression algorithms C and C’, which respectively use GR
and FP together with P4, parse any input string T identically.

Proof. We prove by induction on i that cgr(2) = czp(%). The induction step for s+ 1 is proven as follows:
Because of the suffix property and the definition of greedy parsing, the set L(z + 1) of candidate indices
consists of I € {cgr(%),...,cgr(%+ 1)}, and the maximum extension of cgr (i + 1) is greater than or equal
to that of any other candidate index in L(i + 1). a

Corollary 4.4 FP is optimal for dictionaries with the suffiz property.

Theorem 4.5 The LZ77 algorithm (with greedy parsing) parses any given input string to the minimum

number of phrases possible by any dynamic dictionary scheme.

Proof. Let C be an alternative dictionary algorithm which uses the parsing scheme P, and the dictionary
scheme P4z. We prove by induction on ¢ that crz77(¢) > cp,(é). The induction step for ¢ + 1 is proven as
follows: Since T[cp,(3)+ 1 : cp,(i+1)] is in Dlep, (i) +1 : ep, (34 1)], the induction hypothesis and the suffix
property imply that T[eLz77(3)+ 1 : ep, (24 1)] is in Dp,[ep,(¢)+ 1 : ep_ (4 1)], and hence (as the dictionary
of LZ77 includes all substrings of T'[0 : cr,z77(%)]) in DrzrrlcLzr7(i) + 1 : ep, (¢ + 1)]. Therefore by definition
of the greedy parsing crz77(¢ + 1) > ep, (¢ 4+ 1). a
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4.2 Greedy parsing with k steps lookahead

Recall that greedy parsing maximizes at each iteration the length of the compressed prefix of the input .
Greedy parsing with & lookaheads, or in short k-step greedy parsing, is based on the premise that by being

non-greedy in iteration i, one may get better progress in some later iteration z + k.

To define k-step greedy parsing formally, we first give the definition of what we call the mazimal k-
extension of a character, In order to provide some better intuition, we first define this notion in the context

of static dictionaries, and then generalize it for the dynamic dictionaries.

Maximal k-extension of a character for static dictionaries: Given a static dictionary D, and an input
string T, the maximal k-extension of a character T'[7], is defined to be the character T'[ex ()] (ex(¢) > %) such
that T'[é : ex(4)] is the longest prefix of T[é: n — 1] which could be parsed to at most k phrases from D.

Maximal k-extension of a character for dynamic dictionaries: Given a character T[j],0 < j <n-—1,
its maximal k-extension is the character T'[ex(7)], for which T[j : ex(j)] is the longest prefix of T[j : n — 1]
which can be parsed into at most k phrases T[jo : j1 — 1], T[j1: j2 — 1], .- -, T[Jk—1 : j& — 1], where jo = 7,
gk — 1 =-e(4), and for all 0 <4 <k, T[4; : jiy1 — 1] is in D(gi, jiy1 — 1).

k-step greedy parsing: Given a suffix T'[i : n—1], k-step greedy parsing parses its following prefix: Consider
the substring T[¢ + 1 : e1(7)], where T[e1(3)] is the maximal 1-extension of T[i]. Among the characters of
T[i+ 1: e1(3)], consider the ones T[m], for which the substring T[¢: m — 1] is a phrase in D. Suppose T'[j]
is the rightmost character among all such T[m|, whose maximal k-extension, T[ex(7)], is the furthest, i.e.,
er(j) is maximum among k-extensions of all such characters T[m] in T[i + 1 : e1(%)] for which T[¢: m — 1] is

a phrase in D. Then, k-step greedy parsing chooses to parse T[i : j — 1].

4.3 Properties for k-step greedy parsing

In this section we show our most general optimality result for parsing, that k-step greedy parsing is optimal
for dictionary schemes that satisfy the (k + 1)-overlap property. We then concentrate on robustness of

optimal parsers to small changes in the input.

Informally a dictionary D is said to satisfy the £-overlap property if for any given string R that can be
obtained by concatenating £ phrases with overlaps, there also exists at most £ phrases whose concatenation

without overlaps gives R. We provide the formal definition of this property below.

f-overlap property: A dictionary D is said to have the £-overlap property if there exists phrases @q,..., Q¢
in D such that Q; = P;,S;,Pj41 for 1 < j < 4, and Q; = P4, S, for some possibly empty strings
Py,..., P, then there should exist phrases Q},..., @), in D, for which m < £ and @},...,Q,, = R =
Py, 5, ., Pyyq, SL+1-

In the theorem below, we show that the £ = (k + 1)-overlap property is crucial to a dictionary for which
k-step greedy parsing is optimal.

Theorem 4.6 (optimality for k-step greedy parsing) Consider a dictionary construction scheme Py

such that for all 0 < ¢ < j < n— 1, the dictionary D(3,j) satisfies the (k + 1)-overlap property. Then for
any string T, the k-step greedy parsing method P, obtains an optimal parsing with respect to Pgy.

Proof.  Let P4 be a dictionary scheme with the (k + 1)-overlap property and let C be the compression
algorithm that uses P4 and k-step greedy parsing. Let C’ be a compression algorithm that uses P4 with an
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updated flexible parsing FP’, which is defined as follows: given a suffix T[i: n — 1], FP’ parses the longest
prefix T[i : j — 1] such that e;(j) is the maximum among all e1(m) for which T[m] is in T[t 4+ 1 : e1(?)],
regardless of whether T¢ : § — 1] is in D or not. Then C’ represents T[¢ : j — 1] with the 2-tuple C(T[s :
e1(9)]), (ex(?) — 9)-

Notice that due to Theorem 3.5, m, the total number of phrases obtained by C’ on T, is at most that
obtained by an optimal parser for D on T. Also notice that m is equal to the number of phrases obtained by

C on T due to the (k + 1)-overlap property. Hence, the number of phrases obtained by C on T is optimal. O

Robustness: Given two strings T, and T, the edit distance between them is defined to be the minimum
number of characters that are needed to insert in, delete from, and replace in T', in order to obtain T". The
following lemma states that the compression algorithm C that uses a given static dictionary D which satisfies

the (k + 1)-overlap property, and the k-step greedy parser is robust to small changes in input text.

Lemma 4.7 (phrase robustness) Let D be a static dictionary satisfying the (k + 1)-overlap property for
some k. Let C be the compression algorithm which uses D and k-step greedy parser. The difference in the

number of codewords output by C for any two input strings T and T' whose edit distance is e is O(e).

Proof.  If the edit distance between T and T” is e, then we can write T = S1,¢1, S2,¢32, ..., Ce, Sey1, and
T = 51,¢}, 82,65, ...,ck, Seq1, such that for each k, Si is a possibly empty substring and ¢; and ¢}, are
different characters, one of which can be null. The proof follows from the fact that for any given substring
Sk, if Sk[i: j] is a phrase parsed by C in T, there can not exist phrase Si[# : j'] parsed by C in T' for which
i <iand j < j';ie. Sgli:j]is a proper substring of Sg[' : j']. ad

5 Conclusions

We considered the question of optimality in parsing, which is relevant to any dictionary scheme used in
dynamic dictionary compression algorithms. Our main result focus on dictionaries that satisfy the prefix
property. We show that the standard greedy parsing can be far from optimal in general, and in particular
for the important schemes of LZ78 and LZW. On the positive size, we provide a scheme, FP, that is optimal
for any given dictionary scheme that has the prefix property. We also present a data structure that can

support an implementation that is competitive with that of greedy parsing.

We show, on the other hand, that greedy parsing is optimal for dictionaries with the suffix property,
and in particular for the LZ77 scheme. From a practical point of view, the main contribution of the FP
scheme is for inputs for which the LZ78 or LZW schemes provide better compressibility than to LZ77.
Candidate classes of inputs include sequences of random (biased) bits, and an archive of DNA sequences. In
an experimental research in progress [MRS98] we consider such classes. Qur preliminary results indicate that
for the pseudo-random sequences, FP with the LZW dictionary scheme results with about 17% improvement
in compressibility over greedy parsing with the same dictionary (UNIX compress), and about 33% over LZ77
(uNIX gzip). For DNA sequences the respective improvements are about 5% and about 10%. (We expect

more extensive results to be available shortly at URL http://www.math.tau.ac.il/ matias/fp.)

We identified classes of dictionaries that can be parsed optimally by k-step greedy parsing. It remains
as an open problem to find universal parsing schemes for other types of dictionaries. It is interesting to

note, however, that any dictionary D implicitly defines a dictionary D’ which consists of all the codewords
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of D and all their prefixes (i.e., D’ is a prefix dictionary). A codeword in D’ can be represented by a pair

{ar, £), where a is a codeword from D and £ is the length of the prefix of @. This representation is quite

efficient for all for dictionaries in which the number of codewords is significantly larger than the lengths of

the codewords. Clearly, the number of phrases in an optimal parsing for D’ (which can be obtained using

FP) would be at most the number of phrases in an optimal parsing for D.
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A Appendix

A.1 Properties of LZ78, LZW and LZ77 algorithms

Lempel Ziv algorithms are the most common lossless compression methods. The LZ78 (or more accurately

LZW) scheme is the basis for UNIX compress utility and is used in the most popular fax and modem

standards. LZ77 algorithm is the basis for all zip variants including MS-Windows win/pk-zip, and UNIX

gnu-zip. Both LZ77 and LZ78 algorithms use greedy parsing and dynamic dictionary construction methods.

Both the LZ77 and LZ78 (in addition to LZW) algorithms are (1) asymptotically optimal in the infor-

mation theoretic sense, (2) are very fast, with O(1) processing time per input character, (3) require a single
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pass over the input, and (4) can be applied on-line. The LZ78 (and the LZW) can be implemented by the
use of simple trie data structure whose space complexity is proportional to the size of the output. In contrast
LZ77 builds a more complex suffix tree in an on-line fashion, whose space complexity is proportional to the

size of the input text.

Although it is generally accepted that LZ77 is usually better for compressing excerpts of natural or
computer languages, LZ78 (or LZW) performs better in many other domains. In fact a number of recent
theoretical results show that LZ78 approaches the asymptotic optimality faster than LZ77: the average
number of bits output by LZ78 or LZW, for the first n characters of an input string created by an i.i.d.
source is only O(1/logn) more than its entropy [JS95, LS95]. A similar (and stronger) result for more
general, unifilar, sources has been obtained by Savari [Sav97]. For the LZ77 algorithm, this redundancy is as
much as O(loglogn/logn) [Wyn95]. Another recent result by Kosaraju and Manzini [KM97] states that for
low entropy strings, the worst case compression ratio obtained by the LZ78 algorithm is better (by a factor
of 8/3) than that of the LZ77 algorithm. The LZ78 and LZW algorithms are also of interest in several other
contexts, including data prefetching [VK91, KV94], and DNA sequence classification [FNSt95].

We note that there are quite a few algorithms that were proposed to improve the compression ratio
attained by the LZ algorithms, and were presented as “on-line” (often not according to our definition). All
of these algorithms, including the ones by Miller and Wegman [MW85], and by Yokoo [Yok92], focus on
the effect of alternative dictionary construction schemes (see Section 2 for a detailed description of their

dictionary construction schemes), and use greedy parsing for output generation.

A.2 Concrete realizations of popular compression algorithms

We provide several concrete realizations of Py and P, in some well known dictionary compression algorithms.
For all these algorithms, P, is the greedy parsing. We therefore need only to describe the dictionary parser
Pa.

A.2.1 LZW algorithm

In LZW, Dy consists of all possible single character substrings. The codeword of a single character substring
Bis 7 — 1, where j is the lexicographic order of 3 in the alphabet 3. In a given iteration 7 + 1, Py checks if
Tle(i—1)+1:14] is in D;. Only if it is not the case, then Py inserts T[c(¢ — 1) + 1 : 4] in the dictionary with
the codeword |D;|. Otherwise no action is taken.

We note that LZW is an on-line algorithm according to our definition as A = 1.

We demonstrate how the LZW algorithm works on an example in Table 7, and Figure 3.

A.2.2 LZ78 algorithm

In the LZ-78 algorithm Dy again consists of all possible single character substrings. However, the codewords
of those substrings are a bit different. Given a phrase, T[k : ], its codeword is a pair consisting of (1) a

so-called enumeration of T[k : I — 1], and (2) the lexicographic rank of T'[{] in X.

Initially only the null string has an enumeration, which is 0. Therefore the codeword for single character
substring 8 is (0, j), where j is the lexicographic rank of 8 in X. In a given iteration ¢ + 1, Pg checks if
Tle(i — 1) 4+ 1 : 7] appears in D;. Only if it is not the case, then P4 enumerates T[e(s — 1) 4+ 1 : ¢ — 1], with
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e = mazimum enumeration + 1. Finally, for each 8 € X, Py inserts the substring T[e(¢4 — 1)+ 1:4—1]8in
D, assigning it the codeword (e, j), where j is the lexicographic rank of 8 in X.

Notice that LZ-78 is an on-line algorithm as A = 1.

A.2.3 LZ-77 algorithm

In the LZ-77 algorithm Dy consists of all characters 8 € 3. The codeword for the character § is the 2-
tuple (|| — 7,1), where j is the lexicographic order of 8 in . In a given iteration ¢ + 1, Py identifies
the position T[i] as the starting point of n — % + 1 developing phrases, and assigns them the 2-tuple (0, 1),
where the first entry denotes the relative location and the second entry denotes the length of the phrase. It
then identifies the position T'[i] as the ending position of i + 1 developing phrases, whose starting characters
are 0,1,...,4%. Finally, it replaces the codeword (3, k) of each developing phrase in the dictionary with the
codeword (j + 1, %k + 1) and each non-developing phrase in the dictionary with the codeword (j + 1, k).

A.2.4 Miller-Wegman algorithm

In the Miller Wegman algorithm, Do again consists of all possible single character substrings. The codeword
of a single character substring § is j — 1, where j is the lexicographic order of § in the alphabet 3. In a
given iteration ¢+ 1, Pg checks if T[c(s — 1)+ 1 : 4] is in D;. If it is not the case then it checks if there exists
a j < 1i,such that T[e(s — 1)+ 1:4] isin D, T[j+ 1 :4] is in Dy, but T[e(¢ — 1) + 1 : j + 1] is not in D;11.
Only if it is the case, then Py inserts T[c(i — 1) + 1 : 4] in the dictionary with the codeword |D;|. Otherwise

no action is taken.

A.2.5 Yokoo algorithm

Yokoo describes several schemes in [Yok92]. In all such schemes, Do consists of all possible single character
substrings. Again, the codeword of a single character substring 8 is j — 1, where j is the lexicographic order
of 8 in the alphabet ¥. In a given iteration %, Py checks if T[e(s — 1) 4+ 1 : 4] is in D;. Only if it is not the
case, then in the first scheme described in [Yok92], Pq4 inserts each substring T[j : 9] for e(¢ — 1) < j <4, in
the dictionary with the codeword |D;| 4+ j — ¢(4 — 1) — 1, unless T'[j : 7] is already a phrase in the dictionary
— otherwise no action is taken. In the latter schemes, among the substrings T[j : 4] for ¢(: — 1) < j < %, only

a select few (such as the shortest one which is not in the dictionary) are inserted in the dictionary.
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A.3 Examples

We give here some examples for LZW, and LZW-FP algorithms.

Iteration: h | T[h] | Dpy1 \ Dy | c(h) Output

0 a $ -1 ®

1 b ab: 2 0 c(To:0)=0
2 a ba : 3 1 CT:1)=1
3 b $ 1 ®

4 a aba : 4 3 C(T[2:3])=2
5 b $ 3 $

6 a $ 3 $

7 a abaa : 5 6 C(T[4:6]) =4
8 b $ 6 $

9 a $ 6 $

10 a $ 6 $

11 b abaab : 6 10 | C(T[7:10])=5
12 a $ 10 $

13 a baa:7 | 12 | C(T[11:12]) =3
14 a aa:8 13 | C(T[13:13))=0
15 b $ 13 $

16 3 3 15 | C(T[14:15)) = 2

Table 1: LZW compression algorithm for T' = aq,b,a,b,a,b,q,q,b,a,a,b,a,a,a,b. We have & = {aq, b},
Do =4a:0,b:0}, and Dpy1 \ Dy, represent the phrases added to D in iteration h, with its corresponding
code word. The output is: C(T[0: 15])=0,1,2,4,5,3,0,2.
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Iteration: i | T[¢] | Piy1 \ Di | c(2) Output

0 a $ -1 ®

1 b ab:2 -1 ®

2 a ba: 3 0 C(T[0:0))=0
3 b $ 0 $

4 a aba : 4 1 CT:1)=1
5 b $ 1 ®

6 a $ 1 ®

7 a abaa : 5 3 C(T[2:3])=2
8 b $ 3 $

9 a $ 3 $

10 a $ 3 $

11 b abaab : 6 6 C(T[4:6]) =4
12 a $ 6 $

13 a baa : 7 6 @

14 a aa : 8 9 C(T[7:9])=4
15 b $ 9 $

16 ® ® 15 | C(T[10: 13]) = 5, C(T[14: 15]) = 2

Table 2: LZW-FP algorithm: We demonstrate how the flexible parser P, can be used with the dictionary
parser Py of LZW As in the example of Table 7, let T' = q, b, q, b, q, b, q,q,b,a,a,b,a,a,a,b, ¥ = {a, b} and
Do = {a: 0,b: 0}. The output of LZW dictionary with Flexible Parsing: C(T[0 : 15]) = 0, 1,2,4,4,5,2.
Comparing the to the output of LZW algorithm in Table 7, we observe that the 7P output is one codeword
less (7 compared to 8), due to its more efficient parsing of T'[7 : 15]. Specifically, by parsing a shorter prefix
of T[7 : 15] (T[7 : 9] rather than T[7 : 10]), FP parses a much larger string, 7[10 : 13] later, which is
represented by two codewords by greedy parsing.
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LZW parsing

Input: a b a b a b aabaabaaahb
LZW QOutput: 0 1 2 4 5 3 0
LZWFP parsing
Inpu: a b a b ab aabaabaaahb
LZWFPOQutput: 0 1 2 4 4 5 2

Figure 3: Comparsion of FP and greedy parsing when used together with the LZW dictionary construction method,

on the input string T = a,b,a,b, a,b,a,a,b,a,a,b,a,a,a,b, used in Tables 7 and 8.

Iteration: i | Input Div1\ D; Output
0 0 P a
1 1 ab:?2 b
2 2 ba : 3 ab
3 4 aba : 4 aba
4 4 abaa : 5 aba
5 5 abaab : 6,baa : 7 abaa
6 2 aa : 8 ab

Table 3: Decompression of LZW-FP algorithm: We demonstrate the execution of our decompression algo-
rithm on the output of the compression algorithm in the previous example, C(T[0 : 15]) = 0,1, 2,4, 4,5, 2.
We show how our decompression algorithm obtains the original input to the compression. Initially
1 = j = 0, and the dictionary consists of characters ¢ and b with respective codewords 0 and 1.
T = a,b,a,b,a,b,a,a,b,a,a,b,a,a,a,b. Note that the decompression at iteration 3 is possible as the al-
gorithms knows the prefix of 4 which is necessarily ab. Hence it outputs ab automatically and re-emulates

the dictionary parser.
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