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Abstract

This work examines a neural network model of a cortical mod-
ule, where neurons are organized on a 2-dimensional sheet and are
connected with higher probability to their spatial neighbors. Moti-
vated by recent findings that cortical neurons have a resonant peak
in their impedance magnitude function, we present a frequency-spatial
transformation scheme that is schematically described as follows: An
external input signal, applied to a small input subset of the neurons,
spreads along the network. Due to a stochastic component in the neu-
rons’ dynamics, the frequency of the spreading signal decreases as it
propagates through the network. Depending on the input signal fre-
quency, different neural assemblies will hence fire at their specific res-
onance frequency. We show analytically that the resulting frequency-
spatial transformation is well-formed; an injective, fixed, mapping is
obtained. Extensive numerical simulations demonstrate that a homo-
geneous, well-formed transformation may also be obtained in neural
networks with cortical-like “Mexican-hat” connectivity. We hypothe-
size that a frequency-spatial transformation may serve as a basis for
parsimonious cortical communication.
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1 Introduction

This paper presents a novel frequency-spatial transformation (FST) scheme, via which an
incoming input signal to a given cortical module may activate different neural assemblies,
depending on its frequency. We hypothesize that such transformation may take place in
the cortex, as a parsimonious way of communication between cortical modules.

Our work is based on viewing the cortex as composed of many relatively small cortical
modules [1, 2, 3]. Each cortical module contains thousands of neurons and is composed of
numerous neural assemblies, which are sets of neighboring neurons that tend to be acti-
vated together. The concept of neural assembly has been at the center of neurobiological
thinking for a long time [4, 5]. The idea is that as single neurons themselves do not have
sufficient complexity to account for complicated high-level tasks. It is the dynamic aggre-
gation of such neurons into higher-order groups, or neural assemblies, that enables complex
cognitive tasks to be carried out. In recent years, the work done in several laboratories
using simultaneous, multi-neuron recordings has shown that such neuronal assemblies may
be detected, demonstrating context-dependent ‘cooperative behavior’ between groups of

neighboring neurons (see [6] for a comprehensive review).
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Figure 1: A sketch of a cortical module composed of several neural target assemblies (A,B,C'
and D) receiving an input signal from external assembly £. Both the segregated wiring
(left) and the randomly-connected (right) cases are illustrated.

To describe the proposed frequency-spatial communication scheme, let us concentrate
on a single cortical module and consider the scenario sketched in Figure 1. An input signal
from an external source F, that may represent a neural assembly from another cortical
module or a subcortical source, should activate target assembly B on some occasions, and
C' or D on others. One way to achieve this, via segregated routing (Figure 1a), would be to

divide F into three segregated groups Fy, s, F3, having specific connections to the different



target assemblies. This paper presents another alternative, where the task of mapping an
input signal to different assemblies is realized without any precisely tuned segregated routes:
Consider a cortical module where the input signal projects (arrives at) only on some specific
input assembly A, as sketched in Figure 1b. Via a frequency-spatial transformation we shall
show how an input signal applied only to A can specifically activate several other neural
assemblies (such as B,C' and D) depending on its frequency.

The existence of a frequency-spatial transformation is naturally expected, as information
in the central nervous system seems to be encoded in both spatial and frequency forms
[7, 8]. A straightforward possible FST scheme arises if one could assume that each neural
assembly has a precisely wired architecture of delay-line connections [9, 10, 11]. However,
the existence of such a meticulously wired architecture of delay-lines in the cortex seems
implausible [12]. The FST we propose does not require a precisely wired architecture of
delay lines. It is based on the finding that cortical neurons have a resonance property: In
a recent work, Gutfreund, Segev and Yarom have implemented the impedance magnitude
function method, described earlier in [13], to characterize the properties of cortical neurons
in the frequency domain [14]. They applied a sinusoidal current to pyramidal neurons
in cortical slices at different frequencies, maintaining the overall current, and found that
cortical neurons show a clear voltage-dependent resonant frequency (of 2-6 Hz at resting
potential). That is, the voltage response generated by an input current oscillating at the
resonant frequency is much stronger relative to the voltage response evoked by input currents
in any other frequency.

In addition to the assumption that cortical neurons in vivo have a resonant frequency,

the proposed FST is based on the following biologically-motivated assumptions:

1. Neurons are randomly connected to each other, with higher probability of connections
formed between spatially proximal neurons [15, 16]. In light of their short, local
range, we assume for simplicity that all connections have a similar conduction velocity,
and that the conductance time over these connections is shorter than the (relative)

refractory period.

2. Most cortical neurons have short membrane time constants, of the order of very few
inter-spike intervals [8, 17]. Such neurons tend to fire in a synchronous manner [8, 18],
and as a first approximation may be regarded as memoryless, i.e., their membrane

potential is a function of only the most recently arriving spikes.

3. Neuronal firing has a stochastic component [19]. The rate of spontaneous cortical

firing is very low [20].

In Section 2, the FST scheme is first presented and analyzed in a layered network, as a



simplified but analytically tractable model. In Section 3 the FST scheme is examined via
simulations performed in a more general spatially-connected network, where the neurons
are connected primarily to their spatial neighbors via excitatory-inhibitory ‘Mexican-hat’
connectivity. In the last Section we discuss the relevance of neural resonance to the gener-
ation of reverberating activity, and analyze some additional biological and computational

issues pertaining to the hypothesized FST scheme.

2 FST in a Layered Network
2.1 Overview

To obtain a general view of the proposed FST scheme, consider a layered network, as il-
lustrated in Figure 2, where each neuron in layer ¢ receives synaptic connections from a
randomly selected subset of size s in the preceding layer ¢+ — 1. The network is composed
of memoryless, stochastic neurons having a short membrane time constant, that fire with
probability p if the number of input spikes they have currently received exceeds a threshold
O. The input signal is applied to the first layer, denoted the input assembly, and it stim-
ulates each input assembly neuron to fire at frequency f. The resulting neural activity is
propagated throughout the layers of the network. As the conductance time along the net-
work connections is shorter than the neurons’ refractory period, the input signal propagates
through the layers in an essentially feed-forward manner, spreading from the input layer

outwards.
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Figure 2: A schematic drawing of an FST in a feed-forward layered network. The input
assembly (layer 0) is marked on the left. The spike propagation is illustrated by marking in
black the neurons that fire in response to a given spike of the signal train. With every input
spike, a similar scenario of neuronal activity, gradually decaying with its propagation along
the network is evident, leading to a continuing decrease of the firing frequency measured
along the network.

Neurons in the network have a resonant frequency f., that in accordance with the
biological data [14] is assumed to be lower than the input signal frequency f. As we
shall show, the firing frequency decreases as the activation resulting from the input signal
propagates through the network. Hence, there exist some resonant layer where the average
firing frequency is near the resonant frequency f,. The identity of the resonant layer varies
with the input signal frequency f; the higher [ is, f. occurs in a more distant layer - an
FST is hence obtained. To demonstrate that the resulting FST is well-formed, we shall now
show that:

1. The frequency decrease is monotonic, implying an injective mapping; thus, several

distant neural layers (i.e., assemblies) may not be concomitantly activated.

2. The mapping s fized: input signals with the same frequency, applied to the network
at different times, will be mapped to the same layer with high probability, although

the neural dynamics have a stochastic component.



2.2 The Frequency Spread

We now elaborate on how the frequency spread is obtained. Let Y; be the number of spikes
received by a certain neuron in layer ¢. If Y; exceeds the neuron’s threshold O, the neuron
fires with probability p, and is idle otherwise. Let F; be the probability of a neuron in layer 7
to fire in response to an input spike arriving at the input assembly (layer 0) 1. Each neuron of
the input assembly transmits each input spike with some predetermined probability Fy > 0.
The number of each neuron’s connections with neurons in the preceding layer, s, is taken
to be much smaller than the number of neurons in a given layer. There is therefore a very
small dependency between neurons in the same layer, and Y; is approximately a binomial
with parameters (s, P;_1). Using the Normal approximation to the Binomial distribution,
we have

F; ~ [Prob(Y; > 0)] - p~ [

1 ©
ors /t e yz/zdy] p (1)
where
O —sP_;
= 2
VsP_1(1— Pi_4) 2)

is the approximate difference, in standard deviation units, between the expected value of

t;

Y; and the threshold ©. As evident, the expected firing frequency decreases monotonically
along the layers as we move farther from the input assembly, guaranteeing the uniqueness

of the frequency-spatial transformation.

2.3 FST Constancy

Let f be the input signal frequency. Let the resonant frequency band be the interval [ f.(1—
€), fr(1 + €)] for a predetermined ¢ > 0, and let the resonant layer be the layer whose
neurons’ firing frequency is within the resonant frequency band. As we show next, with
high probability the FST is accurate, that is, the resonant layer identifies with the expected
resonant layer [, where f - P ~ f. is in the resonant frequency band: Consider some time
interval v that is long enough for the resonant frequency to be evident. The number of
spikes X; that a neuron in layer j fires within the temporal window v is a binomial with
parameters (fv, P;). Using Chernoff bounds [21] one may estimate the probability that the
actual frequency observed at a given layer ¢ will be within an € factor from its expected
value (f-P;). The probability P of error, in which a signal is not recognized in the expected
resonant layer is bounded by P < e_bezf”, where b > 0 is some constant. Note that P
exponentially decreases with the resonant frequency f,, the temporal window =, and the

relative width of the resonant frequency band e.

! Note that the probability p is a property of each individual neuron, independent of the network structure,
while the probability P; is a property of the network.



Even when approaching the limit where the resonant frequency band is very narrow, the
expected resonant layer still has the highest chance to fire in the resonant frequency. To
illustrate this, suppose that k evenly spaced spikes, separated by time intervals of A, = 1/ f;,
are required for sustained activity to emerge. Let layer [ be the expected resonant layer,
[+ P~ f.. In response to the propagating input signal, in each time unit a neuron in layer
7 has f independent events in which it either fires—such event is a success—or it fails and
remains idle. Let m = fir ~ P% and let @, (7) be the probability that a sequence of m events
consists of one success followed by precisely m — 1 failures. Let Q¥ (j) be the probability

that such a sequence will repeatedly occur k times, i.e., the probability of generating the

spike sequence required for sustained activity. Then, Qum(j) = P;(1 — P;)™ !, and

dQm(j) _ \m—2 ,
ng—(l—PJ) (1 —mPj) . (3)

By equating to zero, @, (j) is maximal at the appropriate layer j = [. Moreover, the ratio

Q%)
Q%)

, J # 1, increases exponentially in k.

2.4 FST With Very Low-frequency Inputs

From a theoretical, computational point of view it is interesting to note that an FST can also
be obtained for signals with frequency f = 1/A that is lower than the resonant frequency
Sryiey, foin < f < fr, where [, is the neurons’ spontaneous firing frequency. To see this,
assume that whenever an input assembly neuron receives an input signal spike, it responds
by firing a sequence of spikes during a time interval A,,q, = ﬁ, characterized as a Poisson
process with a firing rate of x=—, where ¢ is some constant. The expected number of new
spikes in each interval A is ¢, and the probability that such an interval contains more than c-t
new spikes is exponentially small in £. Thus, the new spikes fall within the subsequent time
intervals in a quite homogeneous manner. The input signal is transformed to a sequence of
homogeneously dispersed spikes of frequency f' = f-(c+1) > f., and an FST may now be

obtained in the regular manner described previously.

3 FST in a Spatially-connected Network

After analyzing the properties of the proposed FST scheme in the simpler layered network,
we now turn to simulations examining the FST scheme in a cortical-like, spatially-connected
network, sketched in Figure 3. The network is composed of a 2-dimensional array of 120x 120
synchronously updated neurons. The neurons in the network have a cortical-like ‘Mexican-
hat’ excitatory-inhibitory connectivity: Each neuron has 40 proximal excitatory connections

of weight w, = 1.85 (to neurons within distance 4) and 20 distal inhibitory connections of



weight w, = —1 (to neurons with distance greater than 4 but smaller than 9). The input
signal is applied to a spatially continuous input group of neurons consisting of 60 neurons
(see Figure 3). If a neuron’s input field is above its threshold O it fires with probability
p = 0.9, otherwise it remains quiescent. After it fires each neuron remains refractory for a
period of one iteration. As the input signal propagates through the network, consecutive
assemblies of synchronously firing neurons are activated, and may be considered as ‘layers’

in a virtual layered network.

Figure 3: A schematic drawing of a cortical-like random network. For clarity, only the
neurons are shown, excluding their connections. The input group is circled on the left.
The wedge-shaped icons denote the locations of the simulated ‘electrode’, measuring the
average firing frequency at increasing distances 1d, 2d, 3d... The dotted arcs stand for the
dynamically generated virtual ‘feed-forward layers’.

Figure 4 presents the frequency decrease (the frequency of firing relative to the input
signal frequency) along the network, as a function of distance from the input assembly. Using
a non-linear sigmoidal threshold function f(z) = 1/(1 4 exp[—(xz — 8/T')]), a conventional
approximation of the neural input/output firing rate [22, 23], a homogeneous spread of
the input frequency along the network can be achieved. The spread and slope of the
frequency decrease along the network are primarily a function of the noise level T. With
low noise values (in this example, with 7' < 1.5) approaching the limit of a deterministic
threshold function Sg¢n(-), the frequency spread achieved does not have a uniform slope, and
it decreases only slightly at many locations. As the noise is increased, the rate of frequency

decrease along the network is attenuated. If the noise is further increased then, beyond



some critical noise value the FST does not remain monotonic any more. Figure 5 presents
the mean and standard deviation of the frequency mappings obtained over 20 simulation
experiments, held at the same level of noise. As evident, most of the frequency mappings

obtained lie fairly close to the mean and the resulting FST is quite deterministic.
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Figure 4: A plot of the firing frequency (f,) decrease as a function of the distance from the
input assembly, in a network with excitatory-inhibitory connectivity. Each neuron has a
sigmoidal activation function and a distinct threshold value, determined randomly from the
interval © € [9,11] and reflecting ~ 10% perturbations of the mean threshold value. The
three curves display (from left to right) the frequency reduction obtained with noise values
T =1.5,1.7,1.9 correspondingly.
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Figure 5: A plot of the firing frequency (f,) decrease as a function of the distance from
the input assembly, in a network with excitatory-inhibitory connectivity. The network
parameters are similar to those reported in figure 4, with 7" = 1.7. Both mean and mean +
standard deviation values are displayed.

Finally, the FST obtained, that is, the location of the assembly firing in the resonant
frequency as a function of the input signal firing frequency, is demonstrated in Figure 6. As

evident, a fairly linear mapping is obtained over a broad range of input values.
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Figure 6: The location of the resonant assembly as a function of the input signal frequency.
The neurons’ have a sigmoidal activation function with "= 1.5, and threshold ® = 9.



4 Discussion

We have shown that different input frequencies can faithfully evoke the firing of distinct
neural assemblies in the resonant frequency, thus constituting an FST scheme. In a sim-
plified layered neural network model we show that an FST is feasible, and that with high
probability the transformation is well-formed, i.e., the frequency decrease is monotonic and
the resonant frequency is obtained at the expected resonant assembly. The FST scheme is
then demonstrated numerically in a model of a cortical network with excitatory-inhibitory
connectivity. We propose that such an FST scheme may have a role in intra-cortical com-
munication.

Resonant behavior has been demonstrated experimentally in a wide variety of nerve
cells, including peripheral neurons [24] and cortical neurons [14]. The possible important
computational role of the resonance property of cortical neurons has already drawn the at-
tention of several researchers. It has been proposed that neural resonance and its underlying
subthreshold oscillations in membrane potential may serve as the basis for the conjunctive
properties of central nervous system networks, binding between different attributes belong-
ing to the same object [25]. Another computational model using action potential timing
for stimulus representation based on membrane potential subthreshold oscillations has been
proposed recently [26]. Our paper proposes yet a new computational role for resonance —
enabling the cortical realization of an FST.

In the simplified model studied in this paper a fixed resonant frequency is assumed. The
experimental data, however, is more complex; the fundamental frequency of resonance in
most neurons is low (2-6 Hz), but the resonant frequency is voltage-dependent and may
increase (up to levels of 15-20 Hz) if the neuronal membrane is strongly depolarized [14]. In
accordance with the FST scheme, this observed increase in the resonant frequency f. may be
advantageous from a computational point of view, since the length of the temporal window
(i.e., the membrane time constant) v decreases as the membrane potential is increased. To
see this, recall that the probability that the signal will not be recognized in the expected
resonant layer is bounded by P < e=b"f+7 Hence fr should be increased with the membrane
potential to maintain a certain level of correct performance.

The FST scheme demonstrated in this paper maps firing frequencies to spatial loca-
tions while the input signal is on. In principle such a mapping may extend beyond the
initial period of input application to the network, via the emergence of sustained activity
in the neural assembly firing at the resonant frequency. This possibility is in accordance
with recent experimental studies that have suggested that the resonance property promotes

population activity at the preferred frequency [14]. As manifested in our simulations, the

10



resonant assembly is spatially localized, which further enhances the likelihood of it gen-
erating sustained activity. Another simplification of biological reality incorporated in our
model is the assumption that the network neurons are memoryless. We believe that the
FST scheme will work also when this assumption is relaxed, since as long as the membrane
time constants of the neurons are fairly similar over all network (e.g., [17]), the resulting
FST will continue to be monotonic. Moreover, it is plausible that adding a memory com-
ponent to the neurons may enhance the likelihood of the emergence of sustained activity in
the resonant assembly. The computational study of these issues requires, however, a much
more detailed, compartmental, neural model (such as the one described recently by [27]),
and constitutes an important subject for future investigation.

Our work is in line with previous research testifying to the important role noise may
have in enhancing neural information processing abilities [28, 29]. It is shown that the
extent of memory required to perform an FST (by having an array of precisely connected
delay lines) can be significantly reduced by incorporating a stochastic component, both in
the neurons’ connectivity and in their dynamics. This results in an FST scheme that might

play an important role in intracortical communication.
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