
Simple Fast Parallel Hashing by Oblivious Execution �

Joseph Gil y

Dept� of Computer Science

The Technion� Israel

Technion City� Haifa �����

ISRAEL

Yossi Matias z

AT�T Bell Laboratories


�� Mountain Avenue

Murray Hill� NJ �����

USA

September �� ����

Abstract

A hash table is a representation of a set in a linear size data structure that supports constant�

time membership queries� We show how to construct a hash table for any given set of n keys in

O�lg lgn� parallel time with high probability� using n processors on a weak version of a crcw

pram� Our algorithm uses a novel approach of hashing by �oblivious execution� based on

probabilistic analysis to circumvent the parity lower bound barrier at the near�logarithmic time

level� The algorithm is simple and is sketched by the following�

�� Partition the input set into buckets by a random polynomial of constant degree�

	� For t �
 � to O�lg lgn� do

�a� Allocate Mt memory blocks� each of size Kt�

�b� Let each bucket select a block at random� and try to injectively map its keys into the

block using a random linear function� Buckets that fail carry on to the next iteration�

The crux of the algorithm is a careful a priori selection of the parameters Mt and Kt� The

algorithmuses onlyO�lg lgn� randomwords� and can be implemented in a work�e�cient manner�
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� Introduction

Let S be a set of n keys drawn from a 
nite universe U � The hashing problem is to construct a

function H � U � ��� m� �� with the following attributes�

Injectiveness� no two keys in S are mapped by H to the same value�

Space e�ciency� both m and the space required to represent H are O�n�� and

Time e�ciency� for every x � U � H�x� can be evaluated in O��� time by a single processor�

Such a function induces a linear space data structure� a perfect hash table� for representing S� This

data structure supports membership queries in O��� time�

This paper presents a simple� fast and e�cient parallel algorithm for the hashing problem�

Using n processors� the running time of the algorithm is O�lg lg n� with overwhelming probability�

and it is superior to previously known algorithms in several respects�

Computational models As a model of computation we use the concurrent�read concurrent�

write parallel random access machine �crcw pram� family �see� e�g�� ��
��� The members of

this family di�er by the outcome of the event where more than one processor attempts to write

simultaneously into the same shared memory location� The main sub�models of crcw pram

in descending order of power are� the Priority ���	�� in which the lowest�numbered processor

succeeds� the Arbitrary ������ in which one of the processors succeeds� and it is not known in

advance which one� the Collision� ��	�� in which if di�erent values are attempted to be written�

a special collision symbol is written in the cell� the Collision ���
�� in which a special collision

symbol is written in the cell� the Tolerant ������ in which the contents of that cell do not change�

and 
nally� the less standard Robust ���� ���� in which if two or more processors attempt to write

into the same cell in a given step� then� after this attempt� the cell can obtain any value�

��� Previous Work

Hash tables are fundamental data structures with numerous applications in computer science� They

were extensively studied in the literature� see� e�g�� ���� ��� for a survey or ���� for a more recent one�

Of particular interest are perfect hash tables� in which every membership query is guaranteed to be

completed in constant time in the worst case� Perfect hash tables are perhaps even more signi
cant

in the parallel context� since the time for executing a batch of queries in parallel is determined by

the slowest query�

Fredman� Koml�os� and Szemer�edi ���� were the 
rst to solve the hashing problem in expected

linear time for any universe size and any input set� Their scheme builds a ��level hash function� a

level�� function splits S into subsets ��buckets�� whose sizes are distributed in a favorable manner�

Then� an injective level�� hash function is built for each subset by allocating a private memory

block of an appropriate size�
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This ��level scheme formed a basis for algorithms for a dynamic version of the hashing problem�

also called the dictionary problem� in which insertions and deletions may change S dynamically�

Such algorithms were given by Dietzfelbinger� Karlin� Mehlhorn� Meyer auf der Heide� Rohnert and

Tarjan ����� Dietzfelbinger and Meyer auf der Heide ����� and by Dietzfelbinger� Gil� Matias and

Pippenger �����

In the parallel setting� Dietzfelbinger and Meyer auf der Heide ���� presented an algorithm for

the dictionary problem� for each 
xed � 
 �� n arbitrary dictionary instructions �insert� delete� or
lookup�� can be executed in O�n�� expected time on a a n����processor Priority crcw� Matias

and Vishkin ��	� presented an algorithm for the hashing problem that runs in O�lgn� expected

time using O�n� lgn� processors on an Arbitrary crcw� This was the fastest parallel hashing

algorithm previous to our work� It is based on the ��level scheme and makes extensive use of

counting and sorting procedures�

The only known lower bounds for parallel hashing were given by Gil� Meyer auf der Heide

and Wigderson ����� In their �rather general� model of computation� the required number of

parallel steps is $�lg� n�� They also showed that in a more restricted model� where at most one

processor may simultaneously work on a key� parallel hashing time is $�lg lg n�� They also gave an

algorithm which yields a matching upper bound if only function applications are charged and all

other operations �e�g�� counting and sorting� are free� Our algorithm falls within the realm of the

above mentioned restricted model and matches the $�lg lgn� lower bound while charging for all

operations on the concrete pram model�

��� Results

Our main result is that a linear static hash table can be constructed in O�lg lgn� time with high

probability and O�n� space� using n processors on a crcw pram� Our algorithm has the following

properties�

Time optimality It is the best possible result that does not use processor reallocations� as shown

in ����� Optimal speed�up can be achieved with a small penalty in execution time� It is a signi
cant

improvement over the O�lg n� time algorithm of ��	��

Reliability Time bound O�lg lg n� is obeyed with high probability� in contrast� the time bound

of the algorithm in ��	� is guaranteed only with constant probability�

Simplicity It is arguably simpler than any other hashing algorithm previously published� �Never�

theless� the analysis is quite involved due to tight tradeo�s between the probabilities of con"icting

events��

Reduced randomness It is adapted to consume only O�lg lg n� random words� compared to $�n�

random words that were previously used�

Work optimality A work optimal implementation is presented� in which the time�processor
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product is O�n� and the running time is increased by a factor of O�lg� n�� it also requires only

O�lg lg n� random words�

Computational model If we allow lookup time to be O�lg lg n� as well� then our algorithm can

be implemented on the Robust crcw model�

Our results can be summarized in the following theorem�

Theorem � Given a set of n keys drawn from a universe U � the hashing problem can be solved using

O�n� space� �i� in O�lg lg n� time with high probability� using n processors� or �ii� in O�lg lg n lg� n�

time and O�n� operations with high probability� The algorithms run on a crcw pram where no

reallocation of processors to keys is employed� and use O�lg lg jU j� lgn lg lgn� random bits�

The previous algorithms implementing the ��level scheme� either sequentially or in parallel� are

based on grouping the keys according to the buckets to which they belong� and require learning the

size of each bucket� Each bucket is then allocated a private memory block whose size is dependent

on the bucket size� This approach relies on techniques related to sorting and counting� which require

$�lgn� lg lg n� time to be solved by polynomial number of processors� as implied by the lower bound

of Beame and Hastad ���� This lower bound holds even for randomized algorithms� �More recent

results have found other� more involved� ways to circumvent these barriers� cf� ���� �� ��� �����

We circumvent the obstacle of learning buckets sizes for the purpose of appropriate memory

allocation by a technique of oblivious execution� sketched by Figure ��

�� Partition the input set into buckets by a random polynomial of constant degree�

�� For t �� � to O�lg lgn� do

�a� Allocate Mt memory blocks� each of size Kt�

�b� Let each bucket select a block at random� and try to injectively map its

keys into the block using a random linear function� if the same block was

selected by another bucket� or if no injective mapping was found� then

the bucket carries on to the next iteration�

Figure �� The template for the hashing algorithm�

The crux of the algorithm is a careful a priori selection of the parameters Mt and Kt� For

each iteration t� Mt and Kt depend on the expected number of active buckets and the expected

distribution of bucket sizes at iteration t in a way that makes the desired progress possible �or

rather� likely��
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The execution is oblivious in the following sense� All buckets are treated equally� regardless of

their sizes� The algorithm does not make any explicit attempt to estimate the sizes of individual

buckets and to allocate memory to buckets based on their sizes� as is the case in the previous

implementations of the ��level scheme� Nor does it attempt to estimate the number of active

buckets or the distribution of their sizes�

The selection of the parametersMt and Kt in iteration t is made according to a priori estimates

of the above random variables� These estimates are based on properties of the level�� hash function

as well as on inductive assumptions about the behavior of previous iterations�

Remark The hashing result demonstrates the power of randomness in parallel computation on

crcw machines with memory restricted to linear size� Boppana ��� considered the problem of

Element Distinctness� given n integers� decide whether or not they are all distinct� He showed that

solving Element Distinctness on an n�processor Priority machine with bounded memory requires

$�lgn� lg lg n� time� �Bounded memory� means that the memory size is an arbitrary function of n

but not of the range of the input values� It is easy to see that if the memory size is bounded by $�n��

then Element Distinctness can be solved in O��� expected time by using hash functions �Fact �����

This� however� does not hold for linear size memory� Our parallel hashing algorithm implies that

when incorporating randomness� Element Distinctness can be solved in expected O�lg lg n� time

using n processors on Collision� �which is weaker than the Priority model� with linear memory

size�

��� Applications

The perfect hash table data structure is a useful tool for parallel algorithms� Matias and Vishkin ��	�

proposed using a parallel hashing scheme for space reduction in algorithms in which a large amount

of space is required for communication between processors� Such algorithms become space e�cient

and preserve the number of operations� The penalties are in introducing randomization and in

having some increase in time� Using our hashing scheme� the time increase may be substantially

smaller�

There are algorithms for which� by using the scheme of ��	�� the resulting time increase is O�lgn��

By using the new scheme� the time increase is only O �lg lg n lg� n�� This is the case in the con�

struction of su�x trees for strings ��� ��� and in the naming assignment procedure for substrings

over large alphabets �����

For other algorithms� the time increase in ��	� wasO�lg lg n� orO
�
�lg lgn��

�
� while our algorithm

leaves the expected time unchanged� Such is the case in integer sorting over a polynomial range ����

and over a super�polynomial range �
� �	��

More applications are discussed in the conclusion section�
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��� Outline

The rest of the paper is organized as follows� Preliminary technicalities used in our algorithm

and its analysis are given in Section �� The algorithm template is presented in greater detail in

Section �� Two di�erent implementations� based on di�erent selections of Mt and Kt� are given

in the subsequent sections� Section � presents an implementation that does not fully satisfy the

statements of Theorem � but has a relatively simple analysis� An improved implementation of the

main algorithm� with more involved analysis� is presented in Section 
� In Section � we show how

to reduce the number of random bits� Section � explains how the algorithm can be implemented

with an optimal number of operations� The model of computation is discussed in Section �� where

we also give a modi
ed algorithm for a weaker model� Section 	 brie"y discusses the extension of

the hashing problem� in which the input may consist of a multi�set� Finally� conclusions are given

in Section ���


 Preliminaries

The following inequalities are standard �see� e�g� �����

Markov�s inequality Let 
 be a random variable assuming non�negative values only� Then

Prob �
 � T � � E �
��T � ���

Chebyshev�s inequality Let 
 be a random variable� Then� for T � ��

Prob �j
 �E �
�j � T � � Var �
��T � � ���

Cherno��s inequality Let 
 be a binomial variable� Then� for T � ��

Prob �j
 �E �
�j � T � � e���T
��E���� � ���

Terminology for probabilities We say that an event occurs with n�dominant probability if it

occurs with probability � � n������ Our usage of this notation is essentially as follows� If a poly�

logarithmic number of events are such that each one of them occurs with n�dominant probability�

then their conjunction occurs with n�dominant probability as well� We will therefore usually be

satis
ed by demonstrating that each algorithmic step succeeds with n�dominant probability�

Fact ��� Let 
�� � � � � 
n be pairwise independent binary random variables� and let 
 �
P

��i�n 
i�

Let � � � be constant� let � � �� � ��� ��E �
� and �� � �� � ��E �
�� Then

�� 
 � �� with ���dominant probability�






�� 
 � �� with ���dominant probability� and

�� ��� ��E �
� � 
 � �� � ��E �
� with E �
��dominant probability�

Proof� Recall the well known fact that

Var �
� �
X

��i�n

Var �
i� since �i are pairwise independent

�
X

E �
i� since � � �i � �

� E �
� �

���

�� By Inequality ���

Prob �
 � ��� � Prob �j
 �E �
�j � �E �
�� � ����E �
� � ������ �

�� If �� � E �
�� then by Inequality ���

Prob �
 � ��� � Prob �j
 �E �
�j � �E �
�� � ����E �
� � ����
p
�� �

If �� � E �
�� then by Inequality ���

Prob �
 � ��� � E �
���� � ��
p
�� �

�� Follows immediately from the above�

Hash functions For the remainder of this section� let S � U be 
xed� jSj � n� A hash function h �

U � ��� m� �� splits the set S into buckets� bucket i is the subset fx � S j h�x� � ig and its size is
si �

��S � h���i�
��� for � � i � m� An element x � S collides if its bucket is not a singleton� The

function is injective� or perfect � if no element collides� Let

Br � Br�h� �
X

��i�m

�
si
r

�
� �
�

A function is injective if and only if B� � �� since B� is the number of collisions of pairs of keys�

More generally� Br is the number of r�tuples of keys that collide under h�

Polynomial hash functions Let U � ��� u��� where u is prime� The class of degree�d polynomial
hash functions� d 
 �� mapping U into ��� m� �� is

Hd
m ��

�
h

���� h�x� �
� dX
i	�

cix
i mod u

�
mod m� for some c�� � � � � cd � U

�
�
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In the rest of this section we consider the probability space in which h is selected uniformly at

random from Hd
m� d 
 ��

The following fact and corollary were shown by Fredman� Koml�os� and Szemer�edi ����� and

before by Carter and Wegman ���� �The original proof was only for the case d � �� however the

generalization for d � � is straightforward��

Fact ��� E �B�� � n��m�

Corollary ��� The hash function h is injective on S with probability at least �� n��m�

Proof� The function h is injective if and only if B� � �� By Fact ��� and Markov�s inequality�

the probability that h is not injective is Prob �B� 
 �� � n��m�

The following was shown in �����

Fact ��	 If d 
 � then B� � �n��m with n��m�dominant probability�

For r 
 �� let Ar be the rth moment of the distribution of si�

Ar � Ar�h� �
X

��i�m

sri � ���

It is easy to see that A� � m and A� � n� Further� it can be shown that if n � O�m� and if h were

completely random function� then Ar is linear in n with high probability for all 
xed r 
 �� For

polynomial hash functions� Dietzfelbinger et al� ���� proved the following fact�

Fact ��� Let r 
 �� and m 
 n� If d 
 r then there exists a constant �r � �� depending only on r�

such that

Prob �Ar � �
r � n� 
 ��� �

Tighter estimates on the distribution of Ar were given in ����� �For completeness� the proofs are

attached in Appendix B��

Fact ��� Let r 
 �� If d 
 r then

E �Ar� � n
X

��j�r

�
r

j

��
�n

m

�j��
�

where
�r
j

�
is the Stirling number of the second kind��

Fact ��� Let � � � be constant� If d 
 �r and m 
 n then Ar � �� � ��E �Ar� with n�dominant

probability�

�For k � j � �� the Stirling number of the second kind �
�
k

j

�
� �

j	

Pk

i��
����j�i

�
j

i

�
ik � is the number of ways of

partitioning a set of k distinct elements into j nonempty subsets �e�g�� �
�� Chapter ����
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	 A Framework for Hashing by Oblivious Execution

��� An algorithm template

The input to the algorithm is a set S of n keys� given in an array� The hashing algorithm works in two

stages� which correspond to the two level hashing scheme of Fredman� Koml�os� and Szemer�edi �����

In the 
rst stage a level�� hash function f is chosen� This function is selected at random from

the class Hd
m� where d is a su�ciently large constant to be selected in the analysis� and m � !�n��

The hash function f partitions the input set into m buckets � bucket i� i � �� � � � � m � �� is the
set S � f���i�� The 
rst stage is easily implemented in constant time� The main e�ort is in the

implementation of the second stage� which is described next�

The second level of the hash table is built in the second stage of the algorithm� For each bucket

a private memory region� called a block � is assigned� The address of the memory block allocated

to bucket i is recorded in cell i of a designated array ptr of size m� Also� for each bucket� a level��

function is constructed� this function injectively maps the bucket into its block� The descriptions

of the level�� functions are written in ptr�

Let us call a bucket active if an appropriate level�� function has not yet been found� and inactive

otherwise� At the beginning of the stage all buckets are active� and the algorithm terminates when

all buckets have become inactive� The second stage consists of O�lg lgn� iterations� each executing

in constant time� The iterative process rapidly reduces the number of active buckets and the

number of active keys�

At each iteration t� a new memory segment is used� This segment is partitioned into Mt blocks

of size Kt each� whereMt and Kt will be set in the analysis� Each bucket and each key is associated

with one processor� The operation of each active bucket in each iteration is given in Figure ��

Allocation� The bucket selects at random one of theMt memory blocks� If the same

block was selected by another bucket� then the bucket remains active and does not

participate in the next step�

Hashing � The bucket selects at random two functions from H�
Kt
� and then tries to

hash itself into the block separately by each of these functions� If either one of

the functions is injective� then its description and the memory address of the block

are written in the appropriate cell of array ptr and the bucket becomes inactive�

Otherwise� the bucket remains active and carries on to the next iteration�

Figure �� The two steps of an iteration� based on oblivious execution�

�



In a few of the last iterations� it may become necessary for an iteration to repeat its body more

than once� but no more than a constant number of times� The precise conditions and the number

of repetitions are given in Section 
�

The hash table constructed by the algorithm supports lookup queries in constant time� Given

a key x� a search for it begins by reading the cell ptr�f�x��� The contents of this cell de
nes the

level�� function to be used for x as well as the address of the memory block in which x is stored�

The actual o�set in the block in which x is stored is given by the injective level�� hash function

found in the Hashing step above�

��� Implementations

The algorithm template described above constitutes a framework for building parallel hashing

algorithms� The execution of these algorithms is oblivious in the sense that the iterative process

of 
nding level�� hash functions does not require information about the number or size of active

buckets� Successful termination and performance are dependent on the a priori setting of the

parameters d�Mt and Kt� The e�ectiveness of the allocation step relies on having su�ciently many

memory blocks� the e�ectiveness of the hashing step relies on having su�ciently large memory

blocks� The requirement of keeping the total memory linear imposes a tradeo� between the two

parameters� The challenge is in 
nding a balance between Mt and Kt� so as to achieve a desired

rate of decay in the number of active buckets� The number of active keys can be deduced from the

number of active buckets based on the characteristics of the level�� hash function� as determined

by d�

We will show two di�erent implementations of the algorithm template� each leading to an

analysis of a di�erent nature� The 
rst implementation is given in Section �� There� the parameters

are selected in such a way that in each iteration� the number of active buckets is expected to

decrease by a constant factor� Although each iteration may fail with constant probability� there is

a geometrically decreasing series which bounds from above the number of active buckets in each

iteration� AfterO�lg lg n� iterations� the expected number of active keys and active buckets becomes

n��lgn������ The remaining keys are hashed in additional constant time using a di�erent approach�

after employing an O�lg lgn� time procedure�

From a technical point of view� the analysis of this implementation imposes relatively modest

requirements on the level�� hash function� since it only uses 
rst�moment analysis �i�e�� Markov�s

inequality�� Moreover� it only requires a simpler version of the hashing step� in which only one

hash function from H�
Kt
is being used� The expected running time is O�lg lg n�� but this running

time is guaranteed only with �arbitrary small� constant probability�

The second implementation is given in Section 
� This implementation is characterized by a

doubly�exponential rate of decrease� in the number of active buckets and keys� After O�lg lg n�

�A sequence v�� v�� � � � decreases in an exponential rate if for all t� vt � v���� � ��t for some � � �	 the sequence

decreases in a doubly�exponential rate if for all t� vt � v��
�����t for some � � ��

	



iterations all keys are hashed without any further processing� This implementation is superior in

several other respects� its time performance is with high probability� each key is only handled by its

original processor� and it forms a basis for further improvements in reducing the number of random

bits�

From a technical point of view� the analysis of this implementation is more subtle and imposes

more demanding requirements on the level�� hash function� since it uses second�moment analysis

�i�e�� Chebyshev�s inequality�� Achieving a doubly�exponential rate of decrease required a more

careful selection of parameters� and was done using a �symbolic spreadsheet� approach�

Together� these implementations demonstrate two di�erent paradigms for fast parallel random�

ized algorithms� each involving a di�erent "avor of analysis� One only requires an exponential rate

of decrease in problem size� and then relies on reallocation of processors to items� �Subsequent

works that use this paradigm and its extensions are mentioned in Section ���� This paradigm is

relatively easy to understand and not too di�cult to analyze� using a framework of probabilistic

induction and analysis by expectations� The analysis shows that each iteration succeeds with con�

stant probability� and that this implies an overall constant success probability� In contrast� the

second implementation shows that each iteration succeeds with n�dominant probability� and that

this implies an overall n�dominant success probability� The analysis is signi
cantly more subtle�

and relies on more powerful techniques of second moment analysis� The second paradigm consists of

a doubly�exponential rate of decrease in the problem size� and hence does not require any wrap�up

step�

� Obtaining Exponential Decrease

This section presents our 
rst implementation of the algorithm template� Using a rather elementary

analysis of expectations� we show that at each iteration the problem size decreases by a constant

factor with �only� constant probability� The general framework described in Section ��� shows that

this implies that the problem size decreases at an overall exponential rate�

AfterO�lg lgn� iterations� the number of keys is reduced to n��lgn������ A simple load balancing

algorithm now allocates �lg n����� processors to each remaining key� Using the excessive number of

processors� each key is 
nally hashed in constant time�

��� Designing by Expectation

Consider an iterative randomized algorithm� in which after each iteration some measure of the

problem decreases by a random amount� In a companion paper ���� we showed that at each

iteration one can actually assume that in previous iterations the algorithm was not too far from its

expected behavior� The paradigm suggested is�
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Design an iteration to be �successful� with a constant probability under the assumption

that at least a constant fraction of the previous iterations were �successful��

It is justi
ed by the following lemma�

Lemma 	�� 
probabilistic induction ����
 Consider an iterative randomized process in which�

for all t 
 �� the following holds� iteration t�� succeeds with probability at least ���� provided that

among the �rst t iterations at least t�� were successful� Then� with probability $���� for every t � �

the number of successful iterations among the �rst t iterations is at least t���

��� Parameters setting and analysis

Let the level�� function be taken from H��
m � i�e�� set

d � r � �� � ���

Further� set

m � �n � ���

Let

Kt � ��� ����
 � t�
 � �	�

Mt � m ��� t�� � ����

where ��� is as in Fact ��
�

To simplify the analysis� we allow the parameters Kt and Mt to assume non�integral values� In

actual implementation� they must be rounded up to the nearest integer� This does not increase

memory requirements by more than a constant factor� all other performance measures can only be

improved�

Memory usage The memory space used is

X
t

MtKt � m�
�
����
X
t

�t���t�� � O�n� �

Lemma 	�� Let vt be the number of active buckets at the beginning of iteration t� Then�

Prob
�
� t 
 � vt � m��t��



� $����
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Proof� We assume that the level�� function f satis
es

A�� � �
�� �m � ����

By Fact ��
� ���� holds with probability at least ����

The proof is by continued by using Lemma ���� Iteration t is successful if vt�� � vt��� Thus�

the number of active buckets after j successful iterations is at most m��j �

The probabilistic inductive hypothesis is that among the 
rst t iterations at least t�� were

successful� that is

vt � m��t�� � ����

The probabilistic inductive step is to show that

Prob �vt�� � vt��� 
 ��� �

In each iteration the parameters Kt and Mt were chosen so as to achieve constant deactivation

probability for buckets of size at most

	t �
q
Kt�� � �

���
���t������ ����

We distinguish between the following three types of events� �failures�� which may cause a bucket

to remain active at the end of an iteration�

�i� Allocation Failure� The bucket may select a memory block which is also selected by other

buckets�

Let 
��t� be the probability that a 
xed bucket does not successfully reserve a block in the

allocation step� Since there are at most vt buckets� each selecting at random one of Mt

memory blocks� 
��t� � vt�Mt� By ���� and ����


��t� � m��t���m���t�� � ���� �

�ii� Size Failure� The bucket may be too large for the current memory block size� As a result� the

probability for it to 
nd a level�� hash function is not high enough�

Let v�t be the number of buckets at the beginning of iteration t that are larger than 	t� By

�����

v�t � 	��t � A�� � �
��m�

Therefore� by �����

v�t � �
��m�	��t � m�
�������
�����t��� � m����t� ����

��



Without loss of generality� we assume that if vt�� � vt�� then vt�� � vt�� �i�e�� if more

buckets that are needed become inactive� then some of them are still considered as active��

Thus� for the purpose of analysis�

vt 
 m��t� ��
�

We have then

v�t � vt�
�� � vt��� �

�iii� Hash Failure� A bucket may fail to 
nd an injective level�� hash function even though it is

su�ciently small and it has uniquely selected a block�

Let 
��t� be the probability that a bucket of size at most 	t is not successfully mapped into

a block of size Kt in the hashing step� By Corollary ��� and ����


��t� � 	�t �Kt � ��� �

A bucket of size at most 	t that successfully reserves a block of size Kt� and that is successfully

mapped into it� becomes inactive� The expected number of active buckets at the beginning of

iteration t � � can therefore be bounded by

E �vt��� � vt
��t� � v�t � vt
��t� � vt ����� � ���� � ���� � vt�� �

By Markov�s inequality

Prob �vt�� � vt��� 
 ��� �

proving the inductive step� The lemma follows�

Lemma 	�� Let nt be the number of active keys at the beginning of iteration t� Then

Prob
�
� t 
 � nt � cn��	t



� $��� �

for some constants c� � � ��

Proof� It follows from ����� by using a simple convexity argument� that nt is maximal when all

active buckets at the beginning of iteration t are of the same size qt� In this case� by �����

vt � q��t � �
�� �m

and

nt � vt � qt � vt �
�
�
��m

vt

����

� ��
��m����v���t �

Therefore� by Lemma ���� the lemma follows�

��



By Lemma ��� and Lemma ��� we have an exponential decrease in the number of active keys

and in the number of active buckets with probability $���� The number of active keys becomes

n��lgn�c� for any constant c � �� after O�lg lgn� iterations with probability $����

��� A �nal stage

After the execution of the second stage with the parameter setting as described above� the number

of available resources �memory cells and processors� is a factor of �lgn����� larger than the number

of active keys� This resource redundancy makes it possible to hash the remaining active keys in

constant time� as described in the remainder of this section�

All keys that were not hashed in the iterative process will be hashed into an auxiliary hash

table of size O�n�� Consequently� the implementation of a lookup query will consist of searching

the key in both hash tables�

The auxiliary hash table is built using the the ��level hashing scheme� A level�� function maps

the set of active keys into an array of size n� This function is selected at random from a class

of hash functions presented by Dietzfelbinger and Meyer auf der Heide ���� De
nition ����� It

has the property that with n�dominant probability each bucket is of size smaller than lg n ����

Theorem ����b���� For the remainder of this section we assume that this event indeed occurs�

�Alternatively� we can use the n��universal class of hash functions presented by Siegel ������

Each active key is allocated � lgn processors� and each active bucket is allocated ��lgn�� mem�

ory� The allocation is done by mapping the active keys injectively into an array of size O�n� lgn��

and by mapping the indices of buckets injectively into an array of size O�n��lgn���� These map�

pings can be done in O�lg lg n� time with n�dominant probability� by using the simple renaming

algorithm from �����

The remaining steps take constant time� We independently select � lgn linear hash functions

and store them in a designated array� These hash functions will be used by all buckets�

The memory allocated to each bucket is partitioned into � lgnmemory blocks� each of size � lg� n�

Each bucket is mapped in parallel into its � lgn blocks by the � lgn selected linear hash functions�

and each mapping is tested for injectiveness� This is carried out by the � lgn processors allocated

to each key� For each bucket� one of the injective mappings is selected as a level�� function� The

selection is made by using the simple %leftmost �� algorithm of ��
��

If for any of the buckets all the mappings are not injective then the construction of the auxiliary

hash table fails�

Lemma 	�	 Assume that the number of keys that remain active after the iterative process is at most

n��lgn��� Then� the construction of the auxiliary hash table succeeds with n�dominant probability�

��



Proof� Recall that each bucket is of size at most lgn� A mapping of a bucket into its memory

block of size ��lgn�� is injective with probability at least ��� by Corollary ���� The probability

that a bucket has no injective mapping is therefore at most ��n�� With probability at least ����n�
every bucket has at least one injective mapping�

It is easy to identify failure� If the algorithm fails to terminate within a designated time� it

can be restarted� The hash table will be therefore always constructed� Since the overall failure

probability is constant� the expected running time is O�lg lgn��

� Obtaining Doubly�Exponential Decrease

The implementation of the algorithm template that was presented in the previous section main�

tains an exponential decrease in the number of active buckets throughout the iterations� This

section presents the implementation in which the number of active buckets decreases at a doubly�

exponential rate�

Intuitively� the stochastic process behind the algorithm template has a potential for achieving

doubly�exponential rate� If a memory block is su�ciently large in comparison to the bucket size then

the probability of the bucket to remain active is inversely proportional to the size of the memory

block �Corollary ����� Consider an idealized situation in which this is the case� If at iteration t

there are mt active buckets� each allocated a memory block of size Kt� then at iteration t�� there

will be mt�Kt active buckets� and each of those could be allocated a memory block of size K�
t � at

iteration t�� there will be mt�K
�
t active buckets� each to be allocated a memory block of size K

�
t �

and so on�

In a less idealized setting� some buckets do not deactivate because they are too large for the

current value of Kt� The number of such buckets can be bounded above by using properties of the

level�� hash function� It must be guaranteed that the fraction of �large buckets� also decreases at

a doubly�exponential rate�

The illustrative crude calculation given above assumes that memory can be evenly distributed

between the active buckets� To make the doubly�exponential rate possible� the failure probability

of the allocation step� and hence the ratio mt�Mt� must also decrease at a doubly�exponential rate�

Establishing a bound on the number of �large blocks� and showing that a large fraction of the

buckets are allocated memory blocks were also of concern in the previous section� There� however�

it was enough to show constant bounds on the probabilities of allocation failure� size failure and

hash failure�

The parameter setting which establishes the balance required for the doubly�exponential rate is

now presented� Following that is the analysis of the algorithm performance� The section concludes

with a description of how the parameters were selected�

�




��� Parameters setting

Let the level�� function be taken from H�

m � i�e�� set d � ��� Let

r � 	 � ����

Further� set

m � ���n � ����

Let

Kt � �a�
t�b�t�c� ����

Mt � n ��a�
t�b�t�c� � ��	�

where

� � ����� � a � ���� � b� � ��
 � b� � 	��� � c� � ����
 � c� � �	��� � ����

��� Memory usage

Proposition ��� The total memory used by the algorithm is O�n��

Proof� By ����� the memory used in the 
rst stage is O�n�� The memory used in an iteration t

of the second stage is

Mt �Kt � n ��b��b��t�c��c� � n ��t���
�
���� � ����

The total memory used by the second stage is therefore at most

�X
t	�

n ��t���
�
���� �
�
��


�� �� �
p
�
� n � O�n� � ����

��� Framework for time performance analysis

Let mt be de
ned by

mt � n ���
t�b�t�� � ����

The run�time analysis of the second stage is carried out by showing�

��



Lemma ��� With n�dominant probability� the number of active buckets in the beginning of iteration

t is at most mt�

The lemma is proved by induction on t� for t � lg lg n� lg�� The induction base follows

from m� � n and the fact that there are at most n active buckets�

In the subsequent subsections� we prove the inductive step by deriving estimates on the number

of failing buckets in iteration t under the assumption that at the beginning of the iteration there

are at most mt active buckets� Speci
cally� we show by induction on t that� with n�dominant

probability� the number of active buckets at the end of iteration t is at most

mt�� � n ���
t���b��t����� � ����

The bucket may fail to 
nd an injective level�� hash function� In estimating the number of

buckets that fail to 
nd an injective level�� function during an iteration we assume that the bucket

uniquely selected a memory block and that the bucket size is not too large relatively to the current

block size� Accordingly� as in Section ���� we distinguish between the following three types of

events� �failures�� which may cause a bucket to remain active at the end of an iteration�

�i� Allocation Failure� The bucket may select a memory block which is also selected by other

buckets�

�ii� Size Failure� The bucket may be too large for the current memory block size� As a result� the

probability for it to 
nd a level�� hash function is not high enough�

�iii� Hash Failure� A bucket may fail to 
nd a level�� hash function even though it is su�ciently

small and it has uniquely selected a block�

We will provide estimates for the number of buckets that remain active due to either of the above

reasons� in Lemma 
�
 for case �i�� in Lemma 
�� for case �ii�� and in Lemma 
�� and Lemma 
��

for case �iii�� The estimates are all shown to hold with n�dominant probability� The induction step

follows from adding all these estimates�

To wrap up� let t � lg lgn� lg�� Then� by �����

mt � n ���
t�b�t�� � n �� lgn�b�t�� � � �

We can therefore infer�

Proposition ��� With n�dominant probability� the number of iterations required to deactivate all

buckets is at most lg lg n� lg��

��



��� Failures in Uniquely Selecting a Block

Lemma ��	 Let � be �xed� � � � � ���� and suppose that either mt � M
�����
t or mt � M

�����
t �

Let 
 be the random variable representing the number of buckets that fail to uniquely select a block�

Then� 
 � �m�
t�Mt� with Mt�dominant probability�

Proof� A bucket has a probability of at most mt�Mt to have other buckets select the memory

block it selected� Therefore�

E �
� � m�
t �Mt � ��
�

Further� 
 is stochastically smaller than a binomially distributed random variable � obtained

by performing mt independent trials� each with probability mt�Mt of success� That is to say�

Prob �
 
 
�� � Prob �� 
 
�� for all 
�� Note that E ��� � m�
t � If mt � M

�����
t then

Prob
�

 � �m�

t�Mt

� � Prob
�
� � �m�

t�Mt

�
by ���
� e���E����

� e���m
�
t �Mt�

� e���M
��
t �

� M
�����
t �

����

Otherwise� mt � M
�����
t and we are in the situation where E �
� � �� Since 
 is integer valued

and �m�
t � �

Prob
�

 � �m�

t�Mt

� � Prob �
 
 ��
by ���
� E �
�

by ����
� m�

t �Mt

� M���
t �

����

The setting not covered by the above lemma is M
�����
t � mt � M

�����
t � This only occurs

in a constant number of iterations throughout the algorithm and requires the following special

treatment� The body of these iterations is repeated� thus providing a second allocation attempt of

buckets that failed to uniquely select a memory block in the 
rst trial�

��



Let 
� and 
� be the random variables representing the number of buckets that fail to uniquely

select a block in the 
rst and second attempts respectively�

Prob
�

� � M

�����
t


 by ���
� E �
���M

�����
t

by ����
� m�

t �MtM
�����
t

� m�
t �M

�����
t

� M
�����
t �M

�����
t

� M
������
t

� M
�����
t �

����

Therefore� with Mt�dominant probability the second attempt falls within the conditions of Equa�

tion ���� and hence 
� � � with Mt�dominant probability�

Lemma ��� Let t � lg lg n� lg�� The number of buckets that fail to uniquely select a block is� with

n�dominant probability� at most mt�����

Proof� By Lemma 
��� the number of buckets that fail to uniquely select a memory block is� with

Mt�dominant probability� at most

�m�
t �Mt

by ���������
� �n� ����

t��b�t���n ��a�
t�b�t�c�

� n ��a����
t�b�t���c�

by ����
� n ��
�������

t�b��t����b����c�

� n ����
�����
t�b��t�����������
����

by ����
� n ���

t���b��t�����

by ����
� mt���� �

��	�

The above holds also with n�dominant probability since

Mt
by ����
� n ��a�

t�b�t�c�


 n ��a lgn�b�t�c�

� n��a��b� lg lgn� lg��c�

by ����
� n���� lgn����� �

����

��� Failures in Hashing

In considering buckets which uniquely selected a block which fail to 
nd an injective level�� function

we draw special attention to buckets of size at most

	t �
�
q
Kt�� � ����

�	



Lemma ��� The number of buckets larger than 	t is� with n�dominant probability� at most mt�����

Proof� Let � � m�n � ���� By incorporating the appropriate values for the Stirling numbers of

the second kind into Fact ���� we get

E �Ar� �
�
� �


��

�
�
�����

��
�
�����

��
�
������

��
�
�����

��
�
�	
��

��
�
����

�

�
�
�

�


�
n

by ��
�
� ����
� n �

Therefore� by Fact ���� with n�dominant probability

Ar � �n � ����

From the above and ��� it follows that the number of buckets bigger than 	t is� with n�dominant

probability� at most

�n�	rt
by ���������

� �n��Kt���
���

by ��
�
� �n ����a�

t�b�t�c������

by ����
� �n ����
�����

t�������t���
���

by ����
� �n ���

t���b��t����b����
���

by ����
� �n ���

t���b��t�����������
���

� �n ���
t���b��t�����

����

� n ���
t���b��t�������lg ���

�����

by ����
� mt���

lg ���

����

� mt���
����
����

� mt���� �

����

The analysis of hashing failures of buckets that are small enough is further split into two cases�

Lemma ��� Suppose that mt��Kt 

p
n� Then the number of buckets of size at most 	t that fail

in the hashing step of the iteration is� with n�dominant probability� at most mt�����

Proof� Without loss of generality� we may assume that there are exactly mt active buckets of size

at most 	t that participate in Step �� When such a bucket is mapped into a memory block of size Kt�

the probability of the mapping being non�injective is� by Corollary ���� at most 	�t �Kt � ��
p
�Kt�

The probability that the bucket fails in both hashing attempts is therefore at most ���Kt� Let

��



#mt be the total number of such failing buckets� Then� E � #mt� � mt��Kt� By Fact ���� with

mt��Kt�dominant probability�

#mt � ��mt��Kt�

� mt�Kt
by ��
������

� n ���
t�b�t���a�t�b�t�c�

� n �����a��
t��b��b��t���c�

by ����
� n ����������

t�b��t������b��c�

by ����
� n ���

t���b��t������b��c�

by ���������
� mt�� �

�����
����

� mt���� �

����

Note that since mt��Kt 

p
n� the above holds with n�dominant probability and we are done�

Lemma ��� Suppose that mt��Kt �
p
n� Then� by repeating the hashing step of the iteration a

constant number of times� we get #mt � �� with n�dominant probability�

Proof� We have

n �����a��
t��b��b��t�c� by ��
������

� mt��Kt �
p
n � ��
�

and thus�

����a��
t��b��b��t�c� �

p
n � ����

Therefore�

Kt
by ��
�
� �a�

t�b�t�c�


 ������a��
t��b��b��t�c��

by ����
� n��� �

����

for some constant � � �� Recall from the proof of Lemma 
�� that a bucket fails in the hashing

step with probability at most ���Kt� By ����� if the iteration body is repeated d���e � � times�
the failure probability of each bucket becomes at most ��Kt�

������ � �������Ktn� and

E � #mt� � mt�
������Ktn � �����

p
n�n � ������

p
n �

The lemma follows by Markov inequality�

��



� Reducing the Number of Random Bits

In this section we show how to reduce the number of random bits used by the hashing algorithm�

The algorithm as described in the previous section consumes !�n lg u� random bits� where

u � jU j� the 
rst iteration already uses !�n lg u� random bits� for each subsequent iteration� the

number of random words from U which are used is by at most a constant factor larger than the

memory used in that iteration� resulting in a total of !�n lg u� random bits�

The sequential hashing algorithm of Fredman� Koml�os� and Szemer�edi ���� can be implemented

with only O�lg lgU � lgn� random bits ����� We show how the parallel hashing algorithm can be

implemented with O�lg lgU � lgn lg lgn� random bits�

We 
rst show how the algorithm can be modi
ed so as to reduce the number of random bits

to O�lg u lg lgn�� The 
rst stage requires O��� random elements from U for the construction of

the level�� function� and remains unchanged� An iteration t of the second stage required O�mt�

random elements from U � it is modi
ed as follows�

Allocation step If each bucket independently selects a random memory block then O�mt lgMt�

random bits are consumed� This can be reduced to O�lgm� by making use of polynomial hash

functions �

Lemma ��� Using � lgm random bits� a set R � ��� m� �� of size mt can be mapped in constant

time into an array of size �Mt such that the number of colliding elements is at most �m�
t�Mt� with

Mt�dominant probability�

Proof� Let h� � H�
�Mt

and h� � H�
Mt
be selected at random� Then� the image of a bucket i is

de
ned by

gt�i� �

�
h��i� if � �j � R� j �� i� h��i� � h��j�

�Mt � h��i� otherwise
� ����

Algorithmically� h� is 
rst applied to all elements and then h� is applied to the elements which

collided under h�� The colliding elements of gt are those which collided both under h� and under h��

Let R� be the set of elements that collide under h�� Clearly� jR�j � �B��h��� Let � be some

constant� � � � � ���� Consider the following three cases�

�� mt �M
�����
t �

By Corollary ���� Prob �R� �� 	� � m�
t��Mt �M���

t ���

�� mt 
M
�����
t �

It follows from Fact ��� thatB� � �m�
t��Mt � m�

t �Mt withm
�
t ��Mt�dominant probability� As

jR�j � �B� andm�
t��Mt 
M��

t �� we have that jR�j � �m�
t�Mt withMt�dominant probability�

��



�� M
�����
t � mt � M

�����
t �

By Fact ���� E �B��h��� � m�
t��Mt � M��

t �� and by Markov�s inequality�

Prob
�
B��h�� � M

�����
t ��



�M��

t �M
�����
t �M

������
t �

Therefore� with Mt�dominant probability� jR�j � �B��h�� �M
�����
t � in which case� by Corol�

lary ����

Prob �h� is not injective over R
�� � ��R�

����Mt �M���
t �

Invoking the above procedure for block allocation does not increase the total memory consump�

tion of the algorithm by more than a constant factor�

Hashing step The implementation of the hashing part of the iteration body using independent

hash functions for each of the active buckets consumes O�mt lg u� random bits� This can be reduced

to O�lg u� by using hash functions which are only pairwise independent � This technique and its

application in the context of hash functions are essentially due to ���� ����

The modi
cation to the step is as follows� In each hashing attempt executed during the step�

four global parameters a�� a�� b�� b� � U are selected at random by the algorithm� The hash function

attempted by a bucket i is

hi�x� �� ��c��i� � c��i�x� mod u� mod Kt ��	�

where

c��i� � �ia� � b�� mod u

c��i� � �ia� � b�� mod u �

All hashing attempts of the same bucket are fully independent� Thus� the proof of Lemma 
��

is una�ected by this modi
cation� Recall that Fact ��� assumes only pairwise independence� Since

hi� i � �� � � � � m� �� are pairwise independent� the proof of Lemma 
�� remains valid as well�
The above leads to a reduction in the number of random bits used by the algorithm to

O�lg u lg lg n��

The number of random bits can be further reduced as follows� Employ a pre�processing hashing

step in which the input set S is injectively mapped into the range ��� n� � ��� This is done by
applying a hash function � selected from an appropriate class� to map the universe U into this

range� Then the algorithm described above is used to build a hash table for the set ��S�� A lookup

of a key x is done by searching for ��x� in this hash table�

The simple class of hash functions H�
m is appropriate for this universe reduction application� It

was shown in ���� that the class H�
m has the following properties�

��



�� A selection of a random function � from the class requires O�lg lg u� lg n� random bits�

�� A selection can be made in constant time by a single processor�

�� The function � is injective over S with n�dominant probability�

�� Computing ��x� for any x � U can be done in constant time�

This pre�processing is tantamount to a reduction in the size of the universe� after which application

of the algorithm requires only O�lgn lg lg n� bits� The total number of random bits used is therefore

O�lg lg u� lg n lg lgn� �

� Obtaining Optimal Speedup

The description of the algorithm in Section � assumed that the number of processors is n� thus the

time�processor product is O�n lg lg n�� Our objective in this section is a work�optimal implementa�

tion where this product is O�n�� and p� the number of processors� is maximized�

When p � n� the key array and the bucket array are divided into p sectors � one per processor�

A parallel step of the algorithm is executed by having each processor traverse its sector and execute

the tasks included in it�

A key is active if its bucket is active� Let nt be the number of active keys in the beginning of

iteration t� Assume that the implemented algorithm has reached the point where nt � O�n� lg lgn��

Further assume that these active elements are gathered in an array of size O�n� lg lgn�� Then�

applying the non�optimal algorithm of Section � with p � n� lg lg n� and each processor being

responsible for n�p lg lgn problem instances� gives a running time of

O

�
n

p lg lgn
lg lg

�
n

lg lg n

��
� O �n�p�

which is work�optimal�

We 
rst show that the problem size is reduced su�ciently for the application of the non�optimal

algorithm after O�lg lg lg lgn� iterations�

Lemma ��� There exists t� � O�lg lg lg lg n� such that nt� � O�n� lg lg n� with n�dominant prob�

ability�

Proof� The number of active buckets decreases at a doubly�exponential rate as can be seen from

Lemma 
��� To see that the number of keys decreases at a doubly�exponential rate as well� we show

that with n�dominant probability

nt � ����n���a�t����b�t�
�� � ����

��



Inequality ����� Ar � �n� clearly holds when the summation is over active buckets only� By

a convexity argument� the total number of keys in active buckets is maximized when all active

buckets are of equal size� The number of active buckets is bounded from above by mt� Therefore�

nt � ��n���rm����r
t � ����

Inequality ���� is obtained from ���� by replacing inmt by its de
nition in ���� and then substituting

numerical values for the parameters using ���� and �����

The lemma follows by choosing an appropriate value for t� with respect to ���� and �����

It remains to exhibit a work�e�cient implementation of the 
rst t� steps of the algorithm� This

implementation outputs the active elements gathered in an array of size O�n� lg lg n�� The rest of

this section is dedicated to the description of this implementation�

As the algorithm progresses� the number of active keys and the number of active buckets de�

crease� However� the decrease in the number of active elements in di�erent sectors is not necessarily

identical� The time of implementing one parallel step is proportional to the number of active el�

ements in the largest sector� It is therefore crucial to occasionally balance the number of active

elements among di�erent sectors in order to obtain work e�ciency�

Let the load of a sector be the number of active elements �tasks� in it� A load balancing

algorithm takes as input a set of tasks arbitrarily distributed among p sectors� using p processors

it redistributes this set so that the load of each sector is greater than the average load by at most

a constant factor� Suppose that we have a load balancing algorithm whose running time� using p

processors� is Tlb�p� with n�dominant probability� If load balancing is applied after step t then the

size of each sector is O�nt�p��

We describe a simple work�optimal implementation in which load balancing is applied after each

of the 
rst t� parallel steps� A parallel step t executes in time which is in the order of

nt
p
� Tlb�p� �

The total time of this implementation is in the order of

t�X
t	�

�
nt
p
� Tlb�p�

�

Since nt decreases at least at an exponential rate� the total time is in the order of

n

p
� t� Tlb�p�

which is O�n�p� for

p � O

�
n

Tlb�p� lg lg lg lgn

�
�

�




Using the load balancing algorithm of ���� which runs in Tlb�p� � O�lg lg p� time� we conclude that

with n�dominant probability the running time on a p�processor machine is

O�n�p� lg lg p lg lg lg lgn� �

The load balancing algorithm applied consumes O�p lg lg p� random bits� All these bits are used

in a random mapping step which is very similar to the allocation step of the hashing algorithm�

Thus� by a similar approach as the mapping procedure in Lemma ��� it may be established that

the number of random bits in the load balancing algorithm can be reduced to O�lg p lg lg p��

We 
nally remark that using load balancing in a more e�cient� yet as simple way� as describe

in ����� yields a faster work�e�cient implementation� The technique is based on carefully choosing

the appropriate times for invoking the load balancing procedure� it applies to any algorithm in which

the problem size has an exponential rate of decrease� and it hence applies to the implementation

of Section � as well� In such an implementation the load balancing algorithm is only used O�lg� n�

times� resulting in a parallel hashing algorithm that takesO�n�p�lg lg n lg� n� time with n�dominant

probability�

� Model of Computation

In this section we give a closer attention to the details of the implementation on a pram� and

study the type of concurrent memory access required by our algorithm� We 
rst present an im�

plementation on Collision� and its extension to the weaker Tolerant model� We proceed by

presenting an implementation on the even weaker Robust model� The hash�table constructed in

this implementation only supports searches in O�lg lg n� time� Finally� we examine the concurrent

read capability needed by the implementations�

��� Implementation on Collision and on Tolerant

We describe an implementation on Collision� This implementation is also valid for Tolerant�

since each step of Collision can be simulated in constant time on Tolerant provided that� as

it is the case here� only linear memory is used �����

Initialization The selection of the level�� hash function is done by a single processor� Since the

level�� function is a polynomial of a constant degree� its selection can be done by a single processor

and be read by all processors in constant time� using a singe memory cell of dmax flg lg u� lgnge
bits� No concurrent�write operation is required for the implementation of this stage�

Bucket representatives The algorithm template assumes that each bucket can act as a single

entity for some operations� e�g�� selecting a random block and selecting a random hash function�

Since usually several keys belong to the same bucket� it is necessary to coordinate the actions of

��



the processors allocated to these keys� A simple way of doing so is based on the fact that there

are only linearly many buckets and that a bucket is uniquely indexed by the value of f � the level��

hash function� on its members� A processor whose index is determined by the bucket index acts as

the bucket representative and performs the actions prescribed by the algorithm to the bucket�

Allocation and Hashing steps A processor representing an active bucket selects a memory block

and a level�� hash function� and records these selections in a designated cell� All processors with keys

in that bucket read then that cell and use the selected block in the hashing step� Each participating

processor �whose key belongs in an active bucket� writes its key in the cell determined by its level�

� hash function� and examines the cell contents to see if the write operation was successful� A

processor for which the write failed will then attempt to write its key to position i of array ptr�

where i is the number of the bucket this processor belongs to� Processors belonging to bucket i can

then learn if the level�� function selected for their bucket is injective by reading the content of ptr�i��

A change in value or a collision symbol indicate non�injectiveness� To complete the process� the

array ptr is restored for the next hashing attempt� This restoration can be done in constant time

since this array is of linear size�

In summary we have

Proposition ��� The algorithms of Theorem � can be implemented on Tolerant�

��� Implementation on Robust

We now describe an implementation that� at the expense of slowing down the lookup operation�

makes no assumption about the result of a concurrent�write into a cell� Speci
cally� we present an

implementation on the Robust model� for which a lookup query may take O�lg lgn� time in the

worst case� but O��� expected time for keys in the table�

The di�culty with the Robust model is in letting all processors in a bucket know whether the

level�� hash function of their bucket is injective or not� The main idea in the modi
ed implemen�

tation is in allowing iterations to proceed without determining whether level�� hash functions are

injective or not� whenever a key is written into a memory cell in the hashing step it is deactivated�

and its bucket size decreases� The modi
ed algorithm performs at least as well as the implemen�

tation in which a bucket is deactivated only if all of its keys are mapped injectively� The total

memory used by the modi
ed algorithm and the size of the representation of the hash table do not

change�

Allocation step We 
rst note that the algorithm can be carried out without using bucket repre�

sentatives at all� Allocation of memory blocks is done using hash functions� as in Lemma ���� each

processor can individually compute the index of its memory block by evaluating the function gt�

This function is selected by a designated processor and its representation �� lgm bits� is read in

constant time by all processors�

��



We further modify the algorithm� so that the hashing step is carried out by all active buckets�

That is� even buckets that collided in the allocation step will participate in the hashing step� This

modi
cation can only serve to improve the performance of the algorithm� since even while sharing a

block with another bucket the probability that a bucket 
nds an injective function into that block is

not zero� This modi
cation eliminates the concurrent memory access needed for detecting failures

in the allocation step�

Hashing step The selection of a level�� hash function is done as in the hashing step described

in Section �� As can be seen from ��	�� only four global parameters should be selected and made

available to all processors� this can be done in constant time�

It remains to eliminate the concurrent memory access required for determining if the level��

function of any single bucket was injective� Whenever a key is successfully hashed by this function�

it is deactivated even if other keys in the same bucket were not successfully hashed� Thus� keys of

the same bucket may be stored in the hash table using di�erent level�� hash functions�

The two steps of an iteration in the hashing algorithm are summarized in Figure ��

Let x be an active key in a bucket i � f�x�� The processor assigned to x executes

the following steps�

Allocation� Compute gt�i�� the index of the memory block selected to the bucket

of x� where gt is de
ned by �����

Hashing � Determine hi� the level�� hash function selected by the bucket of x� where hi
is de
ned by ��	�� Write x into cell hi�x� in memory block gt�i� and read the contents

of that cell� if x was written then the key x becomes inactive�

Figure �� Implementation of iteration t in the hashing algorithm on Robust

Lookup algorithm The search for a key x is done as follows� Let i � f�x�� for t � �� �� � � �

read position hi�x� in the memory block gt�i� in the appropriate array� �All random bits that were

used in the hash table construction algorithm are assumed to be recorded and available�� The

search is terminated when either x is found� or else when t exceeds the number of iterations in the

construction algorithm�

The lookup algorithm requires O�lg lgn� iterations in the worst case� However� for any key x � S

the expected lookup time �over all the random selections made by the hashing algorithm� is O����

��



An alternative simpli�ed implementation

Curiously� the sequence of modi
cations to the algorithm described in this section has lead to a

��level hashing scheme� i�e�� to the elimination of indirect addressing� To see this� we observe that

at iteration t an active key x is written into a memory cell gt
��x�� where the function gt

��x� is

dependent only on n and on the random selections made by the algorithm� but not on the input�

An even simpler implementation of a ��level hashing algorithm is delineated next�

At each iteration t� a new array Tt of size �Mt is used� whereMt is as de
ned in ��	�� In addition�

a function gt as de
ned in ���� is selected at random� A processor representing an active key x

in the iteration tries to write x into Tt�gt�x��� and then reads this cell� If x is successfully written

in Tt�gt�x�� then x is deactivated� Otherwise� x remains active and the processor representing it

carries on to the next iteration�

To see that the algorithm terminates in O�lg lg n� iterations� we observe that the operation on

keys in each iteration is the same as the operation on buckets in the allocation step of Section ��

Therefore� the analysis of Section � can be reused� substituting keys for buckets �and ignoring

failures in the hashing step of the ��level algorithm�� The hash table consists of the collection of

the arrays T�� T�� � � �� and� as can be easily veri
ed� is of linear size� A lookup query for a given key

x is executed in O�lg lg n� time by reading Tt�gt�x�� for t � �� �� � � ��

��� Minimizing concurrent read requirements

The algorithms for construction of the hash table on Tolerant and Robust can be modi
ed to use

concurrent�read from a single cell only� By allowing a pre�processing stage of O�lgn� time� concur�

rent read can be eliminated� implying that the ercw model is su�cient� With these modi
cations�

parallel lookups still require concurrent read� and their execution time increases to O�lg lg n� in the

worst case� Nevertheless� the expected time for lookup of any single key x � S is O���� The details

are described next�

����� Concurrent read in the Tolerant implementation

There are two types of concurrent read operations required by the modi
ed algorithm� First� the

sequence of O�lg lg n� functions gt� �or alternatively� gt in the simpli
ed implementation�� must

be agreed upon by all processors� Since each of these functions is represented by O�lg u� bits� its

selection can be broadcasted at the beginning of the iteration through the concurrent�read cell�

The single cell concurrent read requirement for broadcasting can be eliminated by adding an

O�lgn��time pre�processing step for the broadcasting� �This is just a special case of simulating

crcw pram by erew pram��

The other kind of concurrent�read operation occurs when processors read a memory cell to verify

that their hashing into that cell has succeeded� This operation can be replaced by the following

�	



procedure� For each memory cell� there is a processor standing by� Whenever a pair hx� ji is written
into a cell� the processor assigned to that cell sends an acknowledgement to processor j by writing

into a memory cell j in a designated array�

The lookup algorithm requires concurrent�read capabilities� In this sense� the lookup operation

is more demanding than the construction of the hash table� A similar phenomenon was observed by

Karp� Luby and Meyer auf der Heide ���� in the context of simulating a random access machine on

a distributed memory machine� The main challenge in the design of their �parallel�hashing based�

simulation algorithm was the execution of the read step� Congestions during the execution of the

write step were resolved by attempting to write in several locations and using the 
rst for which the

write succeeded� It is more di�cult to resolve read congestions since the cells in which values were

stored are already determined� Indeed� the read operation constitutes the main run�time bottleneck

in their algorithm�

����� Concurrent Read in the Robust implementation

The simpli
ed ��level hashing algorithm for construction of the hash table on Robust is modi
ed

as follows� We eliminate the step in which a processor with key x reads the contents of the cell

Tt�gt�x�� after trying to write to that cell� Instead� we use the acknowledgement technique described

above� A processor j handling an active key x writes hx� ji into the cell Tt�gt�x��� The processor
standing by cell Tt�gt�x�� into which hx� ji is written� sends an acknowledgement to processor j�

Note that this implementation introduces a new type of failures� due to the unpredictability

of the concurrent write operation in Robust� an acknowledgement for a successful hash may not

be received� Consider for example the following situation� Let j be a processor whose key x

did not collide� Let i� i� be two processors with colliding keys y� y�� i�e�� gt�y� � gt�y
��� These

two processors concurrently write the pairs hy� ii and hy�� i�i into the cell Tt�gt�y��� The result
of this concurrent write is arbitrary� In particular� it can be the pair hx�� ji� which would cause
the processor standing by the cell Tt�gt�y�� to garble the acknowledgement sent to processor j�

�Recall that an acknowledgement to processor j is implemented by writing into a memory location

associated with j��

The number of the new failures described above can be at most half the number of colliding

keys� It is easy to verify that the analysis remains valid� since the number of these new failures

in no more than the number of �hashing failures� accounted for in Section 
�
� and which do not

occur in this implementation�

� Hashing of Multi�Sets

We conclude the technical discussion by brie"y considering a variation of the hashing problem in

which the input is a multi�set rather than a set� We 
rst note that the analyses of exponential and

doubly�exponential rate of decrease in the problem size is not a�ected by the possibility of multiple
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occurrences of the same key� This is a result of relying on estimates of the number of active

buckets rather than the number of active keys� The number of distinct keys�not the number of

keys�determines the probability of a bucket to 
nd an injective function�

A predictable decrease in the number of active keys is essential for obtaining an optimal speedup

algorithm� Unfortunately� the analysis in Section � with regard to the implementation of Section 


does not hold� To understand the di�culty� consider the case where a substantial fraction of the

input consists of copies of the same key� Then� with non�negligible probability this key may belong

to a large bucket� The probability that this bucket deactivates in the 
rst few iterations� in which

the memory blocks are not su�ciently large� is too small to allow global decrease in the number of

keys with high probability� Consequently� the rapid decrease in the number of buckets may not be

accompanied by a similar decrease in the number of keys�

In contrast� the nature of the analysis in Section � makes it susceptible to an easy extension

to multiple keys� which leads to an optimal speedup algorithm� albeit with expected performance

only� Using the probabilistic induction lemma all that is required is to show that each copy of

an active key stands a constant positive probability of deactivation at each iteration� Since the

analysis is based on expectations only� there are no concerns regarding correlations between copies

of the same key� or dependencies between di�erent iterations� The details are left to the reader�

We also note that the model of computation required for a multi�set is Collision�� since it

must be possible to distinguish between the case of multiple copies of the same key being written

into a memory cell� and the case where distinct keys are written� Also� the extensions of the hashing

algorithms which only require concurrent read from a single memory cell can be used for hashing

with multi�set input� but then a Collision� model� as opposed to Robust� must be assumed�

We 
nally observe that the hashing problem with a multi�set as input can be reduced into

the ordinary hashing problem �in which the input consists of a set�� by a procedure known as

leaders election� This procedure selects a single representative from among all processors which

share a value� By using an O�lg lg n��time� linear�work leaders election algorithm which runs on

Tolerant ���� we have

Theorem � Given a multi�set of n keys drawn from a universe U � the hashing problem can be

solved using O�n� space� �i� in O�lg lg n� time with high probability� using n processors� or �ii� in

O�lg lg n lg� n� time and O�n� operations with high probability� The algorithms run on Tolerant�

Conversely� note that any hashing algorithm� when run on Arbitrary� solves the leaders election

problem� In particular� the simple ��level hashing algorithm for Robust� when implemented on

Arbitrary with a multi�set as input� gives a simple leaders election algorithm�

Consider now another variant of the multi�set hashing problem in which a data record is asso�

ciated with each key� The natural semantics of this problem is that multiple copies of the same key

can be inserted into the hash table only if their data records are identical� Processors representing

copies of a key with con"icting data records should terminate the computation with an error code�

��



The Collision� model makes it easy enough to extend the implementations discussed above to

accommodate this variant�

A more sophisticated semantics� in which the data records should be consolidated� requires a

di�erent treatment� e�g�� by applying an integer sorting algorithm on the hashed keys �see ��	���

�� Conclusions

We presented a novel technique of hashing by oblivious execution� By using this technique� al�

gorithms for constructing a perfect hash table which are fast� simple� and e�cient� were made

possible� The running time obtained is best possible in a model in which keys are only handled in

their original processors�

The number of random bits consumed by the algorithm is !�lg lg u � lg n lg lgn�� An open

question is to close the gap between this number and the !�lg lg u � lg n� random bits that are

consumed in the sequential hashing algorithm of �����

The program executed by each processor is extremely simple� Indeed� the only coordination

between processors is in computing the and function� when testing for injectiveness� In the imple�

mentation on the Robust model� even this coordination is eliminated�

The large constants hidden under the �Oh� notation in the analysis may render the described

implementations still far from being practical� We believe that the constants can be substantially

improved without compromising the simplicity of the algorithm� by a more careful tuning of the

parameters and by tightened analysis� This may be an interesting subject of a separate research�

The usefulness of the oblivious execution approach presented in this paper is not limited to the

hashing problem alone� We have adopted it in ���� for simulations among sub�models of the crcw

pram� As in the hashing algorithm� keys are partitioned into subsets� However� this partition is

arbitrary and given in the input� and for each subset the maximum key must be computed�

Subsequent work

The oblivious execution technique for hashing from Section � and its implementation from Section �

were presented in preliminary form in ����� Subsequently� our oblivious execution technique was

used several times to obtain improvements in running time of parallel hashing algorithms� Matias

and Vishkin ���� gave an O�lg� n lg lg� n� expected time algorithm� Gil� Matias� and Vishkin ����

gave a tighter failure probability analysis for the algorithm in ����� yielding O�lg� n� time with high

probability� similar improvement �from O�lg� n lg lg� n� expected time to O�lg� n� time with high

probability�� was described independently by Bast and Hagerup ����

An O�lg� n� time hashing algorithm is used as a building block in a parallel dictionary algorithm

presented in ����� �A parallel dictionary algorithm supports in parallel batches of operations insert �

delete� and lookup�� The oblivious execution technique has an important role in the implementa�
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tion of insertions into the dictionary� The dictionary algorithm runs in O�lg� n� time with high

probability� improving the O�n�� time dictionary algorithm of Dietzfelbinger and Meyer auf der

Heide ����� The dictionary algorithm can be used to obtain a space e�cient implementation of any

parallel algorithm� at the cost of a slowdown of at most O�lg� n� time with high probability�

The above hashing algorithms use the log�star paradigm of ����� relying extensively on processor

reallocation� and are not as simple as the algorithm presented in this paper� Moreover� they require

a substantially larger number of random bits�

Karp� Luby and Meyer auf der Heide ���� presented an e�cient simulation of a pram on a

distributed memory machine in the doubly�logarithmic time level� improving over previous simula�

tions in the logarithmic time level� The use of a fast parallel hashing algorithm is essential in their

result� the algorithm presented here is su�cient to obtain it�

Goldberg� Jerrum� Leighton and Rao ���� used techniques from this paper to obtain an O�h �

lg lgn� randomized algorithm for the h�relation problem on the optical communication parallel

computer model�

Gibbons� Matias and Ramachandran ���� adapted the algorithm presented here to obtain a low�

contention parallel hashing algorithm for the qrqw pram model ��	�� this implies an e�cient hash�

ing algorithm on Valiant�s bsp model� and hence on hypercube�type non�combining networks �����
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A Analysis of Moments of the Bucket Distribution

The material of this appendix is taken from ����� and is given here for completeness�

The reader is reminded that we assume the probability space where h � U � ��� m��� is selected
at random from a suitable class of hash functions� Also� the set S � U � jSj � n� is 
xed� and m�n

is denoted by ��

We use the following notation� for a sequence x� x is the set of elements comprising x�

For x � U r� x � �x�� � � � � xr�� let

��x� �

�
� if h�x�� � � � � � h�xr�

� otherwise
�

If h is r�wise independent� then

E ���x�� �
�

mj��
� ����

where j � jxj� Polynomial hash functions of degree r� � are �almost� r�wise independent as they
satisfy a weaker condition�

E ���x�� �
�
�

m

�j��
� ����

With the above notation we can write

Br �
X

��i�m

�
si
r

�
�
�

r�

X
x�Sr

jxj�r

��x�

and therefore for degree��k � �� polynomial hash functions

E �Br� �
�

r�

X
x�Sr

jxj�r

E ���x��

by ����
�

�
n

r

��
�

m

�r��

� m
�r��

r�
��r �

�A function is r�wise independent if it assumes fully random values on all sets of up to r keys� For example� the

class of all linear transformation of degree r from one vector space over a �eld to another vector space over a �eld is

r�wise independent�

��



In particular� for linear hash functions Fact ��� follows� For r�wise independent functions ���� can

be used to derive

E �Br� �

�
n

r

�
m��r � m

r��r
� ����

Also�

Ar �
X

��i�m

sri �
X
x�Sr

��x� �
X

��j�r

X
x�Sr

jxj�j

��x� � ��
�

Therefore

E �Ar� �
X

��j�r

X
x�Sr

jxj�j

E ���x�� �

The number of di�erent sequences x � Sr such that jxj � j is

jfx � Sr � jxj � jgj � n�

�n� j��

�
r

j

�
� nj

�
r

j

�
�

For degree��k � �� polynomial hash functions we use ���� to obtain

E �Ar� �
X

��j�r

nj
�
r

j

��
�

m

�j��
� n

X
��j�r

�
r

j

��
�

�

�j��
����

thereby proving Fact ���� For r�wise independent hash functions we use ���� to obtain

E �Ar� �
X

��j�r

n�

�n� j��

�
r

j

�
�

mj��
�

X
��j�r

�
r

j

�
j�E �Bj� � ����

Using the inversion formula for Stirling numbers �e�g� ���� page �
��� we get

E �Br� �
�

r�

X
��j�r

����r�j
�
r

j

	
E �Aj� � ����

where

r
j

�
is the Stirling number of the 
rst kind�

We now turn to computing the variance of Ar for �r�wise independent hash functions� By

Equation �


Var �Ar� �
X
x�Sr

Var ���x�� �
X

x�y�Sr

CoVar ���x�� ��y��

�
X
x�Sr

E ���x�� �
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X
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x�y ���

CoVar ���x�� ��y�� �

��



since all ��x� receive value from f�� �g� If the sets x and y are not disjoint then the co�variance of
��x� and ��y� is dependent only on the parameters

j� � jx � yj
j� � j� � jxj
j� � j� � jyj

� ��	�

and is given by

CoVar ���x�� ��y�� � m���j��j��j�� �m���j��j��m���j��j�� � m���j��j��j�� � �
��

For given j�� j�� j�� the number of distinct settings of x�y � S which satisfy ��	� is

�
n

n � �j� � j� � j��

��
r

j� � j�

��
r

j� � j�

�
� nj��j��j�

�j� � j� � j���
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�
�

Using the above and �
�� we obtain
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� r
j��j�

�� r
j��j�

�
m���j��j��j��

� m
X

j��j��r

��j���r��j��j��

�
�j��j��j����j��j��j�

� r
j��j�
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The number of terms in the above summation is not dependent on n or m� If m � O�n� then for

any 
xed k

Var �Ar� � O�n�

which �with Chebyshev�s inequality� proves Fact ��� for �r�wise independent hash functions� The

extension for polynomial hash functions is more involved and is not given here�
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