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Abstract

A hash table 1s a representation of a set in a linear size data structure that supports constant-
time membership queries. We show how to construct a hash table for any given set of n keys in
O(lglgn) parallel time with high probability, using n processors on a weak version of a CRCW
PRAM. Our algorithm uses a novel approach of hashing by “oblivious execution” based on
probabilistic analysis to circumvent the parity lower bound barrier at the near-logarithmic time
level. The algorithm is simple and is sketched by the following:

1. Partition the input set into buckets by a random polynomial of constant degree.
2. Fort:=1to O(lglgn) do
(a) Allocate M; memory blocks, each of size K.

(b) Let each bucket select a block at random, and try to injectively map its keys into the
block using a random linear function. Buckets that fail carry on to the next iteration.

The crux of the algorithm is a careful a priori selection of the parameters M; and K;. The
algorithm uses only O(lglgn) random words, and can be implemented in a work-efficient manner.
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1 Introduction

Let 5 be a set of n keys drawn from a finite universe U. The hashing problem is to construct a
function H : U — [0, m — 1] with the following attributes:

Injectiveness: no two keys in S are mapped by H to the same value,
Space efficiency: both m and the space required to represent H are O(n), and

Time efficiency: for every @ € U, H(z) can be evaluated in O(1) time by a single processor.

Such a function induces a linear space data structure, a perfect hash table, for representing 5. This
data structure supports membership queries in O(1) time.

This paper presents a simple, fast and efficient parallel algorithm for the hashing problem.
Using n processors, the running time of the algorithm is O(lglgn) with overwhelming probability,
and it is superior to previously known algorithms in several respects.

Computational models As a model of computation we use the concurrent-read concurrent-
write parallel random access machine (CRCW PRAM) family (see, e.g., [35]). The members of
this family differ by the outcome of the event where more than one processor attempts to write
simultaneously into the same shared memory location. The main sub-models of CRCW PRAM
in descending order of power are: the PRIORITY ([29]) in which the lowest-numbered processor
succeeds; the ARBITRARY ([42]) in which one of the processors succeeds, and it is not known in
advance which one; the CoLLisION™ ([9]) in which if different values are attempted to be written,
a special collision symbol is written in the cell; the Corrision ([15]) in which a special collision
symbol is written in the cell; the TOLERANT ([32]) in which the contents of that cell do not change;
and finally, the less standard RoBusT ([7, 34]) in which if two or more processors attempt to write
into the same cell in a given step, then, after this attempt, the cell can obtain any value.

1.1 Previous Work

Hash tables are fundamental data structures with numerous applications in computer science. They
were extensively studied in the literature; see, e.g., [37, 40] for a survey or [41] for a more recent one.
Of particular interest are perfect hash tables, in which every membership query is guaranteed to be
completed in constant time in the worst case. Perfect hash tables are perhaps even more significant
in the parallel context, since the time for executing a batch of queries in parallel is determined by
the slowest query.

Fredman, Komlds, and Szemerédi [16] were the first to solve the hashing problem in expected
linear time for any universe size and any input set. Their scheme builds a 2-level hash function: a
level-1 function splits S into subsets (“buckets”) whose sizes are distributed in a favorable manner.
Then, an injective level-2 hash function is built for each subset by allocating a private memory
block of an appropriate size.



This 2-level scheme formed a basis for algorithms for a dynamic version of the hashing problem,
also called the dictionary problem, in which insertions and deletions may change S dynamically.
Such algorithms were given by Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert and
Tarjan [12], Dietzfelbinger and Meyer auf der Heide [14], and by Dietzfelbinger, Gil, Matias and
Pippenger [11].

In the parallel setting, Dietzfelbinger and Meyer auf der Heide [13] presented an algorithm for
the dictionary problem. for each fixed € > 0, n arbitrary dictionary instructions (insert, delete, or
lookup), can be executed in O(n¢) expected time on a a n'~“-processor PRIORITY CRCW. Matias
and Vishkin [39] presented an algorithm for the hashing problem that runs in O(lgn) expected
time using O(n/lgn) processors on an ARBITRARY CRCW. This was the fastest parallel hashing
algorithm previous to our work. It is based on the 2-level scheme and makes extensive use of

counting and sorting procedures.

The only known lower bounds for parallel hashing were given by Gil, Meyer auf der Heide
and Wigderson [27]. In their (rather general) model of computation, the required number of
parallel steps is ©(Ig*n). They also showed that in a more restricted model, where at most one
processor may simultaneously work on a key, parallel hashing time is Q(lglgn). They also gave an
algorithm which yields a matching upper bound if only function applications are charged and all
other operations (e.g., counting and sorting) are free. Our algorithm falls within the realm of the
above mentioned restricted model and matches the Q(lglgn) lower bound while charging for all

operations on the concrete PRAM model.

1.2 Results

Our main result is that a linear static hash table can be constructed in O(lglgn) time with high
probability and O(n) space, using n processors on a CRCW PRAM. Our algorithm has the following

properties:

Time optimality It is the best possible result that does not use processor reallocations, as shown
in [27]. Optimal speed-up can be achieved with a small penalty in execution time. It is a significant

improvement over the O(lgn) time algorithm of [39].

Reliability Time bound O(lglgn) is obeyed with high probability; in contrast, the time bound
of the algorithm in [39] is guaranteed only with constant probability.

Simplicity It is arguably simpler than any other hashing algorithm previously published. (Never-
theless, the analysis is quite involved due to tight tradeoffs between the probabilities of conflicting

events. )

Reduced randomness It is adapted to consume only O(lglg n) random words, compared to (n)

random words that were previously used.

Work optimality A work optimal implementation is presented, in which the time-processor



product is O(n) and the running time is increased by a factor of O(lg* n); it also requires only
O(lglg n) random words.

Computational model If we allow lookup time to be O(lglgn) as well, then our algorithm can
be implemented on the ROBUST cRCW model.

Our results can be summarized in the following theorem.

Theorem 1 Given a set of n keys drawn from a universe U, the hashing problem can be solved using
O(n) space: (i) in O(Iglg n) time with high probability, using n processors, or (it) in O(lglgnlg™ n)
time and O(n) operations with high probability. The algorithms run on a CRCW PRAM where no
reallocation of processors to keys is employed, and use O(Iglg|U| + lgnlglgn) random bits.

The previous algorithms implementing the 2-level scheme, either sequentially or in parallel, are
based on grouping the keys according to the buckets to which they belong, and require learning the
size of each bucket. Each bucket is then allocated a private memory block whose size is dependent
on the bucket size. This approach relies on techniques related to sorting and counting, which require
Qlgn/lglgn) time to be solved by polynomial number of processors, as implied by the lower bound
of Beame and Hastad [4]. This lower bound holds even for randomized algorithms. (More recent
results have found other, more involved, ways to circumvent these barriers; cf. [38, 3, 26, 30].)

We circumvent the obstacle of learning buckets sizes for the purpose of appropriate memory
allocation by a technique of oblivious execution, sketched by Figure 1.

1. Partition the input set into buckets by a random polynomial of constant degree.
2. Fort:=1to O(lglgn) do

(a) Allocate M; memory blocks, each of size K.

(b) Let each bucket select a block at random, and try to injectively map its
keys into the block using a random linear function; if the same block was
selected by another bucket, or if no injective mapping was found, then
the bucket carries on to the next iteration.

Figure 1: The template for the hashing algorithm.

The crux of the algorithm is a careful a priori selection of the parameters M; and K. For
each iteration t, M; and K; depend on the expected number of active buckets and the expected
distribution of bucket sizes at iteration ¢ in a way that makes the desired progress possible (or
rather, likely).



The execution is oblivious in the following sense: All buckets are treated equally, regardless of
their sizes. The algorithm does not make any explicit attempt to estimate the sizes of individual
buckets and to allocate memory to buckets based on their sizes, as is the case in the previous
implementations of the 2-level scheme. Nor does it attempt to estimate the number of active
buckets or the distribution of their sizes.

The selection of the parameters M; and K in iteration ¢ is made according to a priori estimates
of the above random variables. These estimates are based on properties of the level-1 hash function
as well as on inductive assumptions about the behavior of previous iterations.

Remark The hashing result demonstrates the power of randomness in parallel computation on
CRCW machines with memory restricted to linear size. Boppana [6] considered the problem of
Element Distinctness: given n integers, decide whether or not they are all distinct. He showed that
solving Flement Distinctness on an n-processor PRIORITY machine with bounded memory requires
Qlgn/lglgn) time. “Bounded memory” means that the memory size is an arbitrary function of n
but not of the range of the input values. It is easy to see that if the memory size is bounded by Q(n?)
then Element Distinctness can be solved in O(1) expected time by using hash functions (Fact 2.2).
This, however, does not hold for linear size memory. Our parallel hashing algorithm implies that
when incorporating randomness, Element Distinctness can be solved in expected O(lglgn) time
using n processors on COLLISION™ (which is weaker than the PRIORITY model) with linear memory

size.

1.3 Applications

The perfect hash table data structure is a useful tool for parallel algorithms. Matias and Vishkin [39]
proposed using a parallel hashing scheme for space reduction in algorithms in which a large amount
of space is required for communication between processors. Such algorithms become space efficient
and preserve the number of operations. The penalties are in introducing randomization and in
having some increase in time. Using our hashing scheme, the time increase may be substantially
smaller.

There are algorithms for which, by using the scheme of [39], the resulting time increase is O(lgn).
By using the new scheme, the time increase is only O (Iglgnlg* n). This is the case in the con-
struction of suffiz trees for strings [2, 17] and in the naming assignment procedure for substrings
over large alphabets [17].

For other algorithms, the time increase in [39] was O(lglgn) or O ((Iglg n)?), while our algorithm
leaves the expected time unchanged. Such is the case in integer sorting over a polynomial range [33]
and over a super-polynomial range [5, 39].

More applications are discussed in the conclusion section.



1.4 Outline

The rest of the paper is organized as follows. Preliminary technicalities used in our algorithm
and its analysis are given in Section 2. The algorithm template is presented in greater detail in
Section 3. Two different implementations, based on different selections of M; and K;, are given
in the subsequent sections. Section 4 presents an implementation that does not fully satisfy the
statements of Theorem 1 but has a relatively simple analysis. An improved implementation of the
main algorithm, with more involved analysis, is presented in Section 5. In Section 6 we show how
to reduce the number of random bits. Section 7 explains how the algorithm can be implemented
with an optimal number of operations. The model of computation is discussed in Section 8, where
we also give a modified algorithm for a weaker model. Section 9 briefly discusses the extension of
the hashing problem, in which the input may consist of a multi-set. Finally, conclusions are given

in Section 10.

2 Preliminaries

The following inequalities are standard (see, e.g. [1]):

Markov’s inequality lLet w be a random variable assuming non-negative values only. Then

Prob(w >1T)< E(w)/T . (1)

Chebyshev’s inequality Let w be a random variable. Then, for 7" > 0,

Prob (Jw — E(w)| > T) < Var (w)/T? . (2)

Chernoff’s inequality Let w be a binomial variable. Then, for 7" > 0,

Prob (jw — E(w)| > T) = e~ HT*/EW) (3)

Terminology for probabilities We say that an event occurs with n-dominant probability if it

—2M) . Our usage of this notation is essentially as follows. If a poly-

occurs with probability 1 —n
logarithmic number of events are such that each one of them occurs with n-dominant probability,
then their conjunction occurs with n-dominant probability as well. We will therefore usually be

satisfied by demonstrating that each algorithmic step succeeds with n-dominant probability.

Fact 2.1 Let wy,...,w, be pairwise independent binary random variables, and let w = Y ;. w;.
Let ¢ > 0 be constant; let 0 < & < (1 — ¢)E(w) and & > (1 + ¢)E (w). Then

1. w > & with & -dominant probability,



2. w < & with &-dominant probability, and

3. (1-¢E(w) <w < (14 ¢)E(w) with E (w)-dominant probability.

Proof.  Recall the well known fact that

Var (w) = Z Var (wl) since w; are pairwise independent
1<i<n
< Z E (Wz) since 0 < w; <1 (4)
= E(w) .

1. By Inequality (2)
Prob (w > &) < Prob(Jw — E(w)| > €E (w)) < 1/€E (w) < 1/2¢; .
2. If £, < E(w)? then by Inequality (2)
Prob (w > &) < Prob (Jw — E(w)| > €E(w)) < 1/€E (w) < 1/2/&, .
If £ > E(w)? then by Inequality (1)

Prob (w > &) < E(w)/& < 1/VE .

3. Follows immediately from the above.

Hash functions For the remainder of this section, let S C U be fixed, | S| = n. A hash function h :
U — [0,m — 1] splits the set 5 into buckets; bucket 7 is the subset {# € S| h(z) = i} and its size is
s; = |SNh7i)|, for 0 < i < m. An element x € S collides if its bucket is not a singleton. The

function is injective, or perfect, if no element collides. Let
5
Br:Br(h): Z (7‘) . (5)
0<i<m

A function is injective if and only if By = 0, since By is the number of collisions of pairs of keys.

More generally, B, is the number of r-tuples of keys that collide under h.

Polynomial hash functions Let U = [0, u— 1] where u is prime. The class of degree-d polynomial

hash functions, d > 1, mapping U into [0, m — 1] is

d
H;ib = {h ‘ h(z) = (Z c;z' mod u) mod m, for some ¢g,...,¢cq € U} .

=0



In the rest of this section we consider the probability space in which A is selected uniformly at
random from H% , d > 1.

The following fact and corollary were shown by Fredman, Komlés, and Szemerédi [16], and
before by Carter and Wegman [8]. (The original proof was only for the case d = 1, however the
generalization for d > 1 is straightforward.)

Fact 2.2 E(By) < n?/m.

Corollary 2.3 The hash function h is injective on S with probability at least 1 — n?/m.

Proof.  The function h is injective if and only if B, = 0. By Fact 2.2 and Markov’s inequality,
the probability that & is not injective is Prob (By > 1) < n?/m. =

The following was shown in [11].
Fact 2.4 Ifd > 3 then By < 2n?/m with n? /m-dominant probability.

For r > 0, let A, be the rth moment of the distribution of s;,

A=A hy= 3 S (6)

0<i<m

It is easy to see that Ay = m and Ay = n. Further, it can be shown that if n = O(m) and if h were
completely random function, then A, is linear in n with high probability for all fixed r > 2. For
polynomial hash functions, Dietzfelbinger et al. [12] proved the following fact:

Fact 2.5 Letr > 0, and m > n. If d > r then there exists a constant o, > 0, depending only on r,
such that

Prob (A, <277 -n) > 1/2 .

Tighter estimates on the distribution of A, were given in [11]:  (For completeness, the proofs are
attached in Appendix B.)

Fact 2.6 Letr > 2. If d > r then
2n 7!
E(4,)<n {T} (—") :
, j m
1<5<r

where {;} is the Stirling number of the second kind.!

Fact 2.7 Let € > 0 be constant. If d > 2r and m > n then A, < (14 ¢)E(A,) with n-dominant
probability.

YFor k > j > 0, the Stirling number of the second kind, {f} - Zfzo(—l)J_iG) i* | is the number of ways of
[31

- 1
=5
partitioning a set of k distinct elements into j nonempty subsets (e.g., , Chapter 6]).



3 A Framework for Hashing by Oblivious Execution

3.1 An algorithm template

The input to the algorithm is a set .5 of n keys, given in an array. The hashing algorithm works in two
stages, which correspond to the two level hashing scheme of Fredman, Komlés, and Szemerédi [16].

In the first stage a level-1 hash function f is chosen. This function is selected at random from
the class HZ , where d is a sufficiently large constant to be selected in the analysis, and m = O(n).
The hash function f partitions the input set into m buckets; bucket ¢, ¢ = 0,...,m — 1, is the
set 9N f71(:). The first stage is easily implemented in constant time. The main effort is in the

implementation of the second stage, which is described next.

The second level of the hash table is built in the second stage of the algorithm. For each bucket
a private memory region, called a block, is assigned. The address of the memory block allocated
to bucket 7 is recorded in cell ¢ of a designated array ptr of size m. Also, for each bucket, a level-2
function is constructed; this function injectively maps the bucket into its block. The descriptions

of the level-2 functions are written in ptr.

Let us call a bucket active if an appropriate level-2 function has not yet been found, and inactive
otherwise. At the beginning of the stage all buckets are active, and the algorithm terminates when
all buckets have become inactive. The second stage consists of O(lglgn) iterations, each executing
in constant time. The iterative process rapidly reduces the number of active buckets and the

number of active keys.

At each iteration ¢, a new memory segment is used. This segment is partitioned into M; blocks
of size K; each, where M; and K, will be set in the analysis. Fach bucket and each key is associated

with one processor. The operation of each active bucket in each iteration is given in Figure 2.

Allocation: The bucket selects at random one of the M; memory blocks. If the same
block was selected by another bucket, then the bucket remains active and does not

participate in the next step.

Hashing: The bucket selects at random two functions from H}(t, and then tries to
hash itself into the block separately by each of these functions. If either one of
the functions is injective, then its description and the memory address of the block
are written in the appropriate cell of array ptr and the bucket becomes inactive.
Otherwise, the bucket remains active and carries on to the next iteration.

Figure 2: The two steps of an iteration, based on oblivious execution.



In a few of the last iterations, it may become necessary for an iteration to repeat its body more
than once, but no more than a constant number of times. The precise conditions and the number
of repetitions are given in Section 5.

The hash table constructed by the algorithm supports lookup queries in constant time. Given
a key z, a search for it begins by reading the cell ptr[f(z)]. The contents of this cell defines the
level-2 function to be used for x as well as the address of the memory block in which z is stored.
The actual offset in the block in which x is stored is given by the injective level-2 hash function
found in the Hashing step above.

3.2 Implementations

The algorithm template described above constitutes a framework for building parallel hashing
algorithms. The execution of these algorithms is oblivious in the sense that the iterative process
of finding level-2 hash functions does not require information about the number or size of active
buckets. Successful termination and performance are dependent on the a priori setting of the
parameters d, M; and K;. The effectiveness of the allocation step relies on having sufficiently many
memory blocks; the effectiveness of the hashing step relies on having sufficiently large memory
blocks. The requirement of keeping the total memory linear imposes a tradeoff between the two
parameters. The challenge is in finding a balance between M; and Ky, so as to achieve a desired
rate of decay in the number of active buckets. The number of active keys can be deduced from the
number of active buckets based on the characteristics of the level-1 hash function, as determined

by d.

We will show two different implementations of the algorithm template, each leading to an
analysis of a different nature. The first implementation is given in Section 4. There, the parameters
are selected in such a way that in each iteration, the number of active buckets is expected to
decrease by a constant factor. Although each iteration may fail with constant probability, there is
a geometrically decreasing series which bounds from above the number of active buckets in each
iteration. After O(lglg n) iterations, the expected number of active keys and active buckets becomes
n/(lg n)Q(l). The remaining keys are hashed in additional constant time using a different approach,

after employing an O(lglgn) time procedure.

From a technical point of view, the analysis of this implementation imposes relatively modest
requirements on the level-1 hash function, since it only uses first-moment analysis (i.e., Markov’s
inequality). Moreover, it only requires a simpler version of the hashing step, in which only one
hash function from H}(t is being used. The expected running time is O(lglgn), but this running
time is guaranteed only with (arbitrary small) constant probability.

The second implementation is given in Section 5. This implementation is characterized by a
doubly-exponential rate of decrease? in the number of active buckets and keys. After O(lglgn)

2A sequence v, v1,... decreases in an exponential rate if for all ¢, vy < vo/(1 + €)' for some ¢ > 0; the sequence
. . . t
decreases in a doubly-exponential rate if for all ¢, v, < 00/2(1"'6) for some € > 0.



iterations all keys are hashed without any further processing. This implementation is superior in
several other respects: its time performance is with high probability, each key is only handled by its
original processor, and it forms a basis for further improvements in reducing the number of random
bits.

From a technical point of view, the analysis of this implementation is more subtle and imposes
more demanding requirements on the level-1 hash function, since it uses second-moment analysis
(i.e., Chebyshev’s inequality). Achieving a doubly-exponential rate of decrease required a more
careful selection of parameters, and was done using a “symbolic spreadsheet” approach.

Together, these implementations demonstrate two different paradigms for fast parallel random-
ized algorithms, each involving a different flavor of analysis. One only requires an exponential rate
of decrease in problem size, and then relies on reallocation of processors to items. (Subsequent
works that use this paradigm and its extensions are mentioned in Section 10.) This paradigm is
relatively easy to understand and not too difficult to analyze, using a framework of probabilistic
induction and analysis by expectations. The analysis shows that each iteration succeeds with con-
stant probability, and that this implies an overall constant success probability. In contrast, the
second implementation shows that each iteration succeeds with n-dominant probability, and that
this implies an overall n-dominant success probability. The analysis is significantly more subtle,
and relies on more powerful techniques of second moment analysis. The second paradigm consists of
a doubly-exponential rate of decrease in the problem size, and hence does not require any wrap-up
step.

4 Obtaining Exponential Decrease

This section presents our first implementation of the algorithm template. Using a rather elementary
analysis of expectations, we show that at each iteration the problem size decreases by a constant
factor with (only) constant probability. The general framework described in Section 4.1 shows that
this implies that the problem size decreases at an overall exponential rate.

After O(lglg n) iterations, the number of keys is reduced to n/(Ig 7). A simple load balancing
algorithm now allocates (lg n)Q(l) processors to each remaining key. Using the excessive number of
processors, each key is finally hashed in constant time.

4.1 Designing by Expectation

Consider an iterative randomized algorithm, in which after each iteration some measure of the
problem decreases by a random amount. In a companion paper [22] we showed that at each
iteration one can actually assume that in previous iterations the algorithm was not too far from its
expected behavior. The paradigm suggested is:

10



Design an iteration to be “successful” with a constant probability under the assumption
that at least a constant fraction of the previous iterations were “successful”.

It is justified by the following lemma.

Lemma 4.1 (probabilistic induction [22]) Consider an iterative randomized process in which,
for allt > 0, the following holds: iteration t + 1 succeeds with probability at least 1/2, provided that
among the first t iterations at least t/4 were successful. Then, with probability Q(1), for everyt > 0
the number of successful iterations among the first t iterations is at least t/4.

4.2 Parameters setting and analysis

Let the level-1 function be taken from H1Y, i.e., set
d=r=10 . (7)

Further, set

m=4n . (8)
Let

I(t — 24—|—O’10/5-|—t/57 (9)

My = m2t— i (10)

where 019 is as in Fact 2.5.

To simplify the analysis, we allow the parameters K; and M; to assume non-integral values. In
actual implementation, they must be rounded up to the nearest integer. This does not increase
memory requirements by more than a constant factor; all other performance measures can only be
improved.

Memory usage The memory space used is

ST MKy = m28+ /53 951 Z o)
t t

Lemma 4.2 Let vy be the number of active buckets at the beginning of iteration t. Then,

Prob (Vt >0 mn < m2_t/4) = Q(1).

11



Proof.  We assume that the level-1 function f satisfies
AlO S 2910 . (11)

By Fact 2.5, (11) holds with probability at least 1/2.

The proof is by continued by using Lemma 4.1. Iteration t is successful if v;1q < v4/2. Thus,
the number of active buckets after j successful iterations is at most m2=7.

The probabilistic inductive hypothesis is that among the first ¢ iterations at least t/4 were
successful, that is

vy < m27 (12)
The probabilistic inductive step is to show that
Prob (vi41 < v/2) > 1/2 .

In each iteration the parameters K; and M; were chosen so as to achieve constant deactivation
probability for buckets of size at most

ﬁt — /](15/8 — 2(1+0’/5+t/5)/2‘ (13)

We distinguish between the following three types of events, “failures”, which may cause a bucket
to remain active at the end of an iteration.

(i) Allocation Failure. The bucket may select a memory block which is also selected by other
buckets.

Let p1(t) be the probability that a fixed bucket does not successfully reserve a block in the
allocation step. Since there are at most v; buckets, each selecting at random one of M;
memory blocks, pq(t) < v¢/M;. By (12) and (10)

pr(t) < m27 ym247t4 = 1/16 .

(ii) Size Failure. The bucket may be too large for the current memory block size. As a result, the
probability for it to find a level-2 hash function is not high enough.

Let v; be the number of buckets at the beginning of iteration ¢ that are larger than ;. By

(1),
v) - B0 < Ayg < 2710m.

Therefore, by (13),
V! < 2710/ B10 = 2710 =5(1+a10/5+1/5) .y 0=5—t, (14)

12



Without loss of generality, we assume that if v;41 < v;/2 then vy = v/2 (i.e., if more
buckets that are needed become inactive, then some of them are still considered as active).
Thus, for the purpose of analysis,

vy > m27 " (15)
We have then
v, <0270 < /16 .

(iii) Hash Failure. A bucket may fail to find an injective level-2 hash function even though it is
sufficiently small and it has uniquely selected a block.

Let ps(t) be the probability that a bucket of size at most 3; is not successfully mapped into
a block of size Ky in the hashing step. By Corollary 2.3 and (13)

pa(t) < B7 /K =1/8 .

A bucket of size at most J; that successfully reserves a block of size K;, and that is successfully
mapped into it, becomes inactive. The expected number of active buckets at the beginning of

iteration ¢ + 1 can therefore be bounded by
E (vi41) <vpr(t) + vp + oeps(t) < v (1/16 +1/16 + 1/8) < vy /4 .
By Markov’s inequality
Prob (vi41 < v /2) > 1/2
proving the inductive step. The lemma follows. "
Lemma 4.3 Let ny be the number of active keys at the beginning of iteration t. Then
Prob (Vt >0 ny < cn2_at) =Q(1) ,

for some constants ¢, a > 0.

Proof. 1t follows from (11), by using a simple convexity argument, that n; is maximal when all
active buckets at the beginning of iteration ¢ are of the same size ¢;. In this case, by (11),

vt-qtlo < 2910 .y

and
20’10 0.1
Ny = Vg - Gy < Vg - ( m) — (201077”6)0'1?}?'9,
Ut
Therefore, by Lemma 4.2, the lemma follows. .
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By Lemma 4.3 and Lemma 4.2 we have an exponential decrease in the number of active keys
and in the number of active buckets with probability ©(1). The number of active keys becomes
n/(lgn), for any constant ¢ > 0, after O(lglgn) iterations with probability €Q(1).

4.3 A final stage

After the execution of the second stage with the parameter setting as described above, the number
of available resources (memory cells and processors) is a factor of (Ign)*(1) larger than the number
of active keys. This resource redundancy makes it possible to hash the remaining active keys in
constant time, as described in the remainder of this section.

All keys that were not hashed in the iterative process will be hashed into an auxiliary hash
table of size O(n). Consequently, the implementation of a lookup query will consist of searching

the key in both hash tables.

The auxiliary hash table is built using the the 2-level hashing scheme. A level-1 function maps
the set of active keys into an array of size n. This function is selected at random from a class
of hash functions presented by Dietzfelbinger and Meyer auf der Heide [14, Definition 4.1]. It
has the property that with n-dominant probability each bucket is of size smaller than lgn [14,
Theorem 4.6(b’)]. For the remainder of this section we assume that this event indeed occurs.
(Alternatively, we can use the nc-universal class of hash functions presented by Siegel [43].)

Each active key is allocated 21g n processors, and each active bucket is allocated 4(lgn)® mem-
ory. The allocation is done by mapping the active keys injectively into an array of size O(n/lgn),
and by mapping the indices of buckets injectively into an array of size O(n/(Ign)>). These map-
pings can be done in O(lglgn) time with n-dominant probability, by using the simple renaming
algorithm from [20].

The remaining steps take constant time. We independently select 2lgn linear hash functions
and store them in a designated array. These hash functions will be used by all buckets.

The memory allocated to each bucket is partitioned into 21g n memory blocks, each of size 21g? n.
Each bucket is mapped in parallel into its 21gn blocks by the 21gn selected linear hash functions,
and each mapping is tested for injectiveness. This is carried out by the 2lgn processors allocated
to each key. For each bucket, one of the injective mappings is selected as a level-2 function. The
selection is made by using the simple ‘leftmost 1’ algorithm of [15].

If for any of the buckets all the mappings are not injective then the construction of the auxiliary

hash table fails.

Lemma 4.4 Assume that the number of keys that remain active after the iterative process is at most
n/(Ign)>. Then, the construction of the auxiliary hash table succeeds with n-dominant probability.

14



Proof.  Recall that each bucket is of size at most lgn; A mapping of a bucket into its memory
block of size 2(Ign)? is injective with probability at least 1/2 by Corollary 2.3. The probability
that a bucket has no injective mapping is therefore at most 1/n%. With probability at least 1—1/n,
every bucket has at least one injective mapping. "

It is easy to identify failure. If the algorithm fails to terminate within a designated time, it
can be restarted. The hash table will be therefore always constructed. Since the overall failure

probability is constant, the expected running time is O(lglgn).

5 Obtaining Doubly-Exponential Decrease

The implementation of the algorithm template that was presented in the previous section main-
tains an exponential decrease in the number of active buckets throughout the iterations. This
section presents the implementation in which the number of active buckets decreases at a doubly-

exponential rate.

Intuitively, the stochastic process behind the algorithm template has a potential for achieving
doubly-exponential rate: If a memory block is sufficiently large in comparison to the bucket size then
the probability of the bucket to remain active is inversely proportional to the size of the memory
block (Corollary 2.3). Consider an idealized situation in which this is the case. If at iteration ¢
there are m; active buckets, each allocated a memory block of size K, then at iteration ¢t + 1 there
will be m;/K; active buckets, and each of those could be allocated a memory block of size K?; at
iteration ¢4 2 there will be m;/K} active buckets, each to be allocated a memory block of size K},

and so on.

In a less idealized setting, some buckets do not deactivate because they are too large for the
current value of K;. The number of such buckets can be bounded above by using properties of the
level-1 hash function. It must be guaranteed that the fraction of “large buckets” also decreases at

a doubly-exponential rate.

The illustrative crude calculation given above assumes that memory can be evenly distributed
between the active buckets. To make the doubly-exponential rate possible, the failure probability

of the allocation step, and hence the ratio m;/M;, must also decrease at a doubly-exponential rate.

Establishing a bound on the number of “large blocks” and showing that a large fraction of the
buckets are allocated memory blocks were also of concern in the previous section. There, however,

it was enough to show constant bounds on the probabilities of allocation failure, size failure and

hash failure.

The parameter setting which establishes the balance required for the doubly-exponential rate is
now presented. Following that is the analysis of the algorithm performance. The section concludes

with a description of how the parameters were selected.
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5.1 Parameters setting

Let the level-1 function be taken from H18 i.e., set d = 18. Let
r=9. (16)

Further, set

m = 160n . (17)
Let

Ky = 20Vthita (18)

M, = n2 0N hette (19)
where

A=18/13; a=8/13; by=1/5; b3=9/20; ¢ =73/25; ¢ =289/20 . (20)

5.2 Memory usage

Proposition 5.1 The total memory used by the algorithm is O(n).

Proof. By (17), the memory used in the first stage is O(n). The memory used in an iteration ¢

of the second stage is

Mt . I(t -n Q(bl—bg)t-I—Cl-I—CQ -n 2—t/4+737/100 . (21)

The total memory used by the second stage is therefore at most

i 9~ t/44737/100 _ 277

2 mﬁ -n=0(n) . (22)

5.3 Framework for time performance analysis

Let m; be defined by
my = n 27N Tt (23)

The run-time analysis of the second stage is carried out by showing:
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Lemma 5.2 With n-dominant probability, the number of active buckets in the beginning of iteration
t is at most my.

The lemma is proved by induction on ¢, for ¢ < lglgn/lgA. The induction base follows
from mg = n and the fact that there are at most n active buckets.

In the subsequent subsections, we prove the inductive step by deriving estimates on the number
of failing buckets in iteration ¢ under the assumption that at the beginning of the iteration there
are at most m; active buckets. Specifically, we show by induction on ¢ that, with n-dominant
probability, the number of active buckets at the end of iteration ¢ is at most

Mit1 =N g AT bt )L (24)

The bucket may fail to find an injective level-2 hash function. In estimating the number of
buckets that fail to find an injective level-2 function during an iteration we assume that the bucket
uniquely selected a memory block and that the bucket size is not too large relatively to the current
block size. Accordingly, as in Section 4.2, we distinguish between the following three types of
events, “failures”, which may cause a bucket to remain active at the end of an iteration.

(i) Allocation Failure. The bucket may select a memory block which is also selected by other
buckets.

(ii) Size Failure. The bucket may be too large for the current memory block size. As a result, the
probability for it to find a level-2 hash function is not high enough.

(iii) Hash Failure. A bucket may fail to find a level-2 hash function even though it is sufficiently

small and it has uniquely selected a block.

We will provide estimates for the number of buckets that remain active due to either of the above
reasons: in Lemma 5.5 for case (i), in Lemma 5.6 for case (ii), and in Lemma 5.7 and Lemma 5.8
for case (iii). The estimates are all shown to hold with n-dominant probability. The induction step
follows from adding all these estimates.

To wrap up, let ¢t = lglgn/lg A. Then, by (23),

At en—
mt =n 2 A bgt-l—l =n 2 lgn th-I—l < 1 .
We can therefore infer:

Proposition 5.3 With n-dominant probability, the number of iterations required to deactivate all
buckets is at most Iglgn/lg A.
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5.4 Failures in Uniquely Selecting a Block

Lemma 5.4 Let € be fized, 0 < € < 1/6, and suppose that either m; > ]\/Al'tl/z-l_E or my < Mtl/z_e.
Let w be the random variable representing the number of buckets that fail to uniquely select a block.
Then, w < 2m?/M;, with My-dominant probability.

Proof. A bucket has a probability of at most m;/M; to have other buckets select the memory
block it selected. Therefore,

E(w) <m?/M; . (25)

Further, w is stochastically smaller than a binomially distributed random variable w obtained
by performing m; independent trials, each with probability m;/M; of success. That is to say,
Prob (w > wy) < Prob (w > wp) for all wg. Note that E (@) = m?. If m; > ]\/Al'tl/z-l_E then

Prob (w > 2m?/M;) < Prob(w > 2m?/M;)
by () —a(E=)
= e~ Umi/My) (26)
= e (Mt2€)
= M7

t

Otherwise, m; < ]\/Al'tl/z_E and we are in the situation where E (w) < 1. Since w is integer valued
and 2m? > 0

Prob (w > 2m?/M;) < Prob(w>1)
" B
< w
by (25) 5 (27)
< my /Mt
< M7

Mt1/2+6. This only occurs

The setting not covered by the above lemma is ]\/Al'tl/z_E < my <
in a constant number of iterations throughout the algorithm and requires the following special
treatment. The body of these iterations is repeated, thus providing a second allocation attempt of

buckets that failed to uniquely select a memory block in the first trial.
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Let wq and wy be the random variables representing the number of buckets that fail to uniquely
select a block in the first and second attempts respectively.

by (1) e
OB (w) M)
3/2—¢
m%/Mt/ (28)
1/24¢ 3/2—¢
M
Mt?)e—l/Z

= om0

Prob (wl > Mtl/z_e)

by (25)

I

IA

Therefore, with M;-dominant probability the second attempt falls within the conditions of Equa-
tion (27) and hence wy = 0 with M;-dominant probability.

Lemma 5.5 Lett <lglgn/lgA. The number of buckets that fail to uniquely select a block is, with
n-dominant probability, at most msyq/4.

Proof. By Lemma 5.4, the number of buckets that fail to uniquely select a memory block is, with
M;-dominant probability, at most

2m? /M, by (19),(23) 22 2—2Af—2b2t+2/n g—a\ =bytte;
— n 2(@-2)At—b2t+3—c2
by (20) 1 9(8/13=2)N1=b; (t+1)+ho+3—c;
_ 1y 9~ (18/13)\ by (141)49/20+3-89/20 (29)
by (20) n 9~ M =ba (t41) -1
by (24
yé ) mt_|_1/4 .
The above holds also with n-dominant probability since
Mt byélQ) n 2—a/\t—62t—|—02
> n 2—algn—1)2t—|—c2
— pl—a9—b2 Iglgn/lg A co (30)
by (20) n3/13 g )

5.5 Failures in Hashing

In considering buckets which uniquely selected a block which fail to find an injective level-2 function
we draw special attention to buckets of size at most

B =/ K[2 . (31)
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Lemma 5.6 The number of buckets larger than B; is, with n-dominant probability, at most m;yq/4.

Proof.  Let u = m/n = 160. By incorporating the appropriate values for the Stirling numbers of
the second kind into Fact 2.6, we get

B 510 12100 62160 111216 84672 29568 4608 256
Bld) < It 0 o T T pe ot
by (17)
< 46756 .

Therefore, by Fact 2.7, with n-dominant probability
A, < 6n . (32)

From the above and (6) it follows that the number of buckets bigger than f; is, with n-dominant
probability, at most

6n/pr RO 6k, 2)004

by (18) G 2—9(aN Hbit+ei—1)/4

by (20) G, 2~ (18/13)A'=(9/20)¢—108/25

bygo) G 2N —ba (t41)+bo—108/25

by (20) 9= ATH by (t4+1)+9/20-108/25 (33)
_ 6n 2—/\t+1—62(t+1)—387/100
_ n Q—A“rl—b2(t+1)+1+(lg3—387/100)

by (24) mt+121g3—387/100
_ Mgy 22285
< miy1/4 .

The analysis of hashing failures of buckets that are small enough is further split into two cases.

Lemma 5.7 Suppose that m;/2K; > \/n. Then the number of buckets of size at most 3; that fail
in the hashing step of the iteration is, with n-dominant probability, at most msyy/4.

Proof.  Without loss of generality, we may assume that there are exactly m; active buckets of size
at most 3; that participate in Step 2. When such a bucket is mapped into a memory block of size K,
the probability of the mapping being non-injective is, by Corollary 2.3, at most 37 /K, = 1//2K.
The probability that the bucket fails in both hashing attempts is therefore at most 1/2K;. Let
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7, be the total number of such failing buckets. Then, E () < my/2K,. By Fact 2.1, with
my/2K;-dominant probability,

S Q(mt/QKt)

= mt/](t

8:)7(23) n 2—/\t—bgt—|—1—a/\t—blt—cl
n 2—(1+G)At—(52+bl)t+1—cl

1y 9~ (21/13) A= by (1) 414, —c; (34)
n 2—At+1 —bg (t-l—l)-l—l-l—bg—cl

by (22,(24) Mgt 99/20-73/25

< mt_|_1/4 .

Note that since m;/2K; > 1/n, the above holds with n-dominant probability and we are done. =

Lemma 5.8 Suppose that m¢/2K, < \/n. Then, by repeating the hashing step of the iteration a

constant number of times, we get m; = 0, with n-dominant probability.

Proof.  We have

1 9~ (LFa)M = (by 4y )t—c; BY (18):(23) me 2K, < /0, (35)
and thus,
Ut t(batb)iker 5/ (36)
Therefore,
I(t bYé18) 2a/\t+b1t+01
> 98 ((1+a)\ it (bo b1 Jt4er ) (37)
by (36
Y£ ) n5/2 :

for some constant 6 > 0. Recall from the proof of Lemma 5.7 that a bucket fails in the hashing
step with probability at most 1/2K,. By (37), if the iteration body is repeated [2/¢]| 4+ 1 times,
the failure probability of each bucket becomes at most (2[(15)_2/5_1 < 2_2/5/21(1571, and

E (i) < m2 28 2K < 2725\ /nfn = 272° )/ .

The lemma follows by Markov inequality. "
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6 Reducing the Number of Random Bits

In this section we show how to reduce the number of random bits used by the hashing algorithm.

The algorithm as described in the previous section consumes O(nlgu) random bits, where
uw = |U|: the first iteration already uses ©(nlgu) random bits; for each subsequent iteration, the
number of random words from U which are used is by at most a constant factor larger than the

memory used in that iteration, resulting in a total of @(nlgu) random bits.

The sequential hashing algorithm of Fredman, Komlds, and Szemerédi [16] can be implemented
with only O(lglg U 4 lgn) random bits [11]. We show how the parallel hashing algorithm can be
implemented with O(lglg U + lgnlglgn) random bits.

We first show how the algorithm can be modified so as to reduce the number of random bits
to O(lgulglgn). The first stage requires O(1) random elements from U for the construction of
the level-1 function, and remains unchanged. An iteration ¢ of the second stage required O(m;)

random elements from U; it is modified as follows.

Allocation step If each bucket independently selects a random memory block then O(m,lg M;)
random bits are consumed. This can be reduced to O(lgm) by making use of polynomial hash

functions:

Lemma 6.1 Using 61g m random bits, a set R C [0, m — 1] of size m; can be mapped in constant
time into an array of size 3M; such that the number of colliding elements is at most 2m? | My, with
M;-dominant probability.

Proof.  Let hy € H3y, and hy € Hj, be selected at random. Then, the image of a bucket 7 is
defined by

ai) = { ha(i) it A€ R, j#i, (i) =h() (38)

2M; + h2(i) otherwise

Algorithmically, hy is first applied to all elements and then kg is applied to the elements which

collided under hy. The colliding elements of g; are those which collided both under hy and under hs.
Let R’ be the set of elements that collide under hy. Clearly, |R'| < 2B3(hy). Let € be some

constant, 0 < € < 1/6. Consider the following three cases:

1. my < Mtl/z_e:

By Corollary 2.3, Prob (R’ # ) < m?/2M; < M;* /2.

2. my > Mt1/2+6:
It follows from Fact 2.4 that By < 2m?/2M; = m? /M; with m? /2M;-dominant probability. As
|R'| < 2By and m?/2M; > M?¢/2 we have that |R/| < 2m?/M; with M;-dominant probability.

22



3. MY <y < M}

By Fact 2.2, E(By(hy)) < m?/2M; < M?¢/2 and by Markov’s inequality,

Prob (BZ(hl) > Mt1/2—5/2) < MtQE/Mtl/Z—e _ MtSE_l/Q ‘

Therefore, with M;-dominant probability, |R'| < 2B3(h1) < Mt1/2—57 in which case, by Corol-
lary 2.3,

Prob (ks is not injective over R') < |R’|2/Mt < M[ze .

Invoking the above procedure for block allocation does not increase the total memory consump-
tion of the algorithm by more than a constant factor.

Hashing step The implementation of the hashing part of the iteration body using independent
hash functions for each of the active buckets consumes O(m;lg v) random bits. This can be reduced
to O(lgu) by using hash functions which are only pairwise independent. This technique and its
application in the context of hash functions are essentially due to [10, 11].

The modification to the step is as follows. In each hashing attempt executed during the step,
four global parameters ag, ay, bg, by € U are selected at random by the algorithm. The hash function
attempted by a bucket ¢ is

hi(z) := ((co(i) 4 ¢1(i)2z) mod u) mod K (39)

where

co(i) = (tag+ bo) mod u
c1(1) = (taz+b1) modu .

All hashing attempts of the same bucket are fully independent. Thus, the proof of Lemma 5.8
is unaffected by this modification. Recall that Fact 2.1 assumes only pairwise independence. Since
hiy 1 =10,...,m— 1, are pairwise independent, the proof of Lemma 5.7 remains valid as well.

The above leads to a reduction in the number of random bits used by the algorithm to
O(lgulglgn).

The number of random bits can be further reduced as follows: Employ a pre-processing hashing
step in which the input set S is injectively mapped into the range [0,n% — 1]. This is done by
applying a hash function 7 selected from an appropriate class, to map the universe U into this
range. Then the algorithm described above is used to build a hash table for the set 7(.5). A lookup
of a key x is done by searching for w(z) in this hash table.

The simple class of hash functions H?>, is appropriate for this universe reduction application. It
was shown in [11] that the class 3, has the following properties:
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1. A selection of a random function 7 from the class requires O(lglgu 4 lg n) random bits.
2. A selection can be made in constant time by a single processor.
3. The function 7 is injective over S with n-dominant probability.

4. Computing 7(z) for any « € U can be done in constant time.

This pre-processing is tantamount to a reduction in the size of the universe, after which application
of the algorithm requires only O(lgnlglgn) bits. The total number of random bits used is therefore

O(lglgu+1gnlglgn) .

7 Obtaining Optimal Speedup

The description of the algorithm in Section 3 assumed that the number of processors is n; thus the
time-processor product is O(nlglgn). Our objective in this section is a work-optimal implementa-
tion where this product is O(n), and p, the number of processors, is maximized.

When p < n, the key array and the bucket array are divided into p sectors, one per processor.
A parallel step of the algorithm is executed by having each processor traverse its sector and execute
the tasks included in it.

A key is active if its bucket is active. Let n; be the number of active keys in the beginning of
iteration t. Assume that the implemented algorithm has reached the point where ny = O(n/lglgn).
Further assume that these active elements are gathered in an array of size O(n/lglgn). Then,
applying the non-optimal algorithm of Section 3 with p < n/lglgn, and each processor being
responsible for n/plglgn problem instances, gives a running time of

n n
0 (plglgnlglg (lglgn)) =0(n/p)

which is work-optimal.

We first show that the problem size is reduced sufficiently for the application of the non-optimal
algorithm after O(lglglglgn) iterations.

Lemma 7.1 There exists to = O(lglglglgn) such that nyy = O(n/lglgn) with n-dominant prob-
ability.

Proof.  The number of active buckets decreases at a doubly-exponential rate as can be seen from
Lemma 5.2. To see that the number of keys decreases at a doubly-exponential rate as well, we show
that with n-dominant probability

ny < 1.23p27 20T 22048/9 (40)
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Inequality (32), A, < 6n, clearly holds when the summation is over active buckets only. By
a convexity argument, the total number of keys in active buckets is maximized when all active
buckets are of equal size. The number of active buckets is bounded from above by m;. Therefore,

ne < (6n)1/7°m%_1/76 .

(41)
Inequality (40) is obtained from (41) by replacing in my by its definition in (23) and then substituting
numerical values for the parameters using (16) and (20).

The lemma follows by choosing an appropriate value for ¢y with respect to (23) and (40). =

It remains to exhibit a work-efficient implementation of the first {5 steps of the algorithm. This
implementation outputs the active elements gathered in an array of size O(n/lglgn). The rest of
this section is dedicated to the description of this implementation.

As the algorithm progresses, the number of active keys and the number of active buckets de-
crease. However, the decrease in the number of active elements in different sectors is not necessarily
identical. The time of implementing one parallel step is proportional to the number of active el-
ements in the largest sector. It is therefore crucial to occasionally balance the number of active
elements among different sectors in order to obtain work efficiency.

Let the load of a sector be the number of active elements (tasks) in it. A load balancing
algorithm takes as input a set of tasks arbitrarily distributed among p sectors; using p processors
it redistributes this set so that the load of each sector is greater than the average load by at most
a constant factor. Suppose that we have a load balancing algorithm whose running time, using p
processors, is Tip(p) with n-dominant probability. If load balancing is applied after step ¢ then the
size of each sector is O(n¢/p).

We describe a simple work-optimal implementation in which load balancing is applied after each
of the first tg parallel steps. A parallel step ¢ executes in time which is in the order of

Tt
— 4+ Ti(p) -
p (p)

The total time of this implementation is in the order of
to
Lz
— + Tn(p )
2 (5 +7ute)

t=1

Since n; decreases at least at an exponential rate, the total time is in the order of
n
; + to Tin(p)

which is O(n/p) for

p=0 (mpEkREr)
Tip(p)lglglglgn
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Using the load balancing algorithm of [20] which runs in Tip(p) = O(lglg p) time, we conclude that
with n-dominant probability the running time on a p-processor machine is

O(n/p+1glgplglglglgn) .

The load balancing algorithm applied consumes O(plglg p) random bits. All these bits are used
in a random mapping step which is very similar to the allocation step of the hashing algorithm.
Thus, by a similar approach as the mapping procedure in Lemma 6.1 it may be established that
the number of random bits in the load balancing algorithm can be reduced to O(lgplglg p).

We finally remark that using load balancing in a more efficient, yet as simple way, as describe
in [23], yields a faster work-efficient implementation. The technique is based on carefully choosing
the appropriate times for invoking the load balancing procedure; it applies to any algorithm in which
the problem size has an exponential rate of decrease, and it hence applies to the implementation
of Section 4 as well. In such an implementation the load balancing algorithm is only used O(lg*n)
times, resulting in a parallel hashing algorithm that takes O(n/p+lglg nlg* n) time with n-dominant
probability.

8 Model of Computation

In this section we give a closer attention to the details of the implementation on a PRAM, and
study the type of concurrent memory access required by our algorithm. We first present an im-
plementation on COLLISION, and its extension to the weaker TOLERANT model. We proceed by
presenting an implementation on the even weaker ROBUST model. The hash-table constructed in
this implementation only supports searches in O(lglgn) time. Finally, we examine the concurrent

read capability needed by the implementations.

8.1 Implementation on COLLISION and on TOLERANT

We describe an implementation on CoLLISION. This implementation is also valid for TOLERANT,
since each step of COLLISION can be simulated in constant time on TOLERANT provided that, as

it is the case here, only linear memory is used [32].

Initialization The selection of the level-1 hash function is done by a single processor. Since the
level-1 function is a polynomial of a constant degree, its selection can be done by a single processor
and be read by all processors in constant time, using a singe memory cell of [max {lglg u,lgn}]
bits. No concurrent-write operation is required for the implementation of this stage.

Bucket representatives The algorithm template assumes that each bucket can act as a single
entity for some operations, e.g., selecting a random block and selecting a random hash function.
Since usually several keys belong to the same bucket, it is necessary to coordinate the actions of
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the processors allocated to these keys. A simple way of doing so is based on the fact that there
are only linearly many buckets and that a bucket is uniquely indexed by the value of f, the level-1
hash function, on its members. A processor whose index is determined by the bucket index acts as
the bucket representative and performs the actions prescribed by the algorithm to the bucket.

Allocation and Hashing steps A processor representing an active bucket selects a memory block
and a level-2 hash function, and records these selections in a designated cell. All processors with keys
in that bucket read then that cell and use the selected block in the hashing step. Each participating
processor (whose key belongs in an active bucket) writes its key in the cell determined by its level-
2 hash function, and examines the cell contents to see if the write operation was successful. A
processor for which the write failed will then attempt to write its key to position ¢ of array ptr,
where 7 is the number of the bucket this processor belongs to. Processors belonging to bucket ¢ can
then learn if the level-2 function selected for their bucket is injective by reading the content of ptr[i].
A change in value or a collision symbol indicate non-injectiveness. To complete the process, the
array ptr is restored for the next hashing attempt. This restoration can be done in constant time
since this array is of linear size.

In summary we have

Proposition 8.1 The algorithms of Theorem 1 can be implemented on TOLERANT.

8.2 Implementation on ROBUST

We now describe an implementation that, at the expense of slowing down the lookup operation,
makes no assumption about the result of a concurrent-write into a cell. Specifically, we present an
implementation on the ROBUST model, for which a lookup query may take O(lglgn) time in the
worst case, but O(1) expected time for keys in the table.

The difficulty with the ROBUST model is in letting all processors in a bucket know whether the
level-2 hash function of their bucket is injective or not. The main idea in the modified implemen-
tation is in allowing iterations to proceed without determining whether level-2 hash functions are
injective or not; whenever a key is written into a memory cell in the hashing step it is deactivated,
and its bucket size decreases. The modified algorithm performs at least as well as the implemen-
tation in which a bucket is deactivated only if all of its keys are mapped injectively. The total
memory used by the modified algorithm and the size of the representation of the hash table do not
change.

Allocation step We first note that the algorithm can be carried out without using bucket repre-
sentatives at all. Allocation of memory blocks is done using hash functions, as in Lemma 6.1; each
processor can individually compute the index of its memory block by evaluating the function g;.
This function is selected by a designated processor and its representation (61gm bits) is read in
constant time by all processors.
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We further modify the algorithm, so that the hashing step is carried out by all active buckets.
That is, even buckets that collided in the allocation step will participate in the hashing step. This
modification can only serve to improve the performance of the algorithm, since even while sharing a
block with another bucket the probability that a bucket finds an injective function into that block is
not zero. This modification eliminates the concurrent memory access needed for detecting failures

in the allocation step.

Hashing step The selection of a level-2 hash function is done as in the hashing step described
in Section 6. As can be seen from (39), only four global parameters should be selected and made

available to all processors; this can be done in constant time.

It remains to eliminate the concurrent memory access required for determining if the level-2
function of any single bucket was injective. Whenever a key is successfully hashed by this function,
it is deactivated even if other keys in the same bucket were not successfully hashed. Thus, keys of
the same bucket may be stored in the hash table using different level-2 hash functions.

The two steps of an iteration in the hashing algorithm are summarized in Figure 3.

Let  be an active key in a bucket i = f(z). The processor assigned to x executes

the following steps.

Allocation: Compute ¢,(7), the index of the memory block selected to the bucket
of z, where g, is defined by (38).

Hashing: Determine h;, the level-2 hash function selected by the bucket of z, where h;
is defined by (39). Write z into cell h;(z) in memory block g4(¢) and read the contents
of that cell; if © was written then the key = becomes inactive.

Figure 3: Implementation of iteration t in the hashing algorithm on ROBUST

Lookup algorithm The search for a key z is done as follows. Let ¢ = f(z); for t = 1,2,...
read position h;(z) in the memory block g¢,(7) in the appropriate array. (All random bits that were
used in the hash table construction algorithm are assumed to be recorded and available.) The
search is terminated when either x is found, or else when ¢ exceeds the number of iterations in the

construction algorithm.

The lookup algorithm requires O(lglg n) iterations in the worst case. However, for any key z € §
the expected lookup time (over all the random selections made by the hashing algorithm) is O(1).
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An alternative simplified implementation

Curiously, the sequence of modifications to the algorithm described in this section has lead to a
1-level hashing scheme, i.e., to the elimination of indirect addressing. To see this, we observe that
at iteration ¢ an active key a is written into a memory cell g,*(x), where the function g¢/*(z) is
dependent only on n and on the random selections made by the algorithm, but not on the input.
An even simpler implementation of a 1-level hashing algorithm is delineated next.

At each iteration ¢, a new array T; of size 3M, is used, where M, is as defined in (19). In addition,
a function g¢; as defined in (38) is selected at random. A processor representing an active key x
in the iteration tries to write x into Ty[¢:(z)], and then reads this cell. If z is successfully written
in Ty[gi(2)] then x is deactivated. Otherwise, z remains active and the processor representing it
carries on to the next iteration.

To see that the algorithm terminates in O(lglgn) iterations, we observe that the operation on
keys in each iteration is the same as the operation on buckets in the allocation step of Section 6.
Therefore, the analysis of Section 6 can be reused, substituting keys for buckets (and ignoring
failures in the hashing step of the 2-level algorithm). The hash table consists of the collection of
the arrays 71,75, ..., and, as can be easily verified, is of linear size. A lookup query for a given key
z is executed in O(lglg n) time by reading Ti[g(z)] for t =1,2,. ...

8.3 Minimizing concurrent read requirements

The algorithms for construction of the hash table on TOLERANT and ROBUST can be modified to use
concurrent-read from a single cell only. By allowing a pre-processing stage of O(lgn) time, concur-
rent read can be eliminated, implying that the ERcw model is sufficient. With these modifications,
parallel lookups still require concurrent read, and their execution time increases to O(lglgn) in the
worst case. Nevertheless, the expected time for lookup of any single key @ € S is O(1). The details
are described next.

8.3.1 Concurrent read in the TOLERANT implementation

There are two types of concurrent read operations required by the modified algorithm. First, the
sequence of O(lglgn) functions ¢;* (or alternatively, ¢; in the simplified implementation), must
be agreed upon by all processors. Since each of these functions is represented by O(lgu) bits, its
selection can be broadcasted at the beginning of the iteration through the concurrent-read cell.

The single cell concurrent read requirement for broadcasting can be eliminated by adding an
O(lgn)-time pre-processing step for the broadcasting. (This is just a special case of simulating
CRCW PRAM by EREW PRAM.)

The other kind of concurrent-read operation occurs when processors read a memory cell to verify
that their hashing into that cell has succeeded. This operation can be replaced by the following
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procedure. For each memory cell, there is a processor standing by. Whenever a pair (z, j) is written
into a cell, the processor assigned to that cell sends an acknowledgement to processor j by writing
into a memory cell 7 in a designated array.

The lookup algorithm requires concurrent-read capabilities. In this sense, the lookup operation
is more demanding than the construction of the hash table. A similar phenomenon was observed by
Karp, Luby and Meyer auf der Heide [36] in the context of simulating a random access machine on
a distributed memory machine. The main challenge in the design of their (parallel-hashing based)
simulation algorithm was the execution of the read step. Congestions during the execution of the
write step were resolved by attempting to write in several locations and using the first for which the
write succeeded. It is more difficult to resolve read congestions since the cells in which values were
stored are already determined. Indeed, the read operation constitutes the main run-time bottleneck
in their algorithm.

8.3.2 Concurrent Read in the RoBUST implementation

The simplified 1-level hashing algorithm for construction of the hash table on ROBUST is modified
as follows. We eliminate the step in which a processor with key z reads the contents of the cell
Ti[g¢(x)] after trying to write to that cell. Instead, we use the acknowledgement technique described
above: A processor j handling an active key z writes (z,j) into the cell Ti[g:(x)]. The processor
standing by cell Ti[g¢(«)] into which (z, j) is written, sends an acknowledgement to processor j.

Note that this implementation introduces a new type of failures: due to the unpredictability
of the concurrent write operation in ROBUST, an acknowledgement for a successful hash may not
be received. Consider for example the following situation: Let 7 be a processor whose key x
did not collide. Let 7, i be two processors with colliding keys y, ¥/, i.e., ¢:(y) = ¢:(y'). These
two processors concurrently write the pairs (y,) and (y’,¢') into the cell Ti[g:(y)]. The result
of this concurrent write is arbitrary. In particular, it can be the pair (2/, ), which would cause
the processor standing by the cell Ti[g:(y)] to garble the acknowledgement sent to processor j.
(Recall that an acknowledgement to processor j is implemented by writing into a memory location
associated with j.)

The number of the new failures described above can be at most half the number of colliding
keys. It is easy to verify that the analysis remains valid, since the number of these new failures
in no more than the number of “hashing failures” accounted for in Section 5.5, and which do not
occur in this implementation.

9 Hashing of Multi-Sets

We conclude the technical discussion by briefly considering a variation of the hashing problem in
which the input is a multi-set rather than a set. We first note that the analyses of exponential and
doubly-exponential rate of decrease in the problem size is not affected by the possibility of multiple
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occurrences of the same key. This is a result of relying on estimates of the number of active
buckets rather than the number of active keys. The number of distinct keys—mnot the number of
keys—determines the probability of a bucket to find an injective function.

A predictable decrease in the number of active keys is essential for obtaining an optimal speedup
algorithm. Unfortunately, the analysis in Section 7 with regard to the implementation of Section 5
does not hold. To understand the difficulty, consider the case where a substantial fraction of the
input consists of copies of the same key. Then, with non-negligible probability this key may belong
to a large bucket. The probability that this bucket deactivates in the first few iterations, in which
the memory blocks are not sufficiently large, is too small to allow global decrease in the number of
keys with high probability. Consequently, the rapid decrease in the number of buckets may not be
accompanied by a similar decrease in the number of keys.

In contrast, the nature of the analysis in Section 4 makes it susceptible to an easy extension
to multiple keys, which leads to an optimal speedup algorithm, albeit with expected performance
only. Using the probabilistic induction lemma all that is required is to show that each copy of
an active key stands a constant positive probability of deactivation at each iteration. Since the
analysis is based on expectations only, there are no concerns regarding correlations between copies
of the same key, or dependencies between different iterations. The details are left to the reader.

We also note that the model of computation required for a multi-set is COLLISIONT, since it
must be possible to distinguish between the case of multiple copies of the same key being written
into a memory cell, and the case where distinct keys are written. Also, the extensions of the hashing
algorithms which only require concurrent read from a single memory cell can be used for hashing
with multi-set input, but then a CoLLISIONT model, as opposed to ROBUST, must be assumed.

We finally observe that the hashing problem with a multi-set as input can be reduced into
the ordinary hashing problem (in which the input consists of a set), by a procedure known as
leaders election. This procedure selects a single representative from among all processors which
share a value. By using an O(lglg n)-time, linear-work leaders election algorithm which runs on
TOLERANT [24] we have

Theorem 2 Given a multi-set of n keys drawn from a universe U, the hashing problem can be
solved using O(n) space: (i) in O(lglgn) time with high probability, using n processors, or (ii) in
O(lglg nlg™ n) time and O(n) operations with high probability. The algorithms run on TOLERANT.

Conversely, note that any hashing algorithm, when run on ARBITRARY, solves the leaders election
problem. In particular, the simple 1-level hashing algorithm for RoBUST, when implemented on
ARBITRARY with a multi-set as input, gives a simple leaders election algorithm.

Consider now another variant of the multi-set hashing problem in which a data record is asso-
ciated with each key. The natural semantics of this problem is that multiple copies of the same key
can be inserted into the hash table only if their data records are identical. Processors representing
copies of a key with conflicting data records should terminate the computation with an error code.
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The CoLLIsIONT model makes it easy enough to extend the implementations discussed above to

accommodate this variant.

A more sophisticated semantics, in which the data records should be consolidated, requires a
different treatment, e.g., by applying an integer sorting algorithm on the hashed keys (see [39]).

10 Conclusions

We presented a novel technique of hashing by oblivious execution. By using this technique, al-
gorithms for constructing a perfect hash table which are fast, simple, and efficient, were made
possible. The running time obtained is best possible in a model in which keys are only handled in

their original processors.

The number of random bits consumed by the algorithm is O(lglgu + lgnlglgn). An open
question is to close the gap between this number and the O(lglgu + lgn) random bits that are
consumed in the sequential hashing algorithm of [11].

The program executed by each processor is extremely simple. Indeed, the only coordination
between processors is in computing the AND function, when testing for injectiveness. In the imple-

mentation on the ROBUST model, even this coordination is eliminated.

The large constants hidden under the “Oh” notation in the analysis may render the described
implementations still far from being practical. We believe that the constants can be substantially
improved without compromising the simplicity of the algorithm, by a more careful tuning of the

parameters and by tightened analysis. This may be an interesting subject of a separate research.

The usefulness of the oblivious execution approach presented in this paper is not limited to the
hashing problem alone. We have adopted it in [24] for simulations among sub-models of the crRcw
PRAM. As in the hashing algorithm, keys are partitioned into subsets. However, this partition is

arbitrary and given in the input, and for each subset the maximum key must be computed.

Subsequent work

The oblivious execution technique for hashing from Section 3 and its implementation from Section 4
were presented in preliminary form in [21]. Subsequently, our oblivious execution technique was
used several times to obtain improvements in running time of parallel hashing algorithms: Matias
and Vishkin [38] gave an O(lg* nlglg* n) expected time algorithm; Gil, Matias, and Vishkin [26]
gave a tighter failure probability analysis for the algorithm in [38], yielding O(lg" n) time with high
probability; similar improvement (from O(lg* nlglg” n) expected time to O(lg” n) time with high
probability), was described independently by Bast and Hagerup [3].

An O(lg* n) time hashing algorithm is used as a building block in a parallel dictionary algorithm
presented in [26]. (A parallel dictionary algorithm supports in parallel batches of operations insert,
delete, and lookup.) The oblivious execution technique has an important role in the implementa-
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tion of insertions into the dictionary. The dictionary algorithm runs in O(lg*n) time with high
probability, improving the O(n®) time dictionary algorithm of Dietzfelbinger and Meyer auf der
Heide [13]. The dictionary algorithm can be used to obtain a space efficient implementation of any
parallel algorithm, at the cost of a slowdown of at most O(lg" n) time with high probability.

The above hashing algorithms use the log-star paradigm of [38], relying extensively on processor
reallocation, and are not as simple as the algorithm presented in this paper. Moreover, they require
a substantially larger number of random bits.

Karp, Luby and Meyer auf der Heide [36] presented an efficient simulation of a PRAM on a
distributed memory machine in the doubly-logarithmic time level, improving over previous simula-
tions in the logarithmic time level. The use of a fast parallel hashing algorithm is essential in their
result; the algorithm presented here is sufficient to obtain it.

Goldberg, Jerrum, Leighton and Rao [28] used techniques from this paper to obtain an O(h +
lglgn) randomized algorithm for the h-relation problem on the optical communication parallel
computer model.

Gibbons, Matias and Ramachandran [18] adapted the algorithm presented here to obtain a low-
contention parallel hashing algorithm for the QRQW PrRAM model [19]; this implies an efficient hash-
ing algorithm on Valiant’s BsP model, and hence on hypercube-type non-combining networks [44].
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A Analysis of Moments of the Bucket Distribution

The material of this appendix is taken from [11], and is given here for completeness.

The reader is reminded that we assume the probability space where h : U — [0, m—1] is selected
at random from a suitable class of hash functions. Also, the set 5 C U, |S| = n, is fixed, and m/n
is denoted by p.

We use the following notation: for a sequence x, X is the set of elements comprising x.

Forxe U, x=(21,...,2,), let

0 otherwise

5(X):{ 1 if h(zy) == h(z,)

If b is r-wise independent® then

E(6(x) = —= , (42)

where j = |X|. Polynomial hash functions of degree r — 1 are “almost” r-wise independent as they
satisfy a weaker condition:

E (5(x)) < (3)j_1 . (43)

m
With the above notation we can write
S; 1
ABT3: j{: , = ;T j{: 6(X)

0<i<m Xesr
- |%|=r

and therefore for degree-(k — 1) polynomial hash functions

1

BB = Y B(X)
. Xesr
|X|=r
by (43) (n) 9\ 71
< ()G
T m
2T—1
S m ! Iu“_T *
T,

®A function is r-wise independent if it assumes fully random values on all sets of up to r keys. For example, the
class of all linear transformation of degree r from one vector space over a field to another vector space over a field is
r-wise independent.
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In particular, for linear hash functions Fact 2.2 follows. For r-wise independent functions (42) can

be used to derive

E(B,)= (")nﬂ‘TS o
r rip”
Also,
A, = Z s7 = Z 0(x) = Z Z 0(x) .
0<i<m XEeST 1<5<r XesT
|%]=s
Therefore
E(A,)= Z Z E (6(x)) .
1<5<r XesT
=

The number of different sequences x € 5" such that |X| = j is

N n! r a7
e 7=t = b <w{7)

For degree-(k — 1) polynomial hash functions we use (43) to obtain
| r 2\Ji~1 r 2\J-1
Bags 3 o (2) =n ¥ 02
1<G<r ) AT 1<i<r UK
thereby proving Fact 2.6. For r-wise independent hash functions we use (42) to obtain

E(A4)= > Oszﬂ{t}n;—lé > {;}ﬂE(Bﬂ

1<5<r J 1<5<r

Using the inversion formula for Stirling numbers (e.g. [31, page 250]) we get

"<

where [;] is the Stirling number of the first kind.

We now turn to computing the variance of A, for 2r-wise independent hash functions.

Equation 45

Var(4,) = ZVar(é(x))—l— Z CoVar (6(x),6(y))
XEST X, yEST
< Y RGN+ Y CoVar(s(x).a(y)+ Y CoVar(d(x)é(y))
xEST X, yesr X, yesr
Xny=0 XNy #0
< E(4)+ ) CoVar(é(x).8(y))
X, yesr
XNy #0
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since all §(x) receive value from {0, 1}. If the sets X and § are not disjoint then the co-variance of
0(x) and 6(y) is dependent only on the parameters

Jo = [xNy]
Jjoti = X , (49)
Jo+j: = |7l

and is given by
CoVar (6(x),d(y)) = ml—Gotiit+iz) _ yl—(Go+it)y1-(ot+i2) < ypl—Goti+iz) (50)

For given jo, j1, j2, the number of distinct settings of x,y € S which satisfy (49) is

n r r potiitia r r
n—(jo+j1+72)) ldo+ 1) jo+ 72 (Jo+ 71+ 72)! Jo+ 71 LJo+ 72

Using the above and (50) we obtain

Var(h)-B(A) S 5D L Hd e
13]0]312752—(71%2)
1 r r
s m Z; (Jotg1+g2)pfo itz {]0+j1}{]1+j2} :
J1.32<r

1<y0 <L2r—(J1+742)

The number of terms in the above summation is not dependent on n or m. If m = O(n) then for
any fixed £

Var(A,) = O(n)

which (with Chebyshev’s inequality) proves Fact 2.7 for 2r-wise independent hash functions. The
extension for polynomial hash functions is more involved and is not given here.
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