
Delayed-Dictionary Compression for
Packet Networks

Yossi Matias
School of Computer Science
Tel-Aviv University, Israel

matias@post.tau.ac.il

Raanan Refua
School of Computer Science
Tel-Aviv University, Israel

raananr@post.tau.ac.il

Abstract— This paper considers compression in packet net-
works. Since data packets may be dropped or arrive reordered,
streaming compression algorithms result in a considerable decod-
ing latency. On the other hand, standard stateless packet com-
pression algorithms that compress each packet independently,
give a relatively poor compression ratio. We introduce a novel
compression algorithm for packet networks: delayed-dictionary
compression. By allowing delay in the dictionary construction,
the algorithm handles effectively the problems of packet drops
and packet reordering, while resulting with a compression quality
which is often substantially better than standard stateless packet
compression and has a smaller decoding latency than that of
streaming compression. We conducted extensive experiments
to establish the potential improvement for packet compression
techniques, using many data files including the Calgary corpus
and the Canterbury corpus. Experimental results of the new
delayed-dictionary compression show that its main advantage is
in low to medium speed links.

I. I NTRODUCTION

We consider data compression in packet networks, in which
data is transmitted by partitioning it into packets. Packet
compression allows better bandwidth utilization of a communi-
cation line resulting in much smaller amounts of packet drops,
more simultaneous sessions, and a smooth and fast behavior
of applications (see, e.g., [1]).

Packet compression can be obtained by a combination of
header compressionandpayload compression, which are com-
plementary methods. In this work we focus only on payload
compression. We are particularly interested in dictionary-based
compression. Many dictionary compression algorithms were
developed following the seminal papers of Lempel and Ziv
(see, [2]–[4]).

In dictionary compression, an input sequence is encoded
based on a dictionary that is constructed dynamically accord-
ing to the given text. The compression is done in a streaming
fashion, enabling to leverage on redundancy in the input
sequence.

In many packet networks, including ATM, Frame Relay,
Wireless, and others, packets are sent via different routes, and
may arrive reordered, due to different network characteristics,
or due to retransmissions in case of dropped packets. Since
streaming compression assumes that the compressed sequence
arrives at the decoder in the order in which it was sent by the
encoder, the decoder must hold packets in a buffer until all

preceding packets arrive. This causesdecoding latency, which
may be unacceptable in some applications.

To alleviate decoding latency, standard stateless packet
compression algorithms are based on a packet-by-packet com-
pression. For each packet, its payload is compressed using
a dictionary compression algorithm, independently to other
packets. While the decoding latency is addressed properly,
this may often result in poor compression quality, since the
inherent redundancy within a packet is significantly smaller
than in the entire stream.

A. Contributions

We introduce a novel compression algorithm suitable for
packet networks: thedelayed-dictionary compression(DDC).
The DDC is a general framework that applies to any dictionary
algorithm. It considers the dictionary construction and the
dictionary-based parsing of the input text as separate pro-
cesses, and it imposes a delay∆ in the dictionary construction.
As a result, when decoding a packet, the decoder does not
depend on any of the∆ preceding packets, eliminating or
diminishing the problems of out-of-order packets and packet
drops compared to streaming compression, still with a good
traffic compression ratio.

We focus on two alternative encoding methods for the DDC
algorithm. The first method adapts to the network propagation
delay and the probability for packet loss. The second method,
calledconfirmed-dictionary compression, ensures zero decod-
ing latency. The DDC ensures that the compression ratio will
be at least as good as that of stateless compression, and quite
close to that of the streaming compression, with decoding
latency close or equal to that of stateless compression.

There are two main alternatives for the DDC algorithm. The
first is calledDDC-min in which the compressed length of a
packet is the minimum between the original uncompressed
length, the Stateless compressed length, and theBasic-DDC
(BDDC) which is a sub-method of DDC. The second alterna-
tive is theDDC-Union in which the dictionary is the Union
of the Stateless dictionary and the BDDC dictionary.

A full tradeoff between compression ratio and decoding
latency can be obtained, bridging between the extreme al-
ternative of streaming compression (best compression ratio
and worst decoding latency) and that of confirmed dictionary

Compression Ratio

Av
Decoding
Latency

Stateless (
�

=∞)

Streaming (
�

=0)
DDC (

�
)

Confirmed-Dictionary
Compression (

�
Conf)

Fig. 1. Packet Compression Algorithms: A tradeoff exists between the
compression ratio and the average decoding latency. Streaming has the best
compression ratio and the worst decoding latency. DDC has compression ratio
close to that of streaming compression, and also has average decoding latency
which is close to that of stateless. Theconfirmed-dictionary compression
algorithm ensures a zero decoding latency.

compression (same decoding latency as of stateless compres-
sion, yet better compression ratio). This tradeoff is depicted in
Fig. 1. Thus, the DDC has the benefits of both stateless com-
pression and streaming compression. With the right choices
of the dictionary delay parameter, it can have a decoding
latency which is close to that of stateless compression, and
with a compression ratio which is close to that of streaming
compression.

For example, for a concatenation of the Calgary corpus
files, fragmented into packets with a payload of 125 bytes,
in streaming the compression ratio is 0.52 with an average
decoding latency of 62 packets, while in DDC-min with a large
dictionary delay of 200 packets we obtain a compression ratio
of 0.64 and only an average decoding latency of 14.3 packets1.

These results can be generalized to any on-line compression
algorithm that uses an on-line encoder, even if the algorithm
does not use a dictionary. The DDC method is particularly
good for low to medium speed communication links. Its
advantage is most significant for applications in which the
latency is important, and in which the order of decoded packets
is not important.

To establish the potential benefit of DDC we conducted
extensive experimentation. First, we compared various com-
pression algorithms which are applicable to communication
purposes, including the Deflate (gzip, winzip, based on LZ77
and Huffman), LZW (Unix compress), Predictor (Cisco), and
FP-LZW (the flexible-parsing version of LZW).

We conducted extensive experimental studies to establish
the gap in compression ratio when using the streaming version
versus the stateless version of FP-LZW. The experiments
were conducted for a large set of data files, including the
Calgary corpus and the Canterbury corpus. For data files
that were not already compressed, the gap is shown to be
quite significant. The experiments were conducted for two
packet sizes, demonstrating that the gap is more significant

1We define the traffic compression ratio as the size of the compressed traffic
divided by the size of the uncompressed traffic.

(as expected) for smaller packets. We show that the amount
of potentially saved bandwidth may be more than a factor of
2 (e.g., for the filerfc_index.txt the factor is 2.23).

We study the dependency of compression quality and the
imposed dictionary delay, showing that the improvement in
compression over stateless compression could be significant
even for a relatively large dictionary delay.

We also consider the effect of the dictionary delay on the
performance in terms of the decoding latency. A sufficiently
large dictionary delay will practically provide a zero decoding
latency. We compare the decoding latencies of streaming
compression vs. BDDC, showing that the latter is indeed
considerably better. For streaming compression, the maximal
decoding latency in seconds is4RTT (e.g., for RTT =
5000msec and a payload size of 125 bytes the decoding latency
is 963 packets) while in BDDC we can control it to be zero.

B. Related Work

Header compression was studied by Westphal [1], Lilleyet
al [5], and others.

There are several IETF (Internet Engineering Task Force)
RFCs that deal with dictionary based stateless compression of
packet payload, including those of Monsouret al [6], Friend
et al [7], Pereira [8], and Rand [9].

The closest work to ours is that of Dorward and Quin-
lan [10], which introduces an approach calledacknowledged
compressionfor compressing payload of packets relying on
acknowledgments. This method is somewhat similar to the
DDC implementation of confirmed dictionary, when using
the Deflate compression algorithm. In each transmitted packet
an additional header is used to indicate which exact subset
of packets was used as history for the compression of each
packet. The implementation uses a history of up to 9 packets.
In case of a large history this method has to transmit a
large history information, making the method significantly
less attractive. This work shows good improvement for large
packets and much smaller improvement for small packets.

The DDC algorithm is a more general framework in several
aspects. It allows usage of a history related to all transferred
packets, resulting in better compression ratios. Using DDC,
we obtain a significant improvement for small packets and
large packets, even for very large dictionary delays. The
decoding latency issue was addressed thoroughly in our work.
In addition, we show that the method is good for any on-line
compression algorithm.

A separation between dictionary construction and parsing
was previously presented in [11], with a different motivation:
improving the compression ratio for given data files by fixing
the dictionary construction and modifying the parsing method.
In contrast, in the DDC method, the parsing method is fixed
(using any algorithm of choice), while we allow adaptation
in the dictionary update method in terms of the imposed
dictionary delay, with the objective of alleviating out-of-order
phenomena.

Another work, addressing issues of the compression time
factor is that of Jeannotet al [12].

Encoder
X Y X

Decoder

Lenc LdecLtx

(Encoding
Latency)

(Transmission
Latency)

(Decoding
Latency)

User Latency

Fig. 2. Framework: Two compression enabled network processors are used,
one on each side of the communication link. A LAN is connected to each
side of the communication link. The total user latency is the total of the
encoding latency, transmission latency, and decoding latency.X is the original
uncompressed traffic andY is the compressed traffic. Our interest is in the
decoding latency and the traffic compression ratio.

C. Outline

The rest of the paper is organized as follows: in Section II
we present the framework, describe packet compression algo-
rithms, and present the problem definition. In Section III we
present the potential for improvement in packet compression.
Section IV presents our new solution for packet compression.
In Section V we present our experimental study for packet
compression using a specific compression algorithm. In Sec-
tion VI we present example applications. Finally, concluding
remarks appear in Section VII.

II. BASICS

In this section we present the framework, describe what
a packet compression algorithm is, categorize the packet
compression algorithms, and present the problem definition.

A. Framework

We examine the case ofend-to-endcompression over a
communication link. We assume the existence of network
processors, one on each side of the communication link. The
original traffic that was previously transmitted to the commu-
nication link is now transmitted to the network processor and
from there to the physical link. The network processors are
compression enabled. This framework is depicted in Fig. 2. By
compressing the traffic we achieve lower utilization2 of a line
or alternatively a larger bandwidth. This results in a smaller
amount of packet drops, resulting in smaller amount of packet
retransmissions. At this level we have packets carrying pieces
of the original data which may be a stream of data, a file, or
any other application information.

B. Packet Compression Algorithms

Packet compression algorithms are algorithms that compress
packets by using standard lossless compression algorithms
such as LZ77 [2], LZW [4], Deflate [13], Predictor [9], etc.

2The line utilization is defined as the ratio between the current transferred
traffic and the line capacity for a given time period.

Header Data

h d

m

H D1 H D2 H D3 H Dt…….

m

H A(D1) H A(D2) H A(D3) H A(Dt)…….

tm

Packet

Uncompressed traffic

Compressed traffic

Fig. 3. The upper hand side of the figure is a structure of a packet which
consists of a header and a payload. The middle part of the figure is the
structure of uncompressed network traffic while the lower part is the structure
of stateless compression traffic (each payload is compressed with algorithm
A independently). The header has alength field indicating the length of the
payload.

Packet compression algorithms use a dictionary for the
compression of every packet. The decoder reconstructs the
dictionary of the encoder by using phrases derived from the
compressed packets.

There are basically three main types of packet compression
algorithms: stateless, streaming, and offline compressions. In
all the types, if a compressed packet length is greater than or
equal to the original one, the original packet is transmitted.
Stateless compression(Packet by Packet Compression): Each
packet is compressed independently, the history space is
initialized after every packet is compressed or decompressed.
Since each packet is independent, it can always be decom-
pressed by the receiver, regardless of the order of arrival or of
packet drops. In stateless compression, the decoding latency
is minimal since packets are independent. The following IETF
(Internet Engineering Task Force) RFCs are examples of
dictionary based stateless compression algorithms: Monsour
et al [6], Friend et al [7], Pereira [8], and Rand [9].

A structure of a single packet, the structure of the traffic
without compression and the traffic in stateless compression
are depicted in Fig. 3. The lossless compression algorithmA
is executed on the payload of every packet separately. The
required buffer size is small, since it only has a dictionary
with phrases derived from a single packet.

Streaming compression(Continuous Compression): In
streaming compression the history buffer is not initialized
after every packet is encoded (resp. decoded). Each packet is
encoded by using a history which is derived from all preceding
packets and from the current packet. In this method packets
are encoded (resp. decoded) in their consecutive order. When
decoding a received packet, if some prior packets are missing,
the decoder must store the current packet until all prior packets
are received byretransmissions, resulting in large values of
decoding latency. The required buffer size is larger than that
of stateless compression, since it contains phrases derived from
the entire encoded traffic. The buffer also contains the pending
packets in which their amount is determined by the packet
reordering probability. When the reliability of a link is poor,

streaming compression is unattractive.
Offline compression(Compress and Send): First we compress
the data offline, at the application layer, then we break the
compressed data into packets, and finally send the packets
to the receiver. This approach achieves a good compression
ratio compared to the previous methods. Since compression is
performed at the application layer and not inside the network
processors, offline compression does not require any buffer
at the network processors, nor do these cause any decoding
latency at the network processor. The network processors see
the packets as standard packets, since the data carried by the
packets is compressed data. The packets are not compressed
by the network processor, since it is not worth while to
compress compressed data. The required buffer is the same
buffer of the compression algorithm at theapplication layer.
All known lossless compression algorithms are good for offline
compression.

Some packet compression algorithms such asthwack
(see [10]) may be combinations or variants of the three
categories.

C. Problem Definition

Definition 1 Let A be a lossless compression algorithm. Let
B be a packet compression algorithm which usesA. Let X
(resp.Y) be the uncompressed (resp. compressed) traffic. The
traffic compression ratiorA,B is |Y |

|X| .

The traffic compression ratio is also the ratio between the
utilization of the line after compression, and the utilization
of the line before compression. If the line is in full utilization,
the compression ratio is identical to the line utilization. Note
that the traffic compression ratio is not fixed since it depends
on the currently transferred traffic, i.e. compressed data.

Let Bstateless (resp. Bstreaming, Boffline) be a stateless (resp.
streaming, offline) compression algorithm which usesA. It
is easy to prove that the following inequality holds:

rA,Bstateless≥ rA,Bstreaming≥ rA,Boffline

Definition 2 Let Pi be a packet that was received by the
decoder. Thedecoding latencyof Pi, denoted byLdec(Pi), is
the number of additional packets thatPi had to wait for until
Pi was decodable. The average decoding latency is denoted
by Ldec.

Our goal is to find an efficient packet compression algorithm
that compresses packets along a communication line. This
algorithm should have a small traffic compression ratio and
also a smallLdec.

Due to the large required delay, achievingrA,Boffline is not
practical in a network processor. Therefore,rA,Bstreaming would
be regarded as our objective for compression ratio improve-
ment.

III. POTENTIAL IMPROVEMENT IN PACKET COMPRESSION

All the preliminary experiments were performed on the
Calgary corpus files, Canterbury corpus files [14], and a set of

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

pt
t5

_f
ax

/p
tt5

/p
ic

bl
ue

di
ve

.b
m

p
Co

m
pu

te
r-S

em
.d

oc
ke

nn
ed

y.
xls

rfc
_i

nd
ex

.tx
t

wo
rld

19
2.

tx
t

bi
bl

e.
tx

t
lce

t1
0.

tx
t

al
ice

29
.tx

t
as

yo
ul

ik.
tx

t
pl

ra
bn

12
.tx

t
Bo

ok
s.

ht
m

cp
.h

tm
l

fie
ld

s.
c

gr
am

m
ar

.ls
p

pa
pe

r1
pa

pe
r2

pa
pe

r3
pa

pe
r4

pa
pe

r5
pa

pe
r6

bo
ok

1
bo

ok
2

al
le

zw
.p

s
E.

co
li

ne
ws bi

b
xa

rg
s.

1
ob

j1
ob

j2
su

m
ge

o
wa

ve
le

ts
.p

pt
wa

p.
pd

f
th

e_
fly

.w
av

Bi
d_

Li
gh

t.m
pe

g
m

ym
ea

gw
av

e.
zip

sa
in

t_
ag

ne
s.

m
p3

Ho
rte

ns
e8

9a
.g

if
Ch

ee
ta

h.
jp

g

File Name

Co
m

pr
es

si
on

 R
at

io

Deflate ratio LZW ratio

Predictor ratio FP-LZW ratio

Fig. 4. Offline compression ratios of various files measured with various
compression algorithms: Deflate (gzip), Predictor, LZW (compress), FP-LZW.

various large files that consist of text files, bmp, documents,
audio files, worksheets, presentations, pdf, images, mpegs, zip,
etc.

The purpose of the first experiment was to rank four
different compression algorithms that are suitable for com-
munication purposes with respect to their compression ratio.
The algorithms are: LZW (the same algorithm used by Unix
compress), FP-LZW [11], Deflate [13] (same algorithm used
by gzip, for the implementation we used the zlib compression
library [15]), and Predictor [9].

Note that our definition for compression ratio isthe ratio
between the compressed data size and the uncompressed data
size.

The compression ratios of the various compression algo-
rithms on the input files are depicted in Fig. 4. Deflate gives
the best compression ratios, FP-LZW and LZW give close
results (FP-LZW gives results at least as good as those of
LZW), while Predictor gives the poorest compression ratio
and is the fastest compression algorithm.

In order to measure the potential for improvement we used
rA,Bstreaming as the goal for improvement. The goal of this
experiment is to measure the actual differences between the
compression ratios of stateless compression and streaming
compression. A comparison of the stateless compression ratio
and the streaming compression ratio when the packet size
varies, with respect to the FP-LZW compression algorithm,
is given in Fig. 5. We assume in this measurement a header
size of 24 bytes. Two packet sizes were measured.

From observing the graphs we learn that the larger the
payload the better the compression ratio, since the compression
algorithm uses longer phrases.

0.00

0.20

0.40

0.60

0.80

1.00

ptt
5_

fax
/pt

t5/
pic

blu
ed

ive
.bm

p
Co

mp
ute

r-S
em

.do
c

ke
nn

ed
y.x

ls
rfc

_in
de

x.t
xt

wo
rld

19
2.t

xt
bib

le.
txt

lce
t10

.tx
t

ali
ce

29
.tx

t
as

yo
uli

k.t
xt

plr
ab

n1
2.t

xt
Bo

ok
s.h

tm
cp

.ht
ml

fie
lds

.c
gra

mm
ar.

lsp
pa

pe
r1

pa
pe

r2
pa

pe
r3

pa
pe

r4
pa

pe
r5

pa
pe

r6
bo

ok
1

bo
ok

2
all

ez
w.

ps
E.c

oli
ne

ws bib
xa

rgs
.1

ob
j1

ob
j2

su
m ge
o

wa
ve

let
s.p

pt
wa

p.p
df

the
_fl

y.w
av

Bid
_L

igh
t.m

pe
g

my
me

ag
wa

ve
.zi

p
sa

int
_a

gn
es

.m
p3

Ho
rte

ns
e8

9a
.gi

f
Ch

ee
tah

.jp
g

File Name

Co
mp

res
sio

n R
ati

o

fp fragmented ratio (|frag|=1500)
fp fragmented ratio (|frag|=125)
fp streaming compression ratio (|frag|=1500)
fp streaming compression ratio (|frag|=125)

Fig. 5. The effect of the fragment size on the overall compression ratio,
with respect to the FP-LZW compression algorithm: When the fragment size
is very small, the quality of the compression is poor. When packet size rises,
the compression ratio improves. The ratio between stateless compression ratio
and streaming compression ratio for a given file is the potential improvement.

Definition 3 Let A be a compression algorithm. LetBstateless

(resp.Bstreaming) be a stateless (resp. streaming) compression
algorithm which usesA. Let us defineϕ as the potential for
compression ratio improvement, when using a specific packet
size.
ϕ(Bstateless,Bstreaming) = rA,Bstateless

rA,Bstreaming

The results of the experiment according to this definition are
depicted in Fig. 6. These results are for small packets with
a payload size of 125 bytes. If the value of the ratio is 1,
we have nothing to improve. If the ratio is larger than 1, we
have more room for improvements. For example, for the file
rfc_index.txt it is 0.98

0.44 = 2.23. For other compressed
files such as Cheetah.jpg the ratio is 1, since the file is already
compressed.

IV. D ELAYED-DICTIONARY COMPRESSION

We present a generalization of an on-line dictionary com-
pression algorithms model, the DDC method which relies on
this model, and finally we describe when DDC should be used.

A. On-line Dictionary Compression Algorithms Model

Our work relies on a conceptual separation between the
parsing process and the dictionary update process of dictio-
nary based compression algorithms, as shown by Matias and
Sahinalp in [11] and depicted in Fig. 7 and 8. This separation
is true for any dictionary based compression algorithm.3 This
separation enables us to update the dictionary independtly to
the parsing process, a fact that is used by DDC. The model

3The Flexible Parsing (FP) algorithm introduced in [11] explicitly enables
this separation, while giving an optimal parsing method in the sense of
minimizing the number of phrases produced as output for a given dictionary.

φ
(Bstateless,Bstreaming)

0.50

1.00

1.50

2.00

2.50

ptt
5_

fax
/pt

t5/
pic

blu
ed

ive
.bm

p
Co

mp
ute

r-S
em

.do
c

ke
nn

ed
y.x

ls
rfc

_in
de

x.t
xt

wo
rld

19
2.t

xt
bib

le.
txt

lce
t10

.tx
t

ali
ce

29
.tx

t
as

yo
uli

k.t
xt

plr
ab

n1
2.t

xt
Bo

ok
s.h

tm
cp

.ht
ml

fie
lds

.c
gra

mm
ar.

lsp
pa

pe
r1

pa
pe

r2
pa

pe
r3

pa
pe

r4
pa

pe
r5

pa
pe

r6
bo

ok
1

bo
ok

2
all

ez
w.

ps
E.

co
li

ne
ws bib

xa
rgs

.1
ob

j1
ob

j2
su

m ge
o

wa
ve

let
s.p

pt
wa

p.p
df

the
_fl

y.w
av

Bid
_L

igh
t.m

pe
g

my
me

ag
wa

ve
.zi

p
sa

int
_a

gn
es

.m
p3

Ho
rte

ns
e8

9a
.gi

f
Ch

ee
tah

.jp
g

Fig. 6. The potential improvement for Calgary corpus files, Canterbury
corpus files, and some files of our own. The payload size is 125 bytes.

dictionary parser
Pd

dictionary
D(

�
)

output parser
Po

Input: T Output: C(T)

Fig. 7. Encoder: A model for incremental dictionary compression algorithm
C. The model enables complete separation between the dictionary parser and
the output parser.

M presented in [11] is suitable for all known dictionary
compression algorithms. In this model there is a compression
algorithmC and respectively a decompression algorithmC←.
The compression algorithmC uses and possibly maintains a
set of substringsD, denoted as adictionary. The output ofC
is a sequence of codewords which is called thecompressed
text and denoted asC(T). The decompression algorithmC←

takes as input a compressed textC(T), and maintains the same
dictionaryD as the compression algorithmC←. The parsing
process for constructing the dictionary is calleddictionary
parserand is denoted asPd; the second process is theoutput
parser and is denoted asPo. The encoding algorithm is
depicted in Fig. 7. The inputC(T) to the decompression
algorithmC← is a sequence of codewords. After reading each
codeword,C← replaces it with its corresponding phrase, while
building the exact same dictionaryD that C builds for T .
The decoding algorithmC←, with its different components,
is given in Fig. 8.

dictionary parser
Pd

dictionary
D(

�
)

output decoder

Compressed text: C(T) Original text: T

Fig. 8. Decoder: A model for incremental dictionary decompressionC←.
The model enables complete separation between the dictionary parser and the
output decoder.

ABABCAADAA... ABCBBBAC…

Coding position
Pointer

Characters

|Window|=W Lookahead BufferDelay (
�

)

Fig. 9. BDDC-LZ77: The LZ77 compression algorithm encodes phrases as
pairs consisting of a pointer and a match length to a phrase which is in a
predetermined window. In BDDC-LZ77, the window is shifted∆ characters
backward. Every match starts and ends in the limits of the window, and
without considering the delay gap.

B. The Delayed-Dictionary Compression algorithm

We present a generalization of the modelM by adding an
additional parameter denoted by∆ which is a non-negative
integer. The dictionary is updated in a delay of∆ units, which
can be either characters or packets. In terms ofM , D is a
function of all then − ∆ − 1 units read from the input, for
n ≥ ∆+1. For all standard dictionary compression algorithms,
∆ is 0 by definition. This approach is calledbasic delayed-
dictionary compression(BDDC).

An example of this method for the LZ77 [2] is given in
Fig. 9. The LZ77 searches the window for the longest match
with the beginning of the lookahead buffer and outputs a
pointer to that match. The LZ77 has a dictionary which is
defined as all the strings within the window. The BDDC-LZ77
shifts the window∆ characters backward. In this case the
encoded phrase depends only on the characters that preceded
the last∆ characters before the lookahead buffer.

The modelM can be enhanced at the encoder process.
The encoding of a current character inT is a function of all
the characters prior to the last∆ characters. In this case any
on-line compression algorithm will do, providing its on-line
encoder is a function of the text.

When considering the modelM in terms of a network, we
have to consider the data in a granularity ofpackets, as it
appears in Fig. 10. The BDDC-LZ77 algorithm encodes the
currently encoded packet by pointing to a phrase which is in
packets that preceded the last∆ packets prior to the currently

ABCBBB…

Coding position
Pointer

|Window|=W Currently
Encoded
Packet

Delay (
�

)

ABCBBA…

Fig. 10. Basic Delayed-Dictionary Compression with LZ77 in granularity
level of packets: The LZ77 algorithm encodes the currently encoded packet
by pointing to a phrase which is in packets that preceded the last∆ packets
prior to the currently encoded packet.

Encoder Decoder

1………………….1000…………1100………………..

Received by decoder
�

=99

Currently decoded packet

P1100=f(P1…P1000)
P1101=f(P1…P1001)
…

1100……..1000………..1

Encoding

Decoding

1100=f(1…1000)

Fig. 11. Basic Delayed-Dictionary Compression: The upper part of the figure
demonstrates an encoding packet withserial number=1100. The packet is
encoded with a history based on packets 1. . . 1000. The lower part of the
figure demonstrates the decoding time - when packet 1100 is decoded, all the
packets 1. . . 1000 were already received by the decoder.

encoded packet.
The phrases created from compressing a packet are inserted

to the dictionary in a delay of∆ packets.∆ can be a
constant, or adaptive according to any rule that we choose.
An illustration for the case of∆ = 99 is given in Fig. 11. The
BDDC method compresses the network packets according to
a dictionary which is updated with a delay∆ proportional to
the network propagation delay.

Each packet is compressed by using a history based on
all the packets that were originally received by the encoder,
except for the last∆ packets that preceded the currently
encoded packet. When this packet is decoded, our ability to
decode it is of high probability, even without receiving all the
packets that preceded it, since the original encoding is not
using them. Even if some packets were dropped or reordered,
we may still be able to decode the received packet, since
due to the use of delay we do not depend on the last∆
packets (they are in the “delay gap”). In case of packet drops,
a retransmission schemewill resend the missing packets. If
the retransmission scheme is not part of the original transport

protocol, it can be implemented by the encoder and the
decoder pair. After the compression of a packet the encoder
transmits the encoded packet. After a constant time period
(2RTT), if no acknowledgment is received by the encoder,
the encoder will retransmit the compressed packet.

The delay∆ has a strong effect on the performance of the
BDDC, compression wise. If the delay is very large, the BDDC
compresses the current traffic with a history based on very
ancient traffic. In this case the compression ratio will be poor.
When considering the probability of packet decoding success,
the smaller the delay is, the smaller our chances to decode a
packet, since there is a higher probability that the decoder did
not receive all the packets that were required to decode the
current packet.

Each header must contain a serial number of the current
packet, as well as the serial number of the last packet that
was used during the encoding process. The original header
contains up to 2 bits that indicate the compression method,
and can also indicate whether the packet is compressed or
not. The ability to assign packets as uncompressed is good for
traffic that was already compressed as well as for encrypted
traffic. An adaptive algorithm layer using these special bits can
be used when traffic compressibility changes along a session
as described in [6].

This extra header information takes up to 4 bytes.
If the compressed length+ |additional header| ≥
uncompressed length, the encoder will transmit the original
packet without compression (we can recover the required
phrases for the dictionary synchronization by compressing
the packet at the decoder side).
The Encoder:
For the implementation of the delay we use a FIFO queue as
a data structure which uses realpacketstructures, or empty
dummypacket structures. Eachpacketstructure contains a list
(implemented by another FIFO queue) which stores all the
dictionary phrases which were created due to the compression
of the packet.

We can assume that each dictionary based compression
algorithm has a conceptualInsertPhraseToDictionaryfunction.
This function was replaced with another function that inserts
a packet queue element to the dictionary. The main FIFO
queue is initialized withdelay dummy packets in order to
immediately start the encoding with a delay. Each time we
insert apacketstructure to the queue we also extract apacket
structure from the queue and insert all the phrases in it to the
dictionary. The internal structure of the encoder (resp. decoder)
appears in Fig. 12. The structure of the encoder in BDDC is
identical to the structure of the encoder of streaming, except
for the FIFO queue. In streaming compression the dictionary
is a function of all prior packets and the current packet, while
in BDDC it is a function of all the packets prior to the last
preceding∆ packets. However, in stateless compression the
dictionary is only a function of the current packet.
The Decoder:

Theoutput decoder: When a packet is received by the decoder,
if the serial number of the last packet that was inserted to the

X Y X

Encoder

Packets

Dictionary

Rx1

Rx2Tx2

Tx1

[ACKs
Data]

Encoder

Decoder

Packets

Dictionary

Rx1

Rx2Tx2

Tx1
Decoder

ACKs ACKs ACKs

�Q

Fig. 12. Internal structure of the Encoder and the Decoder: The encoder task
transfers phrases to the dictionary task by using a FIFO queue. The queue is
initialized to ∆ dummy packets.

dictionary ≥ the serial number of the last packet used for
compression (taken from the header), then the decoder can
certainly decode the received packet. If the dictionary does not
have all the required packets (marked by the last packet used
for compression), the packet is inserted to a data structure that
contains all the packets that are waiting for decoding. When
a new packet is received the decoder examines whether the
packet is required for the decoding of the waiting packets and
decodes accordingly.

The dictionary parser: If a received packeti has all the
predecessors packets in the dictionary, then the decoder
decodes the packet and updates the dictionary.

We present four encoding algorithms based on the Basic
DDC approach:
Adaptive Delay Algorithm: This algorithm maintains adelay
parameter which is changed dynamically according to the
decoding success and the changes in the probability for
packet drops.

If the decoder fails to constantly decode packets, it will
send a message to the encoder asking it to increase the delay
used for encoding (this is done by adding dummy packets to
the FIFO queue). If the decoder succeeds in decoding packets
for a large amount of packets, it will send a message to the
encoder asking it to decrease the delay used.

When the decoder senses that the probability for packet
loss increases, it signals the encoder to increase thedelay
parameter resulting in deterioration of the traffic compression
ratio. However, when using a small delay there is a higher
probability for not receiving all the packets required for the
decoding of a specific packet. This will result in adding
the specific packet to the list of packets that are pending
decoding, and therefore largerLdec. The decoder will signal
the encoder to increase thedelay parameter. Thisfeedback
method will ultimately converge to a specificdelayvalue. See
our measurements for the values of the compression ratios
for each converged delay value. This approach can also be
enhanced to a different method ofprediction of the required
delay by the encoder.

The BDDC method has an inherent conflict betweenLdec

and the traffic compression ratio: increasing the dictionary
delay will cause a decrease in theLdec, and also a poor traffic

0

20

40

60

80

100

0 10 20 100 300 500 100
0

120
0

Dictionary Delay
�

 (packets)

DDC Compression Ratio (percents)
BDDC Av Ldec (packets)

Fig. 13. BDDC Conflict: Increasing the dictionary delay will cause a decrease
in Ldec, and also a poor traffic compression ratio.

1…………………x……x……x……x……x…..

All packets received
by the decoder

max
� Currently decoded packetACKs List

Fig. 14. Confirmed-Dictionary Compression: Each packet is encoded by
choosing a maximal∆ value such that the packet is encoded with a history
based on packets that have surely arrived to the decoder. The encoder uses
the acknowledgments to maintain an acknowledgements data structure.

compression ratio. This conflict is depicted in Fig. 13.
Confirmed-Dictionary Compression Algorithm: This algorithm
ensures immediate decoding. A similar approach was intro-
duced in [10]. In this approach the encoder registers the
acknowledgements transmitted from the decoder side. The
encoder knows which packets were already received by the
decoder, thus the encoder encodes the current packet with a
history which is based on packets that have surely arrived
to the decoder. The encoder maintains anacknowledgments
data structurebased on packets that were received by the
decoder. This list appears in Fig. 14. Therefore, the encoder is
guaranteed that the new encoded packets will be successfully
decoded by the decoder. In this approach we set the dictionary
delay in the encoder to a maximal value such that every packet
received by the decoder will be decoded immediately, i.e.
Ldec = 0. This algorithm does not require any buffer for
storing packets waiting to be decoded. The tradeoff in this
algorithm is the compression ratio.
The DDC Algorithms: The DDC algorithms are a combination
of BDDC and stateless compression. The purpose of these
algorithms is to ensure that the compression ratio of DDC
does not become worse than stateless compression. This may
happen in small files, since once the FIFO queue is large and
the stream is short, the phrases in the queue do not have
a chance to enter the dictionary. Therefore the basic DDC
method is good for long streams.

There are two alternative algorithms for DDC: At the first
alternative, each packet will be compressed twice - by the

BDDC dictionary and the stateless dictionary. The result will
be the minimum between the uncompressed length, the state-
less compressed length, and the BDDC compressed length.
This method is known asDDC-min. Since we use the stateless
dictionary, the compression ratio will be at least as good as the
stateless compression ratio. When the decoder receives such
a packet, it will have the same DDC dictionary, and it will
reconstruct the required phrases from the compressed packet.
Note that one of the options of the minimum isuncompressed
length. This is useful for implementation of an adaptive
compression algorithm that identifies the compressibility of
the traffic along a session (e.g. when traffic is encrypted or
compressed).

At the second alternative, each packet is compressed with a
dictionary which is the union of the current DDC dictionary
and the stateless dictionary to be created from this packet
during compression. This method is known asDDC-Union.
This algorithm is part of our future work.

All the algorithms described in this section must address an
inherent problem: many dictionaries re-initialize themselves
when they reach their maximal capacity. This may cause
decoding problems: the decoder may receive a packet, such
that all the phrases that are needed for decoding are not in the
dictionary of the decoder anymore, due to re-initialization of
the decoder’s dictionary.

To address this problem we can maintain two dictionaries
in the decoder:current dictionary andprevious dictionary.
Previousis the dictionary before re-initialization andcurrent
is the dictionary after re-initialization. If a decoded packet
requires phrases from theprevious dictionary due to the
network propagation delay, it will simply use theprevious
dictionary.

The required buffer size for the dictionary is twice than
the required buffer size in streaming compression, due to the
dictionary re-initialization problem. The buffer required for
storing waiting packets at the decoder is smaller by a factor
of ∆ compared to streaming compression.

C. When to use DDC

DDC is useful in latency critical applications, especially
when the compression is in the network processor, and not
in the application. If the application is unknown we cannot
assume anything about the latency requirements of the appli-
cation, and therefore streaming is unacceptable. If the latency
is not important (which means that we have information about
the application) we may consider using streaming or even
concatenate packets and use off-line compression.

DDC has an advantage over streaming when the order of
the packets is not required.

If packet drops are allowed by the application, we can
use DDC and add a retransmission mechanism for dictionary
update purposes.

If the application requires order and packet drops are not
allowed (retransmissions exist), there is no point in using
DDC. Streaming is better in this case since it has a better
compression ratio, and the packets will have to wait in any

case for the application concatenation (e.g., TCP). However,
this criteria requires knowledge about the application by the
network processor.

Choosing a dictionary delay of∆ ≥ 2RTT ensures an
immediate decoding in practical terms. We assume that a
dropped packet will reach its destination after a retransmission.
We also assume that the timer in the retransmission mechanism
expires after2RTT . This assumption means that the time from
the point that a packet drop was detected by the decoder, until
the time it was received at the decoder after a retransmission is
exactly2RTT . Let us assume∆ ≥ 2RTT . Let Pi be a packet
that has been received by the decoder.Pi was compressed
by using a history which depends only on packets that were
received by the decoder at least2RTT ago. WhenPi is
received by the decoder all the packets thatPi depends on were
already received by the decoder. If one of these packets was
dropped, it had enough time for a retransmission according
to the assumptions. Such packets have arrived to the decoder
beforePi was received by the decoder.

Currently DDC uses one dictionary for all the connections
between the two ends. In case of web traffic, it is worth while
to keep one dictionary, and not create a different dictionary
for every separate connection, since there is an inherent
redundancy across several different connections, as shown by
Spring and Wetherall in [16]. This is application dependent,
therefore in some applications a different dictionary should be
created for every connection.

By using the results of our measurements and a simple
arithmetic calculation, it can easily be shown that DDC is
good for low to medium speed links. When using high
speed communication links there is not much point in data
compression. In a fast line it is better to send the information
as is, since the time required for compression, transmission,
and decompression will be longer than just transmitting it,
within a high probability.

V. EXPERIMENTS

For all the experiments we used software written in C++,
using the Linux OS. For the compression ratio experiments
we used local Linux machines. Appropriate encoders were
implemented for this purpose. For the decoding latency ex-
periments we used hundreds of remote nodes over the internet
of the Linux based Planet-Lab [17] testing environment, which
is suitable for networking measurements.

A. Compression Ratio vs. Dictionary Delay

The algorithm we chose for the experiment is FP-LZW. As
we mentioned earlier, there is a conceptual separation between
the parsing process and the dictionary update process. The
implementation of FP-LZW explicitly gives this separation,
and is very convenient for modifications [18].

For the measurements we used a concatenation of the 18
Calgary corpus files [14]. In order to avoid a deviation in
our measurements we assumed an incoming header size of 20
bytes, which is relatively large. The outgoing header size is
24 bytes (original header size + our additional 4 bytes).

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0

500
0

100
00

150
00

200
00

250
00

300
00

350
00

400
00

Dictionary Delay
�

 (packets)

Co
mp

res
sio

n r
atio stateless

compression ratio
streaming
compression ratio
DDC-min

Fig. 15. Compression ratio of DDC-min as a function of the dictionary
delay in packets, compared to stateless compression ratio and to streaming
compression ratio. The ratio for streaming compression is very close to
the DDC-min ratio with zero dictionary delay. The data file in use is the
concatenation of 18 Calgary corpus files,|Header| = 20, |Payload| = 125.
DDC-min obtains a good compression ratio even for large dictionary delays.

0.40

0.45

0.50

0.55

0.60

0 100 200 300 400 500 100
0

150
0

Dictionary Delay
�

 (packets)

Co
mp

res
sio

n r
atio

stateless
compression
ratio

streaming
compression
ratio

DDC-min

Fig. 16. Compression ratio of DDC-min as a function of the dictionary
delay in packets, compared to stateless compression ratio and to streaming
compression ratio. The data file in use is the concatenation of 18 Calgary
corpus files,|Header = 20|, |Payload| = 1500. DDC-min is useful for∆
of up to 1500 packets.

A description of the traffic compression ratio for each delay
value for the case of DDC-min is given in Fig. 15 and 16.
Two main cases are presented: a payload of 125 bytes and
1500 bytes. Our results show that a significant improvement
is achieved, even with a large dictionary delay, which is
considerably better than the result ofthwack shown in [10].
For example, let us consider the case of small packets where
∆ = 15. Let Deflatestreaming (resp.FP − LZWstreaming) be
the streaming version of Deflate (resp. FP-LZW). The ratio

rDeflate,thwack

rDeflate,Deflatestreaming
is approximately 1.5, which means that there

is still more room for improvement. However, in DDC the
ratio rFP-LZW,DDC

rFP-LZW,FP-LZWstreaming
is only 1.04, i.e. DDC is very close

to streaming. In addition, the measurements in [10] assume

a zero length header which is not practical, and causes the
compression ratio to become better.

For large packets, we also receive a good improvement. The
DDC-min method is good for a dictionary delay of up to 1500
packets. As shown earlier in Fig. 5, for a larger payload, there
is a better compression ratio.

B. Decoding Latency vs. Dictionary Delay

Real network experiments were conducted to measure the
packet drop probability, packet reordering probability and the
improvement ofLdec of BDDC over streaming compression.
In all the experiments we used hundreds of nodes over the
internet of thePlanet-Labenvironment [17] which is good
for networking measurements. We used a concatenation of 18
Calgary corpus [14] files, which has a total size of 3.25M
bytes. We broke the concatenated files to fragments of 125
bytes and transmitted them with UDP to 269 different Planet-
Lab nodes in different geographical positions all over the
world. In each transmission there were 26012 packets. The
transmission rate was 6k bytes of data per second.

The first experiment measured the packet drop probability,
which for all the measurements is 1.27%, or alternatively each
packet will reach its destination in a probability of 98.73%.
The variance is 0.002. These results suggest that in case the
packet has been dropped, it will reach its destination after a
single retransmission within a very high probability. Packet
drops at the internet was also studied by Borella [19].

The packet reordering probability, without using retransmis-
sions (due to change of paths, etc.), was negligible. It happened
only in 137 packets out of a total of 7M packets. When
retransmissions were used the packet reordering probability
was increased to 0.008. The packet reordering probability was
also studied by Bellardo [20].

The goal of the second experiment was to compareLdec of
streaming compression vs.Ldec of BDDC. The measurements
were for various round trip times of 1000. . . 5000msec. The
total averageLdec of streaming compression and BDDC with
∆ = 100 as a function of the round trip time is depicted in
Fig. 17. This is a total average of all the averages derived from
all the 269 transmissions. The total averageLdec of BDDC is
smaller than that of streaming.

Let us examine the case whereRTT = 5000msec. In
Fig. 18 we see theLdec of streaming compression for every
transmission out of the 269 transmissions. The variance in this
case is very high. In Fig. 19 we compare the total averageLdec

of streaming compression for the case ofRTT = 5000msec
with the total averageLdec of BDDC for various dictionary
delays. We can see that for all values of∆ the total average
Ldec of BDDC in terms of packets is smaller than that of
streaming compression. When increasing the dictionary delay
of BDDC, the total averageLdec becomes smaller. In particular
for ∆=500 each packet in streaming is waiting on average for
62 packets, while in BDDC no packets are waiting at all for
decoding.

The distribution of streaming compression forRTT =
5000msec vs. BDDC with∆ = 300 is given in Fig. 20.

0

20

40

60

80

1000 2000 3000 4000 5000

RTT (msec)

Tot
al A

v L
dec

 (pa
cke

ts) Streaming

DDC
�

=100

Fig. 17. The total averageLdec of streaming compression and BDDC with
∆ = 100, over all the 269 transmissions for various round trip times of
1000. . . 5000msec. The total averageLdec of BDDC is smaller than that of
streaming.

0

100

200

300

400

500

1 55 109 163 217

Transmission

Av
 Ld

ec
(pa

cke
ts)

Streaming
Ldec Averages

Streaming
Total Ldec
Average

Fig. 18. Ldec of streaming for every transmission out of the 269 trans-
missions. The variance in terms of packets is very high. The total average is
represented by the horizontal line.

In streaming, the percentage of pending packets, i.e, packets
with Ldec 6= 0, is 18.8 % with maximalLdec value of
963 which represents4RTT 4. In the case of BDDC, the
percentage of pending packets is reduced to 17.1% in BDDC.
The maximalLdec for BDDC is 383 packets which represents
2RTT −∆ ≥ 0.

VI. EXAMPLE APPLICATION

In this section we will describe an example for an ap-
plication: a PC to mobile chat over SMS (Short Message
Service) messages. Such applications exist in PC based instant
messenger clients. The PC based messenger client enables
sending of SMS messages to mobile phones through its PC
clients. The SMS messages are transferred to the SMSC (Short
Message Service Center) by using special SMS protocols.
Then the SMS messages are transferred to the mobile phone

4In case of a massive packet drop that comes in a large burst which is
equal to2RTT in terms of packets, the first non-dropped packet after the
burst may wait up to4RTT since the retransmission timer is set to2RTT .

0

20

40

60

80

0 100 200 300 400 500

Dictionary Delay
�

 (packets)

Tot
al A

v L
dec

 (pa
cke

ts)

DDC

Streaming

Fig. 19. The Effect of the Dictionary Delay on the Decoding Latency:
Increasing the dictionary delay will cause a decrease ofLdec at the decoder.
The graph shows that on average every packet in streaming waits more than a
packet in BDDC. In particular when∆ = 500 packets in BDDC do not wait
at all while packets in streaming wait on average for 62 packets.RTT =
5000msec.

through dedicated low speed SS7 (Signaling System 7) control
links. The speed of the SS7 control links is 56kbps or 64kbps,
therefore they are considered as a bottle neck. The system
overview of this application appears in Fig. 21. ICQ5 is a
commercial example of such a PC client.

The amounts of SMS messages are known to increase
from day to day due to the high demand for this service.
This causes a major problem in the SS7 links. Our method
enables compressing traffic, while maintaining on a reasonable
latency in user terms. The compression enables more SMS
messages to be sent along the given bandwidth, with good
Ldec. Other examples would beinstant messaging clients:
Yahoo Messenger6, MSN Messenger7, ICQ send short textual
messages. There are organizations that are physically divided
into remote geographical places. Such organizations may use
the instant messaging clients with a compression feature, such
as DDC, thus saving bandwidth in the network paths that
connect parts of the organization.

DDC can be used innetwork management applications.
When checking if nodes are functioning, we do not care
about the order of the check. We only want to know whether
failure exists. Many compressed management commands can
go through the same channel to various nodes.

Sensor Networksconstantly send data, which can be trans-
mitted via a bus using compressed packets, thus saving trans-
mission energy.

VII. C ONCLUSIONS

We show a method for compressing the payload of network
packets nameddelayed-dictionary compression(DDC). The
method deals with the problems of packet drops, packet

5http://www.icq.com
6http://messenger.yahoo.com
7http://messenger.microsoft.com

1

10

100

1000

10000

100000

1000000

10000000

1 192 383 574 765 956

Ldec (packets)

Nu
mb

er
of

Pa
ck

ets Ldec DDC�
=300

Ldec
Streaming

Fig. 20. Comparison between the Decoding Latency Distribution of BDDC
and Streaming:RTT = 5000msec is assumed. The maximalLdec value for
streaming is4RTT which is 963 in terms of packets. The other graph is
for BDDC with ∆ = 300. The maximalLdec value for DDC is2RTT −
∆ which is 383 packets. BDDC achieves smallerLdec values compared to
streaming.

SMSC Encoder Decoder

PC1

PC2

PC4

PC3

TCP SS7

ICQ
Clients

Mobile
Phone
Users

User Latency

Decoding
Latency

Fig. 21. SMS Chat from PC to Mobile: SMS messages are sent from Instant
Messenger PC clients to mobile phones by using TCP at first, and SS7 links
after wards. The bottle neck is the low speed SS7 links.

reordering and the dictionary synchronization problems that
ensue. The DDC method has an advantage over the traditional
streaming compression, since when decoding a packet, the
decoder does not have to wait for all its predecessor packets. It
also has an advantage over stateless compression in that it can
use dictionaries that are based on a large number of packets, re-
sulting in a better compression ratio. The method has particular
advantage for slow to medium speed communication links.
While the current paper focused on dictionary-compression
algorithm, the method may be helpful for various types of on-
line compression algorithms. Experimental study establishes
the potential for compression improvement in packet networks,
as well as the actual improvements obtained by the DDC
algorithm presented here.

The research presented here focuses on the issues of com-

pression quality versus latency at the decoding end. Another
issue of significance in the context of packet networks is the
time in which encoding and decoding take place. When a
single session exists, if the time spent on compression and
transmission is longer than the time required to transmit the
information without compression, there is no point in using
data compression. However, even if the compression method
increases the overall latency while allowing more sessions
to be transferred on the communication link, compression is
indeed useful. Jeannotet al [12] present an algorithm that
allows overlapping of communications with compression and
to automatically adapting the compression effort to currently
available network and processor resources. Addressing the
issue of time for DDC is the subject of research in progress.

Future work will deal with the implementation of theDDC-
Union which ensures a compression ratio at least as good
as stateless compression. We are studying other methods of
DDC, including a decoding method calledeager decoding.
The eager-decodingis expected to give better decoding la-
tency, by attempting to decode every received packet without
relating to the required history, since all required phrases for
decoding may exist in the dictionary. We are also studying the
confirmed-dictionary compressionalgorithm.

ACKNOWLEDGEMENTS

Research supported in part by the Israel Science Founda-
tion. The Planet-Lab installation at Tel Aviv University was
supported by an Intel Research Grant.

The authors wish to thank Amir Averbuch, Hanoch Levy,
and Uri Yechiali for helpful discussions in the course of this
work.

VIII. A PPENDIX

The files that were used in the experiments are the Calgary
corpus files, Canterbury files, and some of our own files. The
list of the file names and their size is given in Table. I.

REFERENCES

[1] C. Westphal, “A user-based frequency-dependent IP header compression
architecture,”IEEE, Globecom, 2002.

[2] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,”IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, 1977.

[3] ——, “Compression of individual sequences via variable-rate coding,”
IEEE Transactions on Information Theory, vol. 24, no. 5, pp. 530–536,
1978.

[4] T. Welch, “A technique for high performance data compression,”IEEE
Computer, vol. 17, no. 6, pp. 8–19, 1984.

[5] J. Lilley, J. Yang, H. Balakrishnan, and S. Seshan, “A unified header
compression framework for low-bandwidth links,”ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking, pp. 131–142,
2000.

[6] A. Shacham, R. Monsour, R. Pereira, and M. Thomas, “IP payload
compression protocol (IPComp),”IETF, RFC 2393, 1998, http://www.
ietf.org/rfc/rfc2393.txt.

[7] R. Friend and R. Monsour, “IP payload compression using LZS,”IETF,
RFC 2395, 1998, http://www.ietf.org/rfc/rfc2395.txt.

[8] R. Pereira, “IP payload compression using DEFLATE,”IETF, RFC 2394,
1998, http://www.ietf.org/rfc/rfc2394.txt.

[9] D. Rand, “PPP Predictor compression protocol,”IETF, RFC 1978, 1996,
http://www.ietf.org/rfc/rfc1978.txt.

TABLE I

FILES USED FOR THE MEASUREMENTS

Name Size

ptt5_fax/ptt5/pic 513,216
bluedive.bmp 2,359,434
Computer-Sem.doc 383,488
kennedy.xls 1,029,744
rfc_index.txt 497,008
world192.txt 2,473,400
bible.txt 4,047,392
lcet10.txt 426,754
alice29.txt 152,089
asyoulik.txt 125,179
plrabn12.txt 481,861
Books.htm 3,498,064
cp.html 24,603
fields.c 11,150
grammar.lsp 3,721
paper1 53,161
paper2 82,199
paper3 46,526
paper4 13,286
paper5 11,954
paper6 38,105
book1 768,771
book2 610,856
allezw.ps 344,346
E.coli 4,638,690
news 377,109
bib 111,261
xargs.1 4,227
obj1 21,504
obj2 246,814
sum 38,240
geo 102,400
wavelets.ppt 437,2487
wap.pdf 1,231,123
the_fly.wav 921,992
Bid_Light.mpeg 1,159,172
mymeagwave.zip 634,320
saint_agnes.mp3 1,957,430
Hortense89a.gif 1,577,504
Cheetah.jpg 277,978

[10] S. Dorward and S. Quinlan, “Robust data compression of network
packets,”Bell Labs, 2000, unpublished manuscript.

[11] Y. Matias and S. C. Sahinalp, “On the optimality of parsing in dynamic
dictionary based data compression,”SODA: ACM-SIAM Symposium on
Discrete Algorithms, 1999.

[12] E. Jeannot, B. Knutsson, and M. Bjorkman, “Adaptive online data
compression,”HPDC, 2002.

[13] P. Deutsch, “Deflate compressed data format specification version 1.3,”
IETF, RFC 1951, 1996, http://www.ietf.org/rfc/rfc1951.txt.

[14] T. C. Bell, J. G. Cleary, and I. H. Witten,Text Compression. Prentice
Hall Advanced Reference Series, 1990.

[15] J. Gailly and M. Adler, “Zlib - a massively spiffy yet delicately
unobtrusive compression library,” 1996, http://www.zlib.org.

[16] N. Spring and D. Wetherall, “A protocol independent technique for
eliminating redundant network traffic,”ACM SIGCOMM, 2000.

[17] “Planet-lab,” http://www.planet-lab.org.
[18] Y. Matias, N. Rajpoot, and S. C. Sahinalp, “The effect of flexible parsing

for dynamic dictionary based data compression,”Data Compression
Conference, pp. 238–246, 1999.

[19] M. Borella, “Measurement and interpretation of internet packet loss,”
Communication and Networks, vol. 2, no. 2, pp. 93–102, 2000.

[20] J. Bellardo and S. Savage, “Measuring packet reordering,”ACM SIG-
COMM, 2002.

