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Abstract—This paper considers compression in packet net- preceding packets arrive. This causesoding latengywhich
works. Since data packets may be dropped or arrive reordered, may be unacceptable in some applications.

streaming compression algorithms result in a considerable decod- . .
ing latency. On the other hand, standard stateless packet com- To alleviate decoding latency, standard stateless packet

pression algorithms that compress each packet independently, COMpPression algorithms are based on a packet-by-packet com-
give a relatively poor compression ratio. We introduce a novel pression. For each packet, its payload is compressed using
compression algorithm for packet networks: delayed-dictionary a dictionary compression algorithm, independently to other

compression By allowing delay in the dictionary construction, packets. While the decoding latency is addressed properly,

the algorithm handles effectively the problems of packet drops .. : : . :
and packet reordering, while resulting with a compression quality this may often result in poor compression quality, since the

which is often substantially better than standard stateless packet Inherent redundancy within a packet is significantly smaller
compression and has a smaller decoding latency than that of than in the entire stream.

streaming compression. We conducted extensive experiments
to establish the potential improvement for packet compression
technigues, using many data files including the Calgary corpus

and the Canterbury corpus. Experimental results of the new  \ye introduce a novel compression algorithm suitable for
idneEf?édﬁgg&ag]ysﬁggrﬁﬁizn show that its main advantage is packet nerorks: thelelayed-dictionary cornpressic([?C).

The DDC is a general framework that applies to any dictionary
algorithm. It considers the dictionary construction and the
dictionary-based parsing of the input text as separate pro-

We consider data compression in packet networks, in whicksses, and it imposes a delayn the dictionary construction.
data is transmitted by partitioning it into packets. Packéts a result, when decoding a packet, the decoder does not
compression allows better bandwidth utilization of a communilepend on any of the\ preceding packets, eliminating or
cation line resulting in much smaller amounts of packet dropdiminishing the problems of out-of-order packets and packet
more simultaneous sessions, and a smooth and fast behasiiops compared to streaming compression, still with a good
of applications (see, e.g., [1]). traffic compression ratio.

Packet compression can be obtained by a combination ofWe focus on two alternative encoding methods for the DDC
header compressioandpayload compressignvhich are com- algorithm. The first method adapts to the network propagation
plementary methods. In this work we focus only on payloadelay and the probability for packet loss. The second method,
compression. We are particularly interested in dictionary-basealled confirmed-dictionary compressipansures zero decod-
compression. Many dictionary compression algorithms weirgg latency. The DDC ensures that the compression ratio will
developed following the seminal papers of Lempel and Zige at least as good as that of stateless compression, and quite
(see, [2]4)]). close to that of the streaming compression, with decoding

In dictionary compression, an input sequence is encod@gency close or equal to that of stateless compression.
based on a dictionary that is constructed dynamically accord-There are two main alternatives for the DDC algorithm. The
ing to the given text. The compression is done in a streamifigst is calledDDC-min in which the compressed length of a
fashion, enabling to leverage on redundancy in the inppacket is the minimum between the original uncompressed
sequence. length, the Stateless compressed length, andBtmc-DDC

In many packet networks, including ATM, Frame RelayBDDC) which is a sub-method of DDC. The second alterna-
Wireless, and others, packets are sent via different routes, dined is the DDC-Union in which the dictionary is the Union
may arrive reordered, due to different network characteristic¥, the Stateless dictionary and the BDDC dictionary.
or due to retransmissions in case of dropped packets. Sincé full tradeoff between compression ratio and decoding
streaming compression assumes that the compressed sequiabeecy can be obtained, bridging between the extreme al-
arrives at the decoder in the order in which it was sent by tiernative of streaming compression (best compression ratio
encoder, the decoder must hold packets in a buffer until alhd worst decoding latency) and that of confirmed dictionary

A. Contributions

I. INTRODUCTION



Compression Ratio (as expected) for smaller packets. We show that the amount

of potentially saved bandwidth may be more than a factor of
Stateless (A=x) & 2 (e.g., for the filerfc_index.txt the factor is 2.23).

We study the dependency of compression quality and the
imposed dictionary delay, showing that the improvement in
compression over stateless compression could be significant

Confirmed-Dictionary &
Compression (AConf)

DDC (4) _ even for a relatively large dictionary delay.
Streaming (A=0) We also consider the effect of the dictionary delay on the
AV performance in terms of the decoding latency. A sufficiently
Decodng  |arge dictionary delay will practically provid decodi
Latency arge dictionary delay will practically provide a zero decoding

latency. We compare the decoding latencies of streaming
Fig. 1. Packet Compression Algorithms: A tradeoff exists between tt@ompression vs. BDDC, showing that the latter is indeed
compression ratio and the average decoding latency. Streaming has the éeﬁsiderably better. For streaming compression, the maximal

compression ratio and the worst decoding latency. DDC has compression rafio . . . N
close to that of streaming compression, and also has average decoding Iatﬁﬁ:?c’dmg latency in seconds iRTT' (e.g., for RTT =

which is close to that of stateless. Tleenfirmed-dictionary compression 5000msec and a payload size of 125 bytes the decoding latency
algorithm ensures a zero decoding latency. is 963 packets) while in BDDC we can control it to be zero.

B. Related Work

compression (same decoding latency as of stateless compregiaaqer compression was studied by Westphal [1], Lidey
sion, yet better compression ratio). This tradeoff is depictedgp [5], and others.

Fig. 1. Thus, the DDC has the benefits of both stateless Comrpere are several IETF (Intemet Engineering Task Force)
pression and streaming compression. With the right choiGgg s that deal with dictionary based stateless compression of

of the dictionary delay parameter, it can have a deCOdi%cket payload, including those of Monscetral [6], Friend
latency which is close to that of stateless compression, agpm [7], Pereira [8], and Rand [9].

with a compression ratio which is close to that of streaming The closest work to ours is that of Dorward and Quin-

compression. , lan [10], which introduces an approach callacknowledged
For example, for a concatenation of the Calgary Corplt’:%mpression‘or compressing payload of packets relying on

files, fragmented into packets with a payload of 125 byteg., ,yiedgments. This method is somewhat similar to the
in stre_aming the compression rati.o i_s 0.52 Wi,th an averagfhc jmplementation of confirmed dictionary, when using
decoding latency of 62 packets, while in DDC-min with 2 1argg, o pefjate compression algorithm. In each transmitted packet
dictionary delay of 200 packets welobtaln a compression raliy o itional header is used to indicate which exact subset
of 0.64 and only an average decoding latency of 14.3 pa’cketéf packets was used as history for the compression of each
) ) packet. The implementation uses a history of up to 9 packets.
These results can be generalized to any on-line compression ase of a large history this method has to transmit a
algorithm that uses an on-line encoder, even 'f_ the al,gor'thlﬁ}ge history information, making the method significantly
does not use a d|ct|opary. The DDC meth'od IS pe}rt|cular|¥ss attractive. This work shows good improvement for large
good for IO.W to me.d'”_”? speed com_mur_ucatu_)n Im!(s. Itf)ackets and much smaller improvement for small packets.
advanta_ge_ IS most S|gn|_f|canF for applications in which the The DDC algorithm is a more general framework in several
!atency is important, and in which the order of decoded pac"%@pects. It allows usage of a history related to all transferred
IS not |mpor'tant. , , packets, resulting in better compression ratios. Using DDC,
To e_stabllsh Fhe pot_entlal _beneﬁt of DDC we cpnducte\g’e obtain a significant improvement for small packets and
extengve expe_rlmentatlpn. First, we compared various C(_)Tgfge packets, even for very large dictionary delays. The
pression a.lgorlth.ms which are apphcaple to Comm“n'cat'(?ﬂecoding latency issue was addressed thoroughly in our work.
purposes, including the Defiate (gzip, winzip, based on LZ3 addition, we show that the method is good for any on-line
and Huffman), LZW (Unix_compre.ss), Predictor (Cisco), an&ompressién algorithm.
FP-LZW (the erX|bIe—par_smg version of LZW)'_ . A separation between dictionary construction and parsing
we C(_)nducted ex_tenswe_: experlme_ntal studies t(.) establwgs previously presented in [11], with a different motivation:
the gap in compression ratio when using the streaming Versy roving the compression ratio for given data files by fixing
versus the stateless version of FP'LZW‘. The. expgrlmeqF‘se dictionary construction and modifying the parsing method.
were conducted for a large set of data files, including ”Iﬁ contrast, in the DDC method, the parsing method is fixed
Calgary corpus and the Canterbury corpus.. For data fi ing any algorithm of choice), while we allow adaptation
that were not already compressed, the gap is shown 10 jRethe dictionary update method in terms of the imposed

quite S|g_n|f|cant. The expenments were cpnducted _for_ _tV\fﬂctionary delay, with the objective of alleviating out-of-order
packet sizes, demonstrating that the gap is more S'gn'f'C?J'ﬁtenomena

1We define the traffic compression ratio as the size of the compressed traffic'o‘nO'_:her work, addressing issues of the compression time
divided by the size of the uncompressed traffic. factor is that of Jeannadt al [12].
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Fig. 2. Framework: Two compression enabled network processors are udéid, 3. The upper hand side of the figure is a structure of a packet which
one on each side of the communication link. A LAN is connected to eadonsists of a header and a payload. The middle part of the figure is the
side of the communication link. The total user latency is the total of th&tructure of uncompressed network traffic while the lower part is the structure
encoding latency, transmission latency, and decoding laténdéy.the original of stateless compression traffic (each payload is compressed with algorithm
uncompressed traffic and is the compressed traffic. Our interest is in theA independently). The header hadeagthfield indicating the length of the
decoding latency and the traffic compression ratio. payload.

C. Outline Packet compression algorithms use a dictionary for the
The rest of the paper is organized as follows: in Section §pmpression of every packet. The decoder reconstructs the
we present the framework, describe packet compression alfigtionary of the encoder by using phrases derived from the
rithms, and present the problem definition. In Section 1l weompressed packets.
present the potential for improvement in packet compression.There are basically three main types of packet compression
Section IV presents our new solution for packet compressigigorithms: stateless, streaming, and offline compressions. In
In Section V we present our experimental study for packatl the types, if a compressed packet length is greater than or
compression using a specific compression algorithm. In S&sjual to the original one, the original packet is transmitted.
tion VI we present example applications. Finally, concludingtateless compressiofifacket by Packet Compress)oizach

remarks appear in Section VII. packet is compressed independently, the history space is
initialized after every packet is compressed or decompressed.
Il. BAsICs Since each packet is independent, it can always be decom-

In this section we present the framework, describe whagessed by the receiver, regardless of the order of arrival or of
a packet compression algorithm is, categorize the pac@}cket drops. In stateless compression, the decoding latency

compression algorithms, and present the problem definitiorls Minimal since packets are independent. The following IETF
(Internet Engineering Task Force) RFCs are examples of

A. Framework dictionary based stateless compression algorithms: Monsour

We examine the case afnd-to-endcompression over a et al[6], Friendet al [7]' Pereira [8], and Rand [3]. !
communication link. We assume the existence of network” Structure of a single packet, the structure of the traffic
processors, one on each side of the communication link. THENOUt compression and the traffic in stateless compression
original traffic that was previously transmitted to the comm® depicted in Fig. 3. The lossless compression algorithm
nication link is now transmitted to the network processor arfy €x€cuted on the payload of every packet separately. The
from there to the physical link. The network processors afgduired buffer size is small, since it only has a dictionary
compression enabled. This framework is depicted in Fig. 2. BYjth Phrases derived from a single packet. _
compressing the traffic we achieve lower utilizafaf a line ~ oueaming compression(Continuous Compressign In
or alternatively a larger bandwidth. This results in a smallgfreaming compression the history buffer is not |n|t|aI|zed_
amount of packet drops, resulting in smaller amount of pack%‘?er every paqket IS _encoded_(re_sp. de_zcoded). Each pack_et IS
retransmissions. At this level we have packets carrying piec@acoded by using a history which is derived from all preceding
of the original data which may be a stream of data, a file, packets and from the current packet. In this method packets

any other application information. are encoded (resp. decoded) in their consecutive order. When
decoding a received packet, if some prior packets are missing,
B. Packet Compression Algorithms the decoder must store the current packet until all prior packets

. . . are received byetransmissionsresulting in large values of
Packet compression algorithms are algorithms that compress _ ~. : R

. . . decoding latency. The required buffer size is larger than that
packets by using standard lossless compression algorith

S : : . ; .
. of tateless compression, since it contains phrases derived from
such as LZ77 [2], LZW [4], Deflate [13], Predictor [3], etc. the entire encoded traffic. The buffer also contains the pending
2The line utilization is defined as the ratio between the current transfeer@CketSf in which _t_he'r amount is d_ete_r_mmEd b_y th_e packet
traffic and the line capacity for a given time period. reordering probability. When the reliability of a link is poor,



streaming compression is unattractive.
Offline compressionCompress and Sehd-irst we compress ool
the data offline, at the application layer, then we break the™
compressed data into packets, and finally send the packets
to the receiver. This approach achieves a good compression™ |
ratio compared to the previous methods. Since compressionds
performed at the application layer and not inside the network** |
processors, offline compression does not require any buﬂér
at the network processors, nor do these cause any decod;y®™ |
latency at the network processor. The network processors see
the packets as standard packets, since the data carried by the° 1
packets is compressed data. The packets are not compressed
by the network processor, since it is not worth while to o-20-
compress compressed data. The required buffer is the same
buffer of the compression algorithm at theplication layer 0.00
All known lossless compression algorithms are good for offline
compression.

Some packet compression algorithms such thwack
(see [10]) may be combinations or variants of the three
Categories. —=— Deflate ratio LZW ratio

—e— Predictor ratio —— FP-LZW ratio
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C. Problem Definition

Definition 1 Let A be a lossless compression algorithm. L
B be a packet compression algorithm which uskesLet X
(resp.Y) be the uncompressed Sresp. compressed) traffic. The

traffic compression ratioa g is % various large files that consist of text files, bmp, documents,

, i . , audio files, worksheets, presentations, pdf, images, mpegs, zip,
The traffic compression ratio is also the ratio between t

utilization of the line after compression, and the utilization 'I:he purpose of the first experiment was to rank four

of the line before compression. If the line is in full utilization yitarent compression algorithms that are suitable for com-
the compression ratio is identical to the line utilization. NOt&, inication purposes with respect to their compression ratio.
that the traffic compression ratio is not fixed since it depengs,o algorithms are: LZW (the same algorithm used by Unix
on the currently transferred traffic, i.e. compressed data. compress), FP-LZW [11], Deflate [13] (same algorithm used
Let Dstateless (r€SP. Bstreaming Dofiine) b€ @ stateless (resp.py q7in for the implementation we used the zlib compression
;treaming, offline) compression al_gorithm_ which uséslt library [15]), and Predictor [9].
is easy to prove that the following inequality holds: Note that our definition for compression ratiotise ratio
between the compressed data size and the uncompressed data
size
Definition 2 Let P, be a packet that was received by the The compression ratios of the various compression algo-
decoder. Thalecoding latencyf P;, denoted byLa..(P;), is rithms on the input files are depicted in Fig. 4. Deflate gives
the number of additional packets th&t had to wait for until the best compression ratios, FP-LZW and LZW give close

P, was decodable. The average decoding latency is denot€§ults (FP-LZW gives results at least as good as those of
by Taee. LZW), while Predictor gives the poorest compression ratio

and is the fastest compression algorithm.
Our goal is to find an efficient packet compression algorithm In order to measure the potential for improvement we used
that compresses packets along a communication line. ThiSgsireaming @S the goal for improvement. The goal of this
algorithm should have a small traffic compression ratio arekperiment is to measure the actual differences between the
also a smallL 4. compression ratios of stateless compression and streaming
Due to the large required delay, achieving g,,.. iS not compression. A comparison of the stateless compression ratio
practical in a network processor. Thereforg, g, ..., would and the streaming compression ratio when the packet size
be regarded as our objective for compression ratio improvearies, with respect to the FP-LZW compression algorithm,
ment. is given in Fig. 5. We assume in this measurement a header
size of 24 bytes. Two packet sizes were measured.
I1l. POTENTIAL IMPROVEMENT IN PACKET COMPRESSION From observing the graphs we learn that the larger the
All the preliminary experiments were performed on theayload the better the compression ratio, since the compression
Calgary corpus files, Canterbury corpus files [14], and a setalfjorithm uses longer phrases.

eI%ig. 4. Offline compression ratios of various files measured with various
compression algorithms: Deflate (gzip), Predictor, LZW (compress), FP-LZW.
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Fig. 5. The effect of the fragment size on the overall compression ratbig. 6. The potential improvement for Calgary corpus files, Canterbury
with respect to the FP-LZW compression algorithm: When the fragment sizerpus files, and some files of our own. The payload size is 125 bytes.

is very small, the quality of the compression is poor. When packet size rises,

the compression ratio improves. The ratio between stateless compression ratio

and streaming compression ratio for a given file is the potential improvement.

dictionary parser |, .| dictionary | |  output parser

Definition 3 Let A be a compression algorithm. Légateless Pd 7 bw) Po
(resp. Bswreaming b€ a stateless (resp. streaming) compressio
algorithm which usesA. Let us definey as the potential for A A
compression ratio improvement, when using a specific packet
size.

"' A, Bytateless | | \4

SO(Bstate\essBstrea\minQ = rAvlereaming I I
Input: T Output: C(T)

The results of the experiment according to this definition are

depicted in Fig. 6. These results are for small packets wiHy. 7. Encoder: A model for incremental dictionary compression algorithm
a payload size of 125 bytes. If the value of the ratio is L. The model enables complete separation between the dictionary parser and
we have nothing to improve. If the ratio is larger than 1, wi® outPut parser.

have more room for improvements. For example, for the file

rfc_index.txt it is 8% = 2.23. For other compressed

files such as Cheetah.jpg the ratio is 1, since the file is already
compressed. M presented in [11] is suitable for all known dictionary

compression algorithms. In this model there is a compression
IV. DELAYED-DICTIONARY COMPRESSION algorithmC' and respectively a decompression algoritir.

We present a generalization of an on-line dictionary conTthe compression algorithr@' uses and possibly maintains a
pression algorithms model, the DDC method which relies aret of substringd), denoted as dictionary. The output ofC
this model, and finally we describe when DDC should be usdd.a sequence of codewords which is called toenpressed

. - . . textand denoted a€'(T"). The decompression algorith@i—
A. On-line Dictionary Compression Algorithms Model takes as input a comér(gssed t€Xt"), and maintains the same

Our work relies on a conceptual separation between thgtionary D as the compression algorithi—. The parsing
parsing process and the dictionary update process of dictigocess for constructing the dictionary is calldittionary
nary based compression algorithms, as shown by Matias gifserand is denoted a®&d; the second process is tbetput
Sahinalp in [11] and depicted in Fig. 7 and 8. This separatigfarser and is denoted asPo. The encoding algorithm is
is true for any dictionary based compression algorithithis depicted in Fig. 7. The input(T) to the decompression
separation enables us to update the dictionary independtlyalgorithmC* is a sequence of codewords. After reading each
the parsing process, a fact that is used by DDC. The mod@ldeword (' replaces it with its corresponding phrase, while

building the exact same dictionar® that C builds for 7.

3The Flexible Parsing (FP) algorithm introduced in [11] explicitly enable. . . - . .
this separation, while giving an optimal parsing method in the sense ihe deC_Odm_g algorithne'", with its different components,
minimizing the number of phrases produced as output for a given dictionai. given in Fig. 8.
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Fig. 8. Decoder: A model for incremental dictionary decompression. [Window|=W Delay (&) Currently
The model enables complete separation between the dictionary parser and the Encoded
output decoder. Packet
Pointer ) - Fig. 10. Basic Delayed-Dictionary Compression with LZ77 in granularity
Coding position level of packets: The LZ77 algorithm encodes the currently encoded packet
Characters l by pointing to a phrase which is in packets that preceded theNgsackets

prior to the currently encoded packet.

i | Currently decoded packet
!
ABABCAADAA... ABCBBBAC... Lo, 1000............ 1100....ccceeiiiiienn
-
N ~ / Received by decoder ~ A=99
|Window|=W Delay (A) Lookahead Buffer P1100=f(P1...P1000)

- . . P1101=f(P1...P1001)
Fig. 9. BDDC-LZ77: The LZ77 compression algorithm encodes phrases as

pairs consisting of a pointer and a match length to a phrase which is in a
predetermined window. In BDDC-LZ77, the window is shiftédcharacters
backward. Every match starts and ends in the limits of the window, and
without considering the delay gap.

Encoder Decoder —

Encoding 1100=f(1...1000)

- . . Decoding 1100
B. The Delayed-Dictionary Compression algorithm

We present a generalization of the modél by adding an Fig. 11. Basic Delayed-Dictionary Compression: The upper part of the figure
demonstrates an encoding packet wsirial number1100. The packet is

fadd'tlonal par_ameter d_enOted b){_Wthh IS a no_n-nega_ltlve encoded with a history based on packets 1...1000. The lower part of the
integer. The dictionary is updated in a delay/®funits, which figure demonstrates the decoding time - when packet 1100 is decoded, all the

can be either characters or packets. In terms\Vaf D is a packets 1...1000 were already received by the decoder.
function of all then — A — 1 units read from the input, for
n > A+1. For all standard dictionary compression algorithms,
A is 0 by definition. This approach is calldzhsic delayed- encoded packet.
dictionary compressioBDDC). The phrases created from compressing a packet are inserted
An example of this method for the LZ77 [2] is given into the dictionary in a delay ofA packets.A can be a
Fig. 9. The LZ77 searches the window for the longest matelonstant, or adaptive according to any rule that we choose.
with the beginning of the lookahead buffer and outputs An illustration for the case of\ = 99 is given in Fig. 11. The
pointer to that match. The LZ77 has a dictionary which i8DDC method compresses the network packets according to
defined as all the strings within the window. The BDDC-LZ7a dictionary which is updated with a deldy proportional to
shifts the windowA characters backward. In this case th¢he network propagation delay.
encoded phrase depends only on the characters that preced&ich packet is compressed by using a history based on
the lastA characters before the lookahead buffer. all the packets that were originally received by the encoder,
The model M can be enhanced at the encoder processxcept for the lastA packets that preceded the currently
The encoding of a current character’ihis a function of all encoded packet. When this packet is decoded, our ability to
the characters prior to the ladt characters. In this case anydecode it is of high probability, even without receiving all the
on-line compression algorithm will do, providing its on-lingpackets that preceded it, since the original encoding is not
encoder is a function of the text. using them. Even if some packets were dropped or reordered,
When considering the moda@ll in terms of a network, we we may still be able to decode the received packet, since
have to consider the data in a granularity pEickets as it due to the use of delay we do not depend on the last
appears in Fig. 10. The BDDC-LZ77 algorithm encodes thgackets (they are in the “delay gap”). In case of packet drops,
currently encoded packet by pointing to a phrase which is &retransmission schemeill resend the missing packets. If
packets that preceded the l@stpackets prior to the currently the retransmission scheme is not part of the original transport



protocol, it can be implemented by the encoder and the Encoder Decoder

decoder pair. After the compression of a packet the encode Y X
transmits the encoded packet. After a constant time period | "
(2RT'T), if no acknowledgment is received by the encoder,
the encoder will retransmit the compressed packet. 0 [ACKs

The delayA has a strong effect on the performance of the % Data]
BDDC, compression wise. If the delay is very large, the BDDGcks Dictionary ACKs Dictionary ACKs
compresses the current traffic with a history based on very @ @ @ @

. : : ; S N\ Y % N/

ancient traffic. In this case the compression ratio will be poor.

When considering the-pmbabi”ty of packet decoding Succe%is’ 12. Internal structure of the Encoder and the Decoder: The encoder task
the Sma”_er the delgy IS, T[he smaller our chances to deCOdﬁa. fers phrases to the dictionary task by using a FIFO qLieue. The queue is
packet, since there is a higher probability that the decoder dhidialized to A dummy packets.

not receive all the packets that were required to decode the

current packet.

Each header must contain a serial number of the curregh¢tionary > the serial number of the last packet used for
packet, as well as the serial number of the last packet tlgmpression (taken from the header), then the decoder can
was used during the encoding process. The original headertainly decode the received packet. If the dictionary does not
contains up to 2 bits that indicate the compression methdthve all the required packets (marked by the last packet used
and can also indicate whether the packet is compressedf@rcompression), the packet is inserted to a data structure that
not. The ability to assign packets as uncompressed is good ¢ontains all the packets that are waiting for decoding. When
traffic that was already compressed as well as for encryptechew packet is received the decoder examines whether the
traffic. An adaptive algorithm layer using these special bits cgacket is required for the decoding of the waiting packets and
be used when traffic compressibility changes along a sessft#todes accordingly.
as described in [6]. The dictionary parser If a received packet has all the

This extra header information takes up to 4 bytepredecessors packets in the dictionary, then the decoder
If the compressed length+ |additional header > decodes the packet and updates the dictionary.
uncompressed lengththe encoder will transmit the original
packet without compression (we can recover the requir8ide present four encoding algorithms based on the Basic
phrases for the dictionary synchronization by compressiigPC approach:
the packet at the decoder side). Adaptive Delay AlgorithmThis algorithm maintains aelay
The Encoder: parameter which is changed dynamically according to the
For the implementation of the delay we use a FIFO queue @gcoding success and the changes in the probability for
a data structure which uses rgacketstructures, or empty packet drops.
dummypacket structures. Eagiacketstructure contains a list If the decoder fails to constantly decode packets, it will
(implemented by another FIFO queue) which stores all tlsend a message to the encoder asking it to increase the delay
dictionary phrases which were created due to the compressimed for encoding (this is done by adding dummy packets to
of the packet. the FIFO queue). If the decoder succeeds in decoding packets

We can assume that each dictionary based compressiona large amount of packets, it will send a message to the
algorithm has a conceptuisertPhraseToDictionarfunction. encoder asking it to decrease the delay used.

This function was replaced with another function that inserts When the decoder senses that the probability for packet
a packetqueue element to the dictionary. The main FIF@ss increases, it signals the encoder to increasedédiay
gueue is initialized withdelay dummy packets in order to parameter resulting in deterioration of the traffic compression
immediately start the encoding with a delay. Each time watio. However, when using a small delay there is a higher
insert apacketstructure to the queue we also extragiacket probability for not receiving all the packets required for the
structure from the queue and insert all the phrases in it to thecoding of a specific packet. This will result in adding
dictionary. The internal structure of the encoder (resp. decoddrg specific packet to the list of packets that are pending
appears in Fig. 12. The structure of the encoder in BDDC decoding, and therefore largér;... The decoder will signal
identical to the structure of the encoder of streaming, excdhe encoder to increase thdelay parameter. Thideedback

for the FIFO queue. In streaming compression the dictionamyethod will ultimately converge to a specifielayvalue. See

is a function of all prior packets and the current packet, whileur measurements for the values of the compression ratios
in BDDC it is a function of all the packets prior to the lasfor each converged delay value. This approach can also be
precedingA packets. However, in stateless compression tle@hanced to a different method pfediction of the required
dictionary is only a function of the current packet. delay by the encoder.

The Decoder: The BDDC method has an inherent conflict betwden,
Theoutput decoderWhen a packet is received by the decodegnd the traffic compression ratio: increasing the dictionary
if the serial number of the last packet that was inserted to tHelay will cause a decrease in thg.., and also a poor traffic
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BDDC dictionary and the stateless dictionary. The result will
80 - be the minimum between the uncompressed length, the state-
o | /4_/,//'_—. less compressed length, and the BDDC compressed length.
This method is known aBDC-min Since we use the stateless
<0 7 dictionary, the compression ratio will be at least as good as the
-6 | stateless compression ratio. When the decoder receives such
ﬁ\\ a packet, it will have the same DDC dictionary, and it will
© T e = = = = = reconstruct the required phrases from the compressed packet.
Note that one of the options of the minimumuscompressed
length This is useful for implementation of an adaptive
e — compres_sion algorithm _that identifies the (_:or_npressibility of
— BDDC Av Ldec (packets) the traffic along a session (e.g. when traffic is encrypted or
Fig. 13. BDDC Conflict: Increasing the dictionary delay will causeadecreaggmpressed)' . . .
in L., and also a poor traffic compression rafio. At the second alternative, each packet is compressed with a
dictionary which is the union of the current DDC dictionary
and the stateless dictionary to be created from this packet

=% = f—=1 f—3 f—3 P =3
== IS p—1 P13 p==1
= o [rey

1000
1200

Dictionary Delay A (packets)

ACKsList Currently d?COdEd packet during compression. This method is known BBC-Union
Lo, Koo Xeorio X e Xew e X This algorithm is part of our future work.
\ ~ J All the algorithms described in this section must address an
max A inherent problem: many dictionaries re-initialize themselves

All packets received

by the decoder when they reach their maximal capacity. This may cause

decoding problems: the decoder may receive a packet, such
Fig. 14. Confirmed-Dictionary Compression: Each packet is encoded g}at all the phrases that are needed for deCOd'T‘Q .ar? n.Ot in the
choosing a maximalA value such that the packet is encoded with a histor@liCtionary of the decoder anymore, due to re-initialization of
based on packets that have surely arrived to the decoder. The encoder tisesdecoder’s dictionary.
the acknowledgments to maintain an acknowledgements data structure. To address this problem we can maintain two dictionaries
in the decoder:current dictionary andprevious dictionary.
Previousis the dictionary before re-initialization arziirrent
compression ratio. This conflict is depicted in Fig. 13. is the dictionary after re-initialization. If a decoded packet
Confirmed-Dictionary Compression Algorithifhis algorithm  requires phrases from thprevious dictionary due to the

ensures immediate decoding. A similar approach was intr@etwork propagation de|ay, it will S|mp|y use t}‘m‘evious
duced in [10]. In this approach the encoder registers t@tionary.

acknowledgements transmitted from the decoder side. Therhe required buffer size for the dictionary is twice than
encoder knows which packets were already received by i required buffer size in streaming compression, due to the
decoder, thus the encoder encodes the current packet withi@ionary re-initialization problem. The buffer required for

history which is based on packets that have surely arrivegbring waiting packets at the decoder is smaller by a factor
to the decoder. The encoder maintains aknowledgments of A compared to streaming compression.

data structurebased on packets that were received by the

decoder. This list appears in Fig. 14. Therefore, the encodefds When to use DDC

guaranteed that the new encoded packets will be successfullpDC is useful in latency critical applications, especially

decoded by the decoder. In this approach we set the diction@fiyen the compression is in the network processor, and not

delay in the encoder to a maximal value such that every packetthe application. If the application is unknown we cannot

received by the decoder will be decoded immediately, i.essume anything about the latency requirements of the appli-

Lgec = 0. This algorithm does not require any buffer forcation, and therefore streaming is unacceptable. If the latency

storing packets waiting to be decoded. The tradeoff in this not important (which means that we have information about

algorithm is the compression ratio. the application) we may consider using streaming or even

The DDC AlgorithmsThe DDC algorithms are a combinationconcatenate packets and use off-line compression.

of BDDC and stateless compression. The purpose of thes®DC has an advantage over streaming when the order of

algorithms is to ensure that the compression ratio of DDfe packets is not required.

does not become worse than stateless compression. This may packet drops are allowed by the application, we can

happen in small files, since once the FIFO queue is large ansk DDC and add a retransmission mechanism for dictionary

the stream is short, the phrases in the queue do not hayglate purposes.

a chance to enter the dictionary. Therefore the basic DDC|f the application requires order and packet drops are not

method is good for long streams. allowed (retransmissions exist), there is no point in using
There are two alternative algorithms for DDC: At the firsDDC. Streaming is better in this case since it has a better

alternative, each packet will be compressed twice - by tlmempression ratio, and the packets will have to wait in any
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case for the application concatenation (e.g., TCP). However,
this criteria requires knowledge about the application by the . .o |
network processor.

Choosing a dictionary delay oA > 2RTT ensures an 0.75
immediate decoding in practical terms. We assume that a

dropped packet will reach its destination after a retransmissio'é. .70 1 T ISR ESsion ratio
We also assume that the timer in the retransmission mechanign — ‘Séf’;"eir%igng"’” rane
expires aftee RT'T. This assumption means that the time fromg °°° |

the point that a packet drop was detected by the decoder, until

the time it was received at the decoder after a retransmission is° " |
exactly2RTT. Let us assumé > 2RT'T. Let P; be a packet
that has been received by the decodér.was compressed
by using a history which depends only on packets that were .,
received by the decoder at leadRTT ago. WhenPi is
received by the decoder all the packets thatlepends on were Pictionary belay
already received by the decoder. If one of these packets V\f?gs 15. Compression ratio of DDC-min as a function of the dictionary
dropped, it had enough time for a retransmission accordingay in packets, compared to stateless compression ratio and to streaming

to the assumptions. Such packets have arrived to the decd@gipression ratio. The ratio for streaming compression is very close to
the DDC-min ratio with zero dictionary delay. The data file in use is the

before P; was received by the_ dIECOder- _ concatenation of 18 Calgary corpus fileH.eader| = 20, | Payload| = 125.
Currently DDC uses one dictionary for all the connectiondDC-min obtains a good compression ratio even for large dictionary delays.

between the two ends. In case of web traffic, it is worth while

to keep one dictionary, and not create a different dictionary

for every separate connection, since there is an inherent

redundancy across several different connections, as shown by

Spring and Wetherall in [16]. This is application dependent, o.ss -

therefore in some applications a different dictionary should be

created for every connection. ——statsless
By using the results of our measurements and a simple .. | '

arithmetic calculation, it can easily be shown that DDC iss

good for low to medium speed links. When using highS

speed communication links there is not much point in dat&

compression. In a fast line it is better to send the information

as is, since the time required for compression, transmission,

and decompression will be longer than just transmitting it,

within a high probability. P = =

=
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V. EXPERIMENTS

. : . ig. 16. Compression ratio of DDC-min as a function of the dictionary
For all the experiments we used software written in C+-Ee|ay in packets, compared to stateless compression ratio and to streaming

using the Linux OS. For the compression ratio experimerdsmpression ratio. The data file in use is the concatenation of 18 Calgary
we used local Linux machines. Appropriate encoders wegerpus files|Header = 20, |Payload| = 1500. DDC-min is useful forA
implemented for this purpose. For the decoding latency eX¥-UP 0 1500 packets.

periments we used hundreds of remote nodes over the internet

of the Linux based Planet-Lab [17] testing environment, which

is suitable for networking measurements. A description of the traffic compression ratio for each delay

value for the case of DDC-min is given in Fig. 15 and 16.
A. Compression Ratio vs. Dictionary Delay Two main cases are presented: a payload of 125 bytes and

The algorithm we chose for the experiment is FP-LZW. A%SOO bytes. Our results show that a significant improvement

we mentioned earlier, there is a conceptual separation betw&erfchieved, even with a large dictionary delay, which is

the parsing process and the dictionary update process. FRESiderably better than the result thivack shown in [10].

implementation of FP-LZW explicitly gives this separation',zor example, let us consider the case of small packets where

and is very convenient for modifications [18]. A = 15. Let De flatesueaming (resp. F'P — LZWstreaming be

For the measurements we used a concatenation of thetd@ Streaming version of Deflate (resp. FP-LZW). The ratio

Deflate thwack H 1 H
Calgary corpus files [14]. In order to avoid a deviation iMoseseaanemy > 2PPOXIMately 1.5, which means that there

our measurements we assumed an incoming header size ofs26till more room for improvement. However, in DDC the
. . . . . H TFP-LZW,DDC H H H
bytes, which is relatively large. The outgoing header size i8ti0 ——"F = is only 1.04, i.e. DDC is very close

24 bytes (original header size + our additional 4 bytes). to streaming. In aEfdition, the measurements in [10] assume
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a zero length header which is not practical, and causes the B
compression ratio to become better.

For large packets, we also receive a good improvement. The so -
DDC-min method is good for a dictionary delay of up to 1500z
packets. As shown earlier in Fig. 5, for a larger payload, the@
is a better compression ratio.

—— Streaming

—=— DDC A=100

40 -

Total Av Lde

B. Decoding Latency vs. Dictionary Delay

Real network experiments were conducted to measure the -
packet drop probability, packet reordering probability and the
improvement ofL,.. of BDDC over streaming compression. O A=
In all the experiments we used hundreds of nodes over the RTT (msec)
internet of thePlanet-Labenvironment [17] which is good ) ) )
for networking measurements. We used a concatenaion of {8 17T (% average. of steaming conpression ang BO0C wih
Calgary corpus [14] files, which has a total size of 3.25M000. . .5000msec. The total averafg.. of BDDC is smaller than that of
bytes. We broke the concatenated files to fragments of 1st&aming.
bytes and transmitted them with UDP to 269 different Planet- __
Lab nodes in different geographical positions all over the
world. In each transmission there were 26012 packets. The
transmission rate was 6k bytes of data per second. 400 -

The first experiment measured the packet drop probability,
which for all the measurements is 1.27%, or alternatively each
packet will reach its destination in a probability of 98.73%z =©
The variance is 0.002. These results suggest that in case the
packet has been dropped, it will reach its destination after & —00
single retransmission within a very high probability. Packet

o -

drops at the internet was also studied by Borella [19]. T EASEARN ges
The packet reordering probability, without using retransmis- 1oo 1 I e Streaming
sions (due to change of paths, etc.), was negligible. It happened | Average

only in 137 packets out of a total of 7M packets. When H"i‘lulﬁ]‘.‘
retransmissions were used the packet reordering probability e 100 165 51

was increased to 0.008. The packet reordering probability was Transmission

also studied by Bellardo [20]. ) . ) o
The goal of the second experiment was to compare of Fig. 18. Lg.. of streaming for every transmission out of the 269 trans-
g p raye missions. The variance in terms of packets is very high. The total average is

streaming compression vV&,.. of BDDC. The measurementsrepresented by the horizontal line.

were for various round trip times of 1000...5000msec. The

total averagel 4.. of streaming compression and BDDC with

A = 100 as a function of the round trip time is depicted ifn streaming, the percentage of pending packets, i.e, packets

Fig. 17. This is a total average of all the averages derived froMith Lg.. # 0, is 18.8 % with maximalLg.. value of

all the 269 transmissions. The total averdgg. of BDDC is 963 which represent¢ RT'T“. In the case of BDDC, the

smaller than that of streaming. percentage of pending packets is reduced to 17.1% in BDDC.
Let us examine the case whel'T = 5000msec. In The maximalL,.. for BDDC is 383 packets which represents

Fig. 18 we see thd.4.. of streaming compression for every2RTT — A > 0.

transmission out of the 269 transmissions. The variance in this

case is very high. In Fig. 19 we compare the total aveiage

of streaming compression for the caseRI'T = 5000msec [N this section we will describe an example for an ap-
with the total averagd ... of BDDC for various dictionary Plication: a PC to mobile chat over SMS (Short Message
delays. We can see that for all valuesfthe total average Service) messages. Such applications exist in PC based instant
Laqe of BDDC in terms of packets is smaller than that ofmessenger clients. The PC based messenger client enables
streaming compression. When increasing the dictionary defg§nding of SMS messages to mobile phones through its PC
of BDDC, the total averagédec becomes smaller. In particu|arC”entS. The SMS messages are transferred to the SMSC (Short
for A=500 each packet in streaming is waiting on average ffessage Service Center) by using special SMS protocols.
62 packets, while in BDDC no packets are waiting at all fofhen the SMS messages are transferred to the mobile phone

decoding.
Th C? ibuti f . . fRTT — 4In case of a massive packet drop that comes in a large burst which is
e distribution o st_reamlng COfﬂ_prSSIOh_ ] — equal to2RTT in terms of packets, the first non-dropped packet after the
5000msec vs. BDDC withA = 300 is given in Fig. 20. burst may wait up totRT'T since the retransmission timer is set2B877T.

Il 1L
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V1. EXAMPLE APPLICATION
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Fig. 19. The Effect of the Dictionary Delay on the Decoding Latency: Ldec (packets)
Increasing the dictionary delay will cause a decreasé £f. at the decoder.

The graph shows that on average every packet in streaming waits more th‘ir‘—‘?g‘r?‘ 20. Comparison between the Decoding Latency Distribution of BDDC

pacl|<|et iR.IBDDCk' In p_articular \.Nhem = 500 packetsfin E%gDC d;ég;f Vlait and StreamingRTT = 5000msec is assumed. The maxima}.. value for
at all while packets In sireaming wait on average for 62 pac = streaming iseRTT which is 963 in terms of packets. The other graph is

5000msec. for BDDC with A = 300. The maximalL .. value for DDC is2RTT —
A which is 383 packets. BDDC achieves smalleyj.. values compared to
streaming.

through dedicated low speed SS7 (Signaling System 7) control
links. The speed of the SS7 control links is 56kbps or 64kbps1CQ ‘
therefore they are considered as a bottle neck. The syst%P Mobile
overview of this application appears in Fig. 21. IC@ a lents Phone
commercial example of such a PC client. _ ss7 Decading Users
The amounts of SMS messages are known to increase Latency  \/ DD
Encoder - Decoder A DD
messages to be sent along the given bandwidth, with goo
Lg... Other examples would benstant messaging clients
Yahoo Messengér MSN Messengér ICQ send short textual User Latency
messages. There are organizations that are physically divided
into remote geographical places. Such organizations may g1, sms chat from PC to Mobile: SMS messages are sent from Instant
the instant messaging clients with a compression feature, sissenger PC clients to mobile phones by using TCP at first, and SS7 links
as DDC, thus saving bandwidth in the network paths thafer wards. The bottle neck is the low speed SS7 links.
connect parts of the organization.
DDC can be used imetwork management applications
When checking if nodes are functioning, we do not car@ordering and the dictionary synchronization problems that
about the order of the check. We only want to know whethensue. The DDC method has an advantage over the traditional
failure exists. Many compressed management commands streaming compression, since when decoding a packet, the
go through the same channel to various nodes. decoder does not have to wait for all its predecessor packets. It
Sensor Networksonstantly send data, which can be transiso has an advantage over stateless compression in that it can
mitted via a bus using compressed packets, thus saving tramse dictionaries that are based on a large number of packets, re-
mission energy. sulting in a better compression ratio. The method has particular
advantage for slow to medium speed communication links.
VII. CoNcLUsIONS While the current paper focused on dictionary-compression
We show a method for compressing the payload of netwoglgorithm, the method may be helpful for various types of on-
packets namedielayed-dictionary compressiofbDC). The line compression algorithms. Experimental study establishes
method deals with the problems of packet drops, packgle potential for compression improvement in packet networks,
Shitp: . as well as the actual improvements obtained by the DDC
ttp://www.icq.com

Shttp://messenger.yahoo.com algorithm presented here.
"http://messenger.microsoft.com The research presented here focuses on the issues of com-

This causes a major problem in the SS7 links. Our method
enables compressing traffic, while maintaining on a reasonab
latency in user terms. The compression enables more SM




pression quality versus latency at the decoding end. Another
issue of significance in the context of packet networks is the
time in which encoding and decoding take place. When a
single session exists, if the time spent on compression and
transmission is longer than the time required to transmit the
information without compression, there is no point in using
data compression. However, even if the compression method
increases the overall latency while allowing more sessions
to be transferred on the communication link, compression is
indeed useful. Jeannat al [12] present an algorithm that
allows overlapping of communications with compression and
to automatically adapting the compression effort to currently
available network and processor resources. Addressing the
issue of time for DDC is the subject of research in progress.
Future work will deal with the implementation of tfieDC-
Union which ensures a compression ratio at least as good
as stateless compression. We are studying other methods of
DDC, including a decoding method calleshger decoding
The eager-decodings expected to give better decoding la-
tency, by attempting to decode every received packet without
relating to the required history, since all required phrases for
decoding may exist in the dictionary. We are also studying the
confirmed-dictionary compressiaigorithm.
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VIII. A PPENDIX

The files that were used in the experiments are the Calgary
corpus files, Canterbury files, and some of our own files. The
list of the file names and their size is given in Table. I.
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