
Improved Compression-Latency Trade-Off via
Delayed-Dictionary Compression

Yossi Matias
School of Computer Science
Tel-Aviv University, Israel

matias@post.tau.ac.il

Raanan Refua
School of Computer Science
Tel-Aviv University, Israel

raananr@post.tau.ac.il

Abstract— We have recently introduced a novel compression
algorithm for packet networks: delayed-dictionary compression,
which enables an improved compression-latency trade-off. By
allowing delay in the dictionary construction, the algorithm
handles effectively the problems of packet drops and packet
reordering: Its compression quality is close to that of streaming
compression (and is substantially better than that of standard
stateless packet compression) while its decoding latency is close
to that of stateless compression (and is substantially smaller than
that of streaming compression). In this Demo, we demonstrate
the key ingredients of the new compression technique and show
the effect of the dictionary delay on the effective bandwidth and
on the decoding latency. We also demonstrate an effective file-
transfer with a UDP carrier over the internet, using the Planet-
Lab platform.

I. I NTRODUCTION

Consider dictionary data compression in packet networks,
in which data is transmitted by partitioning it into packets,
and dictionary-based compression is utilized. The goal in
packet compression is to allow better bandwidth utilization of
a communication line resulting in smaller amounts of packet
drops, more simultaneous sessions, and a smooth and fast
behavior of applications (see, e.g., [1]).

In dictionary compression, an input sequence is encoded
based on a dictionary that is constructed dynamically accord-
ing to the given text. The compression is done in a streaming
fashion, enabling to leverage on redundancy in the input
sequence.

In packet networks, packets may arrive reordered, due to dif-
ferent network characteristics, or due to retransmissions in case
of dropped packets. Since streaming dictionary-compression
assumes that the compressed sequence arrives at the decoder
in the order in which it was sent by the encoder, the decoder
must hold packets undecoded in a buffer until all preceding
packets arrive. This causesdecoding latency, which may be
unacceptable in some applications.

To alleviate decoding latency, standard stateless packet
compression algorithms are based on a packet-by-packet com-
pression. For each packet, its payload is compressed, inde-
pendently to other packets. While the decoding latency is
addressed properly, this may often result in poor compression
quality, since the inherent redundancy within a packet is
significantly smaller than in the entire stream.

Encoder
X Y X

Decoder

Lenc LdecLtx

(Encoding
Latency)

(Transmission
Latency)

(Decoding
Latency)

User Latency

Fig. 1. The end-to-end framework.Two compression enabled network
processors are used, one on each side of the communication link. The total user
latency is the total of the encoding latency, transmission latency, and decoding
latency. We focus on the decoding latencyLdec and the traffic compression
ratio r = |X|/|Y |, whereX is the original uncompressed traffic andY is
the compressed traffic.

A. Framework

The framework we consider is that ofend-to-endcompres-
sion over a communication link; see Fig. 1. We assume the
existence of network processors, one at each side of the com-
munication link. The original traffic that is to be transmitted
through the communication link is now transmitted through
the network processor and from there to the physical link. The
network processors arecompression enabled. By compressing
the traffic a lower utilization of the communication line is
obtained; equivalently, this results with effectively larger line
bandwidth. This also results with a smaller number of packet
drops, implying a smaller number of packet retransmissions.
At this level we have packets carrying pieces of the original
data which may be a stream of data, a file, or any other
application information.

B. Potential Improvement in Packet Compression

As noted above, a packet-by-packet compression obtains
improved latency, while compromising on the compression
ratio. The objective is to maintain a similar latency, while
getting the compression ratio as close as possible to that
of streaming compression. The potential for improvement in
compression is characterized as the ratio between the traffic
compression ratio of stateless compression and the traffic
compression ratio of streaming compression, denoted byϕ.
This ratio has been tested for various data files, for 125-
byte packets; the results are shown in Fig. 2. Ifϕ > 1 then
we have room for improvement. For instance, for the file
rfc_index.txt ϕ = 0.98

0.44 = 2.23, implying a potential
improvement of over twice in the compression ratio. For

φ
(Bstateless,Bstreaming)

1.00

1.50

2.00

2.50

ptt
5_

fax
/pt

t5/
pic

blu
ed

ive
.bm

p
Co

mp
ute

r-
ke

nn
ed

y.x
ls

rfc
_in

de
x.t

xt
wo

rld
19

2.t
xt

bib
le.

txt
lce

t10
.tx

t
alic

e2
9.t

xt
as

yo
ulik

.tx
t

plr
ab

n1
2.t

xt
Bo

ok
s.h

tm
cp

.ht
ml

fie
lds

.c
gra

mm
ar.

lsp
pa

pe
r1

pa
pe

r2
pa

pe
r3

pa
pe

r4
pa

pe
r5

pa
pe

r6
bo

ok
1

bo
ok

2
alle

zw
.ps

E.c
oli

ne
ws bib

xa
rgs

.1
ob

j1
ob

j2
su

m ge
o

wa
ve

let
s.p

pt
wa

p.p
df

the
_fl

y.w
av

Bid
_L

igh
t.m

pe
g

my
me

ag
wa

ve
.zip

sa
int

_a
gn

es
.m

p3
Ho

rte
ns

e8
9a

.gi
f

Ch
ee

tah
.jp

g

Fig. 2. The potential improvementϕ for Calgary corpus files, Canterbury
corpus files, and some files of our own. The payload size is 125 bytes.

already compressed files such as Cheetah.jpg, whereϕ = 1,
there is no room for improvement.

II. D ELAYED-DICTIONARY COMPRESSION

We introduce in [2] a novel compression technique suit-
able for packet networks: thedelayed-dictionary compression
(DDC). The DDC is a general framework that applies to any
dictionary algorithm. It considers the dictionary construction
and the dictionary-based parsing of the input text as separate
processes, and it imposes a delay∆ in the dictionary construc-
tion. As a result, when decoding a packet, the decoder does
not depend on any of the∆ preceding packets, eliminating or
diminishing the problems of out-of-order packets and packet
drops compared to streaming compression, still with a good
traffic compression ratio.

A full trade-off between compression ratio and decoding
latency can be obtained, bridging between the extreme alter-
native of streaming compression (best compression ratio and
worst decoding latency) and that of confirmed dictionary com-
pression (same decoding latency as of stateless compression,
yet better compression ratio). This trade-off is depicted in
Fig. 3. Thus, the DDC has the benefits of both stateless com-
pression and streaming compression. With the right choices
of the dictionary delay parameter, it can have a decoding
latency which is close to that of stateless compression, and
with a compression ratio which is close to that of streaming
compression.

The DDC method has an inherent conflict between the
average decoding latency,Ldec, and the traffic compression
ratio: increasing the dictionary delay causes a decrease in the
Ldec, but increasesr. This conflict is depicted in Fig. 4.

III. E XPERIMENTS

We have tested the actual decoding latency of streaming
compression by using transmissions of packets between pairs
of Planet-Lab nodes, see Fig. 5. We have tested the traffic
compression ratio of DDC compared to stateless compression

Compression Ratio

Ldec

Stateless (
�

=∞)

Streaming (
�

=0)
DDC (

�
)

Confirmed-Dictionary
Compression (

�
Conf)

Fig. 3. The trade-off between the compression ratio and the decoding
latency. Streaming has the best compression ratio and the worst decoding
latency. DDC has compression ratio close to that of streaming compression,
and also a decoding latency which is close to that of stateless compression. The
confirmed-dictionary compressionalgorithm ensures a zero decoding latency,
as in stateless compression, yet improved compression ratio.

1.0

0.5

0

DDC
Av

Ldec
(packets)

DDC
Traffic

Compression
Ratio

0
20
40
60
80

100

0

1
0

2
0

10
0

30
0

50
0

1
00

0

1
20

0

Dictionary Delay
�

 (packets)

DDC Compression Ratio (percents)
DDC Av Ldec (packets)

Fig. 4. DDC Conflict: The upper part of the figure is a plot of the traffic
compression ratio in the DDC method as a function of the dictionary delay,
e.g., for a dictionary delay of 1000 packets the traffic compression ratio is
r = 0.72. The lower part of the figure is a plot of the average decoding
latency of DDC,Ldec, in terms of packets; e.g. for a dictionary delay of 300
packets, the average decoding latency is 7.8 packets.

and streaming compression. The traffic compression ratio for
each delay value for a version of DDC called DDC-min is
depicted in Fig. 6. The payload size is 1500 bytes. The traffic
compression ratio for stateless compression and streaming
compression also appears in this figure.

We have tested the DDC method using actual transmissions
over the internet, using the Planet-Lab testbed [3]. The distri-
bution of decoding latencies of 6,997,228 packets sent over a
transmission line with round-trip time (RRT) of 5000msec, is
depicted in Fig. 7. We show the distribution for both streaming
compression as well as for DDC with a delay of∆ = 300. In
streaming (lower plot), the percentage of pending packets, i.e,
packets withLdec 6= 0, is 18.8% with maximalLdec value of

0

100

200

300

400

500

1 55 109 163 217

Transmission

Av L
dec

(pac
kets

)

Streaming
Ldec Averages

Streaming
Total Ldec
Average

Fig. 5. The average decoding latency of streaming for every transmission out
of the 269 transmissions over Planet-Lab. The variance in terms of packets is
very high. The total average is 62 packets, represented by the horizontal line.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0

500
0

100
00

150
00

200
00

250
00

300
00

350
00

400
00

Dictionary Delay
�

 (packets)

Com
pre

ssio
n ra

tio

stateless
compression
ratio

streaming
compression
ratio

DDC-min

Fig. 6. Compression ratio of DDC-min as a function of the dictionary delay in
packets, compared to stateless compression ratio and to streaming compression
ratio. The data file in use is the concatenation of 18 Calgary corpus files,
|Header = 20|, |Payload| = 1500. DDC-min is useful for∆ of up to
1500 packets.

1

10

100

1000

10000

100000

1000000

10000000

1 136 271 406 541 676 811 946

Ldec (packets)

Num
ber

 of
Pac

ket
s

Ldec
BDDC�

=300

Ldec
Streaming

Fig. 7. The Decoding Latency Distribution of Streaming compression (lower
plot) and DDC with∆ = 300 (upper plot), for transmission over a line with
RTT = 5000msec. The maximalLdec value for streaming is4RTT which
is 963 in terms of packets. The maximalLdec value for DDC is2RTT −∆
which is 383 packets. DDC achieves substantially betterLdec distribution
compared to streaming.

963 which represents4RTT . 1

In the case of DDC, the percentage of pending packets is
reduced to 17.1%. The maximalLdec for DDC is 383 packets
which represents2RTT − ∆ ≥ 0. Overall, the decoding
latency distribution of the DCC is substantially better than
that of streaming compression.

IV. A N EXAMPLE APPLICATION

The DDC is mostly applicable to applications where both
bandwidth and latency are of importance, and where the order
between decoded packets is not essential.

An example application is massive utilization of instant
messages. Another application may be the monitoring-related
messages for network management applications. In both cases
latency is important, where the order between decoded packets
may not be significant.

1In case of a massive packet drop that comes in a large burst which is
equal to2RTT in terms of packets, the first non-dropped packet after the
burst may wait up to4RTT since the retransmission timer is set to2RTT .

SMSC Encoder Decoder

PC1

PC2

PC4

PC3

TCP SS7

ICQ
Clients

Mobile
Phone
Users

User Latency

Decoding
Latency

Fig. 8. SMS Chat from PC to Mobile: SMS messages are sent from Instant
Messenger PC clients to mobile phones by using TCP at first, and SS7 links
afterwards. The bottleneck is the low speed SS7 links.

We describe in more detail an application of PC-to-mobile
chat over SMS (Short Message Service) messages. Such appli-
cation exists in PC based instant messenger clients (e.g., ICQ),
which enables sending SMS messages to mobile phones. The
SMS messages are transferred to the SMSC (Short Message
Service Center) by using special SMS protocols. Then the
SMS messages are transferred to the mobile phones through
dedicated low speed SS7 (Signaling System 7) control links.
The speed range of the SS7 control links is 56kbps to 64kbps,
therefore these links are considered a bottleneck. The system
overview of this application appears in Fig. 8.

The DDC method enables improved traffic compression
over the SS7 links. The compression enables more SMS
messages to be sent along a channel with a given bandwidth,
with good decoding latency.

V. DEMO SCENARIO

We demonstrate the key ingredients discussed in the com-
panion paper [2]:
• The effect of the dictionary delay on the compression
ratio. We demonstrate the traffic compression ratio of stateless
compression and streaming compression simultaneously to the
one of DDC.
• The effect of the dictionary delay on the decoding latency.
We show that larger dictionary delay improves the decoding
latency, and demonstrate the decoding latency of stateless
compression and streaming compression simultaneously to the
one of DDC.
• DDC-enabled communication over the internet, using Planet-
Lab [3] nodes. We demonstrate a file-transfer using DDC with
UDP as carrier over the internet, as in TFTP [4]. TFTP is
widely used in networking applications, especially where user
authentication and directory visibility are not required. In this
part of the demo we will see the effect of the dictionary delay
on the traffic compression ratio, on the dictionary delay, and on
the total transfer time which is better than the one of streaming
compression.

REFERENCES

[1] C. Westphal, “A user-based frequency-dependent IP header compression
architecture,”IEEE, Globecom, 2002.

[2] Y. Matias and R. Refua, “Delayed-dictionary compression for packet
networks,” IEEE, Infocom, 2005.

[3] “Planet-lab,” http://www.planet-lab.org.
[4] K. Sollins, “The TFTP protocol,”IETF, RFC 1350, 1992, http://www.ietf.

org/rfc/rfc1350.txt.

