Bifocal Sampling for Skew-Resistant
Join Size Estimation

Sumit Ganguly
Bell Laboratories
gibbons@bell-labs.com

Rutgers University

sumit@cs.rutgers.edu

Abstract

This paper introduces bifocal sampling, a new technique
for estimating the size of an equi-join of two relations.
Bifocal sampling classifies tuples in each relation into two
groups, sparse and dense, based on the number of tuples
with the same join value. Distinct estimation procedures
are employed that focus on various combinations for joining
tuples (e.g., for estimating the number of joining tuples
that are dense in both relations). This combination of
estimation procedures overcomes some well-known problems
in previous schemes, enabling good estimates with no a
priori knowledge about the data distribution. The estimate
obtained by the bifocal sampling algorithm is proven to lie
with high probability within a small constant factor of the
actual join size, regardless of the skew, as long as the join
size is Q(nlgn), for relations consisting of n tuples. The
algorithm requires a sample of size at most O(y/n lgn).
By contrast, previous algorithms using a sample of similar
size may require the join size to be £2(n+/n) to guarantee
an accurate estimate. Experimental results support the
theoretical claims and show that bifocal sampling is practical
and effective.

1 Introduction

Accurate and inexpensive estimation of database query
sizes is useful for many purposes. Such estimates are
used by query optimizers, to compare costs of alter-
nate join plans. These estimates are useful in determin-
ing the resource allocation necessary to balance work-
loads on multiple processors in parallel or distributed
databases. Finally, the estimate of query sizes is of in-
terest by itself in some applications, such as financial
audits and statistical studies.

There are several advantages of sampling-based esti-
mation algorithms. Unlike parametric methods, there is
no need to make assumptions about the fit of the data

Phillip B. Gibbons

271

Avi Silberschatz
Bell Laboratories

Yossi Matias
Bell Laboratories

matias@bell-labs.com avi@bell-labs.com

to an assumed distribution. Unlike histogram-based
or nonparametric-based methods that rely on summary
statistics, the sampling-based approaches do not rely
on storing and maintaining such summary information
about the data. Furthermore, in contrast to these ap-
proaches, sampling-based approaches always associate
a statistical confidence (typically 95% or higher) to the

estimates returned by the algorithm.

1.1 Previous work

The design of sampling-based estimation algorithms is
a popular area of research [HOTSS, HOT89, LN89,
LN90, LNS90, HOD91, HS92, LS92, LNSS93, HNSS593,
HNS94, LN95, HNSS95]. Results in [LNS90, HODI1,
HS92, HNS94] and elsewhere demonstrate the practi-
cality of estimation procedures based on sampling by
showing that the time taken to compute the estimate is
a small fraction of the time taken to compute the actual
query.

Hou, Ozsoyoglu and Taneja [HOTSS, HOT89] present
initial work in this area. They present unbiased
and consistent estimators for estimating the join size.
Consistent estimators guarantee that as the sample size
increases, the probability of error decreases. They also
present an algorithm for cluster sampling. However, no
bounds on the required sample size are presented.

Lipton and Naughton [LN90, LN95] and Lipton,
Naughton and Schneider [LNS90] present algorithms
based on sampling for estimating the sizes of various
select or join queries (they also consider transitive
closure and general recursive Datalog queries). The
algorithms view the query as a collection of disjoint
subqueries. Subqueries are selected at random and
their sizes are computed. Termination occurs when
either the sum of the subquery sizes is sufficiently large,
or the number of samples taken is sufficiently large.
The algorithms with high probability either estimate
the query size to within some given percentage of its
true value, or else guarantee that the query size is
bounded by a specified value (“sanity bounds”). Since
the number of sample subqueries taken adapts to the
sizes of the subqueries taken thus far, these algorithms

are known as adaptive sampling algorithms.

The adaptive sampling algorithms in [LN90, LNS90,
LN95] assume knowledge of the maximum size of a
subquery. Since this is not usually available, an upper
bound for this quantity is used in the expression for
the termination criterion of the adaptive sampling
approach. As pointed out by Haas and Swami [HS92],
this can lead to taking considerably more observations
than necessary causing the sampling algorithm to be
unduly expensive in some cases.

Haas and Swami [HS92] present improvements on
the termination criterion of the adaptive sampling
algorithms in [LN90, LNS90]. Specifically, they improve
the case when the adaptive sampling algorithm would
require many more observations than are actually
necessary, simply due to assuming a high upper bound
on the maximum size of a subquery. This leads,
for example, to improved estimations of equi-join
sizes. However, given an equi-join B X R’ between
a non-skewed relation and a skewed relation, their
algorithms do not perform very well: “[When] R’ is
highly skewed (Zipf) and relation R has relatively little
skew ...coverage deteriorates. ...[A good] estimation
algorithm is hard for this type of query” [HS92].

Hou, Ozsoyoglu and Dogdu [HOD91] also present
improvements on the termination criterion of adaptive
sampling algorithms by using a pilot sample to compute
an estimate for the mean of the sample sizes and the
variance of the sample sizes. The drawback to this
procedure, as pointed out by Haas and Swami, is that
there is no theoretical guidance as to the appropriate
size of the pilot sample.

A supplemental study to sampling-based methods re-
garding the termination criterion was presented by Ling
and Sun [LS92]. Finally, further refinements were given
by Haas, Naughton, Seshadri and Swami [HNSS93], and
by Haas, Naughton and Swami [HNS94].

In [HNSS93], Haas et al. categorize sampling algo-
rithms for join size estimation into six groups based on
whether the unit of sampling is an individual tuple ()
or a memory page worth of tuples (p), and whether
sampled tuples are compared (i) with all tuples in the
join relation(s) with the same join value, e.g. when the
appropriate indexes are provided (denoted t_index or
p-index), (ii) with all tuples occurring in samples taken
from these join relation(s) (¢-cross or p_cross), or (iii)
with only tuples in the most recent sample taken from
these join relation(s) ({-indep or p_indep). They present
results comparing these groups based on the variance
obtained on different distributions, as well as improved
sampling algorithms.

1.2 Contributions of this paper

In this paper, we introduce bifocal sampling, a new
technique for estimating the size of an equi-join of
two relations. Bifocal sampling classifies tuples in

each relation into two groups, sparse and dense, based
on the number of tuples with the same join value.
Distinct estimation procedures are employed that focus
on various combinations for joining tuples (e.g., for
estimating the number of joining tuples that are dense in
both relations). The individual estimation procedures
we use are variants on types t_index and t_cross. This
combination of estimation procedures overcomes some
of the problems in previous schemes, enabling good
estimates with no a priori knowledge about the data
distribution required. Unlike the stratified sampling of
Haas and Swami [HS92], the classification of tuples into
groups is not known a priori, but must be inferred by
the sampling algorithm.

Our bifocal sampling algorithm requires a sample of
size at most O(y/n - lgn)! from relations consisting of
n tuples. Except for rather small join sizes, of size
o(nlgn) (for which no existing sampling algorithms
give good estimates), the estimate computed by the
algorithm is provably within a small constant factor
of the actual size of the join with high probability,
regardless of the skew.

Our experimental results support the theoretical
claims and show that the bifocal sampling algorithm is
both practical and effective. The experiments compare
bifocal sampling with two generic sampling algorithms,
one of type t.index and one of type t_cross. All
algorithms take the same number of samples. As an
example of how bifocal sampling overcomes problems
with previous algorithms, we present experimental
results for Haas and Swami’s “hard” scenario described
above of an equi-join, R X S, for little-skewed R and
highly-skewed S. (This scenario was also recognized
to be hard in [HNS94].) We obtain excellent results
while the two generic algorithms obtain rather poor
results. Since previous adaptive sampling algorithms
of type t.index (or type t_cross) differ primarily in
their termination criteria, the results are relevant to all
previous adaptive sampling algorithms of this type. In
particular, previous adaptive sampling algorithms either
terminate with fewer samples, and hence obtain no
better results than the generic algorithms, or terminate
with more samples, and hence run slower than our
bifocal sampling algorithm.

The advantages of bifocal sampling over previous
methods can be summarized as follows:

e No assumption is being made on the distribution of
the data. For example, our analysis does not depend
on the Central Limit Approximation used in many
previous works, and the algorithm does not require
a priori knowledge of the classification of tuples into
sparse and dense.

I Throughout this paper, lgn denotes the base two logarithm
of n.

e The algorithm guarantees estimates within a small
constant factor for all cases in which the join is of size
Q(nlgn), regardless of data distribution and skew.

o The sample size is always at most O(y/nlgn).

e For every input, the probability of failing to provide
the promised estimate with the above sample size 1s
at most n~%, for any prespecified constant «.

As part of our algorithm, we perform {_indez-type
sampling on both join relations. It remains for
future work to explore whether this algorithm can be
effectively extended to use only p_cross-type sampling,
for cases where indices are not available.

The rest of the paper is organized as follows. Sec-
tion 2 presents background material on previous sam-
pling algorithms and their problems. The bifocal sam-
pling algorithm and its analysis are given in Section 3.
Preliminary experimental results are described in Sec-
tion 4.

2 Sampling algorithms revisited

In this section, we review previous sampling approaches
and the problems they have estimating join sizes in the
presence of certain types of skew. First, we consider
adaptive sampling algorithms of type t_indez: each
sampled tuple in R is compared with all tuples in S, and
the result is scaled as appropriate. We describe some of
the difficulties such algorithms have in estimating join
sizes. Then, we consider sampling algorithms of type
t_cross: a random sample is taken from R and S, the
size of their join is computed, and the result is scaled as
appropriate. We show that such algorithms suffer from
similar difficulties.

2.1 Adaptive sampling

We consider the general model for adaptive sampling
proposed by Lipton and Naughton [LN90] and refined by
several subsequent works (e.g. [LNS90, HOD91, HS92,
HNSS93, HNS94]). The problem is to estimate the
size, A, of a given query. Conceptually, we view the
query as a digjoint union of n subqueries. The sampling
algorithm, of type {_indez, repeatedly chooses a random
subquery, computes the size of its output and adds it to
the current sum A*. After k such subqueries, where &
is determined by a specified termination condition, the
algorithm terminates and estimates the size of the query
as (n/k) - A*.

Figure 1 depicts a generic adaptive sampling algo-
rithm for estimating the size of an equi-join R X S. The
algorithm takes five input parameters n,b, e, p, m. The
parameter n, the number of tuples in R, is the size of the
population from which to sample. The parameter b is an
upper bound on the output size of a subquery, that is,
an upper bound on the program variable . The param-
eter m is an upper bound on the number of iterations of

273

Algorithm Adaptive-Sampling(n,b, ¢, p,m)

// n is the number of tuples in R.

// b is an upper bound on the size of a subquery.
// € bounds the relative inaccuracy of the estimate.
// p is the confidence on the estimates returned.

// m is the maximum sample size.

U := NONE; A* :=0; k:=0;
while A* < b f(p,€) and k < m do begin
Select a random tuple 7 from R;
Determine the number, z, of tuples in .S
that join with 7;

A" = A" +
k=k+1;
end;
A= nA*/k;

if A* <b-f(p,e) then U := g(A*,n, b, p,m);
return (A, U);

Figure 1: A generic adaptive sampling algorithm for
estimating the size of an equi-join R X S. Note that
the values for parameters b and m can themselves be
determined by sampling or by known statistics on the data.
Also, different adaptive sampling algorithms vary in the
choice of function f for the termination condition and
function g for the sanity bound, .

the while loop; it guards against the sampling algorithm
being too expensive. The function f in the procedure
specifies the termination condition. It depends only on
the desired confidence and inaccuracy parameters, p and
€ respectively, and is greater than one.

The algorithm terminates by returning a 2-tuple,
(A, U). Each run of the algorithm falls into one of two
cases:

1. The preferred case, characterized by the algorithm
terminating with A* > b - f(p,¢). In this case, A,
the algorithm’s estimate for A, is guaranteed to be
within €A of the value for A with probability p.

2. The remaining case is called the case of sanity
bounds. In this case, A may or may not be a good
estimate for A, and the only claim is that U =
g(A* n,b,p,m) is an upper bound on A with high
probability.

The generic algorithm given above depicts the sim-
plified termination criteria used, e.g., in [LNS90]. More
refined termination criteria, see e.g. [INSS93], are func-
tions of not only confidence and inaccuracy parameters,
but also the observed standard deviation in the sub-
query sizes. While these refined termination criteria can
result in fewer samples, they do not change the quality
of the estimate for a given number of samples. Thus, for

simplicity, we consider the generic algorithm in the dis-
cussions that follow, although many of the problems ad-
dressed apply as well to these more refined algorithms.

2.2 A problem with adaptive sampling

Previous adaptive sampling algorithms have an inher-
ent problem with estimating join sizes that are not suf-
ficiently large. Consider the problem of estimating the
join size A to within an inaccuracy ¢ and confidence
p, using at most m samples. If A < (nb/m) - f(p,e),
then it is expected that A* < b- f(p,¢) and hence it
is likely that the adaptive sampling algorithm will not
terminate with a good estimate after taking m samples.
For example, if m = /n, and b = ©(n), then A should
be at least £2(n\/n) in order to allow accurate estima-
tion. For join sizes below this threshold, it is possible
that the adaptive sampling algorithm is unable to ac-
curately estimate it using m samples, as the following
example demonstrates.

Example 1: Consider the equi-join between
two relations, R(B) = {1,2,...,n} and S(B,(C)
{(1,1),(1,2),...,(1,n)}. The equi-join of these two re-
lations is equal to S, and therefore has n tuples. Con-
sider the problem that occurs when adaptive sampling
is used such that m random tuples are chosen from R.
If the tuple with join attribute value 1 is chosen, then
the final sum A* is at least n (it is larger than n if
this tuple is chosen more than once). Thus the estimate
A = nA*/m is at least n?/m, causing a tremendous
overestimate, unless m = (n). On the other hand,
if this tuple is not chosen in the sample, then the es-
timate is 0, which is tremendously inaccurate as well.
Thus, with a sample of size o(n), the estimate is always
highly erroneous.

Suppose instead that the adaptive sampling algo-
rithm samples tuples from S. In this case, for any
sample size m, the sum A* is m and the estimate is
nA*/m = n, which is accurate. The number of samples
required from S prior to termination in the preferred
case is m = b- f(p,€). If we had a priori knowledge that
b =1, then the sampling algorithm would terminate af-
ter taking f(p, €) samples. However, if we replace b by a
high upper bound, say n, then the sampling algorithm
would require f(p,€) - n samples. Since f(p,€) > 1, it
follows that the entire relation would be accessed several
times over. Clearly, this is undesirable. Thus a more re-
fined termination criterion that accounts for the distri-

bution of subquery sizes (e.g. [HOD91, HS92, HNSS93])

1s useful here. ad
2.3 Dual sampling
Example 1 shows that for join queries, one way

to improve the estimate of the adaptive sampling
algorithm is to sample from both relations. This may
be done as follows. Let R and S be the two relations

274

for which we wish to estimate the size of their join on
some attribute. First, run adaptive sampling on R while
keeping a limit m on the number of tuples sampled. Two
outcomes may result, either the algorithm terminates
with a statistical guarantee for the estimated join size
or the algorithm is unable to do so and returns a sanity
bound instead. In the first case, we terminate with
an estimate for the join size. Otherwise, we run the
adaptive sampling algorithm on S, keeping a limit m
on the number of tuples sampled. Again, two outcomes
may result. If a statistical guarantee 1s obtained, then
we can terminate with an estimate. Otherwise, we
obtain a sanity bound. In the second case, we return
the smaller of the two sanity bounds.

Let b be the maximum number of tuples in R that
join with any one tuple in S. Similarly, let bg be the
maximum number of tuples in .S that join with any one
tuple in R. Then, dual sampling allows us to estimate
join sizes A such that 4 > n-min(bg, bs)/m.

However, if only very coarse upper bounds are
available on either by or bg, problems may arise. In
Example 1, if n is used as an upper bound on bg,
and m = +/n, the estimation algorithm would return
a sanity bound although it has the correct answer.

A more serious problem is that the actual values for
brp and bs may indeed both be high due to highly-
skewed data. In particular, the problem example above
for adaptive sampling (Example 1) can be extended
to thwart dual sampling, as the following example
demonstrates.

Example 2: Consider the equi-join on attribute B
between the following two n-tuple relations, R and S:

R(B,C) = {(1,a),(1,c2),
(2,¢1),(2,¢2),(2,¢ca), ..., (2, cnp2),
(3,¢1),(4,c1),...,(nf2,¢c1)}

S(B,D) = {(1,d1),(1,d2),...,(1,dns2),

)
2,d1), (2, d2)
n)2+1,d1), (n/242,d1), ..., (n—2,d1)}

(;
(
The reader may verify that the equi-join of these two
relations has 2n tuples, and that bg = bg = n/2. As
argued above, dual sampling allows us to estimate join
sizes A such that 4 > n - min(bg,bs)/m, which is
n?/(2m) in the particular case of this example. Thus
adaptive sampling would require more than m = n/4
samples in order to guarantee a good estimate. Clearly,
this is undesirable. ad
Scenarios such as the previous example can occur,
for example, whenever both relations have a Zipf
distribution on the join attribute but the peaks of the
two Zipf distributions are on distinct values. Note
that the adaptive sampling algorithm is not effective
here even though the exact values of bg and bg are

assumed to be known. Therefore, for such scenarios
any implementation of the adaptive sampling algorithm
(with or without dual sampling) would not be effective,
regardless of the method used to estimate upper bounds
for br and bg, and regardless of the choice of f(b,¢€).
Thus, dual sampling, though superficially attractive,
does not solve the problem of skewed data in previous

adaptive sampling algorithms.

2.4 Cross sampling

In sampling algorithms of type {_cross [HNSS93], a
random sample is taken from both R and S, the join
size of the samples is computed, and the result is scaled
as appropriate. In particular, if samples of size m are
taken from relations of size n, and if the join size of the
two samplesis A*, then the size of R X S is estimated as
(n/m)? - A*. Such cross sampling algorithms are useful
whenever indices for the join predicate are not available.

Figure 2 depicts a generic cross sampling algorithm
for estimating the size of an equi-join B X S| in which
R and S may be of different size.

Cross sampling algorithms suffer from many of the
same difficulties as described above for adaptive sam-
pling. On Example 1 above, if the tuple with join
attribute value 1 is chosen (at least once) when sam-
pling from R, then A* > m, and thus the estimate
A = (n/m)?- A* is at least n%/m, causing a tremendous
overestimate, unless m = Q(n). On the other hand, if
this tuple is not chosen when sampling from R, then
the estimate is 0, which is tremendously inaccurate as
well. Thus, with a sample of size o(n), the estimate is
always highly erroneous. Likewise on Example 2 above,
if a tuple with value 1 is chosen when sampling from R
or a tuple with value 2 is chosen when sampling from
S, then (the reader may verify that) with high prob-
ability A* is Q(m), and hence A is Q(n?/m). This is
a tremendous overestimate, unless m = Q(n). On the
other hand, if no such tuples are chosen when sampling,
then the estimate is 0, which is tremendously inaccurate
as well.

3 Bifocal sampling

In this section, we present the new bifocal sampling
algorithm, designed to better address the problems
mentioned in Section 2.

Consider estimating the size of an equi-join R X S.
To simplify the descriptions that follow, assume that
the join predicate is of the form R.J = S.J for some
attribute J, and that each relation has the same number
of tuples, n. The results in this section can readily be
extended to handle the more general cases.

Bifocal sampling classifies tuples in each relation
into two groups, sparse and dense, based on the
number of tuples with the same join attribute value.
Distinct estimation procedures are employed that focus

275

Algorithm Cross-Sampling(ny, na, m)

// ni is the number of tuples in R.
// na2 is the number of tuples in S.
// m is the sample size for each relation.

Select m random tuples from R, and let R* be
the resulting random sample;

Select m random tuples from S, and let S be
the resulting random sample;

Let A* be the number of tuples in R* X S*;

A= nq - ns - A*/m?;

return A;

Figure 2: A generic sampling algorithm of type #_cross for
estimating the size of an equi-join R X S.

on various combinations for joining tuples (e.g., for
estimating the number of joining tuples that are dense
in both relations), thereby obtaining better results than
previous approaches for certain types of skew, and
provably good results regardless of the skew. Note
that no a prior1 knowledge of the data distribution is
assumed; in particular, the classification of tuples into
sparse and dense is not known a priori.

We will use the following definitions.

Definition 3.1 For a set T of tuples and a join
attribute value v, define multp(v) to be the number of
tuples in T with value v.

Definition 3.2 A join aftribute value v is defined to be
dense in R if multg(v) > \/n, and defined to be sparse
in R if multg(v) < /n. A tuple in a relation R is
defined to be dense (sparse) if ils join attribute value v
is dense (sparse) in R.

The output of the join R X S consists of one output
tuple for each pair of tuples (g, 7¢) such that 75 is a
tuple in R, 75 is a tuple in S, and both tuples share the
same join attribute value. We can view these pairs as
partitioned into disjoint sets, one set per join attribute
value.

Definition 3.3 For each join altribuie value v, define
SubJoin(v) to be the set of all pairs (tg,Ts) such that
Tr s a tuple in R, 75 is a tuple in S, and both tuples
share the same value v.

Each SubJoin can be classified into one of four groups:

Definition 3.4 SubJoin(v) is a dense-dense SubJoin if
v is dense in both R and S. SubJoin(v) is a dense-
sparse SublJoin if v is dense in R and sparse in S.
SubJoin(v)} is a sparse-dense SubJoin if v is sparse in R
and dense in S. SubJoin(v) is a sparse-sparse SubJoin
if v 1s sparse in both R and S.

Figure 3 depicts our bifocal sampling algorithm. The
algorithm takes four input parameters n,mi, ms, 8, as
described in the figure. It employs two procedures,
a dense-dense estimation procedure (Dense_Dense_Esti-
mation, depicted in Figure 4) and a sparse-any esti-
mation procedure (Sparse_Any_Estimation, depicted in
Figure 5). The dense-dense estimation procedure esti-
mates the size of all dense-dense SubJoins. The sparse-
any estimation procedure estimates the sum of the sizes
of all sparse-dense and sparse-sparse SubJoins. The al-
gorithm estimates the join size, A, with one application
of dense-dense estimation and two of sparse-any estima-
tion, with the roles of R and S reversed. This accounts
for all SubJoins by possibly accounting twice for some
sparse-sparse SubJoins. We show later that for any re-
lations R and S such that R X S has an Q(nlgn) out-
put size, the bifocal sampling algorithm with O(\/nlgn)
samples estimates the output size to within a small con-
stant factor with high probability.

Bifocal sampling enables better estimates than pre-
vious approaches by focusing separately on sparse and
dense tuples. In particular:

e Any dense-dense SubJoin has many tuples in each
relation and hence, with high probability, will be
represented by a proportionate number of such
tuples in any sample. Thus, dense-dense SublJoins
can be estimated with high confidence by a join
performed on a small sample from each relation.

e Although sparse-dense SubJoins are likely to be
missed when sampling on the sparse side (since there
are few such tuples), they are not likely to be missed
when sampling on the dense side (since there are
many such tuples). Recall Example 1. Thus a
dual sampling approach, as discussed in Section 2.3,
can be applied to effectively estimate sparse-dense
and dense-sparse SubJoins. As for sparse-sparse
SubJoins, individual SubJoins may be missed, but
the aggregate contribution to the join size of sparse-
sparse SubJoins can be effectively estimated as long
as the total contribution of such SubJoins is (n).

e By eliminating dense tuples from consideration, the
sparse-any estimation procedure can assume a small
upper bound, b, on the maximum number of tuples
that join with any one tuple (i.e., the size of the
join subquery), thereby guaranteeing good estimates
with fewer samples. The bound b for sparse tuples 1s
/n, whereas the bound considering all tuples could
be as high as n (recall Examples 1 and 2).

In the remainder of this section, we present an analy-
sis of our bifocal sampling algorithm. In Section 3.1, we
first present several definitions used in the analysis. We
then outline the rationale behind the bifocal sampling
algorithm by over-viewing the analysis used to bound

276

Algorithm Bifocal-Sampling(n, mi, ms, 6)

// n is the number of tuples in each relation.
// my is the sample size for the 1st procedure.
// ma is the sample size for the 2nd procedure.
// & is a threshold used in the 1st procedure.

U = NONE;

Ag = Dense_Dense_Estimation(n, my, 8);
12151 := Sparse_Any_Estimation(R, S, n, ma);
A, = Sparse_Any_Estimation(S, R, n, ma);
A= fld + flsl + 12152;

if A< nlgn then U := nlgn;

return (A, U);

Figure 3: Our bifocal sampling algorithm for estimating
the size of an equi-join R X S. Provably good estimates
can be obtained for sample sizes m; at most O(y/nlgn)
and my at most O(+/n), and taking 6 to be ©(lgn). (The
constants in these bounds are determined by the analysis
based on the desired accuracy.) In the experiments, we use

my = (Vn+lgn)-lgn, mo = /n+lgn, and § = Ign.

the estimation error. Section 3.2 then gives the analy-
sis of the dense-dense estimation procedure, and finally
Section 3.3 presents the analysis of the sparse-any esti-
mation procedure.

3.1 Algorithm outline

We now discuss the two estimation procedures in some-
what more detail, in order to present a technical, but
relatively high-level description of the two procedures
and their performance guarantees. We begin with sev-
eral definitions.

We denote a probe of a database to be the retrieval
of all (zero or more) tuples from a given relation with
a given key value. The probe cost is the number of
probes to complete the procedure. We denote the tuple
cost of a probe to be the number of tuples retrieved
by a probe. We consider two cost models: a strong
cost model in which we only account for the number
of probes, e.g. the number of samples, and a weak cost
model in which we account for the number of probes
plus the sum of the tuple costs of all probes performed
by the algorithm. The strong cost model is appropriate
when the database includes an index structure that can
compute efficiently multr(v) and multg(v) for a given
value v; otherwise the weak cost model may be more
appropriate.

We extend the definition of sparse and dense given
above to apply to a general parameter m, and define
as well the class of wvery-dense tuples/values for the
purpose of the analysis.

Dense_Dense_Estimation(n, my, 6)

// n is the number of tuples in each relation.
// my is the sample size for each relation.

// & is a threshold.
A* =0

Select my random tuples from R, and
let R* be the resulting random sample;

Select m; random tuples from .S, and
let S* be the resulting random sample;

Let V* be the set of join attribute values appearing
in tuples of both R* and S*;

For each value v € V*| determine multp-(v);

For each value v € V*, determine multg=(v);

// Compute the number of tuples in R* X S*
// that appear to be in dense-dense SubJoins:
For each value v € V* do begin
if multp«(v) > § and multg=(v) > & then
A* = A" 4+ multp«(v) - multg=(v);

end;
Ay = (n/my1)? - A%;
return Ad;

Figure 4: The procedure for estimating the number of
pairs in dense-dense Subloins.

Definition 3.5 Let m be a posilive integer. A join
attribute value v s defined to be m-dense in R of
multg(v) > n/m, and otherwise defined to be m-sparse
in R. An (m-dense) join attribute value v is defined
to be very m-dense in R if multr(v) > 2nlgn/m. A
tuple in a relation R is defined to be m-sparse, m-dense,
very m-dense if its join attribute value v is m-sparse,
m-dense, very m-dense, respectively, in R.

Since we use the same m throughout this section, we
will subsequently refer to tuples and values as simply
sparse, dense, and very dense.

In the full paper, we present the complete analysis
of our bifocal sampling algorithm, showing that the
algorithm estimates the join size to within an error
factor close to 2 with probability at least 1 — 1/n?, for
any prespecified constant «. In what follows, we provide
a sketch of this analysis, for the case where o = 1.

The first estimation procedure, Dense_Dense_Esti-
mation, is used to account for all dense-dense SubJoins.
A sampling algorithm of type {_cross is used, with the
novelty that values that appear less than § times in
either sample are ignored. It is shown that the number
of pairs in each dense-dense SubJoin is estimated within
a small error factor with high probability. Furthermore,
the total (scaled) contributions of other SubJoins to the
total (scaled) estimate is bounded above by a small
constant times the total sum of their sizes, with high

277

Sparse_Any_Estimation(R, S, n, ms)

// n is the number of tuples in each relation.
// mq is the sample size for each relation.

A% =0
Select ms random tuples from .S, and
let S* be the resulting random sample;

// Tf determining multg(v) is slow for dense v then
// use probabilistic elimination to suppress dense v:
if avoid_dense_mult then begin
Select ms random tuples from R, and
let R* be the resulting random sample;
For each join attribute value v appearing in R* do
Remove from S* all tuples with value v;

end;

// Compute the estimate on the (remaining) values
// that are sparse in R:
For each tuple 7 in S* do begin
Determine the number, z, of tuples in R
that join with 7;
if # < n/ms then A* := A* + &;

end;
As = nA*/ms;
return Ag;

Figure 5: The procedure for estimating the number of
pairs in either sparse-sparse or sparse-dense SubJoins.
Two variants of the procedure are shown. If determining
multg(v) is slow for dense v then the avoid_dense_mult
flag should be set so as to probabilistically suppress dense
v prior to any determination of multp(v).

probability.

The second estimation procedure, Sparse_Any_Esti-
mation, is used to account for all sparse-sparse and
sparse-dense SubJoins. A sampling algorithm of type
tandex 1s used, with the novelty that dense tuples in
R (and possibly other tuples in R) are ignored. Tt is
shown that the number of pairs in each such SubJoin
is estimated within a small error factor with high
probability. By repeating this sparse-any procedure for
S X R, we obtain an estimate for dense-sparse SubJoins
in RXS.

The total estimate is obtained by combining the three
estimates. Each SubJoin is guaranteed to be reflected in
at least one of the three estimates with high probability.
The total estimate is provably within a factor close to 2
of the actual join size, with high probability.

The sparse-any estimation procedure determines z (=
multg(v)) for each join attribute value v appearing in
tuples of S*. The tuple cost for determining multg(v)
is multg(v), which may be as large as n. For the
weak cost model, which accounts for tuple cost, we

would like to avoid determining multg(v) for dense wv.
(This is not a concern for the strong cost model.) We
introduce a simple probabilistic elimination technique
that neutralizes the effect of dense values v on the
tuple cost. This technique can be incorporated into the
algorithm as desired by setting the “avoid_dense_mult”
flag: for the weak cost model, the flag should be set,
while for the strong cost model, the flag need not be
set.

The probabilistic elimination technique takes a ran-
dom sample R* of R and then eliminates from S* all
tuples in SubJoins that have at least one tuple in R*.
Perhaps surprisingly, even though this simple technique
does not actually identify which SubJoins and tuples
ought to be eliminated, the overall elimination is satis-
factory with high confidence. We select the size, ms, of
R* to satisfy the following three requirements:

(1) With high probability, all tuples whose value is very
dense in R are eliminated.

(i1) Let 7 be a tuple in S with join attribute value
v such that SubJoin(v) is sparse-sparse or sparse-
dense and not eliminated by R*. The expected
contribution of each such 7 to the total estimate is
within a small error of multg(v).

(iii) Some dense tuples in R might not be eliminated by
R*. Nevertheless, each dense tuple in R has constant
expected contribution to the total tuple cost.

The analysis will show that it suffices to have the size
ms be \/n.

Requirement (i) enables us to assume that the
maximum contribution of a single tuple is bounded
by 2nlgn/m. This is helpful both for bounding the
tuple cost of determining multiplicities in the algorithm,
as well as for bounding the tuple cost error using
tail inequalities. Requirement (ii) guarantees that the
expected total contribution of all sparse-sparse and
sparse-dense SubJoins i1s within a small error of their
actual total sum of sizes. Requirement (iii) guarantees
that tuples that are not sparse in R (but are not
necessarily very dense) would not significantly affect the
expected total tuple cost.

3.2 The dense-dense estimation procedure

The algorithm for estimating the number of pairs in
dense-dense SubJoins is given in Figure 4.

Let V be the set of join attribute values. For each
value v € V, let £(v) be the contribution of v to the
total estimate, Ad, of dense-dense SubJoins:

0 if multp«(v) < 8 or multg«(v) < é
E(v) = (n/m1)? - multg«(v) - multss(v)
otherwise.

278

Note that Ag = Y ovev E(v)

Let E(v) = multg(v) - multg(v); ie., E(v) is the
number of pairs in SubJoin(v). Let Vi be the set of
values v with dense-dense SubJoins; i.e., multg(v) >
n/m and multg(v) > n/m. Let A4 be the total number
of pairs in dense-dense SubJoins;ie., Ag =3 oy, E(v).
Finally, let £4 be the contribution to A4 from SubJoins
that are indeed dense-dense; i.e., £q4= 3" ¢y, E(v).

The following lemma shows that £(v) 1s a good
estimate for each dense-dense SubJoin(v):

Lemma 3.1 Let 0 < € < 1 be an arbitrary constant,
and let ¢ = c(€) be an appropriately selected constant.
Let 6 = (1 —¢/3)clgn, and let my = emlgn. Then for
each v € Vy,

Pr(E(v) € (1+e)E(v)) > 1—1/n* .

Proof. Let X = multg«(v) and let ¥ = multg«(v).
Both X and Y are binomial random variables, with
parameters (m1, multg(v)/n) and (m1, multg(v)/n), re-
spectively. Then,

mymultr(v) mymultg(v)

E(X) = d E()=

(x) = M)y gy = T

Let ¢ = ¢/3. Since v € V4, we have that
E(X)>clgn and E(Y)>clgn .

Therefore, by Chernoff bounds, for a sufficiently large

e = c(e),

1
PriXc(l1+HE(X))>1—- —
(X e(£B(X) > 1- o
Similarly,
1

Therefore, since v € Vg, X > (1 — ¢)clgn and
Y > (1 — €')elgn with probability 1 — 1/n?, and hence
E(v) > 0. Furthermore, since (1 +¢) > (1 + €)? and
(1-e)<(1-¢)?

lgn\” 1
Pr(x.ye(lie)<cm g”) Ev) >1-=
n

n

and hence

Pr(l(v) e(l+e)Ev) > 1— iz .

n

u

We can now conclude that the aggregate estimate

&4 for all dense-dense SubJoins is a good one, for the
parameter settings of Lemma 3.1.

Lemma 3.2 Let 0 < € < 1 be an arbitrary constant.
Then
Pr(ése(1+6)Ag)>1—-1/n .

Proof. Since A; = ZvEVd E(v)and &4 = ZvEVd E(v),

Lemma 3.1 implies that

Pr(&se(1+e)daq)
> Pr(VoeVy:&w) e(l+e)E(v))
>

1
1—n~§:1—1/n.

u

In the full paper, we also prove that, with high
probability, the total contribution, A4 — &4, of SubJoins
that are not dense-dense to the estimate Ad 1s bounded
above by a small constant times the total sum of their

sizes,) ey F(v) — Aq.

Implementation and complexity. Selecting the
random samples takes 2my probes, which by the choice
of my in the analysisis O(mlgn) probes. The remaining
steps of the algorithm can be implemented by first
(semi-)sorting the sets R* and S*; these steps involve
no probes. Thus the probe cost as well as the tuple cost
of the algorithm is O(mlgn).

3.3 The sparse-any estimation procedure

The algorithm for estimating the number of pairs in
either sparse-sparse or sparse-dense SubJoins is given in
Figure 5. We analyze the algorithm for ms = m = \/n.

Let As be the number of pairs in either sparse-sparse
or sparse-dense SubJoins. Algorithm Sparse_Any_Esti-
mation (from Figure 5) computes A, as an estimate
for A,. We denote by S* the set consisting of the (re-
maining) values in S* after the (optional) probabilistic
elimination step. Let £(7) be the contribution of a tu-
ple 7 in S, 7 € SubJoin(v), to the estimate A, le.,

As = Zres E(r):
{ mLQ -multg(v) if € S* A multr(v) < mLQ
0

We first consider the accuracy and complexity for the
strong cost model. We then analyze the performance for
the weaker cost model, as a result of the probabilistic
elimination step.

&(7)

otherwise.

Lemma 3.3 We have E(As) = A, and with high
probability As = ©(A;) + O (nlgn). Also, the probe
cost is O(\/n).

Proof. (sketch) If the value of a tuple 7 € S is
dense in R then &£(r) = 0. Consider a tuple 7 €
S, 7 € SubJoin(v), such that multp(v) < n/ma.
Since Pr(r € S%) ma/n, we have E(&(7))
multg(v), and hence E(As) = A;. Moreover, &(r1)
is a random variable taken from domain [0, z], where
z = (n/m2)? = n. By Hoeffding bounds [Hoe63],
A, = O(E(A,)) with probability exp(—O(E(4,/2))),
which is high probability if A; = Q(nlgn). The probe

cost is easily seen to be O(m). "

279

In analyzing the performance of the sparse-any
algorithm for the weak cost model, denote by C the
total tuple cost, and let ng be the number of tuples
in S whose value is dense in R.

Lemma 3.4 (probabilistic elimination lemma)
We have Agf/e < E(As) < Ay, and with high proba-
bility, Ay, = © (A;)+0 (nlgn). Also, the expected tuple

cost, E(C), is at most ngfe+ As/\/n.

Proof. (sketch) Consider a tuple 7 in S* with join
attribute value v; i.e., 7 € SubJoin(v).

Pr (7 is not eliminated from S*)

(1 — multg(v)/n)™ ~ e—(m/n)multr(v) ’

assuming (without loss of generality) that multg(v) <
n/10. Thus, since Pr (7 € S*) = m/n,

PI‘(TES*) Pr(TE§*|TES*)~PI‘(TES*)

M —~(m/m)multa(v)

o~
~

n
Therefore, if multg(v) < n/m then

BE() = multae)-(n/m) Pr (v e 5°)

multg(v) - e—(m/n)multR(v) .

o~
~

But since v is sparse, 1/e < e—(m/mymult(v) < 1 and
therefore multp(v)/e < E(&(7)) < multg(v). (Hence
requirement (ii) follows.) As before, Hoeffding bounds
can be applied to establish that A, = ©(A;) with high
probability, as long as A; = Q(nlgn).

The probe cost is O(m), as before. The tuple cost is
> multg(v), where the sum is taken over join attribute
values v appearing in tuples in 5=

Let C(7) be the contribution of a tuple 7 in S to the
tuple cost; ie.,C =3 o C(7). If 7 with value visin S*
then C(7) = multr(v); otherwise C(7) = 0. Therefore,

E (C(7)) = multr(v) - % e~ (m/mmulte(y)

We consider the tuples 7 € 5’*, based on the den-
sity of their value v in R. If v is very dense then
e—(m/n)mUHIR(v) < e—(m/n)(angn/m) — p2lg2e and
therefore E(C(1)) < m -n~28¢ = More-
over, by Markov inequality, Pr(C(7) > 0) < n®7218¢,
Therefore, the probability that any tuple 7 € S* that is
very dense in R contributes to the tuple cost is at most
nl-5-218¢ (Hence requirement (i) follows.)

If v is dense but not very dense then 1/n <
e=(m/n)multr(v) < 1/e and therefore E(C(r)) < 1/e.
(Hence requirement (iii) follows.) Thus the total
expected contribution to the tuple cost of dense tuples
in R is at most ng/e.

n.5—21ge.

Finally, for sparse v recall that e=(m/mymultz(v) < 1.
Therefore, E (C(7)) < multg(v) - (m/n), and hence the
total expected contribution to the tuple cost of sparse
tuples in R is (m/n) - A, = As//n. .

Lemma 3.3 and Lemma 3.4 justify the use of a sanity

bound U = nlgn:

Corollary 3.5 If A, > nlgn then with high probability
As = O(A;). Otherwise, with high probability A, =
O(nlgn).

4 Experimental results

In this section, we report on preliminary experimental
comparisons between our bifocal sampling algorithm,
the generic adaptive sampling algorithm (described in
Section 2.1), and the generic cross sampling algorithm
(described in Section 2.4). In order to demonstrate
how bifocal sampling overcomes problems with previous
algorithms, we present experimental results for the
scenario that was considered as “hard” by Haas and
Swami [HS92], and which is described in Section 1, of
an equi-join R < S for little-skewed R and highly-
skewed S. While the adaptive sampling algorithm and
the cross sampling algorithm obtain rather poor results,
as is anticipated, the bifocal sampling algorithm obtains
excellent results.

We constrained all three algorithms to select the same
number of samples from the database and then compute
their respective estimates for the size of the join. The
percentage error of each of the estimates was then
computed by actually computing the join and counting
the number of tuples in the output. Specifically, the
percentage error 1s computed as the absolute value
of the difference between the estimate and the actual
join size, divided by the estimate. Since various
implementations of adaptive sampling algorithms differ
primarily in their termination criteria, the results are
relevant to all those implementations. In particular,
previous adaptive sampling algorithms either terminate
with fewer samples, and hence obtain no better results
than the generic algorithm, or terminate with more
samples, and hence run slower than our algorithm.

The size of the equi-join of two relations depends
only on the values of the join attribute in each of
the input relations. It is therefore sufficient for the
purpose of comparing the accuracy of different join-
size estimation algorithms to have single-column input
relations. Accordingly, all the input relations that we
used consisted of a single integer-valued join attribute .J.

We consider the equi-join R.J = S.J for a range of
relations R and S. Each of the input relations in our ex-
periments consisted of N = 100,000 tuples. The values
of R.J were selected according to a uniform distribution
over [0,32767]. The values of S..J were selected accord-
ing to the distribution function zipf(10000, §), where @

280

was varied from 0.2 to 5.0 in increments of 0.2. These
experiments address Haas and Swami’s “hard” scenario.

The results are displayed in Figure 6. It is apparent
that the accuracy of the adaptive sampling algorithm
wildly fluctuates. For many values of #, it grossly
underestimates the actual join size, resulting in a very
high error (displayed as an error of 200%, but is in
most cases an infinite error). The performance of the
cross sampling algorithm is better, yet it also grossly
underestimates the actual join size for more than half
of the values of 8, and only in a few cases does it
provide an error smaller than 60%. In contrast, the
estimates obtained by using the new bifocal sampling
algorithm are always quite accurate, with errors mostly
in the range of 0-3% (except for one case of 8%); they
are always more accurate than the estimates of both
the adaptive sampling algorithm and the cross sampling
algorithm.

The analysis in Section 3 shows that our bifocal sam-
pling algorithm is guaranteed to always give good esti-
mates (within a factor close to 2) with high probability,
when the join size is Q(nlgn). This was indeed demon-
strated in our experiments, with an indication that the
actual relative error may be considerably smaller.

Acknowledgments

We thank Albert Greenberg for participating in the
research in its early stages. We thank Jeff Naughton
for many helpful comments on this work.

References
[ANS94] P.J. Haas, J. F. Naughton, and A. N. Swami. On

the relative cost of sampling for join selectivity
13th ACM Symp.
Principles of Database Systems, pages 14-24,
May 1994.

estimation. In Proc. on

[ANSS93] P. J. Haas, J. F. Naughton, S. Seshadri, and
A. N. Swami. Fixed-precision estimation of
join selectivity. In Proc. 12th ACM Symp. on

Principles of Database Systems, pages 190-201,

May 1993.
[ANSS95] P. J. Haas, J. F. Naughton, S. Seshadri, and
L. Stokes. Sampling-based estimation of the

number of distinct values of an attribute. In
Proc. 21st International Conf. on Very Large

Data Bases, pages 311-322, September 1995.
W.-C. Hou, G. ézsoyoglu, and E. Dogdu. Error-

constrained COUNT query evaluation in rela-
In Proc. ACM SIGMOD In-
ternational Conf. on Management of Data, pages
278287, May 1991.

[HOD91]

tional databases.

[Hoe63] W. Hoeffding. Probability inequalities for sums
of bounded random variables. J. American

Statistical Association, 58:13-30, 1963.

%age error (200% indicates up to infinite error)

Algorithm Comparison: Uniform[0,32767] Join Zipf(10000,theta)

>200 —= T T T H T g T H | i

Adaptive-Sampling (t_index) o

Cross-Sampling (t_cross) X

180 | Bifocal-sampling ©

fo
160 B
140 - -
120 B
100 -
80 - o « 8 X -
X
X X > &
&
60 -
fo
X
40 X -
20 - x .
X
o O

0 o 010 5 & g Big 5 & 0 O1g & & 5 01q =5 slo0 o &
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

theta parameter in the Zipf function

Figure 6: Comparison of our bifocal-sampling algorithm with the adaptive-sampling algorithm and the cross-sampling
algorithm. We show the relative errors of the three algorithms for the join of two data sets, one with a uniform distribution
over [0,32767], and the other with the Zipf distribution with parameter 8, for various values for § between 0.2 and 5.0.
Each data set has 100,000 items. For the adaptive-sampling algorithm, there are 17 settings of # with over 200% error; 14
of these are infinite error. For the cross-sampling algorithm, there are 14 settings of & with over 200% error; 12 of these
are infinite error.

[HOTSS]

[HOTS9]

[HS92]

[LN89]

[LN9O]

W.-C. Hou, G. Ozsoyoglu, and B. K. Taneja. Sta-
tistical estimators for relational algebra expres-
sions. In Proc. 7th ACM Symp. on Principles of
Database Systems, pages 276-287, March 1988.

W.-C. Hou, G. Ozsoyoglu, and B. K. Taneja.
Processing aggregate relational queries with hard
In Proc. ACM SIGMOD In-
ternational Conf. on Management of Data, pages
68—77, June 1989.

P. J. Haas and A. N. Swami. Sequential sam-
pling procedures for query size estimation. In
Proc. ACM SIGMOD International Conf. on
Management of Data, pages 1-11, June 1992.

R. J. Lipton and J. F. Naughton. FEstimating
the size of generalized transitive closures.
Proc. 15th International Conf. on Very Large
Data Bases, pages 165-172, August 1989.

R. J. Lipton and J. F. Naughton.
estimation by adaptive sampling.

time constraints.

In

Query size
In Proc. 9th

281

[LN95]

[LNS90]

[LNSS93]

[LS92]

ACM Symp. on Principles of Database Systems,
pages 40—46, April 1990.

R. J. Lipton and J. F. Naughton. Query size
estimation by adaptive sampling. J. Computer
and System Sciences, 51(1):18-25, 1995.

R. J. Lipton, J. F. Naughton, and D. A. Schnei-
der. Practical selectivity estimation through
adaptive sampling. In Proc. ACM SIGMOD In-
ternational Conf. on Management of Data, pages
1-12, May 1990.

R. J. Lipton, J. F. Naughton, D. A. Schneider,
and S. Seshadri. Efficient sampling strategies
for relational database operations. Theoretical
Computer Science, 116(1-2):195-226, 1993.

Y. Ling and W. Sun. A supplement to sampling-
based methods for query size estimation in a
database system. SIGMOD Record, 21(4):12-15,
1992.

