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Abstract

This paper introduces bifocal sampling� a new technique
for estimating the size of an equi�join of two relations�
Bifocal sampling classi�es tuples in each relation into two
groups� sparse and dense� based on the number of tuples
with the same join value� Distinct estimation procedures
are employed that focus on various combinations for joining
tuples �e�g�� for estimating the number of joining tuples
that are dense in both relations�� This combination of
estimation procedures overcomes some well�known problems
in previous schemes� enabling good estimates with no a
priori knowledge about the data distribution� The estimate
obtained by the bifocal sampling algorithm is proven to lie
with high probability within a small constant factor of the
actual join size� regardless of the skew� as long as the join
size is ��n lg n�� for relations consisting of n tuples� The
algorithm requires a sample of size at most O�

p
n lg n��

By contrast� previous algorithms using a sample of similar
size may require the join size to be ��n

p
n� to guarantee

an accurate estimate� Experimental results support the
theoretical claims and show that bifocal sampling is practical
and e�ective�

� Introduction

Accurate and inexpensive estimation of database query
sizes is useful for many purposes� Such estimates are
used by query optimizers� to compare costs of alter�
nate join plans� These estimates are useful in determin�
ing the resource allocation necessary to balance work�
loads on multiple processors in parallel or distributed
databases� Finally� the estimate of query sizes is of in�
terest by itself in some applications� such as �nancial
audits and statistical studies�
There are several advantages of sampling�based esti�

mation algorithms� Unlike parametric methods� there is
no need to make assumptions about the �t of the data

to an assumed distribution� Unlike histogram�based
or nonparametric�based methods that rely on summary
statistics� the sampling�based approaches do not rely
on storing and maintaining such summary information
about the data� Furthermore� in contrast to these ap�
proaches� sampling�based approaches always associate
a statistical con�dence 
typically ��� or higher� to the
estimates returned by the algorithm�

��� Previous work

The design of sampling�based estimation algorithms is
a popular area of research �H"OT		� H"OT	�� LN	��
LN��� LNS��� H"OD�
� HS��� LS��� LNSS��� HNSS���
HNS��� LN��� HNSS���� Results in �LNS��� H"OD�
�
HS��� HNS��� and elsewhere demonstrate the practi�
cality of estimation procedures based on sampling by
showing that the time taken to compute the estimate is
a small fraction of the time taken to compute the actual
query�
Hou� "Ozsoyo#glu and Taneja �H"OT		� H"OT	�� present

initial work in this area� They present unbiased
and consistent estimators for estimating the join size�
Consistent estimators guarantee that as the sample size
increases� the probability of error decreases� They also
present an algorithm for cluster sampling� However� no
bounds on the required sample size are presented�
Lipton and Naughton �LN��� LN��� and Lipton�

Naughton and Schneider �LNS��� present algorithms
based on sampling for estimating the sizes of various
select or join queries 
they also consider transitive
closure and general recursive Datalog queries�� The
algorithms view the query as a collection of disjoint
subqueries� Subqueries are selected at random and
their sizes are computed� Termination occurs when
either the sum of the subquery sizes is su�ciently large�
or the number of samples taken is su�ciently large�
The algorithms with high probability either estimate
the query size to within some given percentage of its
true value� or else guarantee that the query size is
bounded by a speci�ed value 
�sanity bounds��� Since
the number of sample subqueries taken adapts to the
sizes of the subqueries taken thus far� these algorithms
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are known as adaptive sampling algorithms�
The adaptive sampling algorithms in �LN��� LNS���

LN��� assume knowledge of the maximum size of a
subquery� Since this is not usually available� an upper
bound for this quantity is used in the expression for
the termination criterion of the adaptive sampling
approach� As pointed out by Haas and Swami �HS����
this can lead to taking considerably more observations
than necessary causing the sampling algorithm to be
unduly expensive in some cases�
Haas and Swami �HS��� present improvements on

the termination criterion of the adaptive sampling
algorithms in �LN��� LNS���� Speci�cally� they improve
the case when the adaptive sampling algorithm would
require many more observations than are actually
necessary� simply due to assuming a high upper bound
on the maximum size of a subquery� This leads�
for example� to improved estimations of equi�join
sizes� However� given an equi�join R � R� between
a non�skewed relation and a skewed relation� their
algorithms do not perform very well� ��When� R� is
highly skewed 
Zipf� and relation R has relatively little
skew � � �coverage deteriorates� � � � �A good� estimation
algorithm is hard for this type of query� �HS����
Hou� "Ozsoyo#glu and Dogdu �H"OD�
� also present

improvements on the termination criterion of adaptive
sampling algorithms by using a pilot sample to compute
an estimate for the mean of the sample sizes and the
variance of the sample sizes� The drawback to this
procedure� as pointed out by Haas and Swami� is that
there is no theoretical guidance as to the appropriate
size of the pilot sample�
A supplemental study to sampling�based methods re�

garding the termination criterion was presented by Ling
and Sun �LS���� Finally� further re�nements were given
by Haas� Naughton� Seshadri and Swami �HNSS���� and
by Haas� Naughton and Swami �HNS����
In �HNSS���� Haas et al� categorize sampling algo�

rithms for join size estimation into six groups based on
whether the unit of sampling is an individual tuple 
t�
or a memory page worth of tuples 
p�� and whether
sampled tuples are compared 
i� with all tuples in the
join relation
s� with the same join value� e�g� when the
appropriate indexes are provided 
denoted t index or
p index �� 
ii� with all tuples occurring in samples taken
from these join relation
s� 
t cross or p cross�� or 
iii�
with only tuples in the most recent sample taken from
these join relation
s� 
t indep or p indep�� They present
results comparing these groups based on the variance
obtained on di�erent distributions� as well as improved
sampling algorithms�

��� Contributions of this paper

In this paper� we introduce bifocal sampling � a new
technique for estimating the size of an equi�join of
two relations� Bifocal sampling classi�es tuples in

each relation into two groups� sparse and dense� based
on the number of tuples with the same join value�
Distinct estimation procedures are employed that focus
on various combinations for joining tuples 
e�g�� for
estimating the number of joining tuples that are dense in
both relations�� The individual estimation procedures
we use are variants on types t index and t cross� This
combination of estimation procedures overcomes some
of the problems in previous schemes� enabling good
estimates with no a priori knowledge about the data
distribution required� Unlike the strati�ed sampling of
Haas and Swami �HS���� the classi�cation of tuples into
groups is not known a priori� but must be inferred by
the sampling algorithm�

Our bifocal sampling algorithm requires a sample of
size at most O


p
n � lgn�� from relations consisting of

n tuples� Except for rather small join sizes� of size
o
n lgn� 
for which no existing sampling algorithms
give good estimates�� the estimate computed by the
algorithm is provably within a small constant factor
of the actual size of the join with high probability�
regardless of the skew�

Our experimental results support the theoretical
claims and show that the bifocal sampling algorithm is
both practical and e�ective� The experiments compare
bifocal sampling with two generic sampling algorithms�
one of type t index and one of type t cross� All
algorithms take the same number of samples� As an
example of how bifocal sampling overcomes problems
with previous algorithms� we present experimental
results for Haas and Swami�s �hard� scenario described
above of an equi�join� R � S� for little�skewed R and
highly�skewed S� 
This scenario was also recognized
to be hard in �HNS����� We obtain excellent results
while the two generic algorithms obtain rather poor
results� Since previous adaptive sampling algorithms
of type t index 
or type t cross� di�er primarily in
their termination criteria� the results are relevant to all
previous adaptive sampling algorithms of this type� In
particular� previous adaptive sampling algorithms either
terminate with fewer samples� and hence obtain no
better results than the generic algorithms� or terminate
with more samples� and hence run slower than our
bifocal sampling algorithm�

The advantages of bifocal sampling over previous
methods can be summarized as follows�

	 No assumption is being made on the distribution of
the data� For example� our analysis does not depend
on the Central Limit Approximation used in many
previous works� and the algorithm does not require
a priori knowledge of the classi�cation of tuples into
sparse and dense�

�Throughout this paper� lgn denotes the base two logarithm

of n�
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	 The algorithm guarantees estimates within a small
constant factor for all cases in which the join is of size
�
n lgn�� regardless of data distribution and skew�

	 The sample size is always at most O
pn lgn��
	 For every input� the probability of failing to provide
the promised estimate with the above sample size is
at most n��� for any prespeci�ed constant ��

As part of our algorithm� we perform t index �type
sampling on both join relations� It remains for
future work to explore whether this algorithm can be
e�ectively extended to use only p cross�type sampling�
for cases where indices are not available�
The rest of the paper is organized as follows� Sec�

tion � presents background material on previous sam�
pling algorithms and their problems� The bifocal sam�
pling algorithm and its analysis are given in Section ��
Preliminary experimental results are described in Sec�
tion ��

� Sampling algorithms revisited

In this section� we review previous sampling approaches
and the problems they have estimating join sizes in the
presence of certain types of skew� First� we consider
adaptive sampling algorithms of type t index � each
sampled tuple in R is compared with all tuples in S� and
the result is scaled as appropriate� We describe some of
the di�culties such algorithms have in estimating join
sizes� Then� we consider sampling algorithms of type
t cross� a random sample is taken from R and S� the
size of their join is computed� and the result is scaled as
appropriate� We show that such algorithms su�er from
similar di�culties�

��� Adaptive sampling

We consider the general model for adaptive sampling
proposed by Lipton and Naughton �LN��� and re�ned by
several subsequent works 
e�g� �LNS��� H"OD�
� HS���
HNSS��� HNS����� The problem is to estimate the
size� A� of a given query� Conceptually� we view the
query as a disjoint union of n subqueries� The sampling
algorithm� of type t index � repeatedly chooses a random
subquery� computes the size of its output and adds it to
the current sum A�� After k such subqueries� where k
is determined by a speci�ed termination condition� the
algorithm terminates and estimates the size of the query
as 
n�k� �A��
Figure 
 depicts a generic adaptive sampling algo�

rithm for estimating the size of an equi�join R � S� The
algorithm takes �ve input parameters n� b� �� p�m� The
parameter n� the number of tuples inR� is the size of the
population fromwhich to sample� The parameter b is an
upper bound on the output size of a subquery� that is�
an upper bound on the program variable x� The param�
eter m is an upper bound on the number of iterations of

Algorithm Adaptive�Sampling
n� b� �� p�m�

!! n is the number of tuples in R�
!! b is an upper bound on the size of a subquery�
!! � bounds the relative inaccuracy of the estimate�
!! p is the con�dence on the estimates returned�
!! m is the maximum sample size�

U �� NONE� A� �� �� k �� ��
while A� � b � f
p� �� and k � m do begin
Select a random tuple � from R�
Determine the number� x� of tuples in S
that join with � �

A� �� A�  x�
k �� k  
�

end�
�A �� nA��k�
if A� � b � f
p� �� then U �� g
A�� n� b� p�m��

return 
 �A� U��

Figure 
� A generic adaptive sampling algorithm for
estimating the size of an equi�join R � S� Note that
the values for parameters b and m can themselves be
determined by sampling or by known statistics on the data�
Also� di�erent adaptive sampling algorithms vary in the
choice of function f for the termination condition and
function g for the sanity bound� U �

the while loop� it guards against the sampling algorithm
being too expensive� The function f in the procedure
speci�es the termination condition� It depends only on
the desired con�dence and inaccuracy parameters� p and
� respectively� and is greater than one�
The algorithm terminates by returning a ��tuple�


 �A� U�� Each run of the algorithm falls into one of two
cases�


� The preferred case� characterized by the algorithm
terminating with A� � b � f
p� ��� In this case� �A�
the algorithm�s estimate for A� is guaranteed to be
within �A of the value for A with probability p�

�� The remaining case is called the case of sanity
bounds� In this case� �A may or may not be a good
estimate for A� and the only claim is that U �
g
A�� n� b� p�m� is an upper bound on A with high
probability�

The generic algorithm given above depicts the sim�
pli�ed termination criteria used� e�g�� in �LNS���� More
re�ned termination criteria� see e�g� �HNSS���� are func�
tions of not only con�dence and inaccuracy parameters�
but also the observed standard deviation in the sub�
query sizes� While these re�ned termination criteria can
result in fewer samples� they do not change the quality
of the estimate for a given number of samples� Thus� for

���



simplicity� we consider the generic algorithm in the dis�
cussions that follow� although many of the problems ad�
dressed apply as well to these more re�ned algorithms�

��� A problem with adaptive sampling

Previous adaptive sampling algorithms have an inher�
ent problem with estimating join sizes that are not suf�
�ciently large� Consider the problem of estimating the
join size A to within an inaccuracy � and con�dence
p� using at most m samples� If A � 
nb�m� � f
p� ���
then it is expected that A� � b � f
p� �� and hence it
is likely that the adaptive sampling algorithm will not
terminate with a good estimate after taking m samples�
For example� if m �

p
n� and b � �
n�� then A should

be at least �
n
p
n� in order to allow accurate estima�

tion� For join sizes below this threshold� it is possible
that the adaptive sampling algorithm is unable to ac�
curately estimate it using m samples� as the following
example demonstrates�

Example �
 Consider the equi�join between
two relations� R
B� � f
� �� � � � � ng and S
B�C� �
f

� 
�� 

� ��� � � � � 

� n�g� The equi�join of these two re�
lations is equal to S� and therefore has n tuples� Con�
sider the problem that occurs when adaptive sampling
is used such that m random tuples are chosen from R�
If the tuple with join attribute value 
 is chosen� then
the �nal sum A� is at least n 
it is larger than n if
this tuple is chosen more than once�� Thus the estimate
�A � nA��m is at least n��m� causing a tremendous
overestimate� unless m � �
n�� On the other hand�
if this tuple is not chosen in the sample� then the es�
timate is �� which is tremendously inaccurate as well�
Thus� with a sample of size o
n�� the estimate is always
highly erroneous�
Suppose instead that the adaptive sampling algo�

rithm samples tuples from S� In this case� for any
sample size m� the sum A� is m and the estimate is
nA��m � n� which is accurate� The number of samples
required from S prior to termination in the preferred
case is m � b �f
p� ��� If we had a priori knowledge that
b � 
� then the sampling algorithm would terminate af�
ter taking f
p� �� samples� However� if we replace b by a
high upper bound� say n� then the sampling algorithm
would require f
p� �� � n samples� Since f
p� �� 	 
� it
follows that the entire relation would be accessed several
times over� Clearly� this is undesirable� Thus a more re�
�ned termination criterion that accounts for the distri�
bution of subquery sizes 
e�g� �H"OD�
� HS��� HNSS����
is useful here� �

��� Dual sampling

Example 
 shows that for join queries� one way
to improve the estimate of the adaptive sampling
algorithm is to sample from both relations� This may
be done as follows� Let R and S be the two relations

for which we wish to estimate the size of their join on
some attribute� First� run adaptive sampling on R while
keeping a limitm on the number of tuples sampled� Two
outcomes may result� either the algorithm terminates
with a statistical guarantee for the estimated join size
or the algorithm is unable to do so and returns a sanity
bound instead� In the �rst case� we terminate with
an estimate for the join size� Otherwise� we run the
adaptive sampling algorithm on S� keeping a limit m
on the number of tuples sampled� Again� two outcomes
may result� If a statistical guarantee is obtained� then
we can terminate with an estimate� Otherwise� we
obtain a sanity bound� In the second case� we return
the smaller of the two sanity bounds�

Let bR be the maximum number of tuples in R that
join with any one tuple in S� Similarly� let bS be the
maximum number of tuples in S that join with any one
tuple in R� Then� dual sampling allows us to estimate
join sizes A such that A 	 n �min
bR� bS��m�
However� if only very coarse upper bounds are

available on either bR or bS� problems may arise� In
Example 
� if n is used as an upper bound on bR�
and m �

p
n� the estimation algorithm would return

a sanity bound although it has the correct answer�
A more serious problem is that the actual values for

bR and bS may indeed both be high due to highly�
skewed data� In particular� the problem example above
for adaptive sampling 
Example 
� can be extended
to thwart dual sampling� as the following example
demonstrates�

Example �
 Consider the equi�join on attribute B
between the following two n�tuple relations� R and S�

R�B�C� � f��� c��� ��� c���
��� c��� ��� c��� ��� c��� � � � � ��� cn����

��� c��� ��� c��� � � � � �n��� c��g
S�B�D� � f��� d��� ��� d��� � � � � ��� dn����

��� d��� ��� d���

�n����� d��� �n����� d��� � � � � �n��� d��g

The reader may verify that the equi�join of these two
relations has �n tuples� and that bR � bS � n��� As
argued above� dual sampling allows us to estimate join
sizes A such that A 	 n � min
bR� bS��m� which is
n��
�m� in the particular case of this example� Thus
adaptive sampling would require more than m � n��
samples in order to guarantee a good estimate� Clearly�
this is undesirable� �

Scenarios such as the previous example can occur�
for example� whenever both relations have a Zipf
distribution on the join attribute but the peaks of the
two Zipf distributions are on distinct values� Note
that the adaptive sampling algorithm is not e�ective
here even though the exact values of bR and bS are
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assumed to be known� Therefore� for such scenarios
any implementation of the adaptive sampling algorithm

with or without dual sampling� would not be e�ective�
regardless of the method used to estimate upper bounds
for bR and bS � and regardless of the choice of f
b� ���
Thus� dual sampling� though super�cially attractive�

does not solve the problem of skewed data in previous
adaptive sampling algorithms�

��� Cross sampling

In sampling algorithms of type t cross �HNSS���� a
random sample is taken from both R and S� the join
size of the samples is computed� and the result is scaled
as appropriate� In particular� if samples of size m are
taken from relations of size n� and if the join size of the
two samples is A�� then the size of R � S is estimated as

n�m�� �A�� Such cross sampling algorithms are useful
whenever indices for the join predicate are not available�
Figure � depicts a generic cross sampling algorithm

for estimating the size of an equi�join R � S� in which
R and S may be of di�erent size�
Cross sampling algorithms su�er from many of the

same di�culties as described above for adaptive sam�
pling� On Example 
 above� if the tuple with join
attribute value 
 is chosen 
at least once� when sam�
pling from R� then A� � m� and thus the estimate
�A � 
n�m�� �A� is at least n��m� causing a tremendous
overestimate� unless m � �
n�� On the other hand� if
this tuple is not chosen when sampling from R� then
the estimate is �� which is tremendously inaccurate as
well� Thus� with a sample of size o
n�� the estimate is
always highly erroneous� Likewise on Example � above�
if a tuple with value 
 is chosen when sampling from R
or a tuple with value � is chosen when sampling from
S� then 
the reader may verify that� with high prob�
ability A� is �
m�� and hence �A is �
n��m�� This is
a tremendous overestimate� unless m � �
n�� On the
other hand� if no such tuples are chosen when sampling�
then the estimate is �� which is tremendously inaccurate
as well�

� Bifocal sampling

In this section� we present the new bifocal sampling
algorithm� designed to better address the problems
mentioned in Section ��
Consider estimating the size of an equi�join R � S�

To simplify the descriptions that follow� assume that
the join predicate is of the form R�J � S�J for some
attribute J � and that each relation has the same number
of tuples� n� The results in this section can readily be
extended to handle the more general cases�
Bifocal sampling classi�es tuples in each relation

into two groups� sparse and dense� based on the
number of tuples with the same join attribute value�
Distinct estimation procedures are employed that focus

Algorithm Cross�Sampling
n�� n��m�

!! n� is the number of tuples in R�
!! n� is the number of tuples in S�
!! m is the sample size for each relation�

Select m random tuples from R� and let R� be
the resulting random sample�

Select m random tuples from S� and let S� be
the resulting random sample�

Let A� be the number of tuples in R�
� S��

�A �� n� � n� �A��m��

return �A�

Figure �� A generic sampling algorithm of type t cross for
estimating the size of an equi�join R � S�

on various combinations for joining tuples 
e�g�� for
estimating the number of joining tuples that are dense
in both relations�� thereby obtaining better results than
previous approaches for certain types of skew� and
provably good results regardless of the skew� Note
that no a priori knowledge of the data distribution is
assumed� in particular� the classi�cation of tuples into
sparse and dense is not known a priori�
We will use the following de�nitions�

De	nition ��� For a set T of tuples and a join
attribute value v� de�ne multT 
v� to be the number of
tuples in T with value v�

De	nition ��� A join attribute value v is de�ned to be
dense in R if multR
v� �

p
n� and de�ned to be sparse

in R if multR
v� �
p
n� A tuple in a relation R is

de�ned to be dense � sparse� if its join attribute value v
is dense �sparse� in R�

The output of the join R � S consists of one output
tuple for each pair of tuples 
�R� �S� such that �R is a
tuple in R� �S is a tuple in S� and both tuples share the
same join attribute value� We can view these pairs as
partitioned into disjoint sets� one set per join attribute
value�

De	nition ��� For each join attribute value v� de�ne
SubJoin
v� to be the set of all pairs 
�R� �S� such that
�R is a tuple in R� �S is a tuple in S� and both tuples
share the same value v�

Each SubJoin can be classi�ed into one of four groups�

De	nition ��� SubJoin�v� is a dense�dense SubJoin if
v is dense in both R and S� SubJoin�v� is a dense�
sparse SubJoin if v is dense in R and sparse in S�
SubJoin�v� is a sparse�dense SubJoin if v is sparse in R
and dense in S� SubJoin�v� is a sparse�sparse SubJoin
if v is sparse in both R and S�

���



Figure � depicts our bifocal sampling algorithm� The
algorithm takes four input parameters n�m��m�� 
� as
described in the �gure� It employs two procedures�
a dense�dense estimation procedure 
Dense Dense Esti�
mation� depicted in Figure �� and a sparse�any esti�
mation procedure 
Sparse Any Estimation� depicted in
Figure ��� The dense�dense estimation procedure esti�
mates the size of all dense�dense SubJoins� The sparse�
any estimation procedure estimates the sum of the sizes
of all sparse�dense and sparse�sparse SubJoins� The al�
gorithm estimates the join size� A� with one application
of dense�dense estimation and two of sparse�any estima�
tion� with the roles of R and S reversed� This accounts
for all SubJoins by possibly accounting twice for some
sparse�sparse SubJoins� We show later that for any re�
lations R and S such that R � S has an �
n lgn� out�
put size� the bifocal sampling algorithmwithO


p
n lgn�

samples estimates the output size to within a small con�
stant factor with high probability�
Bifocal sampling enables better estimates than pre�

vious approaches by focusing separately on sparse and
dense tuples� In particular�

	 Any dense�dense SubJoin has many tuples in each
relation and hence� with high probability� will be
represented by a proportionate number of such
tuples in any sample� Thus� dense�dense SubJoins
can be estimated with high con�dence by a join
performed on a small sample from each relation�

	 Although sparse�dense SubJoins are likely to be
missed when sampling on the sparse side 
since there
are few such tuples�� they are not likely to be missed
when sampling on the dense side 
since there are
many such tuples�� Recall Example 
� Thus a
dual sampling approach� as discussed in Section ����
can be applied to e�ectively estimate sparse�dense
and dense�sparse SubJoins� As for sparse�sparse
SubJoins� individual SubJoins may be missed� but
the aggregate contribution to the join size of sparse�
sparse SubJoins can be e�ectively estimated as long
as the total contribution of such SubJoins is �
n��

	 By eliminating dense tuples from consideration� the
sparse�any estimation procedure can assume a small
upper bound� b� on the maximum number of tuples
that join with any one tuple 
i�e�� the size of the
join subquery�� thereby guaranteeing good estimates
with fewer samples� The bound b for sparse tuples isp
n� whereas the bound considering all tuples could

be as high as n 
recall Examples 
 and ���

In the remainder of this section� we present an analy�
sis of our bifocal sampling algorithm� In Section ��
� we
�rst present several de�nitions used in the analysis� We
then outline the rationale behind the bifocal sampling
algorithm by over�viewing the analysis used to bound

Algorithm Bifocal�Sampling
n�m��m�� 
�

!! n is the number of tuples in each relation�
!! m� is the sample size for the 
st procedure�
!! m� is the sample size for the �nd procedure�
!! 
 is a threshold used in the 
st procedure�

U �� NONE�
�Ad �� Dense Dense Estimation
n�m�� 
��
�As� �� Sparse Any Estimation
R�S� n�m���
�As� �� Sparse Any Estimation
S�R� n�m���
�A �� �Ad  �As�  �As� �

if �A � n lgn then U �� n lgn�

return 
 �A� U��

Figure �� Our bifocal sampling algorithm for estimating
the size of an equi�join R � S� Provably good estimates
can be obtained for sample sizes m� at most O


p
n lgn�

and m� at most O

p
n�� and taking 
 to be �
lg n�� �The

constants in these bounds are determined by the analysis
based on the desired accuracy�
 In the experiments� we use
m� � 


p
n lgn� � lgn� m� �

p
n lgn� and 
 � lgn�

the estimation error� Section ��� then gives the analy�
sis of the dense�dense estimation procedure� and �nally
Section ��� presents the analysis of the sparse�any esti�
mation procedure�

��� Algorithm outline

We now discuss the two estimation procedures in some�
what more detail� in order to present a technical� but
relatively high�level description of the two procedures
and their performance guarantees� We begin with sev�
eral de�nitions�

We denote a probe of a database to be the retrieval
of all 
zero or more� tuples from a given relation with
a given key value� The probe cost is the number of
probes to complete the procedure� We denote the tuple
cost of a probe to be the number of tuples retrieved
by a probe� We consider two cost models� a strong
cost model in which we only account for the number
of probes� e�g� the number of samples� and a weak cost
model in which we account for the number of probes
plus the sum of the tuple costs of all probes performed
by the algorithm� The strong cost model is appropriate
when the database includes an index structure that can
compute e�ciently multR
v� and multS
v� for a given
value v� otherwise the weak cost model may be more
appropriate�

We extend the de�nition of sparse and dense given
above to apply to a general parameter m� and de�ne
as well the class of very�dense tuples!values for the
purpose of the analysis�

���



Dense Dense Estimation
n�m�� 
�

!! n is the number of tuples in each relation�
!! m� is the sample size for each relation�
!! 
 is a threshold�

A� �� ��
Select m� random tuples from R� and
let R� be the resulting random sample�

Select m� random tuples from S� and
let S� be the resulting random sample�

Let V � be the set of join attribute values appearing
in tuples of both R� and S��

For each value v � V �� determine multR�
v��
For each value v � V �� determine multS�
v��

!! Compute the number of tuples in R�
� S�

!! that appear to be in dense�dense SubJoins�
For each value v � V � do begin
if multR� 
v� � 
 and multS� 
v� � 
 then
A� �� A�  multR� 
v� �multS�
v��

end�
�Ad �� 
n�m��� �A��

return �Ad�

Figure �� The procedure for estimating the number of
pairs in dense�dense SubJoins�

De	nition ��� Let m be a positive integer� A join
attribute value v is de�ned to be m�dense in R if
multR
v� � n�m� and otherwise de�ned to be m�sparse
in R� An �m�dense� join attribute value v is de�ned
to be very m�dense in R if multR
v� � �n lgn�m� A
tuple in a relation R is de�ned to be m�sparse� m�dense�
very m�dense if its join attribute value v is m�sparse�
m�dense� very m�dense� respectively� in R�

Since we use the same m throughout this section� we
will subsequently refer to tuples and values as simply
sparse� dense� and very dense�
In the full paper� we present the complete analysis

of our bifocal sampling algorithm� showing that the
algorithm estimates the join size to within an error
factor close to � with probability at least 
� 
�n�� for
any prespeci�ed constant �� In what follows� we provide
a sketch of this analysis� for the case where � � 
�
The �rst estimation procedure� Dense Dense Esti�

mation� is used to account for all dense�dense SubJoins�
A sampling algorithm of type t cross is used� with the
novelty that values that appear less than 
 times in
either sample are ignored� It is shown that the number
of pairs in each dense�dense SubJoin is estimated within
a small error factor with high probability� Furthermore�
the total 
scaled� contributions of other SubJoins to the
total 
scaled� estimate is bounded above by a small
constant times the total sum of their sizes� with high

Sparse Any Estimation
R�S� n�m��

!! n is the number of tuples in each relation�
!! m� is the sample size for each relation�

A� �� ��
Select m� random tuples from S� and
let S� be the resulting random sample�

!! If determining multR
v� is slow for dense v then
!! use probabilistic elimination to suppress dense v�
if avoid dense mult then begin
Select m� random tuples from R� and
let R� be the resulting random sample�

For each join attribute value v appearing in R� do
Remove from S� all tuples with value v�

end�

!! Compute the estimate on the 
remaining� values
!! that are sparse in R�
For each tuple � in S� do begin
Determine the number� x� of tuples in R
that join with � �

if x � n�m� then A� �� A�  x�
end�
�As �� nA��m��

return �As�

Figure �� The procedure for estimating the number of
pairs in either sparse�sparse or sparse�dense SubJoins�
Two variants of the procedure are shown� If determining
multR
v� is slow for dense v then the avoid dense mult
�ag should be set so as to probabilistically suppress dense
v prior to any determination of multR
v��

probability�

The second estimation procedure� Sparse Any Esti�
mation� is used to account for all sparse�sparse and
sparse�dense SubJoins� A sampling algorithm of type
t index is used� with the novelty that dense tuples in
R 
and possibly other tuples in R� are ignored� It is
shown that the number of pairs in each such SubJoin
is estimated within a small error factor with high
probability� By repeating this sparse�any procedure for
S � R� we obtain an estimate for dense�sparse SubJoins
in R � S�

The total estimate is obtained by combining the three
estimates� Each SubJoin is guaranteed to be re�ected in
at least one of the three estimates with high probability�
The total estimate is provably within a factor close to �
of the actual join size� with high probability�

The sparse�any estimation procedure determines x 
�
multR
v�� for each join attribute value v appearing in
tuples of S�� The tuple cost for determining multR
v�
is multR
v�� which may be as large as n� For the
weak cost model� which accounts for tuple cost� we

���



would like to avoid determining multR
v� for dense v�

This is not a concern for the strong cost model�� We
introduce a simple probabilistic elimination technique
that neutralizes the e�ect of dense values v on the
tuple cost� This technique can be incorporated into the
algorithm as desired by setting the �avoid dense mult�
�ag� for the weak cost model� the �ag should be set�
while for the strong cost model� the �ag need not be
set�
The probabilistic elimination technique takes a ran�

dom sample R� of R and then eliminates from S� all
tuples in SubJoins that have at least one tuple in R��
Perhaps surprisingly� even though this simple technique
does not actually identify which SubJoins and tuples
ought to be eliminated� the overall elimination is satis�
factory with high con�dence� We select the size� m�� of
R� to satisfy the following three requirements�

�i� With high probability� all tuples whose value is very
dense in R are eliminated�

�ii� Let � be a tuple in S with join attribute value
v such that SubJoin
v� is sparse�sparse or sparse�
dense and not eliminated by R�� The expected
contribution of each such � to the total estimate is
within a small error of multR
v��

�iii� Some dense tuples in Rmight not be eliminated by
R�� Nevertheless� each dense tuple inR has constant
expected contribution to the total tuple cost�

The analysis will show that it su�ces to have the size
m� be

p
n�

Requirement 
i� enables us to assume that the
maximum contribution of a single tuple is bounded
by �n lgn�m� This is helpful both for bounding the
tuple cost of determining multiplicities in the algorithm�
as well as for bounding the tuple cost error using
tail inequalities� Requirement 
ii� guarantees that the
expected total contribution of all sparse�sparse and
sparse�dense SubJoins is within a small error of their
actual total sum of sizes� Requirement 
iii� guarantees
that tuples that are not sparse in R 
but are not
necessarily very dense� would not signi�cantly a�ect the
expected total tuple cost�

��� The dense�dense estimation procedure

The algorithm for estimating the number of pairs in
dense�dense SubJoins is given in Figure ��
Let V be the set of join attribute values� For each

value v � V � let E
v� be the contribution of v to the
total estimate� �Ad� of dense�dense SubJoins�

E
v� �

���
��
� if multR� 
v� � 
 or multS�
v� � 



n�m��� �multR�
v� �multS�
v�
otherwise�

Note that �Ad �
P

v�V E
v� �
Let E
v� � multR
v� � multS
v�� i�e�� E
v� is the

number of pairs in SubJoin
v�� Let Vd be the set of
values v with dense�dense SubJoins� i�e�� multR
v� �
n�m and multS
v� � n�m� Let Ad be the total number
of pairs in dense�dense SubJoins� i�e��Ad �

P
v�Vd

E
v��

Finally� let Ed be the contribution to �Ad from SubJoins
that are indeed dense�dense� i�e�� Ed �

P
v�Vd

E
v��
The following lemma shows that E
v� is a good

estimate for each dense�dense SubJoin
v��

Lemma ��� Let � � � � 
 be an arbitrary constant�
and let c � c
�� be an appropriately selected constant�
Let 
 � 

� ����c lgn� and let m� � cm lgn� Then for
each v � Vd�

Pr 
E
v� � 

� ��E
v�� � 
� 
�n� �

Proof� Let X � multR� 
v� and let Y � multS� 
v��
Both X and Y are binomial random variables� with
parameters 
m��multR
v��n� and 
m��multS
v��n�� re�
spectively� Then�

E 
X� �
m�multR
v�

n
and E 
Y � �

m�multS
v�

n
�

Let �� � ���� Since v � Vd� we have that

E 
X� � c lgn and E 
Y � � c lgn �

Therefore� by Cherno� bounds� for a su�ciently large
c � c
���

Pr 
X � 

� ���E 
X�� � 
� 


�n�
�

Similarly�

Pr 
Y � 

� ���E 
Y �� � 
� 


�n�
�

Therefore� since v � Vd� X � 

 � ���c lgn and
Y � 

 � ���c lgn with probability 
� 
�n�� and hence
E
v� 	 �� Furthermore� since 

  �� 	 

  ���� and


� �� � 

� �����

Pr

�
X � Y � 

� ��

�
cm lgn

n

	�

Ev



� 
� 


n�
�

and hence

Pr 
E
v� � 

� ��Ev� � 
� 


n�
�

We can now conclude that the aggregate estimate
Ed for all dense�dense SubJoins is a good one� for the
parameter settings of Lemma ��
�

Lemma ��� Let � � � � 
 be an arbitrary constant�
Then

Pr 
Ed � 

� ��Ad� � 
� 
�n �

��	



Proof� Since Ad �
P

v�Vd
E
v� and Ed �

P
v�Vd

E
v��
Lemma ��
 implies that

Pr 
Ed � 

� ��Ad�

� Pr 
�v � Vd � E
v� � 

� ��E
v��

� 
� n � 

n�
� 
� 
�n �

In the full paper� we also prove that� with high
probability� the total contribution� �Ad�Ed� of SubJoins
that are not dense�dense to the estimate �Ad is bounded
above by a small constant times the total sum of their
sizes�

P
v�V E
v� �Ad�

Implementation and complexity� Selecting the
random samples takes �m� probes� which by the choice
ofm� in the analysis is O
m lgn� probes� The remaining
steps of the algorithm can be implemented by �rst

semi��sorting the sets R� and S�� these steps involve
no probes� Thus the probe cost as well as the tuple cost
of the algorithm is O
m lgn��

��� The sparse�any estimation procedure

The algorithm for estimating the number of pairs in
either sparse�sparse or sparse�dense SubJoins is given in
Figure �� We analyze the algorithm for m� � m �

p
n�

Let As be the number of pairs in either sparse�sparse
or sparse�dense SubJoins� Algorithm Sparse Any Esti�
mation 
from Figure �� computes �As as an estimate
for As� We denote by �S� the set consisting of the 
re�
maining� values in S� after the 
optional� probabilistic
elimination step� Let E
� � be the contribution of a tu�
ple � in S� � � SubJoin
v�� to the estimate �As� i�e��
�As �

P
��S E
� ��

E
� � �
�

n
m�

�multR
v� if � � �S� � multR
v� �
n
m�

� otherwise�

We �rst consider the accuracy and complexity for the
strong cost model� We then analyze the performance for
the weaker cost model� as a result of the probabilistic
elimination step�

Lemma ��� We have E
 �As� � As� and with high
probability �As � �
As�  O 
n lgn�� Also� the probe
cost is O


p
n��

Proof� 
sketch� If the value of a tuple � � S is
dense in R then E
� � � �� Consider a tuple � �
S� � � SubJoin
v�� such that multR
v� � n�m��
Since Pr
� � �S�� � m��n� we have E 
E
� �� �
multR
v�� and hence E
 �As� � As� Moreover� E
� �
is a random variable taken from domain ��� z�� where
z � 
n�m��

� � n� By Hoe�ding bounds �Hoe����
�As � �
E
 �As�� with probability exp
��
E
 �As�z����
which is high probability if As � �
n lgn�� The probe
cost is easily seen to be O
m��

In analyzing the performance of the sparse�any
algorithm for the weak cost model� denote by C the
total tuple cost� and let nd be the number of tuples
in S whose value is dense in R�

Lemma ��� �probabilistic elimination lemma�
We have As�e � E
 �As� � As� and with high proba�
bility� �As � �
As� O 
n lgn�� Also� the expected tuple
cost� E 
C�� is at most nd�e As�

p
n�

Proof� 
sketch� Consider a tuple � in S� with join
attribute value v� i�e�� � � SubJoin
v��

Pr 
� is not eliminated from S��

� 

�multR
v��n�
m � e��m�n�multR�v� �

assuming 
without loss of generality� that multR
v� �
n�
�� Thus� since Pr 
� � S�� � m�n�

Pr
�
� � �S�

�
� Pr

�
� � �S�j� � S�

�
�Pr 
� � S��

� m

n
� e��m�n�multR�v� �

Therefore� if multR
v� � n�m then

E 
E
� �� � multR
v� � 
n�m� �Pr
�
� � �S�

�
� multR
v� � e��m�n�multR�v� �

But since v is sparse� 
�e � e��m�n�multR�v� � 
 and
therefore multR
v��e � E 
E
� �� � multR
v�� 
Hence
requirement 
ii� follows�� As before� Hoe�ding bounds
can be applied to establish that �As � �
As� with high
probability� as long as As � �
n lgn��

The probe cost is O
m�� as before� The tuple cost isP
multR
v�� where the sum is taken over join attribute

values v appearing in tuples in �S��
Let C
� � be the contribution of a tuple � in S to the

tuple cost� i�e�� C �P��S C
� �� If � with value v is in �S�
then C
� � � multR
v�� otherwise C
� � � �� Therefore�

E 
C
� �� � multR
v� � m
n
� e��m�n�multR�v� �

We consider the tuples � � �S�� based on the den�
sity of their value v in R� If v is very dense then

e��m�n�multR�v� � e��m�n���n lgn�m� � n�� lg e and
therefore E 
C
� �� � m � n�� lg e � n���� lg e� More�
over� by Markov inequality� Pr 
C
� � 	 �� � n���� lg e�
Therefore� the probability that any tuple � � S� that is
very dense in R contributes to the tuple cost is at most
n����� lg e� 
Hence requirement 
i� follows��
If v is dense but not very dense then 
�n �

e��m�n�multR�v� � 
�e and therefore E 
C
� �� � 
�e�

Hence requirement 
iii� follows�� Thus the total
expected contribution to the tuple cost of dense tuples
in R is at most nd�e�

���



Finally� for sparse v recall that e��m�n�multR�v� � 
�
Therefore� E 
C
� �� � multR
v� � 
m�n�� and hence the
total expected contribution to the tuple cost of sparse
tuples in R is 
m�n� �As � As�

p
n�

Lemma ��� and Lemma ��� justify the use of a sanity
bound U � n lgn�

Corollary ��� If �As � n lgn then with high probability
As � �
 �As�� Otherwise� with high probability As �
O
n lgn��

� Experimental results

In this section� we report on preliminary experimental
comparisons between our bifocal sampling algorithm�
the generic adaptive sampling algorithm 
described in
Section ��
�� and the generic cross sampling algorithm

described in Section ����� In order to demonstrate
how bifocal sampling overcomes problems with previous
algorithms� we present experimental results for the
scenario that was considered as �hard� by Haas and
Swami �HS���� and which is described in Section 
� of
an equi�join R �� S for little�skewed R and highly�
skewed S� While the adaptive sampling algorithm and
the cross sampling algorithm obtain rather poor results�
as is anticipated� the bifocal sampling algorithm obtains
excellent results�

We constrained all three algorithms to select the same
number of samples from the database and then compute
their respective estimates for the size of the join� The
percentage error of each of the estimates was then
computed by actually computing the join and counting
the number of tuples in the output� Speci�cally� the
percentage error is computed as the absolute value
of the di�erence between the estimate and the actual
join size� divided by the estimate� Since various
implementations of adaptive sampling algorithms di�er
primarily in their termination criteria� the results are
relevant to all those implementations� In particular�
previous adaptive sampling algorithms either terminate
with fewer samples� and hence obtain no better results
than the generic algorithm� or terminate with more
samples� and hence run slower than our algorithm�
The size of the equi�join of two relations depends

only on the values of the join attribute in each of
the input relations� It is therefore su�cient for the
purpose of comparing the accuracy of di�erent join�
size estimation algorithms to have single�column input
relations� Accordingly� all the input relations that we
used consisted of a single integer�valued join attribute J �
We consider the equi�join R�J � S�J for a range of

relations R and S� Each of the input relations in our ex�
periments consisted of N � 
��� ��� tuples� The values
of R�J were selected according to a uniform distribution
over ��� ������� The values of S�J were selected accord�
ing to the distribution function zipf

����� ��� where �

was varied from ��� to ��� in increments of ���� These
experiments address Haas and Swami�s �hard� scenario�

The results are displayed in Figure �� It is apparent
that the accuracy of the adaptive sampling algorithm
wildly �uctuates� For many values of �� it grossly
underestimates the actual join size� resulting in a very
high error 
displayed as an error of ����� but is in
most cases an in�nite error�� The performance of the
cross sampling algorithm is better� yet it also grossly
underestimates the actual join size for more than half
of the values of �� and only in a few cases does it
provide an error smaller than ���� In contrast� the
estimates obtained by using the new bifocal sampling
algorithm are always quite accurate� with errors mostly
in the range of ���� 
except for one case of 	��� they
are always more accurate than the estimates of both
the adaptive sampling algorithm and the cross sampling
algorithm�

The analysis in Section � shows that our bifocal sam�
pling algorithm is guaranteed to always give good esti�
mates 
within a factor close to �� with high probability�
when the join size is �
n lgn�� This was indeed demon�
strated in our experiments� with an indication that the
actual relative error may be considerably smaller�
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