Lightweight Security Primitives for E-Commerce

Yossi Matias

Alain Mayer

Avi Silberschatz

Bell Laboratories, Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 0797/

{matias,alain,avi} @bell-labs.com

Abstract

Emerging applications in electronic commerce of-
ten involve very low-cost transactions, which ex-
ecute in the context of ongoing, extended client-
server relationships. For example, constder a web-
site (server) which offers repeated authenticated
personalized stock quotes to each of its subscribers
(clients). The value of a single transaction (e.yg., de-
livery of a web-page with a customized set of quotes)
does not warrant the cost of executing a handshake
and key distribution protocol. Also, a client might
not always use the same machine during such an
extended relationship (e.g., « PC at home, a laptop
on a trip). Typical transport/session-layer security
mechanisms such as SSL and S-HTTP either require
handshake/key distribution for each i{ransaction or
do not support client mobility.

We propose a new security framework for extended
relationships between clients and servers, based on
persistent shared keys. We arque that this is a pre-
ferred model for inerpensive transactions executing
within extended relationships. Qur main contri-
bution is the design and tmplementation of a set
of lightweight application-layer primitives, for (1)
generating and maintaining persistent shared keys
without requiring a client to store any informa-
tion between transactions and (2) securing a wide
range of web-transactions (e.g., subscription, au-
thenticated and/or private delivery of information,
receipts) with adequate computational cost. Our
protocols require public key infrastructure only for
servers/vendors, and ils usage only once per client
(upon first interaction).

1 Introduction
Considerable attention has been given recently to

transpori/session-layer security mechanisms. There
are several proposals and implementations available,

including SSL [SSL96], S-HTTP [SHTTP95], and
SSH [SSH96]. Offering security mechanisms at the
transport/session layer has the advantage of obtain-
ing universal security primitives which have wide
applicability (e.g., SSL or SSH can be used in con-
junction with any TCP connection). However, uni-
versality in the proposed schemes comes at the ex-
pense of lacking flexibility with respect to complex-
ity and cost of securing transactions, which vary in
terms of their monetary value. In particular, web-
transactions within the same client-server relation-
ship but executing at different times, either appear
unrelated to the transport layer or require the client
to store data in secure memory, thus putting ad-
ditional responsibility on the client and preventing
mobility.

Emerging applications in electronic commerce often
involve very low-cost transactions, which execute in
the context of an ongoing, extended client-server
relationship. Rivest predicts in [R97] the increase
of low-cost transactions and the need for “low-cost
crypto”. For such transactions, general-purpose se-
curity mechanisms tend to be prohibitively expen-
sive. In particular, both SSL and S-HTTP involve
handshake/key-distribution that consist of a costly
public key cryptography. We argue that a frame-
work based on a shared key between a client and
a server, persistent for the whole duration of a re-
lationship, 1s an attractive choice. From a tech-
nical point of view, the main challenge is in ob-
taining low-cost establishment and maintenance of
the persistent shared keys, in a transparent and
mobility-enabling fashion for clients. We propose
a novel mechanism for persistent, shared key gen-
eration and management on the client-side. We
then leverage this approach to obtain basic security
primitives well suited for securing low-cost trans-
actions which repeatedly execute between a client
and a server. Such transactions may span a vari-
ety of applications, from two party tasks to elab-
orated micro-payment schemes involving banks, ar-

biters, vendor, clients, and more. In particular, con-
crete applications may include (1) delivery of per-
sonalized information by a vendor (via web-pages)
which ensures privacy, authenticity, and integrity
for each client (e.g., authentication of personalized
stock quotes which a vendor sends to a client on
a daily/hourly basis); (2) support for secure sub-
scription of such services; (3) delivery of receipts
to a client which ensures authenticity and integrity,
provable to a third party; and (4) support and in-
tegration for (micro)payments, such as SET [SET]
and PayWord [RS96].

Our approach has the following noteworthy techni-
cal aspects:

1. Client-side shared key computation: We pro-
pose to use a client-proxy on the client side
which transparently computes modularly secure
shared keys on the client’s behalf using the so-
called Janus function (see Section 2). This
computation is based on the server identity, the
client identity, and a single secret provided by
the client.

2. Client-side shared key management: We allow
shared keys to persist between browsing ses-
sions of a client. However, a client need not
store any shared keys, or any other informa-
tion. Rather, the (persistent) shared key is re-
computed by the client-proxy transparently on
demand.

3. Server-side shared key management: The
server accepts and stores a client’s shared key
on their first interaction. This is easily inte-
grated into client’s records that are typically
stored at a server (such records often include
usernames, preferences, etc).

4. Modular structure: Modularity allows us to ad-
just the complexity and cost of securing a trans-
action to the importance and monetary value of
the transaction.

The above properties imply that a client need not
rely on data stored in memory, and is readily suit-
able for mobility. The client-proxy that operates
on behalf of the client does not maintain any in-
formation about the client. Therefore, the client
can use various instances of the client-proxy inter-
changeably. A client can have a copy of the client-
proxy on her PC at the office and another copy on
her laptop. She can then transparently continue in-
teracting with a server when switching from her PC
to her laptop. When on the road, the client may

be able to use a client-proxy implemented on an
Internet-kiosk placed at the airport, and later use
one implemented at an Internet station placed in
the hotel.

The client interface is simple. Upon first interac-
tion with the client-proxy (e.g., when starting to
run a browser), she provides her identity (e.g., e-
mail address) and a secret; she can then reconnect
transparently to any server with appropriate session
information. Our scheme does not require a client
to obtain and maintain her own public and private
keys (certificates). The client information (identity,
secret) can alternatively be stored on a smart-card,
or in a secure file, and be submitted to the client-
proxy automatically on the client’s behalf. The pro-
posed scheme further gains computational efficiency
via minimizing the use of public-key cryptography.

Organization of the Paper: Section 2 presents
the client-side generation and management of secret
shared keys. In Section 3 we introduce our key es-
tablishments and data delivery protocols based on
the shared key of Section 2. Section 4 extends our
protocols to avoid exposure of the shared key. In
Section 5 we show how receipts can be generated to
help in potential conflicts between clients and ven-
dors. Finally, we discuss implementation issues in
Section 6.

2 Client-side
management

key generation and

In our scheme, it is up to the client to compute a dif-
ferent secure persistent shared key for each vendor
(server) she interacts with. She submits to the ven-
dor an “identity” (e.g., email address) and a shared
key, which are to be used by both parties during
their subsequent interactions. The shared key 1s
private and should be protected during communi-
cation; hence, before submitting the shared key, the
client uses the vendor’s public key to encrypt it.
Public-key encryption is used only during the first
interaction with a vendor. After this first exchange,
both the client and the vendor can use the secret
shared key in their subsequent interactions to au-
thenticate and encrypt data with low computational
cost.

An important aspect of this scheme is the method by
which a client computes her shared keys. A shared
key is computed as a function of three arguments:
the client’s unique identity (e.g., e-mail address), a
(single) secret provided by the client, and the iden-
tity of the vendor (expressed, e.g., as as the domain

name in the vendor’s URL). The function computes
a string with the following properties (with respect
to an adversary with polynomially bounded compu-
tational power):

1. Secrecy: An adversary cannot do better than
guessing the resulting shared key with negligi-
ble probability.

2. Consistency: the computed shared key for a
given vendor is consistent.

3. Efficiency: the computation of the shared key
is efficient.

4. Modular security: Knowing some of a client’s
shared keys cannot help an adversary in guess-
ing the client’s shared key for a different vendor.

5. Impersonation resistance: given a vendor and
a client, the adversary cannot do better than
guessing another client identity and a corre-
sponding secret, such that the resulting shared
keys are identical.

We propose that the shared key computation on
the client’s behalf is done transparently by a client-
proxy. The proxy may be located on the client’s
machine. Alternatively, it can be located on a dif-
ferent machine with which the client has a trusted
communication (e.g., a server within an intranet).
Upon first interaction of the client with the client-
proxy (e.g., when starting a browser) the client pro-
vides a single secret; which the proxy uses thereafter
to compute a shared key for each vendor the client
interacts with during that browsing session.

For the rest of the paper, we consider the client
to be the combination of user, the user-interface
(e.g., browser), possibly a user-assisting program
(e.g., plug-ins to the browser), and the client-proxy.
Whenever we say that a client computes or executes
an operation, we mean that the computation or ex-
ecution 1s done by the client-proxy. Whenever we
say the client supplies input (e.g., id or secret), we
mean that the user provides the input through the
user interface, or that a user-assisting program does
it on the user’s behalf.

Design of the key generating function To
meet the desired properties listed above, we pro-
pose to use the Janus function J, as defined
in [BGGMMO97] in the context of personalized in-
teraction. The design of the function J is based
on pseudo-random functions and collision-resistant
hash functions (see [GGM86] and [MOV9IT], respec-

tively). Let h be a collision-resistant hash-function

and let fi be a pseudo-random function chosen from
a pseudo-random function ensemble F; by using k
as a seed. Let || denote concatenation and @ de-
note exclusive or. Let ¢dc denote the identity of the
client and let idy denote the identity of the vendor.
Finally, let sc denote the secret of the client, for
which we assume for simplicity sc = (s&||s%). The
Janus function J 1s defined as:

j(idc, idv, Sc) =
h(fsn, Gdv))[1(fo2,(fsr, (idv)) @ idc)

In [BGGMMO97] it is shown that the function J as
defined above satisfies the desired properties for a
client password (weak authentication). The qual-
ity of a good (machine-generated, non-mnemonic)
password and a secret shared key as required here
are essentially the same. The length of a shared
key 1s typically in the range of 56 — 128 bits, which
coincides with the output length of a typical hash-
function.

A vendor stores each client’s 1dentity and the shared
key (possibly along with some other data, such as
a client’s preferences) on the very first interaction
with a client, so that it can retrieve the correspond-
ing key upon being presented with a client’s identity
on a repeat visit.

3 Basic protocols

In this section, we describe the basic protocols used
for establishing persistent shared keys, and for sub-
sequent interaction between a client and a server.
We also present a model and correctness arguments
for our protocols. At the same time, we caution
that a careful development of model and correct-
ness proofs (as shown in [BR93] for a simpler, well-
known protocol) is beyond the scope of this paper.
First, we present the Simple Key Fstablishment Pro-
tocol (SKEP) for establishing relationship between
a client and a server, by having the client provide
the server with the persistent shared key and some
other identifying or payment related information.
Then we present the Simple Data Delivery Protocol
(SDDP) for the subsequent interactions involving
data delivery, and the more robust FErtended Data
Delivery Protocol (EDDP).

In the following, let Egx(x) denote the encryp-
tion of a plaintext x with a public-key K, and
let Sp(x) denote the signature of = with a pri-
vate key k. We assume that a client can obtain

each vendor’s certified public key, motivated by
the emerging public-key infrastructure (see, e.g.,
“VeriSign.com”). Let Encg(x) be a symmetric en-
cryption of z with the shared key K, let M ACK
be a message authentication scheme with a shared
key K. Consider two parties, Alice and Bob, that
have a shared secret key K = (Kp, Ks). Let
EMACK(x) = (Encg,(2)||MACK,(Encg,(x))),
which can be used in a basic secure communication
step between Alice and Bob, that enables delivery
of an encrypted, authenticated message .

3.1 Model

In order to interact, a vendor V and a client C' form
a “session” s, during which a single shared key is
first established and then used. Let the two threads
¢ v and IIy, ~ be the entities involved In session s
on the client and, resp., vendor side.
We assume the presence of a polynomially bounded
adversary E, which is in charge of the communica-
tion (e.g., sending, deleting, reordering of messages)
and can execute the following actions:

o get-private-key(x): if © = V, then E obtains
SKy. If # = C, then F obtains s¢

o get-shared-key(s): E obtains K of s.

o compute-EMACK (x): F gets the result of com-
puting EM ACk ().

Definition 1 A vendor (client) z is corrupted, if
a successful get-private-key(z) was executed; a ses-
ston s is opened, if either a successful get-shared-
key(s) was executed or either participant is cor-
rupted.

3.2 Simple Key Establishment Protocol
(SKEP)

The SKEP protocol (illustrated in Fig. 1) is used
when a client C' requests to register (or subscribe)
at a vendor V for the first time in order to subscribe.
First, the client computes the appropriate persistent
shared key K = (K1, Ka) as K = J(id¢, sc, idy).
The component K; will be used for encryption,
and a component K5 will be used for authentica-
tion. The subsequent message of C' to the vendor
V' contains the persistent shared key K, encrypted
via the the vendor public key PKy, and a random
nonce Re: (Epr,(K)||R¢). The vendor V then
decrypts the first part of the message to obtain K.
V replies with EM ACk(R¢||Rv), where Ry is its

own random nonce. C decrypts the message, verifies

the MAC and its own random nonce; it then sends
the message EM AC kg (Rv||idc]||Ic), where I con-
tains possible subscription data, such as start-date
or expiration date, and possible payment informa-
tion, such as credit-card data, SET [SET] payment,
data or “commitments” used in electronic (micro-
Jpayments (e.g., as in PayWord [RS96]). V decrypts
the message, verifies the MAC, and compares Ry to
what it sent earlier; it stores the data id- and I in
C’s record.

Q
<

EPKV (([(1, [(2>), Re

EMAC k(Rc||Rv)

EMACK(Rv||idc||Ic)

Figure 1: Simple Key Establishment Protocol

(SKEP)

Desirable properties of a key establishment protocol
include Key Authentication, Entity Authentication,
and Key Confirmation, which we now define in turn:

Definition 2 Key Authentication: For an un-
opened session s, F can only obtain non-negligible
mformation on K of s.

Matching Conversation: A sequence of messages ez-
changed among 17, , and 117, ,, such that each mes-
sage received by Héc,v correéponds to the last mes-
sage sent by II5, - and vice versa.

Entity Authentication: For an unopened session s,
Iz v and Iy accept the outcome of the protocol
without s having a matching conversation only with
negligible probability.

Key Confirmation: For an unopened session s,
¢y and 1E y accept the outcome of the proto-
col without K being known to other side only with
negligible probability.

We note that the above definition of Entity Authen-
tication is essentially borrowed from [BR93], where
a more in-depth discussion and model can be found.

Lemma 3 SKEP provides Key Authentication,
Entity Authentication, and Key Confirmation.

Proof: For an unopened session s, adversary F
can only obtain Epg,(K). Assuming that the
public-key encryption system employed by SKEP
is sound, this implies Key Authentication. C'

accepts the message of V, only if she can ver-
ify MACg2(Rc...). Given that SKEP assures
Key Authentication and that R¢ is a random
value of ”sufficient” length, E can neither com-
pute M ACk2(R¢ ...) nor guess R ahead of time
(except with negligible probability) and execute
compute-EMAC. Similarly, V' accepts the message
of C, only if he can verify MACk2(Ry ...). En-
tity Authentication follows. If ' successfully ver-
ifies MACEk2(R¢ . ..) and decrypts Encg, (Re .. .),
and given Entity Authentication, Key Confirmation
follows. ad
Note that we define entity authentication, in the
sense that a client can be assured that it consis-
tently interacts with vendor, and vice versa. In the
SKEP protocol, identity information is obtained via
a client using a vendor’s certified public key and
a vendor using a client’s payment data, such as
credit card or SET data. This is consistent with
today’s business model of popular web-sites. For
instance, on-line subscriptions to the Wall Street
Journal and to ESPN Sportzone, and on-line book
purchases at amazon.com require only this “weak
authentication” from their clients.

3.2.1 Non-repudiation Key Exchange Pro-

tocol

SKEP is lacking the non-repudiation property, 1.e.,
the possibility for a client to obtain a receipt, prov-
able to a third party, for its subscription. SKEP
can be extended by one more message exchange to
obtain non-repudiation by having the vendor V sign
the subscription data of the client; see Fig. 2.

¢ v
EncKl (SSI(V(idC||IC‘))
<

Figure 2: Extension for SKEP

3.3 Simple Data

(SDDP)

Delivery Protocol

The SDDP protocol (illustrated in Fig. 3) is used
when a client C' requests from a vendor V some
information De v (e.g., a personalized web-page).
The client sends the request, R(D¢ v), along with
tde and R, where R 1s a random nonce, where the
request and the nonce are encrypted and MAC’d. If
V finds id¢’s key K and I assures validity then V'

replies with EM ACk(R¢||De,v). The client then
decrypts the message, checks that R¢ is unchanged,
and verifies the MAC.

C 14
(1de||[EMACK (Re||R(De,v)))
.
EMACk(Rc||Dev)
<

Figure 3: Simple Data Delivery Protocol (SDDP)

Desirable properties of a data delivery protocol
include Data Privacy, Entity Authentication, and
Data Integrity, which we now define in turn:

Definition 4 Data Privacy: For an unopened ses-
sion s, F cannot obtain non-negligible information
on DC,V~

Entity Authentication: see Definition 2.

Data Integrity: For an unopened session s, E can-
not modify Dc v, undetectable to C with a non-
negligible probability. This also implies that C' s
assured that the received data 1s indeed the answer
to her request.

We mention without proof that SDDP fulfills Data
Privacy, Entity Authentication for the client and
Data Integrity. (The proofs can be derived from
the proofs we give in the subsequent section for the
EDDP protocol.) However, SDDP provides no En-
tity Authentication to the vendor. As a consequence
E can prompt the vendor via impersonation attacks
to send data (even though it might not be readable
by E). This might be a problem in terms of chosen
message and denial of service attacks. The variant
in the next section is more robust in that sense.

3.4 Extended Data Delivery Protocol
(EDDP)

The EDDP protocol (illustrated in Fig. 4) requires
the client to demonstrate her possession of the ap-
propriate shared key. A request of a client C' from
a vendor V for information D¢ v (e.g., accessing a
personalized web-page) is implemented as follows.
The client first sends her identity ido. If V' ac-
cepts idc as a client and Io in the stored record
assures validity then V replies with Ry, a random
nonce. The client now issues her specific request by
replying with EM ACk(R¢||Rv||R(Dec,v)), where
R¢ is the client’s random nonce. V checks that Ry
is unchanged and verifies the MAC; it replies with

EMACk(Rc||Dev). The client checks that Re is
unchanged and verifies the MAC.

Q
<

wdc

<l

EMACk(Re||Rv||R(Dc,v))

EMACK(Rc||De,v)

Figure 4: Extended Data Delivery Protocol

(EDDP)

Lemma 5 EDDP provides Data Privacy, mutual
Entity Authentication, and Data Integrity.

Proof: For an unopened session s, &/ can only
obtain the corresponding encryption Encg, (.) of ei-
ther R(D¢v) or Do v. Furthermore, these values
are prefixed with a random value (R¢), which (for
suitable encryption algorithms) makes E executing
compute-EMAC in advance to verify guesses (espe-
cially on R(D¢ v), a value in a small range) useful
only with negligible probability. Thus, Data Pri-
vacy follows. Mutual Entity Authentication follows
by similar arguments as used in proof of Lemma 3.
If C successfully verifies M ACk,(R¢||D), the Data
Integrity is implied, since E cannot compute this
MAC, nor guess E¢ in advance to make use of
compute-EMAC with a non-negligible probability.
The same argument holds for V. i
EDDP provides Entity Authentication to the ven-
dor, before he sends any data and hence gives bet-
ter protection against chosen plaintext and denial
of service attacks. Furthermore, the exposure of
the shared key is better protected, since only the
corresponding client can prompt the vendor to use
it for encryption/authentication. We note that the
state of art in modeling and proof techniques (e.g.,
see [BR93]) does not consider key exposure.

3.5 Discussion

The different applicability of the given protocol-
variants can be illustrated by the following exam-
ples:

FEzample 1. Free Personalized Stock Quotes.

tde 18 the client’s email address and Io is empty.
V is a web-site which provides stock quotes. D¢ v

is a personalized web-page containing a set of stock
quotes for client C'. SKEP and SDDP are sufficient.
FEzample 2. Subscription to Personalized Stock
Quotes.

tde in Step 1 is the client’s email address and I
contains her credit card data and the duration of
the subscription. Non-repudiation key exchange is
preferable in this case, as it allows a client to use the
vendor’s signature as a receipt. EDDP is preferable,
as the service is restricted to paying users and thus
the vendor would like to provide adequate perfor-
mance.

Computational cost and memory require-
ment of the protocols: The vendor has to sign
a single message per client (none with SKEP). All
subsequent communication is done via symmetric
encryption/MAC. The client has to encrypt (public-
key) a single message per vendor upon first interac-
tion, and only MAC in subsequent interactions with
that vendor. In addition, the client has to compute
one Janus function per browsing-session and vendor.
The client does not need any longterm memory. The
vendor needs to store a persistent shared key K for
each of its clients. Typically, a vendor stores some
information about each of its client in any case, so
this does not put an extra burden on the vendor.

4 Avoiding exposure of the persis-
tent shared keys

In this section, we show how to extend the protocols
presented in Section 3 so that (1) the exposure of the
shared key K 1s minimized and hence cryptanalysis
is made more difficult and (2) reuse of compromised
keys is prevented.

We consider the notion of a session-key x, which
is used in lieu of the shared key K. The session
key is only used for a single instance of SDDP (or
EDDP). The session-key is updated by the following
zero-message method, originally proposed for SKIP
(see [AP95]): ky = h(K,n), where h is a pseudo-
random like function such as MD5 (see [R92]) and
n 1s a strictly monotonically increasing counter.
Should a session-key k,, ever be compromised (for
whatever reason) then it cannot be mis-used by an
adversary to either decrypt past data transmissions
or to forge data in future transmissions.

Note that the above method has the disadvantage of
introducing “state” to be kept on both the client and
the vendor, namely the counter n. In order to miti-
gate this drawback, we suggest that the counter be
replaced by a strictly monotonic increasing function

of the time (standard GMT), with a pre-specified
granularity (e.g., day, hour, or minute) that should
depend on the accuracy of the time of the client and
server. One complication in this approach is that
even with high accuracy, there may be discrepancy
between two parties (e.g., around midnight when
the unit is a day). To alleviate possible conflicts, we
let the client determine the time function and notify
the server during a first message. The server will ac-
cept the time function received from the client if it
i1s the same as computed locally, or if it is within
a (pre-determined) reasonable range from its com-
puted time function (e.g., within an hour).

5 Extending the data delivery proto-
cols to enable receipts

Consider the situation, where a client complains
that she paid for a subscription of stock quotes,
but never got information from the vendor. A third
party cannot decide if indeed the vendor is at fault.
We propose to adapt a technique used in the micro-
payment protocol “PayWord” (see [RS96]) to obtain
the notion of receipts.

Assume for example that a subscription is for a
month and that it entitles a client C' to obtain stock
quotes once a day. C' chooses at random a value r
and sets wsy = r and w; = h(w;41) for a suitable
one-way hash function A and for 0 < < 30. C in-
cludes wq in Io. Using non-repudiation SKEP gives
the client a signature of V on wqy. C confirms the
receipt of data (e.g., successful access of her person-
alized web-page) by sending back w1, ws, etc. V can
test w;_1 = h(7) and only if successful send data the
next time. The ¢th time C' acknowledges the receipt
by sending w; and V' checks that w;—1 = h(w;). If
at any time V’s check is not successful, V' will stop
the session with C' and possibly refund C' for the
rest of the subscription (via some verifiable payment
scheme). This option is clearly not in the interest
of a vendor, and thus it is unlikely that a vendor
will wrongfully claim that he did not get a correct
acknowledgment from the client.

The vendor can present w; as proof that he deliv-
ered at least ¢ data items to client C'. Client C'
can present wy signed by the vendor as proof that
a vendor agreed on a particular chain of receipts.
Now if a client rightfully claims that she neither got
the information she subscribed to nor any refund
from the vendor, then the vendor cannot claim (1)
that he did deliver the information, since he cannot
compute w; or (2) a different chain of receipts (since
the client has his signature on the correct chain) or

(3) that he paid a refund. If, on the other hand,
a client wrongfully claimed that she was cheated,
then either (1) she cannot show the vendor’s signa-
ture on an altered chain, (2) the vendor can show
w; on the correct chain (3) or he can prove to have
paid a refund.

6 Implementation

Almost all cryptographic methods used in our pro-
posed framework are available in standard crypto-
graphic libraries. The only exception is the function
J, which has been implemented within a web-proxy,
as part of the Lucent Personalized Web Assistant
(LPWA, see [GGMMO97]). LPWA is being used by
the general public since June 1997 and has been
commended on its performance.

The LPWA software also forms the starting point
for our first (and currently ongoing) implementa-
tion of the protocols presented in this paper. The
protocols on the client-side are realized by a web-
proxy, just as in LPWA. The client identifies her-
self to the proxy via proxy-authenticate. The web-
proxy implements the Janus-function and embeds
the client-side protocols into the client’s HTTP-
requests before forwarding them to the server. In
line with our lightweight approach, HTTP head-
ers are authenticated, but never encrypted. Care
is taken that the sever can easily retrieve (and
verify) the client’s identity. The protocols on the
server-side are realized via CGI (and FastCGI, see
http://www.fastcgi.com/) scripts written in C. The
goal of our first implementation is to obtain perfor-
mance figures on the server-side to shed light on at
least the following two issues: (1) Absolute measures
of the cryptographic overhead and (2) the crypto-
graphic overhead relative to minimal CGl-scripts
(e.g., “Hello World” script) and scripts used in ac-
tual servers.

Another interesting direction is to explore ways to
integrate our client-side key management scheme
with SSL. This potentially yields a scheme which
works works with current Web servers, but allows
client mobility and requires no secure client-side
long-term memory.

Acknowledgments
We thank Daniel Bleichenbacher for helpful discus-

sions on secure protocol design and David M. Kristol
and Eran Gabber for advice on software design.

References

[AP95] A. Aziz and M. Patterson, Design and Im-
plementation of SKIP (Simple Key Manage-
ment for Internet Protocols), In INET’ 95 con-
ference.

[BGGMM97] D. Bleichenbacher, E. Gabber, P.
Gibbons, Y. Matias, A. Mayer, A Client-
stde Cryptographic Engine for Secure Relation-
ships with Multiple Servers, Bell Labs Tech-
nical Memorandum 1997, available at URL

wuw.bell-labs.com/projects/lpwa/papers.html.

[BRI3] M. Bellare, P. Rogaway, Entily Authentica-
tion and Key Distribution, Crypto’93 Proceed-
ings, Springer-Verlag.

[GGMB8E] O. Goldreich, S. Goldwasser, S. Micali,
How to construct random functions, J. of the

ACM, 33(4), 1986, pp 210 - 217.

[GGMMO7] E. Gabber, P. Gibbons, Y. Matias,
A. Mayer, How to Make Personalized Web
Browsing Simple, Secure, and Anonymous,
Proc. of Financial Cryptography’97, Springer-
Verlag, LNCS 1318. Also available at URL

wuw.bell-labs.com/projects/lpwa/papers.html.

[MOVI7] A. Menezes, P. van Oorschot, S. Van-
stone, Handbook of Applied Cryptography, CRC
Press, 1997.

[R92] R. Rivest, The MD§ Message Digest Algo-
rithm, Internet-RFC 1321, April 1992.

[R97] R. Rivest, Perspectives on Financial Cryp-
tography (Invited Lecture), Proc. of Finan-
cial Cryptography’97, Springer-Verlag, LNCS
1318.

[RS96] R. Rivest and A. Shamir, PayWord and Mi-
croMint: Two simple micropayment schemes,
4th Cambridge Workshop on Security Proto-
cols, 1996.

[SET] SET: SECURE ELECTRONIC TRANSACTION
Specification.

See, e.g., at URL http://www.visa.com/cgi-
bin/vee/sf/set /intro.html?24-0.

[SHTTP95] E. Rescorla and A. Schiffman The Se-
cure HyperText Transfer Protocol, Internet-
Draft (draft-ietf-wts-shttp-00.txt), July 1995.

[SSH96] T. Ylonen, SSH — Secure Login Connec-
tions over the Internet, USENIX Workshop on
Security, 1996

[SSL96] P. Karlton, A. Freier, and P. Kocher, The
SSL Protocol, 3.0, Internet Draft, March 1996.

