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Abstract

The focus of this paper is on the charac�
terization of the skewness of an attribute�
value distribution and on the extrapolations
for interesting parameters� More speci�cally�
given a vector with the highest h multiplicities
�m � �m��m�� ����mh�� and some frequency
moments Fq �

P
mq

i � �e�g�� q � �� ��� we pro�
vide e�ective schemes for obtaining estimates
about either its statistics or subsets�supersets
of the relation�

We assume an ����� law� and speci�cally� a
p��� � p� law� This law gives a distribution
which is commonly known in the fractals lit�
erature as �multifractal�� We show how to
estimate p from the given information ��rst
few multiplicities� and a few moments�� and
present the results of our experimentations
on real data� Our results demonstrate that
schemes based on our multifractal assumption
consistently outperform those schemes based
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on the uniformity assumption� which are com�
monly used in current DBMSs� Moreover� our
schemes can be used to provide estimates for
supersets of a relation� which the uniformity
assumption based schemes can not not provide
at all�

� Introduction

The goal of this paper is to estimate several mea�
sures for a distribution of attribute values� given the
�standard� information that commercial RDBMSs keep
about the distributions� Typically ���� the RDBMSs
maintain several statistics regarding the attribute val�
ues� These include the total number of records N for
a relation and the total number of distinct values F�
for a given attribute� Other statistics considered re�
cently ���� are the high�biased histogram �that is� the
�rst few most common values� along with their mul�
tiplicity � occurrence frequency�� and the size of the
self�join� also denoted as the second frequency moment
F�� Very recent works ��� �� �� have suggested e�cient�
on�line probabilistic methods to keep track of the high�
end histograms� as well as the self�join size and other
frequency moments Fq of the distribution�

This is typically the information that we keep track
of� in order to estimate selectivities for query opti�
mization� For the attribute values that we have no
information about� the typical assumption is the uni�
formity assumption ���� In this work� we propose an
alternative� more realistic assumption� and we show
that it can help us model multiplicity distributions in
a more accurate way� and therefore to provide better
estimates� as well as to allow extrapolations for subsets
or supersets of the relation�

Sample scenarios and applications are listed next�
For concreteness� consider a relation of sales�product�
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name� customer�id� amount�spent�� Also assume that
we keep the high�end histograms for product�name�
and� of course the total number of distinct products
F� and the total number of sales records N � Then� we
have the following classes of queries of interest


� Estimates for subsets	 Given the above infor�
mation� focus on sales of ���� and above� and es�
timate the number of distinct products involved
in such sales

� Median and percentiles	 How many �distinct�
products account for 
�� of the sales or ��� of
the sales 

� Extrapolations for supersets	 Suppose that
the above relation concerns the domestic sales
only� what is our best estimate for the number
of distinct products for the international sales�
when we only know the total number of sales
Ninternational What is our best estimate for the
total amount of the international sales 

� Self
joins selectivity estimation	 What is our
best estimate for the moments Fq of the distribu�
tion Recall that the q�th moment corresponds to
the cardinality of q successive joins of the relation
with itself�

� Spatial databases	 Consider a geographic
database� with the schema
 cities� lattitude�
longtitude� name�� consider a multi�dimensional
histogram� which stores the count of cities in each
grid�cell� the goal is to estimate the selectivity of
spatial queries� given the above histogram� For
example� a spatial�join query would be �estimate
the number of pairs of cities that are closer than
�	 miles to each other� �	��

For all the above scenarios� we propose to assume
that the unknown multiplicities were derived from a
multifractal distribution� which is a more general case
than the familiar ������ law�� Based on this assump�
tion� we can estimate the parameters of the multifrac�
tal distribution� and subsequently extrapolate� to try
to answer the above classes of questions�

We illustrate the reasons why a multifractal distri�
bution should appear often in real datasets� how it in�
cludes the uniform distribution as a special case� and
how its predictions compare with the predictions of
the uniformity assumption�

Section � gives the survey and background informa�
tion� Section 	 de�nes the problem and the proposed
solution� Section � shows experimental results on real
data� Section 
 lists the conclusions and future re�
search directions�

� Survey � Background

Here we present the state of the art in histogrammeth�
ods� a discussion on previous models for skewed dis�
tributions ��Zipf� and �generalized Zipf� ���� etc�� and
some related methods for estimation using sampling�
we also give an introduction to multifractals�

��� Histograms

DeWitt and Muralikrishna ���� studied multi�
dimensional histograms� Ioannidis and Poosala ����
suggest keeping the frequencies of a few frequent at�
tributes� and making the uniformity assumption for
the rest� These are called �high�biased� histograms�
and seem to be the state of the art in current commer�
cial systems� Ioannidis and Christodoulakis ��� showed
that they have the smallest error among several classes
of histograms for self�joins�

Recent works ��� �� �� have proposed e�cient on�
line algorithms to maintain probabilistically the �rst
few largest multiplicities� as well as a few frequency
moments Fq �

P
mq

i � where the summation is over
all the attribute values i� and mi is the multiplicity of
i� These algorithms make no assumptions about the
distribution of the data�

There are two main ideas that distinguish the
present work from the current state�of�the�art
 The
�rst is the proposal to use the multifractal assumption�
as opposed to the uniformity assumption� The second
idea is to also use information about the frequency
moments� to help us better estimate the parameters of
the multifractal distribution�

To make the discussion more concrete� we need the
following de�nitions


De�nition ��� The q�th frequency moment Fq of a

frequency distribution �m is de�ned as

Fq �
X
i��

mq
i ���

Example ��� For the frequency �� multiplicity� vec�
tor

�m � �
� 	� �� �� �� ������ ���

we have

F� � 
� � 	� � �� � �� � �� � �� � �� � �� � �

F� � 
� � 	� � �� � �� � �� � �� � �� � �� � ��

F� � 
� � 	� � �� � �� � �� � �� � �� � �� � ��

�

Obviously� F� gives the number of distinct val�
ues �or �vocabulary�� borrowing terminology from text

Page �



databases�� F� � N �the total number of records�� and
F� is the size of the self�join of the relation on this at�
tribute� It is computationally more e�cient to group
identical multiplicities together


De�nition ��� Let cm denote the count of distinct
attribute values that have multiplicity m�

Then� the frequency moments can also be computed
as follows


Fq �
X
m��

cmm
q �	�

Example ��� For the multiplicity vector of Exam�
ple ���� we have c� � �� c	 � �� c� � �� c� � � and we
can compute the moments as follows� using Eq� 	


F� � � � 
� � � � 	� � � � �� � � � �� � �

F� � � � 
� � � � 	� � � � �� � � � �� � ��

F� � � � 
� � � � 	� � � � �� � � � �� � ��

�

The above de�nitions of the frequency moments can
be extended for non�integer values of q� and keeping
track of such frequency moments can also be handled
by the probabilistic algorithms of ��� ��� The frequency
moments are useful to characterize the skewness of the
distribution� Note that the q�th frequency moment
gives the size of joining the table q times with itself on
the attribute under discussion�

A typical tool for the study of skewed distributions
is the so�called rank�frequency plot


De�nition ��� The rank�frequency plot of a set of
multiplicities sorted in descending order is the plot of
mr versus the rank r� with both axes logarithmic�

As an example� Figure � shows the rank�
frequency plot for the �rst names from a telephone
book ��VFN� dataset� as described in section ��� It is
interesting to report some speci�c numbers� to high�
light the skewness of this distribution
 there are ����
�
records in total� while the number of distinct �rst
names is surprisingly small
 F��	����� The most com�
mon name appears m����� times� while the vast ma�
jority of names ���	�
 out of the 	���� distinct ones�
appear only once� As we show in the experiments sec�
tion� such skewed distributions are the rule� as opposed
to the exception�

��� Models for non
uniformity

Probably the earliest model for non�uniform distribu�
tions is the Zipf distribution ����� According to this
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Figure �
 rank�frequency plot of �rst names from a
telephone directory

model� the r�th highest multiplicitymr is given by the
formula


mr � C�r� ���

where r stands for the rank�
For � � � we have the Zipf distribution� for � �� �

we have a �generalized Zipf� distribution with param�
eter �� Clearly� the rank�frequency plot of a general�
ized Zipf distribution is a straight line with slope equal
to ���

As Zipf showed experimentally ������ the above dis�
tribution gives a good approximation for the occur�
rence frequencies of words in natural text� including
English as well as several other languages� More specif�
ically� for text� Schroeder ��
� gives the following for�
mula �adapted to our notation�


mr �
N

r ln�����F��
�
�

However� there are two weaknesses of the Zipf �and
generalized Zipf� distributions


� As even Zipf himself noted� real datasets typi�
cally show the �top�concavity�� that neither the
Zipf distribution nor any generalized Zipf distri�
bution can match� Figures ��� show several rank�
frequency plots of real distributions� notice that
the top part of the curve typically tilts horizon�
tally� giving a concave shape to the whole distri�
bution�

� There is no explanation for the Zipf distributions

there is no physical process that would generate a
�plain or generalized� Zipf distribution� Moreover�
these distributions can not help us predict the
chances that a new record will introduce a brand�
new attribute value �as opposed to match one of
the already existing attribute values�� Thus� the
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Zipf distributions can not do extrapolations for
supersets� when given a sample of a relation�

For these reasons� we do not examine the Zipf distri�
bution any further�

��� Sampling

One of the uses of a good model for a skewed distribu�
tion is the ability to do extrapolations from a subset�
As we show later� we can estimate the number of dis�
tinct values F� for a subset or a superset of a given
relation� The state of the art in this area seems to be
the work of Haas et al� ��� which uses two di�erent es�
timators� and� depending on the perceived skewness� it
chooses the appropriate one each time� Previous work
includes ���� whose estimators are superseded by ����

As we show later� our proposed multifractal as�
sumption leads to very good estimates� with estima�
tion error about the same as the best available estima�
tor�

��� Introduction to Multi
fractals

An excellent introduction to multifractals is in �����
Their relationship with the ������ law� is very close�
and seem to appear often
 Schroeder ��
� claim that
several real distributions follow a rule reminiscent of
the ����� rule in databases� For example photon dis�
tributions in physics� or commodities �water� gold� etc�
distributions on earth etc�� follow a rule like �the �rst
half of the region contains a fraction p of the gold�
and so on� recursively� for each sub�region
� Similarly�
�nancial data and salary distributions follow similar
patterns �Pareto�s law of income distribution ������

With the above rule� we assume that the address
space �e
g
� the unit interval� is recursively decom�
posed at k levels� each decomposition halves the in�
put interval in two� Thus� eventually we have �k sub�
intervals �also called buckets� or slots� of length ��k�

We consider the following distribution of probabil�
ities� as illustrated in Figure �
 At the �rst level� the
left half is chosen with probability �� � p�� while the
right one with p� the process continues recursively� for
k levels� Thus� the left half of buckets will host �� p
of the probability mass� the left�most quarter will host
�� � p�� etc� We shall refer to the p and k parame�
ters as the bias and the order of the multifractal
distribution� respectively�

De�nition ��� A distribution of N records is de�
�ned as a binomial multifractal distribution �or sim�
ply multifractal distribution� with parameters �N � p�
k�� if it has �k possible attribute values �buckets��
each attracting records with the bias parameter p� as
described above� In particular� the assignment of a
record to a bucket can be viewed as a probabilistic

�binary� decision tree of depth k� starting at the root�
we choose the right sub�tree with probability p and �of
course� the left sub�tree with probability ��� p�� until
we reach a leaf �� bucket � an attribute value��

Notice that the uniform distribution is a special
case� by setting p � ��
�

Next we derive some formulas which are useful for
the up�coming estimations� Let Ck

a denote the k�
choose�a combinations� For a binomial multifractal
distribution �N� p� k�� there are Ck

a attribute values for
which the expected relative frequency is p�k�a����p�a�
This is easy to observe by considering the probabilistic
decision tree� In our previous terminology �Def� �����
we expect to have

cm � Ck
a ���

distinct attribute values� each of which occurring

m � N � p�k�a���� p�a ���

times�

� Problem De�nition and Proposed
Solution

The general problem is as follows
 Given some par�
tial information about the distribution �e
g
� �rst few
multiplicities� a few frequency moments� a small sam�
ple� etc��� �nd a way to characterize its skewness and
to enable predictions about measures of interest �e
g
�
median value number of distinct values in a superset
or subset etc�� We propose to use multifractals� or
equivalently� a generalization of the ����� law�

Given a data set with unknown distribution of at�
tribute values� we maintain the hypothesis that the
distribution can be well approximated by some multi�
fractal distribution� the parameters of which are ini�
tially unknown� The problem is to identify the �bias� p
and the order k� that will lead to a good match of the
given set of multiplicities and other available informa�
tion about the distribution�

As we mentioned� this problem is very realistic

many commercial systems keep some �high�end biased�
histograms ���� for query optimization� probabilistic
on�line algorithms for maintaining such histograms ef�
�ciently have just recently been proposed ����

There are two sets of results
 The �rst set tries to
express the p and k parameters as functions of the
given data� More concretely� we have the following
goal given the hypothesis


� Given

� the �rst few of the multiplicities mi� i �
�� �� � � � � h and

� the number of distinct attribute values F��
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Figure �
 Generation of a �multifractal� � �rst three steps

� Estimate the p and k parameters to yield a multi�
fractal distribution that will match the given data�

The second set of results tries to estimate other
quantities of interest �e
g
� median value etc�� for a
given multifractal distribution with parameters p and
k� Table � contains the symbols and their de�nitions�

��� Estimating the p and k parameters

We use the following observations


Observation ��� The bias parameter p can be esti�
mated as

p � �mmax�N ���k ���

Indeed� the highest multiplicitymmax � m� will be on
the average N � pk�

Theorem ��� For a binomial multifractal distribu�
tion with N records� bias p and order k� the expected
number of distinct values �F� is given by the following
equation

�F� � F��N� p� k� �
kX

a��

Ck
a ��� ��� pa�

N � ���

where
pa � pk�a��� p�a ����

Proof	 The idea is to focus on one of the �k buck�
ets� We can estimate the probability that this speci�c
bucket will be hit at least once by one of the N records�
and then� average over all these buckets� QED

Thus our estimation algorithm needs only mmax�
F� and N � See Figure 	 for the pseudo�code� The
Appendix A gives the code for Step 	 of the algorithm�

��� Extrapolations

If our distribution follows a multifractal distribution
with �known� parameters p and k� we can use this fact
to estimate several useful measures�

Estimation of number of distinct values for sub�
sets�supersets


We can use our �multifractal assumption� to do extrap�
olation from a sample of N � �� N � records� out of the
total N records� Given the sample� we compute its
p and k parameters� if the full collection comes from
a multifractal distribution� it will have the same pa�
rameters p and k� Thus� we just substitute the values
N � p and k in the formula for �F� �Eq� ��� to obtain
an estimate for the number of distinct values of the
collection�

Thus� if the original distribution is approximated
by a multifractal distribution with N records� bias p
and order k� for a subset of N � records we estimate its
�vocabulary� �F �

� as follows


�F �

� � F��N
�� p� k� �

kX
a��

Ck
aC

N �

m pma ��� pa�
�N �

�m�

����

Median and percentiles


Salaries and incomes follow very skewed distributions
��
� p� 	
� ��	�� ����� Our upcoming experiments �see
section �� show that sales patterns seem to do the
same� Thus� given a relation with salaries� the question
is to �nd the median salary� given little information
�e
g
� the �rst few top salaries�� Assuming a multi�
fractal distribution� we can compute p and k� and es�
timate several statistics �median� percentiles etc�� For
concreteness� we repeat the standard de�nitions of me�
dian and percentiles


De�nition ��� The median rank r��� of a multi�
plicity vector �m �sorted in descending order� is the
smallest rank� so that the elements up to and includ�
ing that rank r��� account for at least 
�� of the
occurrences


r�����X
r��

mr � ��
 N �

r���X
r��

mr ����
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Symbol De�nition
N total number of records
p �bias�
 fraction of �mass� that goes to the right half�

in each subdivision of the multifractal
k order of multifractal distr� �number of subdivisions�
mmax �m�
 the highest multiplicity
cm count for multiplicity m �number of distinct attr� values

with multiplicitym�
Fq frequency moment of order q
F� � V number of distinct values � vocabulary
h number of values kept in a high�biased histogram
Cm
n combinations m�choose�n

Table �
 Symbols and de�nitions

Input� N � mmax and F�
Output� the p and k parameters

� let k � dlogF�e as a �rst estimate

� estimate p using Eq� ��

	 estimate �F� using Eq� �� It will be an under�estimate of the real F�


� k ��� and repeat the steps ���� until �F� matches F� within a desired tolerance ��

Figure 	
 Algorithm to estimate the bias p and order k of a multifractal distribution

De�nition ��� Median frequency mr��� is the fre�

quency of the element with the median rank�

Example ��� For the multiplicity vector of Exam�
ple ���� the median rank r����� and the median fre�
quency mr����	� �

In a real setting� where we are given a high�end his�
togram with the highest h multiplicities m�� � � � �mh�
we estimate the median rank r��� as follows
 we use
the given �rst h multiplicities as well as the estimates
for the rest of the multiplicities from Eqs� ������ we
keep including more elements� until we reach or exceed

�� of the number of records N �

Estimating the frequency moments


If the given multiplicity vector was the result of a bi�
nomial multifractal process� with a parameter p and
k� then we would have

Fq �
X
m

�cmm
q�

�
X
m

�
Ck
a

�
Npk�a��� p�a

�q�

Fq � N q �pq � ��� p�q�k ��	�

which allows a fast estimate of the moments� given the
parameters N � p and k of the multifractal distribution�

Recall that k is the order of the multifractal distribu�
tion� that is� the number of recursive subdivisions of
the address space� resulting in �k possible distinct val�
ues�

This concludes the mathematical derivations that
pertain to a multifractal distribution� The question
now is to �nd out how accurate our predictions are�
when we try to approximate a real distribution of fre�
quencies with a multifractal distribution� This is ex�
actly the topic of the next section�

� Experiments

In this section we use real datasets� and we test the
accuracy of the predictions using the multifractal as�
sumption� We used several real datasets� Table �
shows the characteristics of each dataset� that is� the
total number of records N � the highest multiplicity
m� � mmax� and the total number of distinct attribute
values ��vocabulary�� F� � V � The description of each
dataset follows


� �VFN� consists of the �rst names from an on�
line telephone catalog �
�� Actually� we used the
�very �rst names�� keeping only the �rst one in the
case of multiple �rst names
 For example �Maria
Teresa� would be registered as �Maria��
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� �SALES�� which contains the dollar amounts of
sales for customers� rounded to the nearest ��� ���
and ����dollar amount� for �SALES��� �SALES���
and �SALES���� respectively�

� �BIBLE�
 the words in the Bible �Old and New
Testament�� along with their occurrence fre�
quency� We also used sub�sets of the BIBLE�
namely �GENESIS� �the book of Genesis�� �RO�
MANS� �the letter to the Romans�� �PSALMS�
�the Psalms�� �JEREMIAH� �the prophesies of
Jeremiah�� �PJ� �the PSALMS and JEREMIAH
datasets combined� to provide a ���� sample of
the BIBLE��

� �WUTHERING�
 the book �Wuthering Heights��

Dataset N F� mmax

VFN ���
� 	��� ���
SALES� ��	��	 ��� ��
�

SALES�� ��
�� ��� ��
�
SALES��� �	�� ��� ���
BIBLE ������ ��
�� �	���
PSALMS ���	� ���� ����
JEREMIAH ����� �
�� 	�	�
PJ �
��� 	��� ����
GENESIS 	�
�� ���� 	���
ROMANS ��	� �	�� 
��
WUTHERING ����
� ����� ����

Table �
 Datasets and their characteristics
Figures ��� show the rank�frequency plots for our

datasets
 �diamonds� with solid lines correspond to the
actual values�� �crosses� with dashed lines correspond
to our predictions using multifractals �Eq� ����� In
some of the plots we show some straight dotted lines�
which correspond to Zipf and generalized Zipf distri�
butions� Notice that the actual curves can not be ap�
proximated with a straight line of any slope� while the
curves suggested by the multifractal distribution are
closer to the real curves� exhibiting the �top�concavity�
that we mentioned earlier�

This concludes the �rst set of experiments� where
we visually illustrate that several real distributions are
matched well by a carefully selected multifractal dis�
tribution� In the next two subsections we study the
accuracy of the predictions of a multifractal distribu�
tion �a� for the number of distinct values in a subset
or superset of a relation and �b� for the median rank
and percentiles�

��� Vocabulary estimation of a sample

The problem is
 given a high�biased histogrammi� i �
�� ���� h of length h� the number records N and the num�

ber of distinct values F�� estimate the number of dis�
tinct values for a subset of N � records�

As mentioned before� assuming a multifractal dis�
tribution� we compute the N � p� k parameters� and
then use Eq� � to estimate the vocabulary of the sub�
set�super�set�

Under the uniformity assumption� the best we can
do is to consider a generalization of Cardenas� for�
mula ���
 we know that we have F� buckets and N �

records� we also know the frequency that the �rst h
buckets are chosen� thus each bucket is chosen with
probability pi� which is computed as follows


pi � mi�N i � h ����

pi � pu �

�N �Nh��N��F� � h� h � i � F� ��
�

where Nh is the sum of the frequencies of the his�
togram�

Then� the expected number �F �

unif of non�empty
buckets �after N � choices� is estimated by

�F �

unif �
F�X
i��

��� ��� pi�
N �

�

or

�F �

unif �
hX
i��

��� ��� pi�
N �

� � �F�� h���� ��� pu�
N �

�

where the probabilities pi are given by Eq� ����
�
Table 	 gives the results of these estimators on the

real datasets� Based on the BIBLE dataset� we es�
timated the samples of it �ROMANS� PSALMS and
JEREMIAH�� Notice that the work of Haas et al� ���
is not directly applicable� because it assumes that we
know all the multiplicities of the given dataset� as op�
posed to only the h highest� that is our setting� No�
tice that our estimates give low errors ��
������ which
are comparable to the errors of much more sophis�
ticated estimation algorithms
 Haas et al ���� using
all the statistics about the dataset� report that� for a
��� sample of �highly skewed� distributions� the rel�
ative error �� j �F� � F�j�F�� was on the average �	�
�maximum
 �
�� for the so�called Shlosser estimator�
which was the best performer for �high�skew distribu�
tions�� Interestingly� among the methods they tried�
the worst competitor had �
�� average and ��	
�
maximum relative error�

Table � shows the reverse
 given a sub�set �e
g
� the
PJ set�� we can estimate the vocabulary of the super�
set �BIBLE�� In this case� the uniformity assumption
gives poor results� exactly because it does not have the
ability to predict the appearance of new words in the
larger set� Again� the 
�� relative error compares well
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�a� VFN �b� SALES�

Figure �
 The rank�frequency plots of the �VFN� and �SALES�� datasets
 Real ��diamonds�� and estimated
��crosses�� values
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�a� BIBLE �b� GENESIS

Figure 

 The rank�frequency plots for the �BIBLE� and �GENESIS� datasets� real ��diamonds�� and estimated
��crosses�� values
 Dotted lines indicate Zipf and generalized Zipf distributions


with the errors of the more sophisticated algorithms by
Haas et al ��	� average� �
� maximum� as mentioned
before��

��� Estimation of median � percentiles

Table 
 shows the estimates for the median rank for
several datasets� given a high�biased histogram with
h entries� We used the multifractal and the unifor�
mity assumption� in either method� we exploited the
fact that the �rst h multiplicities are known� and we
estimated the unknown multiplicities mh��� � � �� and
summed them� until we reached 
�� of the count� No�
tice that the estimates of the uniformity assumption
are often � or � orders of magnitude away�

� Conclusions

We have shown that the multifractal theory formal�
izes and generalizes the ����� �law�� that it includes
the uniform case as a special case �p���
� and that it
matches reality better than the Zipf distribution� Us�
ing the multifractal assumption� we provided a simple�
but accurate way to estimate the multiplicity vector�
given only easy�to�maintain values
 the highest multi�
plicitymmax� the number of records N and the number
of distinct values V � A good estimate of the multiplic�
ity vector helps in doing extrapolations for several use�
ful statistical quantities� both of the original relation�
as well as of super�sets and sub�sets of it� For exam�
ple� it can help compute percentiles and median ranks
��how many of our customers account for 
	� of our
sales�� or �how many distinct products would the female
portion of our customer base be interested in���� Such
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Figure �
 The rank�frequency plots for the �ROMANS� and �WUTHERING� datasets� real ��diamonds�� and
estimated ��crosses�� values
 Dotted lines indicate Zipf distributions


Dataset Size N Vocabulary size
�in words� uniformity multifractal actual

estimate rel� error F�

ROMANS ���	� ���� ���	 ��� ��	��
PSALMS ����	� ���	� ����� �
� �����
JEREMIAH ������ ���	
 ����� ��� ��
��

Table 	
 Estimates for the vocabulary of a sample from the BIBLE �N��
����� p�	
����� k����
 For the
�uniform�� the h��	 highest multiplicities are kept

estimates are useful in numerous applications� such
as �a� traditional query optimization� supplementing
the high�biased histogram methods that are currently
the state of the art ����� �b� decision support systems�
where extrapolations for subsets and supersets are im�
portant�

Experiments on several real datasets showed that
the multifractal assumption gives signi�cantly better
estimates than the �uniformity� assumption� for several
useful statistical quantities�

Future work could examine the application of mul�
tifractals to several other settings� such as join size
estimation and spatial�join selectivity estimation in ge�
ographic information systems�
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estimate rel� error
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Table �
 Estimates for the vocabulary of the BIBLE from a sample �PJ set� N������� p�	
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 k� ���

Dataset uniformity multifractal actual
value value median F�
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SALES��� �h��� 	� 
 � ���
BIBLE �h��� ���� �� �	 ��
��
BIBLE �h���� ���� �� �	 ��
��
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A Appendix� AWK code for the esti�
mation of F�

Here we give the code to estimate the number of dis�
tinct values F�� for a multifractal distribution with N
samples� bias p and order k� The �le is ready to exe�
cute under UNIX�TM��

��
bin
sh �f

� echo ��� working on ��� ��

echo �� �� �� � nawk �

� reads N� p� k of a binomial multifractal

� and estimates the number

� of distinct values F�

�

function power� x� y � �

res � exp� y � log�x� ��
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return� res ��

� � end function power

function comb� NN� MM��

cres � ��

for� ii��� ii	�MM� ii

 ��

cres � cres � �NN � ii 
 �� 
 ii�

�

return � cres ��

� � end function comb

� estimates F�� the expected number

� of distinct values

function estF�� NN� pp� kk��

rres � ��

for�aa��� aa	�kk� aa

��

pa � power�pp� kk�aa� � power� ��pp� aa�

if� pa�NN � �� � � tmp � ��� �

� guard against underflow of power��

else � tmp � power� ��pa� NN�� �

rres � rres 
 comb�kk�aa� � � � � tmp ��

�

return �rres�

� � end function estF�

�

N � �� � number of records

p � �� � bias factor

� �� split probability�

k � �� � number of divisions

�

END�

print �number of records N��� N

print �bias p��� p

print �number of splits k��� k

F�hat � estF��N�p�k�

print �est� number of distinct values F������ F�hat

�

�
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