
Paral le l A l g o r i t h m s Column:
On the Search for Sui table M o d e l s

Yossi Ma.tias

Bell Laborator ies
BOO Mounta.in Avenue
Mur ray Hill N3 07974

mat ias@bell-labs, com

A lovely cartoon in the ,5'IGACT News Complexity Theory Column 9 [59] illustrates a parallel
computing laboratory whose door is "closed due to bankruptcy". (?ontrary to this perception
regarding the state of parallel computing (which ma.y be a reflection of the funding for acadenfic
research in the field, as well as the failures of a number of supercolnt)uter vendors), we see in recent
years how parallel computing moves from the labs into the workplace in an increasing pace. The
role of parallel conlputing in commercial applications is expected to increase dramalically, as more
and more users are demanding access to databases and dala warehouses conta.ining hundreds of
gigabytes to terabytes of data: see, e.g., the presenta.tions in [24], and the articles [56, 62, 57]. As
pointed out in the latter references, one of the ma.in challenges facing parallel computing in the
n~arketplace is enabling software that is reasonably simple to develop, and tha.t is COlnpatible and
portable for the variety of available pa~ra.llel systems.

A closely related issue has been the focus of much attention in the field ofparal lel algorithin
design for the past few years: whet shoMd be the comp~llationcd modr[J'or thc de,~igl~ of porollel
algorith~s. In choosing a model for algorithm design we are facing an inherent conflict. On the
one hand, we would like to have high-level models which abstract away many de{ ails of the parallel
systems on which the algorithms are to be implemented. Parallel algorithms designed on such
models are simple to describe and to a.nalyse; furthermore, such a.lgorithms are easily portable
to many different 1)latforms. On the other hand, by ignoring important details about the parallel
system, the analysis of the algorithms inay not adequately reflect the performance of their respective
implementa.tions. Hence, for performance considerations it may become essential to use lower-level
models which take into account more details. However. efficient algorithms for low-level models
may be harder to design and to analyze: fln'therlnore, such algorithms are o[ten not easily portable
from one parallel system to another.

In the first .S'IGA('T News Column on Para.llel Algorithms [35], Goodrich reviewed a "'classic"
high-level model for parallel algorithm design-- the PRAM and mentioned some work on alterna-
tive; lower level "bridging" models, such as the BSP and LogP. The recent introduction of these
latter models has a t t racted considerable attention, with further studies, both theoreticalh.' and
experimentally. Some efforts to develop software systems based on bridging models have been initi-
ated (see, e.g., [8~ 13~ 18, 22.28, 3(J, 39, 54]). At the same time~ there has been a continuing search
for alternative suitable models.

21

Looking throngh the technical progra.ms of the last few (SIGACT co-sponsored) ACM Symposia
on Parallel Algorithms and Architectures (SPAA), one may observe that the model of colnputation
assumed in the design of the presented algorithms lnay be one of several models (e.g., c u c w PRAM.

QRQW PRAM, Bulk Synchronous (BS.P) and its extensions, LogP and its extensions, Block Distributed
Memory (BDM), Coarse Grained Multicomputer (CGM), external memory models, and low level
models such as meshes, among others). In addition, there are works that study, theoretically or
experimentally, the advantages and limitations of various models. This column provides a few
pointers to some of the recent works relevant to the lnodeling of parallel computat ion.

\:re first briefly remind the reader some of the contentious issues in modeling parallel comput-
ing. During the past two decades, the parallel random access machine, or PRAM, has gained vast
populari ty in the theoretica.1 study of pa.rallel algorithms. The PRAM model, introduced in [27], is
a simple model in which processors execute in lock-step and communicate by reading and writing
in a shared memory. The cost metric for an algorithm rulming on the P R A M model is the num-
ber of processors, p, and the time, t. Alternatively, the cost metric ma.v consist of the woH,:, ~P,
defined as the time-processor product p . t, and the time. The PRAM is a rather natural extension
of the well-accepted (serial) random access model (RAM) [4]. It has proven a convenient lnodel to
design and anahvze parallel algorithms, and to develop a robust theory of parallel algorithms (see.
e.g., 58]).

While the P R A M enables one to concentrate on the inherent parallelism of a problem, it a.b-
stracts away several issues that may be significant to the performance of parallel programs. Several
works have considered the issues of asynchrony, memory contention, latency, memory granular-
ity, bandwidth, and memory hierarchy. (See, e.g., [35, 33] for some references.) Alongside with
the s tudy of PRAM algorithms, there has been considerable research on particular network-based
models. These models, h~ which processors send messages to and receive messages from other pro-
cessors over the given network (e.g., arrays, trees, hypercubes), are more accurate in addressing
the colnmunicatiol~ networks in parallel systems (see, e.g., [47]). However, algorithms developed on
one network-based model may be too particular to that model, and not adequate to other models.
Thus, these relatively low-level models often result with algorithms that are not portable.

This has prompted tile introduction of bridging lnodels [61, 63], which is an at tenlpt to provide
a unified model that would capture features common to lnany architectures, and that are significant
to the performance of parallel programs. An algorithin designed on a bridging model should be
readily implementa.ble on a va.riety of pa.rallel architectures, and its efficiency on the bridging model
should be a good reflection of its actual performance.

Valiant has proposed as a. bridging model the Bulk Synchronous Parallel (BSP) model [63.
64]. which consists of p processor /memory components communicating bv sending point-to-point
messages. The interconnection network supporting this communication is characterized only by a
per-processor throughput parameter g and a latency parameter L. A BSP computat ion consists of
a sequence of "supersteps" separated by bulk synchronizations. In each superstep the processors
call perforln local computat ions and send and receive a set of lnessages. Messages are sent in a
pipelined fashion, and lnessages sent in one superstep will arrive prior to the start of the next
superstep. The time charged for a superstep is calculated as follows. Let tt'i be tile amount of local

P work performed by processor i in a given superstep, and let w = l n a x i = 1 Wi. Let h be the maximum
number of messages sent hy any one processor or received by any one processor. Then the cost. t,
of the superstep is defined to be t = max(u', g • h, L) . Intuitively the COmlnunication throughput
paralneler. 9, is the best sustainable gap between message sends issued by each individual processor:

22

therefore 1/g represents the ava.ilable bandwidth per processor.

More recently, Culler el; al have proposed the [,ogP model [21,23]. The LogP is a.n asvnchronons
model: in addition to latency (L) and gap pa,rameters (g). that are quite similar to those of the BsP,
it has an overhead parameter o, which is defined as the length of time that a processor is engaged
in the transmission or reception of each message. There is also a capacity restriction of L/g on the
number of messages that can be in transit from any processor or to any processor at anv time.

In a :recent paper Bilardi et al [12] provide a critical assessment of the relative power of the BSP
and Logp models. They present efficient cross simulations between the two models, and show that
the two models can be implemented with similar performance on most point-to-point networks.
Bilardi el al conclude that at least within the limits of asymptotic analysis, the two models can be
viewed as closely related variants within the bandwidth-latency framework for modeling parallel

computation.

Several attthors have pointed out that the Bsp model may not accurately reflect the cost of
sending unbalanced communication pa, tterns, and experimental evidence measuring this inaccm'acv
is provided in [68]. Modifications to the BsP model to more accurately reflect commnnicalion cosls
ha,re been proposed, for example the E-BSP [.4-l] as well as the Y-BsP [26]. These models, as well as an
earlier model, the DRAXl of Leiserson and Ma,ggs [48]. incorporate cost measures which vary greatly
depending on the underlying network architecture: both the Y-BSP and the E-BSP incorporale cost

lnea,sures designed to capture network proximity. Blelloch et al [116] propose the (d.x)-BSp model
as a refinement for the BSP that i)ro\~ides more deta.iled modeling of lllen/orv bank contention and
delay. This model has two additional parameters: the delay d. which is the gap parameter at the
memory banks, and the expansion x which is the ratio of memory banks to processors. Blelloch et al
argue that the (d,x)-Bsp more accurately models shared-memory machines with a high bandwidth

communication network and more memory banks than processors.

In a, recent work, Adler et al [1] consider a va,ria.nt of the BsP model, the ssP(m), that replaces
the per-processor bandwidth paralneter g by an aggregate bandwidth parameter ~ . They show
that in general the BSP(m) has a possible advantage over the BSP in situations of imbalanced
communication. Some variants of the BSP and LogP, including the BDM, | ,og(;P , E-BSP and BSP ×.
account for spatial locality and allow for "block transfer" [43, 5. 44. 10. 11]. Another variant [49]
extends the I~ogp with hierarchical memory model characterizing each processor, building on [T, 6].
Several models were proposed (e.g. [55, 67]) for the design and analysis of parallel algorithms thai
account for pa,rallel disk I /O (set [20] and the references therein).

Most of the models discussed above are message-passing and distributed memory models. Ad-
voca.tes such as \:ishkin [65], I(ennedy [46], Smith [(301 . and Blelloch [15] have lena presented
arguments in supI)ort of the shared-memory abstraction. In a recent work. Gibl)ons e/ ~ll [31]
proposed the Queuing ,qJ~ar'~d M(mory (QSXI) model as a candidate for a shared memory bridg-
ing model. They argue that this model may be competitive in effectiveness to lhe Bsp and ~ogp
models, by providing efficient emulations on the BSP and on the (d.x)-BSP. The QsM consists of'/)
t)rocessors, each with its own private nlelnory, communicating by reading and wri! ing locations in a
shared memory. The interconneetion network supporting this comnmnication is characterized by a
per-processor throughput parameter 9. Processors execute a sequence of build-synchronous phases
(supersteps), each consisting of an arbitrary interleaving of the operations shared-memory reads,
shared-memory writes, and local computation. Consider a QSal phase with ma.ximunl contention
~: i.e., h" is the ma.ximum, over all locations ,r. of the number of processors reading ,r or the number

23

Comparison of Some Models of Parallel Computa t ion

model synchrony e o m m u n i e a t l o n parameters

Module Para,lleI Computer (M PC)[.53]

LPRAM [3]
Phase LPtRAM [30]
Bulk-Synchronous Pa.ra.llel (BSP)[63]
Postal model [9]
LogP model [:21]
Q R Q W Asynchronous PRAM [84]
QRQW P R A M [32]
Block P R A M (BPRAM) [2]
Block Distributed Memory (BDM) [43]
P R A M (m) model [52]
Interval m.odel [51]
Queuing Shared Memory (qsM)[31]

lock-step
lock-step
lock-step

bulk-synchrony
bulk-synch tony
asynchronous
asynchronous
asynchronous

bulk-synchrony
lock-step

bulk-synchrony
lock-step

bulk-synchrony
bulk-synchrony

shared memory
distributed memory

shared memory
shared memory
message-passing
message-passing
message-passing
shared melnorv
shared memory

shared memory
distributed memory

shared memory
message-passing
shared memory

P
P

p , (
p. (.,~

p, 9, L
p,(

p ,g , (, o

P
P

p , (, B
p ,g .L , 'B

p. m
p . I

]),9

Table 1: (from [33]) A compariso~ of several mo&ls of parolld compzltatiom The fourth column
indicates the parameters of the model, where p is the number of processors, (is the comnmnication
latency (i.e. the time to deliver a. message point-to-point or to access the shared memory), s is the
cost for a barrier synchroniza.tion among all the processors. L is a. single paralneter that accounts
for the sum of ~ and .s, g is the bandwidth gap (i.e. the rate a.t which processors can perform local
operations divided by the rate a.t which the processors can sustain interprocessor or processor-
memory communication), o is the overhead at the processor to send or receive a. message. B is Ihe
block size (i.e. the number of consecutive cells sent on a write or retrieved on a read), m is the
number of shared memory cells available for both reading and writing, and [is the maximum of (.
g, and s.

of processors writing x. Let w be the maximuln number of local operations done by any processor
during the phase; and let h be the maximum number of share-memory read or shared-memory
write operations done by any processor during the phase. Then the time cost. t. of the superstep is
defined to be * = nrax(w, g. h, K) . A comparison of some models of parallel computat ion is given
in Table 1. Let us also mention that a few models incorporate powerful aggregate colnnmnication
primitives [14, 17], for providing an easier programming model.

To conclude we refer the reader to some recent survey and position papers [49.51, 3,q. 19, 33, 42],
as well as to the collection of position papers in [66]. We finally mention that several groups
have been recently involved in implementations and experimentations of parallel a.lgorithms, using
bandwidth-lilnited general purpose models (see, e.g., [8, 13. 18, 21, 22, 28, 36, 39, 54]).

Finding nrodels that can provide a, satisfying balance between ease of use and accuracy remains
a challenge of primary importance. We have pointed out several recent a t tempts in thin direction.
and we are likely to witness more efforts in the near fnture, both in the theoretical and in the
experilnental levels. Are we likely to see convergence into a single accepted model, or are we going
to see a plurality of models, depending on application domain, platform or taste'? This remains to
be seen.

24

R e f e r e n c e s

[J] M. Adler, P. B. Gibbons, Y. Matias, and V. Ramachandran. Modeling pa,rallel bandwidth:
Local vs. global restrictions. In Prec. 9th A CM,5'ymp, ol~ PoralIel Algorithms and Architecl ~lre s,

June 1997. To appear.

[2] A. Agga.rwa.1, A. K. Cha.ndra., and M. Snir. On communication latency in PRAM computations.
In Prec. ls l A(,'M Sgmp. on Parallel Algorithms and Arehitectu.res, pages 11-21, June 1989.

[:3] A. Aggarwa.1, A. K. Chandra, a.nd M. Snir. Communication complexity of PRAMs. Theoreticol
Computer Science, 71(1):3 28, 1990.

[4] A.V. Aho, J.E. Hopcroft. and J.D. Ullman. The Dcsig~ (rod Anal!/.si., of Compulc_r Algorithm.i-.
Addison-Wesley Publishing Conlpany, Inc., Reading, Massa.chusetts. 1971.

[5] A. Alexandrov, iX4. F. Ionescu, K. E. Schauser, and C. Shein~an. LogGP: Incorporating long
messages into the LogP model - - one step closer towards a realistic model lot parallel con>
putation. In Pr'oc. ?lh AC'M ,5'gmp, on Parallel Algori th~s arm Architectures, pages 95 105,

July 1995.

[6] B. Alpern and L. Carter. Towards a model for portable parallel performance: exposing the
memory hierarchy. In Portabilil 9 end Pc~brmar~ce ,/'or Parallcl Procc,~.ei~g, pages 21--l[. John
\,\:iley & Sons, 199-4.

[7] B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies. In Prec. 31st II?FE £,.qmp,
o~ Fou~datior~s of Computer ,5'cic~ce, pages 600-608, October 1990.

[8] D. A. Bader and J. JMg. Practical parallel algorithms for dynamic data. redistribution, median
finding, a.nd selection. In Prec. lOtt~ b~terrmtional Parallel Proces,si1~g ,5'ljmposium. pages 2.92
301, April 11996.

[9] A. Bar-Noy and $. Kipnis. Designing broadcasting algorithms in the postal model for message-
passing systems. In Proc. 411~ AC'.ll ,5'ymp. on Parallel Algorithms and _4rchitecltlr~.~, pages
13 22. June-July 1992.

[10] A. Ba.nmker and W. Dittrich. Fully dwlamic search trees for an extension of the BSP model.
In Prec. 8th AC'M,5'ymp. on Parallel Algorith, nzs and Archilect~zre.s, pages 233 2.42, June 1996.

[11] A. Baumker. W. Dittrich, and F. Meyer auf der Heide. Truly efficient parallel algorithms:
1-optimal multisearch for an extension of the BSP model. Technical report, l.'niversity of
Pa.derborn, 1996.

[12] O. Bilardi, K.'T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP vs LogP. In Sg~
A('31 ,S'9mp. o~ ParallEl .,tlgorithm.~ ol~d .4rchilect~tr~.,. pages 25 ;32. ~996.

[13] R.I{. Bisseling and \V.F. McColl. Scientific computh-lg on bulk synchronous parallel architec-
tures. In Proc. 133g~ [f '[P fl'orld Comp'uter ('ongres.~. pages 509 514, 1994.

[14] (3. E. Blelloch. t~ctor Model.s]br Dote-Parallel Compttting. The MIT Press, Cambridge, MA,
1990.

[15] G. E. Blelloch. Programming parallel algorithms. Comm~lnicotion,s of the ACM, 39(3):~5 97,
1996.

25

[16] G. E. Blelloch. P. B. Gibbons. Y. Matias. and M. Zagha. Accounting for memory bank
contention and delay in high-bandwidth multiprocessors. In Proc. 7tfl A(' . l l ,S'.ymp. o~ Para/1H
Algorithms cmd Architectures, pages 84-94, July 1995.

[17] G. E. Blelloch. C. E. Leiserson, B. M. Ma.ggs, C. G. Plaxton. S. J. Smith, and M. Zagha.
A comparison of sorting algorithms for the Connection Machine CM-2. In P~vc. 3rd A C M
5'ymp. o~, Parallel Algorithms and Architectures, pages 3 16, July]991.

[1,~] T. C.heatham. A. Fahmy, D.C. Stefanescu, and L.G. Valiant. Bulk synch~'onous parallel com-
puting a paradignl for transportable software. In P~vc. [EEE 28t1~ Ha~caii Mt. Co@ ol~
S9.st~m 5'ci~ucc, January 1995.

[19] T. Cheatma.n. Linguistic constructs for BSP style programming. In Proc.. 1.9.96" [CPP II'oct:.,J~op
on Challe-nges for" para.lld processing, pages 96-102, August 1996.

[20] Y.-J. Chiang, M. T. C4oodrich, E. F. Grove, R. Tamassia. D. E. \:engraft. and J. S. Vitter.
External-memory graph a.lgorithms. In Proc. 6th AC~ll-,SffDtM ,S'9mp. old Discrete Algorithm~.
pages 139-149, January 199.5.

[21] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos. R. Subramonian, and
T. van Eicken. LogP: Towards a. realistic model of parallel computalion. In Proc. ~fth A C31
,S'IGPLAX,S'gmp, o~, Principles (rod Practices of Parallel Programmil~g, pages 1 12, May 1993.

[22] D. E. Culler, A. Dusseau. R. Martin, and K. E. Scha.nser. Fast parallel sorting under LogP: from
theory to practice. In Proc. Workshop or~ Povtabilil 9 a~zd Performa~zce Jbr Parallc, l Pcoe¢ ssi~g.
Southhampton, England, July 1993.

[2:3] D.E. Culler, R.M. Karp, D. Patterson, A. Sahay, E.E. Santos, K.E. Sehauser, R. Subramonian.
and T. yon Eicken. LogP: A pra.ctica.1 model of parallel computation. Commtmicatio~.q of th~
ACM. pages 78-85, November 1996.

[24] U. Dayal, P.M.D. Gray, and S. Nishio, editors. Proc. 21st In, ter~atio~al Col@.rencc o~ Ikr 9
Lar#e Data Bases. \;endor sessions 1-5, pages 677-701 1995.

[25] P. de la Torte and C. P. Kruskal. Towa.rds a single model of efficient computation in real
parallel machines. F~dure Gel~eration Computer Systems, 8:395-408, 1992.

[26] P. de la. Torte and C, P. Kruskal. Submachine locality in the bull; synchronous setting. In
Proc. Euro-Par'96, pages 352-358, August 1996.

[27] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc, lo t \ ACM 5'9mp.
o~ Theory of 6'omputi~g, pages 114-118, May 1978.

[28] A. V. Gerbessiotis and C. J. Siniolakis. Deterministic sorting and randomized median finding
on the BSP model. In Pr'oe, EigMh Anginal AC34 Spmposium o~ Parallel Algorithm.~ a~d
Architectu'res, pages 223-2:32, June 1996.

[29] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms. Joztr. Par-
allel a~)d Distribztted Computil~g, 22:251 267, 1994.

[30] P. B. Gibbons. A more practical PRAM model. In Proc. 1st Af'M,S'ymp. o~ Parallel Algorithm.;
a~),d Architectures, pages 158-168, June 1989. Full version in The Asg~whro~ous PI~A3I: A
semi-.~'ytwhro~ous model jbr shared memory MIMD machi~es, PhD thesis, U.C. Berkeley 1989.

26

[31]

[32]

[33]

[34]

[3s]

P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve as a
bridging model for parallel computation? In Proc. 9th ACM Syrup. on Parallel Algorithms
and Arehitect~lrcs, June 1997, To appear.

P. B. Gibbons, Y. Matia s, and V. Ramachandran. The Queue-Read Queue-Write PRAM
modeh Accounting fox" contention in parallel a.lgorithnts. ,5'IAM Journal o~ Comp~tting, 1997.
To appear. Preliminary version appears in Proc. 5th AC':~,I-SI,4M ,5'vm~J. or, Discrete Algo-
rithms, pages 638-648, January 1994.

P.B. Gibbons. What good are shared-memory models? In Proe. 1996 ICPP II'orkshop oil
Challenges for parallel processing, pages 103-114, August 1996.

P.B. Gibbons, Y. Matins. and V. Ramachandran. The Queue-Read Queue-Write Asynchronous
PRAM model. In Proc, Euro-Par'96'. Workshop o~z Theor~l ond 3[odel.~ of Parallel ('o~puto-
lion, ,5'pringer LNC,5' 1124, pages 279-292, August 1996.

M. Goodrich. Parallel Algorithms Column 1: Models of computation..5'igact Neu,.~, 24:J6 21.
Decelnber 1993.

[36] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards efficiency and portability:
Progra.mming with the BSP model. In Proe. Eigh, th Annual AC3I ,5'9mposium on Parallel
Algorithms and Architect,u'es, pages 1-12, June 1996.

[37] S. Hambrusch and A. Khokhar. (,3: An architecture-independent model for coarse-grained
parallel machines. In Proc. 6th [EEE Syrup, on Parallel and Distr'ibztted Processing, pages
5.44-551, 1994.

[38]

[39]

[4o]

[41]

[42]

[43]

[44]

[4s]

S.E. Halnbrusch. Models for parallel computation. In Proc. 1996 ICPP II%rkshop o1~ ('hal-
lenges for parallel processing, pages 92-95, August 1996.

D. R. Hehnan, D. A. Bader, and J. JAJ~.. Parallel algorithms for personalized communication
and sorting with an experimental study. In Proc. Eighth Anmtal A CM Symposium on Parallel
Algorithms and Architectures, pages 211-222, June 1996.

T. Heywood and S. Ranka. A practical hierarchical model of parallel computation: I. The
model..Iotlr 'nol of Parallel and Distrib~lted Computing, 16:212-232. 1992.

J. JgJS. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.

J. JgJ£ On combining technology and theory in search of a parallel computation model. In
Proc. 1996 [C'PP Workshop on C'halle~ges for parallel process.ing, August 1996.

J. JdJ~. and K. W. Ryu. The Block Distributed Memory model. Technical Report UMIACS-
TR-94-5, University of Maryland Institute for Advanced Computer Studies, College Park. :kiD.
January 1994.

B. H. H. Juurlink and H. A. G. Wijshoff. The E-BSP Modeh Incorporating general locality
and unbalanced colnmunication into the BSP Model. In Proc. Ezlro-Par'96; pages 339 347,
August 1996.

R.. M. Karp and V. Ramachandran. Parallel a lgorithnts for shared-memory machines. In
J. van Leeuwen, editor, Handbook of Theoretical C'omp~ter Science, I,bhtme .,4, pages 8(59-941.
Elsevier Science Publishers B.V.. Amsterdam, The Netherlands, 1990.

27

[46]

[47]

[4s]

[49]

[50]

[51]

[52]

[,53]

[54]

[55]

[56]

[57]

[59]

[6o]

[61]

K. Kennedy. A research agenda, for high performance computing software. In Developing
a Computer Science Agenda for High-Performance Cbmp~lting, pages 106-109. ACM Press,
1994.

F. T. Leighton. b~troduction to Parallel Algorithms and Architectures: Arrays. Trees. Hy-
percubes. Morgan Kauflnann, San Mateo, CA, 1992.

C. E. Leiserson a.nd B. M. Ma.ggs. Communica.tion-efficient pa.ra.llel a.lgorithms for distributed
random-a.ecess ma.chines. Algorithmica, 3(1):53-77, 1988.

Z. Li, R.H. Mills, a.nd J.H. R eif. Models and resource metrics for parallel and distributed
computa.tion. In Proc. 28th Hawaii International Cor~ferenee on ,S'yslem ,S'cienee.~'. IEEE Press,
January 1995.

P. Liu, W. Aiello, a~nd S. Bhatt. An a.tomic model for message-passing. In Proc. 5th ACM
Syrup. on Parallel Algorithms and Architectures, pages 154-163, June-July 1993.

B. M. Maggs, L. R. Ma.theson, and R. E. Ta.rja.n. Models of parallel compnta.tion: A survey
and synthesis. In Proc. 28th Hawaii International Conj'. on System ,S'cie~c~s, pages II: 61-70,
Ja.nuaey 1995.

Y. Ma.nsour, N. Nisa.n, a.nd U. Vishkin. Trade-offs between communica.tion throughput and
parallel time. In Proc. 26th ACM ,5'ymp. on Theory of Comp,tting, pages 372 381, 1994.

K. Mehlhorn a.nd U. Vishkin. Ra.ndomized a.nd deterministic simula.tions of PRAMs by parallel
machines with restricted gra.nula.rity of pa.ra.llel memories. Acta h~ybrmatica, 21:339-374, 1984.

R. Miller. A libra.ry for bulk-synchronous pa.ra.llel programrning. In Proe. of the British ('om-
put~r Society Parallel Processsing. ,S))eciaIist Gro~lp Workshop o~ 6'~neral Parposc Parall~l
Comp~ti~g, December] 993.

M. H. Nodine and J. S. Vitter. Large-scale sorting in pa.ra.llel memories. In Pr'oe. drd ACM
,S'ymp. on Parallel Algorithms and Architectures, pages 29 39, July 1991.

D. Pountain. Pa.rallel goes populist. Byte ("the magazine of technology integration"), pages
88NA3-gSNAS, Mary 1997.

A. Radding. Multiprocessing: Sea.ling up. Injbrmation I,l%ek ('~for business and tech~ology
mar~agers"), pages 62-71, March 18 1996.

J. H. Reif, editor. A Sy~thesis of Parallel Algorithms. Morgan-Kaufn~ann, San Ma.teo. ('A,
1993.

Sigact News, 26(2):14, June 1995.

B. Smith. Invited lecture, 7th ACM Syrup, on Parallel Algorithms and Architectures, July
1995.

L. Snyder. Type architectures, sha.red memory aad the corolla rv of modest potential. A~u~al
Review of C'omp~tter ,S'cicncc, pages 289-318, 1986.

T. Thompson. The world's fastest computers (cover story). Byte ("the magazine of technology
integration"), pages 45-64, Janua.ry 1996. (http://www.byte.com/a.rt/9601/sec6/sec6.htm).

28

[63] L. G. Va.liant. A bridging model for pa.raltet computa.tion. Comm,mications of the ACM.
33(8):103-111, 1.990.

[64] L. G. Va.liant. General purpose pa.rallel a.rchitectures. In a. va.n Leeuwen, editor, Ha~dboo~'
of TheorcticaI Computer ,5'cie~ce. ~blume A, pages 943-972. Elsevier Science Publishers B.V.,
Amsterdam, The Netherla.nds, 1990.

[65] U. Vishkin. A pa.rallel-design distributed-inlpten~entation (PDDI) general purpose COml)uter.
Theoretical Computer ,5'tierice, :32:157-172, 1984.

[66] U. Vishkin, editor. Developi~zg a Computer ,5'cie,zce. Age~da for High-Pcr'}brma~ce Comp~,ti~g.
ACM Press, 1994.

[67] J. S. Vitter a.nd E. A. M. Shriver. Optima.1 disk I/O with parallel block transfer. In Proc.
22rid ACflI ,5'gmp. o~ Thcor9 of ('ompzltil~g, pages 159 169, Ma.v 1990.

[68] H. A. (4. Wijshoff a.nd B. H. H. Juurlink. A quantita.tive comparison of para.llel computation
models. In Proc. 8th AC31,5'gmp. o~ Parallel Algoritlm~s a~d Architc.ctures. pages 13 2.4..June
t996.

29

