Parallel Algorithms Column:
On the Search for Suitable Models

Yossi Matias

Bell Lahoratories
600 Mountain Avenue
Murray Hill NJ 07971

matias@bell-labs.com

A lovely cartoon in the SIGACT News Complexity Theory Column 9 [59] illustrates a parallel
computing laboratory whose door is “closed due to bankruptey™. Contrary to this perception
regarding the state of parallel computing (which may be a reflection of the funding for academic
research in the field, as well as the failures of a number of supercomputer vendors). we sce in recent
vears how parallel computing moves from the labs into the workplace in an increasing pace. The
role of parallel computing in commercial applications is expected to increase dramatically. as more
and more users are demanding access to databases and data warehouses containing hundreds of
gigabytes to terabytes of data: see, e.g.. the presentations in [24], and the articles [56. 62. 57]. As
pointed out in the latter references. one of the main challenges facing parallel computing in the
marketplace is enabling software that is reasonably simple to develop. and that is compatible and
portable for the variety of available parallel systems.

A closely related issue has been the focus of much attention in the field of parallel algorithm
design for the past few years: what should be the computational model for the design of parallel
algorithims. In choosing a model for algorithm design we are facing an inherent conflict. On the
one hand, we would like to have high-level models which abstract away many details of the parallel
systems on which the algorithms are to be implemented. Parallel algorithms designed on such
models are simple to describe and to analyse; furthermore, such algorithms are easily portable
to many different platforms. On the other hand, by ignoring important details about the parallel
system, the analysis of the algorithms may not adequately reflect the performance of their respective
implementations. Hence, for performance considerations it may become essential to use lower-level
models which take into account more details. However, efficient algorithms for low-level models
may be harder to design and to analyze: furthermore, such algorithms are often not easily portable
from one parallel svstem to another.

In the first SIGAC'T News Column on Parallel Algorithms [35]. Goodrich reviewed a “classic”
high-level model for parallel algorithm design—the PRAM—and mentioned some work on alterna-
tive, lower level “hridging™ models, such as the Bsp and LogP. The recent introduction of these
latter models has attracted considerable attention, with further studies, both theoreticallv and
experimentally. Some efforts to develop software systems based on bridging models have been initi-
ated (see, e.g., [8, 13, 18, 22. 28, 36. 39, 54]). At the same time, there has been a continuing search
for alternative suitable models.
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Looking through the technical programs of the last few (SIGACT co-sponsored) ACM Symposia
on Parallel Algorithms and Architectures (SPAA). one may observe that the model of computation
assumed in the design of the presented algorithms may be one of several models (e.g.. CRCW PRAM.
QRQW PRAM, Bulk Synchronous {(BsP) and its extensions, LogP and its extensions. Block Distributed
Memory (BDM). Coarse Grained Multicomputer (cGM). external memoryv models. and low level
models such as meshes. among others). In addition, there are works that study. theoretically or
experimentally. the advantages and limitations of various models. This column provides a few
pointers to some of the recent works relevant to the modeling of parallel computation.

We first briefly remind the reader some of the contentious issues in modeling parallel comput-
ing. During the past two decades, the parallel random access machine. or PRAM. has gained vast
popularity in the theoretical study of parallel algorithms. The PRaM model, introduced in [27]. is
a simple model in which processors execute in lock-step and communicate by reading and writing
in a shared memory. The cost metric for an algorithm running on the PRayM model is the num-
ber of processors. p. and the time, t. Alternatively, the cost metric mayv consist of the work, w.
defined as the time-processor product p - ¢, and the time. The PRAM is a rather natural extension
of the well-accepted (serial) random access model (RAM) [4]. It has proven a convenient model to
design and analvze parallel algorithms, and to develop a robust theory of parallel algorithms (see.
e.g., [41, 45. 58]).

While the PrRaM enables one to concentrate on the inherent parallelism of a problem, it ab-
stracts away several issues that may be significant to the performance of parallel programs. Several
works have considered the issnes of asynchrony, memory contention. latency. memory granular-
itv. bandwidth, and memory hierarchy. (See. e.g.. [35. 33] for some references.) Alongside with
the study of PrRAM algorithms. there has been considerable research on particular network-based
models. These models. in which processors send messages to and receive messages from other pro-
cessors over the given network (e.g.. arrays. trees, hypercubes). are more accurate in addressing
the communication networks in parallel systems (see. e.g.. [47]). However, algorithms developed on
one network-based model may be too particular to that model, and not adequate to other models.
Thus, these relatively low-level models often result with algorithms that are not portable,

This has prompted the introduction of bridging models [61. 63]. which is an attempt to provide
a unified model that would capture features common to many architectures, and that are significant
to the performance of parallel programs. An algorithm designed on a bridging model should be
readily implementable on a variety of parallel architectures. and its efficiency on the bridging model
should be a good reflection of its actual performance.

Valiant has proposed as a bridging model the Bulk Synchronous Parallel (Bsp) model [63.
64]. which consists of p processor/memory components communicating by sending point-to-point
messages. The interconnection network supporting this communication is characterized only by a
per-processor throughput parameter g and a latency parameter L. A BSP computation consists of
a sequence of “supersteps” separated by bulk synchronizations. In each superstep the processors
can perform local computations and send and receive a set of messages. Messages are sent in a
pipelined fashion. and messages sent in one superstep will arrive prior to the start of the next
superstep. The time charged for a superstep is calculated as follows. Let w; be the amount of local
work performed by processor 7 in a given superstep, and let w = max?_, w;. Let /i be the maximum
number of messages sent by any one processor or received by any one processor. Then the cost. .
of the superstep is defined to be ¢ = max(w. g-h, L) . Intuitively the communication throughput
parameter. g. is the best sustainable gap between message sends issued by each individual processor:
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therefore 1/g represents the available bandwidth per processor.

More recently, Culler et al have proposed the LogpP model [21. 23]. The LogP is an asynchronous
model: in addition to latency (L) and gap parameters (¢). that are quite similar to those of the Bsp,
it has an overhead parameter o. which is defined as the length of time that a processor is engaged
in the transmission or reception of cach message. There is also a capacity restriction of L/g on the
nummber of messages that can be in transit from any processor or to any processor at any time.

In a recent paper Bilardi et al [12] provide a critical assessment of the relative power of the BsPp
and LogP models. Theyv present efficient cross simulations between the two models. and show that
the two models can be implemented with similar performance on most point-to-point networks.
Bilardi et al conclude that at Jeast within the limits of asymptotic analvsis. the two models can be
viewed as closely related variants within the bandwidth-latency framework for modeling parallel
computation,

Several authors have pointed out that the Bsp model may not accurately reflect the cost of
sending unbalanced communication patterns. and experimental evidence measuring this inaccuracy
is provided in [68]. Modifications to the BsP model to more accurately reflect communication costs
have been proposed. for example the E-BSP [44] as well as the v-BsP [26]. These models. as well as an
earlier model, the DRAM of Leiserson and Maggs [18]. incorporate cost measures which vary greatly
depending on the underlying network avchitecture: both the v-Bsp and the E-BSP incorporate cost
measures designed to capture network proximity. Blelloch et al [16] propose the (d.x)-BsP model
as a refinement for the BsP that provides more detailed modeling of memory hank contention and
delay. This model has two additional parameters: the delay . which is the gap parameter at the
memory banks. and the expansion x which is the ratio of memory banks to processors. Blelloch et al
argue that the (d,x)-BspP more accurately models shared-memory machines with a high bandwidth
communication network and more memory banks than processors.

In a recent work. Adler et al [1] consider a variant of the BSP model. the Bsp(m). that replaces
the per-processor bandwidth parameter g by an aggregate bandwidth parameter m. They show
that in general the BsP(m) has a possible advantage over the BsP in situations of imbalanced
communication. Some variants of the BsP and LogP. including the BD)M. LogGP. E-BSP and BSP™.
account for spatial locality and allow for “block transfer”™ [43. 5. 44. 10. 11}. Another variant [{9]
extends the LogP with hierarchical memory model characterizing cach processor. building on [7. 6].
Several models were proposed (e.g. [55. 67]) for the design and analysis of parallel algorithms that
account for parallel disk I/0 (see [20] and the references therein).

Most of the models discussed above are message-passing and distributed memory models. Ad-
vocates such as Vishkin [65]. Kennedy [46]., Smith [60]. and Blelloch [15] have long presented
arguments in support of the shared-memory abstraction. In a recent work. Gibbons et al [31]
proposed the Queuing Shared Memory (Qsy) model as a candidate for a shared memory bridg-
ing model. They argue that this model may be competitive in effectiveness to the BsP and LogP
models. by providing efficient emulations on the Bsp and on the (d.x)-Bsp. The Qsif consists of p
processors. each with its own private memory, communicating by reading and writing locations in a
shared memory. The interconnection network supporting this communication is characterized by a
per-processor throughput parameter g. Processors execute a sequence of bulk-synchronous phases
(supersteps). each consisting of an arbitrary interleaving of the operations shared-memory reads.
shared-memory writes, and local computation. Consider a @sir phase with maximum contention
ki ie., w is the maximum. over all locations x. of the number of processors reading » or the number
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Comparison of Some Models of Parallel Computation

model synchrony communication | parameters
PRAM [27] lock-step shared memary P
Module Parallel Computer (apc) [53] lock-step distributed memory P
LPRAM [3] lock-step shared memory p.l
Phase LPRAM [30] bulk-synchrony shared memory p. (s
Bulk-Synchronous Parallel (Bsp) [63] | bulk-synchrony message-passing p.g. L
Postal model [9] asynchronous nmessage-passing p.o
LogP model [21] asvuchronous nmessage-passing p.g.lio
QRQW Asynchronous PRAM [34] asynchronous shared memory P
QRQW PRAM [32] bulk-synchrony shared memory P
Block PRAM (BPRAM) [2] lock-step shared memory p. B
Block Distributed Memory (BDM) [43] | bulk-svuchrony | distributed memory p.g. L. B
PRAM(m) model [52] lock-step shared memory p.m
Interval model [51] bulk-synchrony nmessage-passing p.l
Queuing Shared Memory (Qsum) [31] bulk-synchrony shared memory p.g

Table 1:

(from [33]) A comparison of several models of parallel computation. The fourth column

indicates the parameters of the model, where p is the number of processors, { is the communication
latency (i.e. the time to deliver a message point-to-point or to access the shared memory). s is the
cost for a barrier synchronization among all the processors. L is a single parameter that accounts
for the sum of £ and s, g is the bandwidth gap (i.e. the rate at which processors can perform local
operations divided by the rate at which the processors can sustain interprocessor or processor-
memory communication). o is the overhead at the processor to send or receive a message. B is the
block size (l.e. the number of consecutive cells sent on a write or retrieved on a read). m is the
number of shared memory cells available for both reading and writing. and [ is the maximum of (.
g. and s.

of processors writing @. Let w be the maximum number of local operations done by any processor
during the phase; and let A be the maximum number of share-memory read or shared-memory
write operations done by any processor during the phase. Then the time cost. t. of the superstep is
defined to be t = max(w. g+ h. ). A comparison of some models of parallel computation is given
in Table 1. Let us also mention that a few models incorporate powerful aggregate communication
primitives [14, 17]. for providing an easier programming model.

To conclude we refer the reader to some recent survey and position papers [49. 51. 38, 19, 33. 42].
as well as to the collection of position papers in [66]. We finally mention that several groups
have been recently involved in implementations and experimentations of parallel algorithms, using
bandwidth-limited general purpose models (see, e.g., [8, 13, 18, 21, 22, 28, 36, 39. 5]).

Finding models that can provide a satisfying balance between ease of use and accuracy remains
a challenge of primary importance. We have pointed out several recent attempts in this direction.
and we are likely to witness more efforts in the near future, hoth in the theoretical and in the
experimental levels. Are we likely to see convergence into a single accepted model. or are we going
to see a plurality of models. depending on application domain. platform or taste? This remains to
be seen.
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