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A lovely cartoon in the ,5'IGACT News Complexity Theory Column 9 [59] illustrates a parallel 
computing laboratory whose door is "closed due to bankruptcy".  (?ontrary to this perception 
regarding the state of parallel computing (which ma.y be a reflection of the funding for acadenfic 
research in the field, as well as the failures of a number of supercolnt)uter vendors), we see in recent 
years how parallel computing moves from the labs into the workplace in an increasing pace. The 
role of parallel conlputing in commercial  applications is expected to increase dramalically, as more 
and more users are demanding access to databases and dala  warehouses conta.ining hundreds of 
gigabytes to terabytes of data: see, e.g., the presenta.tions in [24], and the articles [56, 62, 57]. As 
pointed out in the latter references, one of the ma.in challenges facing parallel computing in the 
n~arketplace is enabling software that  is reasonably simple to develop, and tha.t is COlnpatible and 
portable for the variety of available pa~ra.llel systems. 

A closely related issue has been the focus of much attention in the field ofparal lel  algorithin 
design for the past few years: whet shoMd be the comp~llationcd modr[ J'or thc de,~igl~ of porollel 
algorith~s. In choosing a model for algorithm design we are facing an inherent conflict. On the 
one hand, we would like to have high-level models which abstract away many de{ ails of the parallel 
systems on which the algorithms are to be implemented. Parallel algorithms designed on such 
models are simple to describe and to a.nalyse; furthermore, such a.lgorithms are easily portable 
to many different 1)latforms. On the other hand, by ignoring important details about the parallel 
system, the analysis of the algorithms inay not adequately reflect the performance of their respective 
implementa.tions. Hence, for performance considerations it may become essential to use lower-level 
models which take into account more details. However. efficient algorithms for low-level models 
may be harder to design and to analyze: fln'therlnore, such algorithms are o[ten not easily portable 
from one parallel system to another. 

In the first .S'IGA('T News Column on Para.llel Algorithms [35], Goodrich reviewed a "'classic" 
high-level model for parallel algorithm design-- the PRAM and mentioned some work on alterna- 
tive; lower level "bridging" models, such as the BSP and LogP. The recent introduction of these 
latter models has a t t racted considerable attention, with further studies, both theoreticalh.' and 
experimentally. Some efforts to develop software systems based on bridging models have been initi- 
ated (see, e.g., [8~ 13~ 18, 22.28, 3(J, 39, 54]). At the same time~ there has been a continuing search 
for alternative suitable models. 
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Looking throngh the technical progra.ms of the last few (SIGACT co-sponsored) ACM Symposia 
on Parallel Algorithms and Architectures (SPAA), one may observe that  the model of colnputation 
assumed in the design of the presented algorithms lnay be one of several models (e.g., c u c w  PRAM.  

QRQW PRAM, Bulk Synchronous (BS.P) and its extensions, LogP and its extensions, Block Distributed 
Memory (BDM), Coarse Grained Multicomputer (CGM), external memory models, and low level 
models such as meshes, among others). In addition, there are works that  study, theoretically or 
experimentally, the advantages and limitations of various models. This column provides a few 
pointers to some of the recent works relevant to the lnodeling of parallel computat ion.  

\:re first briefly remind the reader some of the contentious issues in modeling parallel comput- 
ing. During the past two decades, the parallel random access machine, or PRAM,  has gained vast 
populari ty in the theoretica.1 study of pa.rallel algorithms. The PRAM model, introduced in [27], is 
a simple model in which processors execute in lock-step and communicate by reading and writing 
in a shared memory. The cost metric for an algorithm rulming on the P R A M  model is the num- 
ber of processors, p, and the time, t. Alternatively, the cost metric ma.v consist of the woH,:, ~P, 
defined as the time-processor product p .  t, and the time. The PRAM is a rather natural  extension 
of the well-accepted (serial) random access model (RAM) [4]. It has proven a convenient lnodel to 
design and anahvze parallel algorithms, and to develop a robust  theory of parallel algorithms (see. 
e.g., 58]). 

While the P R A M  enables one to concentrate on the inherent parallelism of a problem, it a.b- 
stracts away several issues that  may be significant to the performance of parallel programs. Several 
works have considered the issues of asynchrony, memory contention, latency, memory granular- 
ity, bandwidth,  and memory hierarchy. (See, e.g., [35, 33] for some references.) Alongside with 
the s tudy of PRAM algorithms, there has been considerable research on particular network-based 
models. These models, h~ which processors send messages to and receive messages from other pro- 
cessors over the given network (e.g., arrays, trees, hypercubes),  are more accurate in addressing 
the colnmunicatiol~ networks in parallel systems (see, e.g., [47]). However, algorithms developed on 
one network-based model may be too particular to that  model, and not adequate to other models. 
Thus, these relatively low-level models often result with algorithms that are not portable. 

This has prompted tile introduction of bridging lnodels [61, 63], which is an at tenlpt  to provide 
a unified model that  would capture features common to lnany architectures, and that are significant 
to the performance of parallel programs. An algorithin designed on a bridging model should be 
readily implementa.ble on a va.riety of pa.rallel architectures, and its efficiency on the bridging model 
should be a good reflection of its actual performance. 

Valiant has proposed as a. bridging model the Bulk Synchronous Parallel (BSP) model [63. 
64]. which consists of p processor /memory components communicating bv sending point-to-point 
messages. The interconnection network supporting this communication is characterized only by a 
per-processor throughput  parameter  g and a latency parameter  L. A BSP computat ion consists of 
a sequence of "supersteps" separated by bulk synchronizations. In each superstep the processors 
call perforln local computat ions and send and receive a set of lnessages. Messages are sent in a 
pipelined fashion, and lnessages sent in one superstep will arrive prior to the start  of the next 
superstep. The time charged for a superstep is calculated as follows. Let tt'i be tile amount  of local 

P work performed by processor i in a given superstep, and let w = l n a x i =  1 Wi. Let h be the maximum 
number of messages sent hy any one processor or received by any one processor. Then the cost. t, 
of the superstep is defined to be t = max( u', g • h, L) . Intuitively the COmlnunication throughput  
paralneler. 9, is the best sustainable gap between message sends issued by each individual processor: 
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therefore 1/g represents the ava.ilable bandwidth per processor. 

More recently, Culler el; al have proposed the [,ogP model [21,23]. The LogP is a.n asvnchronons 
model: in addition to latency (L) and gap pa,rameters (g). that  are quite similar to those of the BsP, 
it has an overhead parameter o, which is defined as the length of time that  a processor is engaged 
in the transmission or reception of each message. There is also a capacity restriction of L/g  on the 
number of messages that  can be in transit from any processor or to any processor at anv time. 

In a :recent paper Bilardi et al [12] provide a critical assessment of the relative power of the BSP 
and Logp models. They present efficient cross simulations between the two models, and show that 
the two models can be implemented with similar performance on most point-to-point networks. 
Bilardi el al conclude that  at least within the limits of asymptotic analysis, the two models can be 
viewed as closely related variants within the bandwidth-latency framework for modeling parallel 

computation.  

Several attthors have pointed out that  the Bsp model may not accurately reflect the cost of 
sending unbalanced communication pa, tterns, and experimental evidence measuring this inaccm'acv 
is provided in [68]. Modifications to the BsP model to more accurately reflect commnnicalion cosls 
ha,re been proposed, for example the E-BSP [.4-l] as well as the Y-BsP [26]. These models, as well as an 
earlier model, the DRAXl of Leiserson and Ma,ggs [48]. incorporate cost measures which vary greatly 
depending on the underlying network architecture: both the Y-BSP and the E-BSP incorporale cost 

lnea,sures designed to capture network proximity. Blelloch et al [116] propose the (d.x)-BSp model 
as a refinement for the BSP that i)ro\~ides more deta.iled modeling of lllen/orv bank contention and 
delay. This model has two additional parameters: the delay d. which is the gap parameter  at the 
memory banks, and the expansion x which is the ratio of memory banks to processors. Blelloch et al 
argue that  the (d,x)-Bsp more accurately models shared-memory machines with a high bandwidth 

communication network and more memory banks than processors. 

In a, recent work, Adler et al [1] consider a va,ria.nt of the BsP model, the ssP(m),  that replaces 
the per-processor bandwidth paralneter g by an aggregate bandwidth parameter ~ .  They show 
that  in general the BSP(m) has a possible advantage over the BSP in situations of imbalanced 
communication. Some variants of the BSP and LogP, including the BDM, | ,og( ;P ,  E-BSP and BSP ×. 
account for spatial locality and allow for "block transfer" [43, 5. 44. 10. 11]. Another variant [49] 
extends the I~ogp with hierarchical memory model characterizing each processor, building on [T, 6]. 
Several models were proposed (e.g. [55, 67]) for the design and analysis of parallel algorithms thai 
account for pa,rallel disk I /O (set [20] and the references therein). 

Most of the models discussed above are message-passing and distributed memory models. Ad- 
voca.tes such as \:ishkin [65], I(ennedy [46], Smith [(301 . and Blelloch [15] have lena presented 
arguments in supI)ort of the shared-memory abstraction. In a recent work. Gibl)ons e/ ~ll [31] 
proposed the Queuing ,qJ~ar'~d M(mory (QSXI) model as a candidate for a shared memory bridg- 
ing model. They argue that  this model may be competitive in effectiveness to lhe Bsp and ~ogp 
models, by providing efficient emulations on the BSP and on the (d.x)-BSP. The QsM consists of'/) 
t)rocessors, each with its own private nlelnory, communicating by reading and wri! ing locations in a 
shared memory. The interconneetion network supporting this comnmnication is characterized by a 
per-processor throughput  parameter 9. Processors execute a sequence of build-synchronous phases 
(supersteps), each consisting of an arbitrary interleaving of the operations shared-memory reads, 
shared-memory writes, and local computation. Consider a QSal phase with ma.ximunl contention 
~: i.e., h" is the ma.ximum, over all locations ,r. of the number of processors reading ,r or the number 

23 



Comparison of  Some Models  of Parallel  Computa t ion  

model  synchrony e o m m u n i e a t l o n  parameters  

Module Para,lleI Computer  (M PC)[.53] 

LPRAM [3] 
Phase LPtRAM [30] 
Bulk-Synchronous Pa.ra.llel (BSP)[63] 
Postal model [9] 
LogP model [:21] 
Q R Q W  Asynchronous PRAM [84] 
QRQW P R A M  [32] 
Block P R A M  (BPRAM) [2] 
Block Distributed Memory (BDM) [43] 
P R A M ( m )  model [52] 
Interval m.odel [51] 
Queuing Shared Memory (qsM)[31] 

lock-step 
lock-step 
lock-step 

bulk-synchrony 
bulk-synch tony 
asynchronous 
asynchronous 
asynchronous 

bulk-synchrony 
lock-step 

bulk-synchrony 
lock-step 

bulk-synchrony 
bulk-synchrony 

shared memory 
distributed memory 

shared memory 
shared memory 
message-passing 
message-passing 
message-passing 
shared melnorv 
shared memory 

shared memory 
distributed memory 

shared memory 
message-passing 
shared memory 

P 
P 

p , (  
p. (.,~ 

p, 9, L 
p,(  

p ,g , ( , o  

P 
P 

p , ( , B  
p ,g .L ,  'B 

p. m 
p . I  

]),9 

Table 1: (from [33]) A compariso~ of several mo&ls of parolld compzltatiom The fourth column 
indicates the parameters  of the model, where p is the number of processors, ( is the comnmnication 
latency (i.e. the time to deliver a. message point-to-point or to access the shared memory),  s is the 
cost for a barrier synchroniza.tion among all the processors. L is a. single paralneter that  accounts 
for the sum of ~ and .s, g is the bandwidth gap (i.e. the rate a.t which processors can perform local 
operations divided by the rate a.t which the processors can sustain interprocessor or processor- 
memory communication),  o is the overhead at the processor to send or receive a. message. B is Ihe 
block size (i.e. the number of consecutive cells sent on a write or retrieved on a read), m is the 
number of shared memory cells available for both reading and writing, and [ is the maximum of (. 
g, and s. 

of processors writing x. Let w be the maximuln number of local operations done by any processor 
during the phase; and let h be the maximum number of share-memory read or shared-memory 
write operations done by any processor during the phase. Then the time cost. t. of the superstep is 
defined to be * = nrax(w, g.  h, K) . A comparison of some models of parallel computat ion is given 
in Table 1. Let us also mention that a few models incorporate powerful aggregate colnnmnication 
primitives [14, 17], for providing an easier programming model. 

To conclude we refer the reader to some recent survey and position papers [49.51, 3,q. 19, 33, 42], 
as well as to the collection of position papers in [66]. We finally mention that several groups 
have been recently involved in implementations and experimentations of parallel a.lgorithms, using 
bandwidth-lilnited general purpose models (see, e.g., [8, 13. 18, 21, 22, 28, 36, 39, 54]). 

Finding nrodels that  can provide a, satisfying balance between ease of use and accuracy remains 
a challenge of primary importance. We have pointed out several recent a t tempts  in thin direction. 
and we are likely to witness more efforts in the near fnture, both in the theoretical and in the 
experilnental levels. Are we likely to see convergence into a single accepted model, or are we going 
to see a plurality of models, depending on application domain, platform or taste'? This remains to 
be seen. 
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