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Abstract
This paper provides an improved implementation of an algorithm for building wavelet

synopses for max-error metrics, recently introduced by Garofalakis and Kumar (GK) [4].
Given a storage space of size M , the GK algorithm finds a wavelet synopsis of size M ,
which minimizes the max (absolute or relative) error, measured over the data values, with
respect to any other wavelet synopsis of size M . The running time of the GK algorithm is
O

(
N2M log M

)
and its space complexity is O

(
N2M

)
. In this paper we improve the time

and space complexities by a factor of M , reducing the running time to O
(
N2 log M

)
and

the space requirement to O
(
N2

)
. As in [4] no experimental results were shown, we present

experimental comparison between the accuracy of the GK synopsis with other wavelet syn-
opses, as well as experimental comparison between the running-time of the original GK
algorithm with our improved implementation. We also apply the GK synopsis for range-
queries, built on the raw data as well as over the prefix-sums of the data, and compare
it experimentally with other wavelet synopses, demonstrating an interesting similarity to
another synopsis that can be computed in linear time.

1 Introduction

In recent years there has been increasing attention to the development and study of data syn-
opses, as effective means for addressing performance issues in massive data sets. Data syn-
opses are concise representations of data sets, that are meant to effectively support approxi-
mate queries to the represented data sets [5]. A primary constraint of a data synopsis is its
size. The effectiveness of a data synopsis is measured by the accuracy of the answers it pro-
vides, as well as by its response time and its construction time. Several different synopses
were introduced and studied, including random samples, sketches, and different types of his-
tograms. Recently, wavelet-based synopses were introduced and shown to be a powerful tool
for building effective data synopses for various applications, including selectivity estimation for
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query optimization in DBMS, approximate query processing in OLAP applications and more
(see [11, 17, 15, 16, 1, 3, 2, 4], and references therein).

The general idea of wavelet-based approximations is to transform a given data vector of size
N into a representation with respect to a wavelet basis (this is called a wavelet transform),
and approximate it using only M ¿ N wavelet basis vectors, by retaining only M coefficients
from the linear combination that spans the data vector (coefficients thresholding). The linear
combination that uses only M coefficients (and assumes that all other coefficients are zero)
defines a new vector that approximates the original vector, using less space. This is called
M -term approximation, which defines a wavelet synopsis of size M .

An M -term approximation, like any other approximation, creates a vector of approximation
errors, which are the differences between the approximated data values and the original data
values. Several works have dealt with providing wavelet-based synopses that are effective with
respect to the mean-squared norm of error approximation. Recently, Garofalakis and Kumar [4]
addressed the problem of minimizing the error approximation in the max-norm. They present a
dynamic programming algorithm and find an optimal M -term approximation, which minimizes
the max absolute or relative error over the data values. The time and space complexities of
their algorithm are O(N2M log M) and O(N2M), respectively, where N is the data size and M
is the approximation size (the number of wavelet coefficients). Throughout the paper we call
this algorithm the “GK algorithm” and the synopsis it builds the “GK synopsis”.

1.1 Contributions

In this paper we provide an improved implementation of the GK algorithm. We also provide ex-
perimental evaluation of both the original and improved implementations of the GK algorithm,
as well as of the accuracy of the GK synopsis. We improve the implementation of the algorithm
and reduce its time and space complexities each by a factor of M , obtaining running time of
O(N2 log M) and space complexity of O(N2). The improvement is achieved using a rather
simple observation. The original algorithm computed some redundant computations, which
are executed due to the recursive nature of the GK algorithm. We avoid these computations,
observing that most of the computed points are not required for the recursive computation.

We have conducted the following experimental evaluation:

• Accuracy for point queries. The GK synopsis minimizes the maximum relative or
absolute error measured over the data values, or equivalently over all possible point queries.
We compared it with the standard wavelet synopsis [11, 17]. When using the relative-error
version of the GK synopsis we establish that its maximum-relative error can be 70 times
smaller than the standard wavelet synopsis, which is not designed for max relative-error
minimization. When comparing the absolute-error version of the GK synopsis, results
were better than the standard synopsis, but with a smaller factor of 1.25–2.

• Accuracy for range sum queries. The paper [11, 17] introduced two methods for
answering of range-sum queries using a wavelet synopsis. One method is answering range
queries using wavelet transform that is done over the raw data. The other method is
answering range queries using wavelet transform that is done over the prefix-sums of
the original data. We implemented both methods for the GK synopsis and tested it
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experimentally. We compared the relative-error version to a workload-based adaptive-
greedy algorithm of [7, 13], which is adapted to minimize the mean-squared relative error
(MRE) for workloads of range queries. We got that the adaptive greedy algorithm showed
better results with respect to both MRE and the maximum-relative error measure over
the tested data sets.

We compared the GK synopsis with the standard synopsis, both built over the raw data,
and the standard synopsis was superior both with respect to the MSE and max-absolute
error measures.

We also compared the GK synopsis, built over the prefix sums of the data, with a Range-
Optimal Prefix-Sums (ROPS) synopsis for range-queries which we recently introduced
in [9]. Despite of the fact that the ROPS synopsis and the GK synopsis are aimed at
minimizing different error measures, and constructed differently, we got very similar results
for both synopses, on the tested data sets, with respect to both MSE and max-absolute
error measures.

• Running time evaluation. We compared the running time of both the original and
improved implementation of the GK algorithm, showing that the running time of the
improved implementation is faster by approximately a factor of M (the synopses size), as
expected.

1.2 Related results

Recently, Muthukrishnan [12] improved the GK algorithm and reduced its running time to
O(N2M/ log M), while leaving the space complexity unchanged. His work focuses on a related
problem – minimizing the weighted L2 norm of the vector of absolute errors, measured over
all possible point queries, using the Haar wavelet basis 1 – showing that the GK algorithm can
be adapted for this problem as well. Here we improve the complexity of the GK algorithm,
reducing both its space and time, where the new time and space complexities are better than
in [4, 12]. Our improved implementation can be adapted to address the workload based wavelet
synopses problem for Haar wavelets, with the same complexities.

Recently, Guha [6] has obtained a related improvement. With a more careful acounting for
the running time he has further reduced the time complexity by an additional factor of logB.

2 Wavelet synopses based on the Haar basis

Haar wavelets are conceptually the simplest wavelet basis functions, and they are used in the
original paper. To illustrate how Haar wavelets work, we will start with a simple example
borrowed from [11, 17].

Suppose we have one-dimensional “signal” of N = 8 data items: S = [2, 2, 0, 2, 3, 5, 4, 4]. We
will show how the Haar wavelet transform is done over S. We first average the signal values,
pairwise, to get a new lower-resolution signal with values [2, 1, 4, 4]. That is, the first two values
in the original signal (2 and 2) average to 2, and the second two values 0 and 2 average to 1,

1This problem is also known as the workload-based wavelet synopses problem, introduced by [7, 13]. We have
recently provided a linear time solution using weighted Haar bases [10].
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and so on. We also store the pairwise differences of the original values (divided by 2) as detail
coefficients. In the above example, the four detail coefficients are (2−2)/2 = 0, (0−2)/2 = −1,
(3 − 5)/2 = −1, and (4 − 4)/2 = 0. It is easy to see that the original values can be recovered
from the averages and differences.

This was one phase of the Haar wavelet transform. By repeating this process recursively on
the averages, we get the Haar wavelet transform (Table 1). We define the wavelet transform
(also called wavelet decomposition) of the original eighth-value signal to be the single coefficient
representing the overall average of the original signal, followed by the detail coefficients in the
order of increasing resolution. Thus, for the one-dimensional Haar basis, the wavelet transform
of our signal is given by
S̃ = [23

4 ,−11
4 , 1

2 , 0, 0,−1,−1, 0]

Resolution Averages Detail Coefficients
8 [2, 2, 0, 2, 3, 5, 4, 4]
4 [2, 1, 4, 4] [0,-1,-1, 0]
2 [1.5, 4] [0.5, 0]
1 [2.75] -1.25

Table 1: Haar Wavelet Decomposition

The individual entries are called the wavelet coefficients. The wavelet decomposition is very
efficient computationally, requiring only O(N) CPU time and O(N/B) I/Os to compute for a
signal of N values, where B is the disk-block size.
No information has been gained or lost by this process. The original signal has eight values, and
so does the transform. Given the transform, we can reconstruct the exact signal by recursively
adding and subtracting the detail coefficients from the next-lower resolution. In fact we have
transformed the signal S into a representation with respect to another basis of R8: The Haar
wavelet basis. A detailed discussion can be found, for example, in [14].

A helpful tool for exploring and understanding the Haar wavelet transform is the error tree
structure [11, 17], depicted in Figure 1. Understanding the error tree is crucial to understanding
the algorithm of [4], and our improvement. The figure demonstrates how an original data value
can be reconstructed in O(log N) time. The wavelet coefficients can be treated as nodes in the
tree, where the original data are the leaves of the tree. In order to reconstruct a data value we
just go down the tree, adding or subtracting coefficient values on the path to the leaf. When
we go right we subtract the value (which is a pairwise difference divided by two, as described
above), and when we go left we add the coefficient’s value.

The next step is to keep only M of the N wavelet coefficients as our synopsis, assuming all
other coefficients are zero, using the M coefficients to approximate the original data. When
building an approximated vector using the synopsis, we can measure the approximation error
in several ways. Let di be a data value, and d̂i be the approximation of di, constructed by
the synopsis. The absolute error over the data value is defined as |di − d̂i|, and the relative

error is defined as |di−d̂i|
Max(di,s)

, where s is a sanity bound preventing from small data values from
dominating the relative error (for example, s can be taken to be 1). The approximation defines
a vector of errors over all data values (equivalently point queries). Usually the purpose is to
minimize some Lp norm of this vector.
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Figure 1: Error tree for N = 8

In this paper the purpose is to minimize the L∞ norm of the vector of absolute or rela-
tive errors over all data values. These norms are called the maximum-absolute error and the
maximum-relative error. The question is what M wavelet coefficients should be retained as the
wavelet synopsis so as to minimize these error metrics, and how to choose them efficiently.

3 The GK thresholding algorithm

The thresholding algorithm presented in [4] (the “GK” algorithm) is based on a dynamic pro-
gramming (DP) formulation. Suppose we want to solve the thresholding problem for a subtree
Tj rooted at node cj (which is the coefficient cj) in the error tree, and we have a storage alloca-
tion of m coefficients. In other words, we want to choose m coefficients to retain as a synopsis
of Tj , such that the max (absolute or relative) error over the leaves of Tj (the data values) is
minimized with respect to any other synopsis of size m of Tj . A straightforward way to solve
this kind of problems would be to try to use recursion. There are two possibilities regarding cj :
we can either keep it or drop it. In case we keep (resp. drop) it, we have a storage of m − 1
(resp. m) coefficients to divide among the two subtrees of cj . Thus, it seems that all we have
to do is choosing the best result among 2m + 1 recursive calls on the two subtrees with the
following 2m + 1 possible space divisions:
left: 0 right: m − 1, left: 1 right: m − 2,... (resp. left: 0 right: m, left: 1 right: m − 1,...) for
the case we keep (resp. drop) cj in our synopsis, and choose the division that minimizes the
maximum of the two max-errors from both subtrees. This is almost the solution.

The problem with the above solution is that when solving the problems for subtrees, the
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algorithm must know what coefficients were selected on the path from cj to the root (denoted
as path(cj)), since different selections along this path would imply different solutions for the
sub-trees. We illustrate it using a simple example. Suppose all the coefficients on path(cj) were
retained. Suppose Tj has four leaves, and the errors over its leaves for a given synopsis of size
m are 1, 1, 0, 1 so the max-error is 1. Now suppose we drop some coefficient on path(cj) with
value -1. The errors over the leaves can become 2, 2, 1, 2 with a max-error of 2, thus changing
the optimal solution’s value for the subtree, with respect to the case all coefficients on the path
were retained. Note that in order to know whether to retain or drop cj we called the problem
recursively on subtrees, but in order to solve the problem on sub-trees we need to know whether
cj (as well as any other coefficient in path(cj)) was retained.

The GK solution for this problem is to call the recursion on the subtrees for every possible
selection of coefficients on path(cj). That is, for each possible selection of subset of retained
coefficients on path(cj) we would call the 2m+1 recursive calls, and choose the best division for
a given space allocation and a given coefficient selection along the path to the root. There are
no more than 2log N = N possible selections of subsets of retained coefficients along path(cj),
since path(cj) is at most of length log N + 1.

More formally, let M denote the total space budget for the synopsis, and let Tj be the subtree
of the error-tree rooted at node cj , with coeff(Tj) (data(Tj)) denoting the set of coefficient (resp.
data) values in Tj . Let signik be the sign which the coefficient ck contributes to the ith data
value. Finally, let A[j, m, S] denote the optimal (i.e. minimum) value of the maximum error
(relative or absolute) among all data values in Tj assuming a synopsis space budget of m
coefficients for the Tj subtree, and that a subset S ⊂ path(cj) (of size at most min{M −
m, log N + 1}) of proper ancestors of cj have been selected for the synopsis; that is, assuming a
relative-error metric (denoted as erri := relErri, for the relative error over the ith data value),

A[j, m, s] = min
Sj⊆coeff(Tj),|Sj |≤m

{
max

di∈data(Tj)
relErri

}

where

relErri =
|di −

∑
ck∈path(di)∩(Sj∪S) signik · ck|

max{|di|, S}
The case of absolute errors is defined similarly.

Clearly, A[0,M, φ] gives us the desired optimal error value at the root node of the error
tree. (The algorithm first computes the optimal error value, and keeps in each node A[j, m, S]
information of whether cj was selected, and what is the size of the allocation for the left subtree,
so we can trace the computation and build the optimal synopsis later.) The computation of
A[j, m, S] is done as follows. For the case we keep cj , the minimum error is

min
0≤m′≤m

max
{
A[2j,m′, S], A[2j + 1,m−m′, S]

}

Note that S is a legal subset of retained coefficients on path(c2j) and path(c2j+1).
For the case we drop cj , the minimum error is

min
0≤m′≤m−1

max
{
A[2j, m′, S ∪ {cj}], A[2j + 1,m− 1−m′, S ∪ {cj}]

}
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Note that again, S ∪ {cj} is a legal subset of retained coefficients on path(c2j) and path(c2j+1).
The base case is computed for a leaf (i.e. a data value) in the tree. In the GK algorithm,

the wavelet coefficients are indexed 0, ..., N − 1, and the data values are indexed N, ..., 2N − 1.
That is, for j ≥ N they denote cj := dj−N . The base case is

A[j, 0, S] =
|dj−N −∑

ck∈S signj−N,k · ck|
r

where r = 1 in the case of absolute errors and r = max{|dj−N |, s} in the case of relative
error.

Actually, if we want the entry A[j, m, S] to hold the optimal error for all synopses sizes ≤ m
and not only for sizes = m, we must allow computation of base cases of the form A[j, m, S]
(j ≥ N) for any 0 ≤ m ≤ M , and not only zero.2 The reason for this can be demonstrated
as follows. Suppose there is a synopsis of size M − 1 that gives better optimal error than
all synopses of size M . We can “catch” this synopsis if we allow computations of A[j, 1, S] for
j ≥ N , since the extra allocation size is “absorbed” at the leaf, and is not used by the algorithm.
We used this idea in our optimization of the algorithm.

Complexity. The space complexity of the algorithm is the total number of entries that are
computed. This number is 2N · (M + 1) · 2N = O(N2M), since there are 2N nodes, M + 1
possible space allocations per subtree rooted at the node, and 2log N+1 possible selections of
subset of retained coefficients along the path to the root. It can be seen in the base-case
formula that each leaf entry can be computed in O(1) time, if we keep the accumulated error
(from retaining or droping coefficients on the path) as we go down the tree with the recursion.
Every other entry is computed by taking the minimum of the 2M + 1 recursive results, so in
the straightforward way the algorithm’s running time is O(N2M2). However, since the optimal
error is monotone decreasing function of storage space (recall that A[j,m, S] is the minimum
error value for storage space ≤ m), each entry is computed in log M steps using a binary search
(details are given in [4]). The total running time of the algorithm is thus O(N2M log M).

4 The improved implementation

Our main improvement in the new implemenation is to reduce the space complexity to O(N2)
and the running time to O(N2 log M), based on the following simple observation. In order to
compute the final answer we don’t need to compute all O(N2M) entries that are computed by
the original algorithm. For example, if we compute A[j, m, S] and the node cj is at depth d,
then there are only 2d possible selections of coefficients on path(cj), instead of 2log N+1 = 2N .
In addition, if the size of Tj , denoted |coeff(Tj)|, is smaller than M , then instead of computing
A[j, m, S] entries for every 0 ≤ m ≤ M , we just need to compute the entries for 0 ≤ m ≤
|coeff(Tj)|.

While the idea is quite simple, a straightforward implementation that just reduces the
number of entries is incorrect. Recall that an entry A[j, m, S] should keep the minimum error
value for all synopses of size ≤ m, for a given cj and S. The reason that in the original algorithm
A[j, m, S] keeps an optimal value for every storage size ≤ m, and not only for storage size m,

2This additional constraint was not considered by Garofalakis and Kumar [4].
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was that it allows computations of entries where m > |coeff(Tj)|, which eventually results in
base-case computations of the form A[i,m′, S] for i ≥ N and m′ ≥ 0, thus “absorbing” a
“surplus” of m′ allocation storage (since it is not used by the leaf), so that the final allocation
for Tj is smaller than m in these cases (in this case it is m−m′).

As denoted above, our optimization does not allow recursive calls with allocation sizes that
are larger than the tree size, so we have to solve the problem in a different way. If a recursive
call was called with size m that is larger than than coeff(Tj), it “resets” the size to coeff(Tj), and
continues the computation as if it was called with m = coeff(Tj). Since we keep the results in a
DP array, each entry is computed only once, so all subsequent calls for node cj with allocation
size > coeff(Tj) (and the same subset S of path(cj)), would be “reset” to coeff(Tj), and would
thus just return the value stored in the array.

However, this still does not fully solve the problem. Recall ([4]) that when the DP array is
computed, each entry holds the optimal error values along with a isRetained field, indicating
whether to keep or drop cj , and a leftAllot field, indicating the size allocation for the left
subtree that was used in order to achieve the optimal error value (the right allocation is simply
m−leftAllot). This way it traces the optimal synopsis by moving to the proper entries of
the array. Since we reset the allocation size when it is larger than the tree size, the leftAllot
field in the parent does not reflect the real allocation that was used to achieve the optimal
solution, so in the reconstruction phase it is not known what are the correct entries that should
be checked.

In order to solve that, we use the same method while reconstructing the synopses from the
DP array. The original algorithm uses the A[j, m, S].leftAllot field (we denote it next as
leftAllot), in order to trace the computation and move to the entries A[2j, leftAllot, ..] and
A[2j +1,m−leftAllot, ..]. Since during our computation we reset allocation sizes larger than
|coeff(Tj)| to |coeff(Tj)|, we do it again during the synopsis reconstruction phase, such that if
leftAllot is larger than |coeff(T2j)|, or m - leftAllot is larger than |coeff(T2j+1)| we reset it
to their sizes, and thus keeping the correctness of the construction.

The second optimization we mentioned was computing only entries where S is a legal selec-
tion of coefficients on path(cj). That is, S is one of a 2d possible subsets of d coefficients, where
d is the depth of cj , instead of one of 2log N subsets of log N coefficients, which is only correct
for the leaves. Note that by the recursion definition, it is not possible to call a recursion with
illegal S, so all we had to do is to not allocate these entries in the array.

We quantified the number of computations of our optimized algorithm in table 2 (it is
recommended to view the table bottom up). For purposes of exposition we assumed M is a
power of 2. In case it is not, the computation is done similarly. For each level we count the
total number of entries computed for the level, where the leaves are at the bottom row of the
table, and the root is in the first row of the table. The total number of entries in the DP array
is the sum of the righthand column, which is O(N2). Since each entry is computed in log M
time, the total running time of the optimized algorithm is O(N2 log M).

4.1 An I/O efficient implementation

We obtain an I/O efficient algorithm as follows. we allocate the DP array such that given a cj

and S, all the entries A[j, m, S] where 0 ≤ m ≤ coeff(Tj) are continuous in memory. This is done
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Level nodes number possible space allocations possible path selections total entries
1 N

N = 1 M N
N
2

= 2 2M

...
...

...
...

...
l − 2 N

4M M N
2M

N2

8M

l − 1 N
2M M N

M
N2

2M

l N
M M N

M
2

N2

M
2

...
...

...
...

...
log N − 2 N

4 4 N
2

N2

2

log N − 1 N
2 2 N N2

log N N 1 2N 2N2

Table 2: Number of computed entries per level

by letting m be the third parameter while allocating the array (meaning A[j, S,m], instead of
A[j, m, S]). This way the binary search for computing each entry is done using one I/O, instead
of log M possible random accesses to memory, implying a worst case of O(log M) I/Os per entry
computation.

5 Experiments

In this section we describe our experiments using the GK syopsis. We first present experiments
on point queries, measuring both accuracy and running time, and then present experiments on
range queries. All experiments were executed using the τ -synopses system [8].

We describe several experiments, each representing a group of experiments we did. Briefly,
our experiments demonstrate several facts:

• For point queries, the GK achieved significantly lower maximum-error compared to other
wavelet synopses.

• For range-sum queries with uniform workload, the standard wavelet achieved lower MSE
and maximum-absolute error compared to the GK synopsis.

• For range-sum queries with various workloads, the adaptive-greedy synopsis achieved sig-
nificantly lower MRE and maximum-relative errors compared to the GK synopsis.

• When building the GK synopsis (absolute error version) over the prefix-sums of the data,
the synopses it builds give very similar approximation errors to the ROPS synopsis [9],
which minimizes the MSE for range-sum queries and is built in linear-I/O optimal time.
(The ROPS synopsis is almost identical to the standard synopsis). Thus, it may be that
in the case of prefix-sums these two methods build almost similar synopses.

• Running time experiments verified the factor M improvement in the running time of the
algorithm.
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Note. When the synopsis size is very small, the GK relative-error synopsis throws all the
coefficients, resulting in an answer of 0 to each query, and thus with a relative error of 1.0. The
reason is that when the number of coefficients is very small there are cases where if we keep
only few coefficients, an answer to a query can be, for example 250 instead of 100, resulting in a
relative error of 2.5, so the better choice is to threshold all the coefficients, and keep a relative
error of 1.

We next call the relative error based GK synopsis “GK-rel” and the absolute error based GK
synopsis “GK-abs”. We call the synopsis based on the greedy heuristic [11, 17] the “standard
synopsis”. When refering to “data-size”, we mean the number of distinct values in the relation.

5.1 Experiments with point queries

In this section we present experiments measuring the accuracy of the GK synopsis and the
running time of the GK algorithm.

5.1.1 Running time - GK algorithm vs. the improved implementation

We compare the running time of the GK algorithm with the running time of our optimized
version. We also demonstrate that both algorithms find the same synopses. We used a workload
of 1000 queries, with synopses sizes 10-100, over two data-sets taken from KDD.

The first data set was of size 512. Our optimized version’s running time was 1:23 min-
utes, which includes building a synopsis and answering 1000 queries, for each synopsis size.
The original GK got an “outOfMemoryException” for synopsis size 40, since the space com-
plexity of the GK algorithm caused a memory explosion on a 512 MB memory machine:
O(N2M log M) = O(512240 log 40) floating point numbers, are approximately 400MB of mem-
ory. We then compared both algorithm over a KDD data of size 128, with a workload of 1000
queries, synopses sizes 10-40.

Figure 2 depicts the approximation errors of the two synopses for various synopses sizes. It
can be seen that the approximation error is the same for both versions, demonstrating that the
same synopses are built by both methods.

We measured the synopes-building running time foreach size: 10, 20, 30 and 40. Our
measurements verified the factor M improvement in the running times. The results are depicted
in Table 3.

Synopsis size Original GK run-time (sec) Optimized GK run-time (sec)
10 0.2 2
20 0.5 9
30 0.6 21
40 1.1 40

Table 3: Running times of the GK algorithm vs. our improved implementation
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Figure 2: The accuracy of the GK synopses constructed by the GK algorithm and by our
improved implementation. As can be seen, both plots coincide, since the constructed synopses
are identical. Dataset: KDD data of size 128, workload: 1000 Zipf distributed queries, synopses
sizes: 10-40. This figure demonstrates that the results of the improved implementation are the
same as the results of the GK implementation. The running time improvement is described in
the text.

5.1.2 Max-relative error - the GK synopsis vs. the standard synopsis

In Figure 3 we compared the GK-rel synopsis with the standard synopsis which is optimal for
the L2 norm. We used the KDD data of size 512, with a workload of 1000 queries, with a
zipf(0.5) distibution, and synopses sizes of 10-100. The advantage of the GK synopsis is clear
(its error is more than 70 times smaller that that of the standard synopsis).

5.1.3 Max-absolute error - the GK synopsis vs. the standard synopsis

In Figure 4 we compared the GK-abs synopsis with the standard synopsis We used the KDD
data of size 512, with a workload of 1000 queries, and synopses sizes of 10-100. The advantage
of the GK synopsis is smaller than in the relative-error case, as the standard synopsis is aimed
at minimizing the MSE. Yet it achieves approximation error which is 1.25-2 times smaller than
the standard synopsis

5.2 Experiments on range sum queries

In this section we present experiment on workloads of range sum queries.

5.2.1 Max and mean relative errors over the raw data - the GK-rel synopsis vs. a
workload-based synopsis for range-queries

In this section we used workloads of 1000 range-sum queries. We compared the GK-rel synopsis
to a workload-based synopsis [7, 13], which is built using an adaptive greedy algorithm that
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Figure 3: The GK synopsis vs. the standard thresholding. Dataset: KDD data of size 512,
workload: 1000 queries, synopses sizes: 10-100. The comparison of two synopses was done with
respect to the maximum relative error measure. Since the standard thresholding is designed for
minimizing the MSE error measure, the advantage of the GK is clearly seen here, as its plot
coincides with the x-axis.
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Figure 4: The GK synopsis vs. the standard thresholding. Dataset: KDD data of size 512,
workload: 1000 queries, synopses sizes: 10-100. The comparison of two synopses was done with
respect to the maximum absolute error measure. The advantage of the GK synopsis can be
seen here.

reduces a relative error measured over a workload of range queries. We see in Figures 5 and 6
that the apdaptive greedy algorithm is better with respect to the workload based mean-relative
error and even with respect to the max relative error. How can it be? Recall that the GK
synopsis minimizes an error measured over point queries while the adaptive greedy minimizes
an error measured over range-sum queries. The GK synopsis minimizes the max relative error
over the data values, which does not necessarily imply minimization of an error measured over
range-sum queries.

5.2.2 MSE and max-absolute errors on the raw data - the GK synopsis vs. the
standard synopsis

Here we compared the GK-abs algorithm with the standard wavelet synopsis over a uniform
workload of range queries. The standard synopsis was superior to the GK-abs synopsis with
respect to both maximum-absolute error measure and the MSE measure. We used the KDD
data of size 512, with a workload of 1000 queries, and synopses sizes of 10-100. In Figure 7
we present the MSE experiment and in Figure 8 we present the maximum-absolute error
experiment.

5.2.3 Max-absolute error on prefix sums - the GK synopsis vs. the ROPS synopsis

We considered the application of the GK synopsis for range-sum queries and obtained a rather
surprising result. We used the GK synopsis to answer range sum queries using the method
introduced in [11, 17], a method that can be used for any wavelet synopsis. The wavelet synopsis
was built over the prefix-sums of the data, in which case a range query can be approximated as
the difference between the two (approximated) prefix sum values of the two limits of the range
of the query. We compared this implementation to the ROPS synopsis that we have recently
introduced [9], which is also built over the prefix-sums of the data. Generally, each of these two
synopses is built for a different purpose. The ROPS synopsis minimizes the mean-squared error
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Figure 5: The GK-rel synopsis vs. the workload based synopsis - MaxRE. Dataset: KDD data of
size 512, workload: 1000 queries, synopses sizes: 10-100, error measure: max-relative error. The
workload-based synopsis achieved significantly smaller errors for small synopses sizes. The GK
synopsis is optimal for minimizing the max-relative error measure over all point queries, while
here the workload of queries consisted range-sum queries, and therefore the workload-based
synopsis achieved better results.

Figure 6: The GK-rel synopsis vs. the workload based synopsis - MRE. Dataset: KDD data
of size 512, workload: 1000 queries, synopses sizes: 10-100. The adaptive algorithm achieved
better results for small synopses sizes, since it is designed for minimizing the MRE measure for
a workload of range queries, while the GK synopsis is designed for minimizing the maximum
relative error over all point queries.

over all possible range-sum queries when the transform is done over prefix-sums of the data, and
is computed in linear time. The GK synopsis minimizes the maximum absolute error, measure
over all data values (in this case over all prefix-sums values). We compared the two synopses
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Figure 7: The GK-abs synopsis vs. the standard synopsis. Dataset: KDD data of size 512,
workload: 1000 queries, synopses sizes: 10-100. The standard synopsis is superior to the GK
synopsis with respect to the MSE measured over the range-queries.

Figure 8: The GK-abs synopsis vs. the standard synopsis. Dataset: KDD data of size 512,
workload: 1000 queries, synopses sizes: 10-100. The standard synopsis is superior to the GK
synopsis with respect to the maximum-absolute error measured over the range-queries.
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Figure 9: The GK-abs synopsis vs. the ROPS synopsis. Dataset: KDD data of size 512,
workload: 1000 queries, synopses sizes: 10-100. It can be seen that for each synopsis size, both
synopses achieved the same error with respect to the given workload of queries. We got this
result for the maximum-absolute, maximum-relative, MSE and MRE error measures, for each
workload that we tried, over each KDE dataset that we had. This hints that both synopses
contains very similar subset of coefficients.

over the prefix sums of the data with workloads of 1000 range queries and got exactly the same
error value for each workload we tried, over each KDD data-set we have, for both the MSE,
MRE, maximum-absolute and maximum-relative error measures. This may suggest that both
methods build very similar synopses. The experiment is depicted in Figure 9. We got similar
results over different data-sets and workloads.

6 Conclusions

In this paper we provide an improved impelemtnation of the GK algorithm that minimizes the
max relative or absolute error over the data values (equivalently on point queries). We improved
the running time of the algorithm from O(N2M log M) to O(N2 log M) and the space complexity
from O(N2M) to O(N2). The synopsis shows good results for point queries. When comparing
the results for range-queries, the standard wavelet synopsis was superior to the GK-abs synopsis
with respect to MSE and maximum-absolute errors, and the adaptive-greedy algorithm was
superior the the GK-rel synopsis with respect to the MRE and maximum-relative errors. An
open question for future research is whether there is an efficient algorithm that minimizes these
error measures. When comparing the GK-abs with the ROPS synopsis, both built over the
prefix sums of the data, the results were pretty similar for each data set, workload and synopsis
size we tried. It would be interesting to understand the extent to which these two synopses are
similar.

We saw that the GK synopsis, which is good for point queries (with respect to relative and
absolute errors), and for range-sum queries over prefix-sums (with respect to abs errors) does
not necessarily extend to range-sum queries over the raw data, so a future work can be finding
an algorithm that minimizes the max error measured over range-sum queries in the raw-data
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case, and for relative errors over prefix-sums. Another direction can be to try minimizing the
ratio error. We saw that when the synopsis size is too small the GK-rel algorithm throws all
the coefficients so the relative error would not be more than 1. This is not very useful, and the
ratio error direction could be more correct in these cases.
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