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Abstract. In recent years wavelets were shown to be effective data syn-
opses. We are concerned with the problem of finding efficiently wavelet
synopses for massive data sets, in situations where information about
query workload is available. We present linear time, I/O optimal algo-
rithms for building optimal workload-based wavelet synopses for point
queries. The synopses are based on a novel construction of weighted
inner-products and use weighted wavelets that are adapted to those prod-
ucts. The synopses are optimal in the sense that the subset of retained
coefficients is the best possible for the bases in use with respect to either
the mean-squared absolute or relative errors. For the latter, this is the
first optimal wavelet synopsis even for the regular, non-workload-based
case. Experimental results demonstrate the advantage obtained by the
new optimal wavelet synopses, as well as the robustness of the synopses
to deviations in the actual query workload.

1 Introduction

In recent years there has been increasing attention to the development and study
of data synopses, as effective means for addressing performance issues in massive
data sets. Data synopses are concise representations of data sets, that are meant
to effectively support approximate queries to the represented data sets [10]. A
primary constraint of a data synopsis is its size. The effectiveness of a data
synopsis is measured by the accuracy of the answers it provides, as well as
by its response time and its construction time. Several different synopses were
introduced and studied, including random samples, sketches, and different types
of histograms. Recently, wavelet-based synopses were introduced and shown to
be a powerful tool for building effective data synopses for various applications,
including selectivity estimation for query optimization in DBMS, approximate
query processing in OLAP applications and more (see [18,24,22,23,2,6,9, 8],
and references therein).

The general idea of wavelet-based approximations is to transform a given
data vector of size N into a representation with respect to a wavelet basis (this
is called a wavelet transform), and approximate it using only M < N wavelet
basis vectors, by retaining only M coefficients from the linear combination that
spans the data vector (coefficients thresholding). The linear combination that



uses only M coefficients (and assumes that all other coefficients are zero) defines
a new vector that approximates the original vector, using less space. This is
called M -term approximation, which defines a wavelet synopsis of size M.

Wavelet synopses. Wavelets were traditionally used to compress some data sets
where the purpose is to reconstruct, in a later time, an approximation of the
whole data using the set of retained coefficients. The situation is a little different
when using wavelets for building synopses in database systems [18,24]: in this
case only portions of the data are reconstructed each time, in response to user
queries, rather than the whole data at once. As a result, portions of the data
that are used for answering frequent queries are reconstructed more frequently
than portions of the data that correspond to rare queries. Therefore, the approx-
imation error is measured over the multi-set of actual queries, rather than over
the data itself. For more wavelet synopses basics see [18, 24].

Another aspect of the use of wavelets in database systems is that due to the
large data-sizes in databases (giga-, tera- and peta-bytes), the efficiency of build-
ing wavelet synopses is of primary importance. Disk I/Os should be minimized
as much as possible, and non-linear-time algorithms may be unacceptable.

Optimal wavelet synopses. The main advantage of transforming the data into
a representation with respect to a wavelet basis is that for data vectors con-
taining similar values, many wavelet coefficients tend to have very small values.
Thus, eliminating such small coefficients introduces only small errors when re-
constructing the original data, resulting in a very effective form of lossy data
compression.

Generally speaking, we can characterize a wavelet approximation by three
attributes: how the approximation error is measured, what wavelet basis is used
and how coefficient thresholding is done. Many bases were suggested and used in
traditional wavelets literature. Given a basis with respect to which the transform
is done, the selection of coefficients that are retained in the wavelet synopsis
may have significant impact on the approximation error. The goal is therefore
to select a subset of M coefficients that minimizes some approximation-error
measure. This subset is called an optimal wavelet synopsis, with respect to the
chosen error measure.

While there has been a considerable work on wavelet synopses and their
applications [18,24,22,23,2,6,14,9, 8], so far there were only a few optimality
results. The first one is a linear-time Parseval-based algorithm, which was used in
traditional wavelets literature (e.g [12]), where the error was measured over the
data. This algorithm minimizes the Ly, norm of the error vector, and equivalently
it minimizes the mean-squared-absolute error over all possible point queries [18,
24]. No algorithm that minimizes the mean-squared-relative error over all pos-
sible point queries was known. The second one, introduced recently [9], is a
polynomial-time (O(N?M log M)) algorithm that minimizes the max relative
or max absolute error over all possible point queries. Another optimality result
is a polynomial time dynamic-programming algorithm that obtains an optimal



wavelet synopsis over multiple measures [6]. The synopsis is optimal w.r.t. an
error metric defined as weighted combination of Ly norms over the multiple mea-
sures (this weighted combination has no relation with the notion of weighted
wavelets of this paper).

Workload-based wavelet synopses. In recent years there is increased interest in
workload-based synopses — synopses that are adapted to a given query workload,
with the assumption that the workload represents (approximately) a probability
distribution from which future queries will be taken. Chaudhuri et al [4] argue
that identifying an appropriate precomputed sample that avoids large errors
on an arbitrary query is virtually impossible. To minimize the effects of this
problem, previous studies have proposed using the workload to guide the process
of selecting samples [1,3,7]. By picking a sample that is tuned to the given
workload, we can reduce the error over frequent (or otherwise “important”)
queries in the workload.

In [4], the authors formulate the problem of pre-computing a sample as an
optimization problem, whose goal is to pick a sample that minimizes the error
for the given workload.

Recently, workload-based wavelet synopses were proposed by Portman and
Matias [14, 20]. Using an adaptive-greedy algorithm, the query-workload infor-
mation was used during the thresholding process in order to build a wavelet
synopsis that reduces the error w.r.t. to the query workload. These workload-
based wavelet synopses demonstrate significant imporvement with respect to
prior synopses. They are, however, not optimal w.r.t. the query workload.

In this paper, we address the problem of finding efficiently optimal workload-
based wavelet synopses.

1.1 Contributions

We introduce efficient algorithms for finding optimal workload-based wavelet
synopses using weighted Haar (WH) wavelets, for workloads of point queries.
Our main contributions are:

— Linear-time, I/O optimal algorithms that find optimal Workload-based
Weighted Wavelet (WWW) synopses’:
e An optimal synopsis w.r.t. workload-based mean-squared absolute-error
(WB-MSE).
e An optimal synopsis w.r.t. workload-based mean-squared relative-error
(WB-MRE).
Equivalently, the algorithms minimize the ezpected squared, absolute or rel-
ative errors over a point query taken from a given distribution.
— The WB-MRE algorithm, used with uniform workload, is also the first algo-
rithm that minimizes the mean-squared-relative-error over the data values,
with respect to a wavelet basis.

! No relation whatsover to the world-wide-web.



— Both WWW synopses are also optimal with respect to enhanced wavelet
synopses, which allow changing the values of the synopses coefficients to
arbitrary values.

— Experimental results show the advantage of our synopses with respect to
existing synopses.

— The synopses are robust to deviation from the pre-defined workload, as
demonstrated by our experiments.

The above results were obtained using the following novel techniques.

— We define the problem of finding optimal workload-based wavelet synopses

in terms of a weighted norm, a weighted-inner-product and a weighted-inner-
product-space. This enables linear time I/O optimal algorithms for building
optimal workload-based wavelet synopses.
The approach of using a weighted inner product can also be used to the
general case in which each data point is given different priority, representing
its significance. This generalization is used to obtain the optimal synopses
for mean relative error, where the weight of each point is normalized by its
value. Using these weights, one can find a weighted-wavelet basis, and an
optimal weighted wavelet synopsis in linear time, with O(N/B) 1/0Os.

— We introduce the use of weighted wavelets for data synopses. Using weighted
wavelets [5, 11] enables finding optimal workload-based wavelet synopses ef-
ficiently. In contrast, it is not known how to obtain optimal workload-based
wavelet synopses with respect to the Haar basis efficiently. If we ignore the
efficiency of finding a synopsis, the Haar basis is as good as the weighted
Haar basis for approximation.

In the wavelets literature (e.g., [12]), wavelets are used to approximate a
given signal, which is treated as a vector in an inner-product space. Since an
inner-product defines an Ly norm, the approximation error is measured as the
Lo norm of the error vector, which is the difference between the approximated
vector and the approximating vector. Many wavelet bases were used for approx-
imation, as different bases are adequate for approximating different collections
of data vectors. By using an orthonormal wavelet basis, an optimal coefficient
thresholding can be achieved in linear time, based on Parseval’s formula. When
using non-orthogonal wavelet basis, or measuring the error using other norms
(e.g., L), it is not known whether an optimal coefficient thresholding can be
found efficiently, so usually non-optimal greedy algorithms are used in practice.

A weighted Haar (WH) basis is a generalization of the standard Haar ba-
sis, which is typically used for wavelet synopses due to its simplicity. There
are several attributes by which a wavelet basis is characterized, which affects
the quality of the approximations achieved using this basis (for full discussion,
see [12]). These attribute are: the set of nested spaces of increasing resolution
which the basis spans, the number of vanishing moments of the basis, and its
compact support (if exists). Both Haar basis and a WH basis span the same
subsets of nested spaces, have one vanishing moment, and a compact support of
size 1.



Haar basis is orthonormal for uniform workload of point queries. Hence it
is optimal for the MSE error measure. The WH basis is orthonormal with
respect to the weighted inner-product defined by the problem of finding opti-
mal workload-based wavelet synopses. As a result, an optimal workload-based
synopses with respect to WH basis is achieved efficiently, based on Parseval’s
formula, while for the Haar basis no efficient optimal thresholding algorithm is
known, in cases other than uniform workload.

1.2 Paper Outline

The rest of the paper is organized as follows. In Sec. 2 we describe our basic ap-
proach, including the workload-based error metrics and optimal thresholding in
orthonormal bases. In Sec. 3 we define the problem of finding optimal workload-
based wavelet synopses in terms of weighted inner product, and solve it using an
orthonormal basis. In Sec. 4 we describe the optimal algorithm for minimizing
WB-MSE, which is based on the construction of Sec. 3. In Sec. 5 we extend the
algorithm to work for the WB-MRFE, and in Sec. 6 we draw our conclusions. Due
to space limitations, some technical proofs and additional experiments can be
found in the full paper [17].

2 Basics

2.1 Workload-based Error Metrics

Let D = (do,...,dn_1) be a sequence with N = 27 values. Denote the set of
point queries as @ = (qo, ---,qn—1), where g; is a query which its answer is d;.
Let a workload W = (co,...,cy—1) be a vector of weights that represents the
probability distribution from which future point queries are to be generated. Let
(ug, ..., un—_1) be a basis of RV, than D = Zio a;u;. We can represent D by a
vector of coefficients (ag, ..., an—1).

Suppose we want to approximate D using a subset of the coefficients S C
{ap,...,an_1} where |S| = M. Then, for any subset S we can define a weighted
norm W Ly with respect to S, that provides a measure for the errors expected for
queries drawn from the probability distribution represented by W, when using
S as a synopsis. S is then referred to as a workload-based wavelet synopsis.

Denote d; as an approximation of d; using S. There are two standard ways
to measure the error over the i’th data value (equivalently, point query):

The absolute error: e, (i) = e (¢;) = |di — d;|; and the relative error: e, (i) =
er(qi) = %, where s is a positive bound that prevents small values from
dominating the relative error.

While the standard (non-workload-based) approach is to reduce the Lo norm
of the vector of errors (ey, ...,en) (where e; = e, (i) or e; = e, (7)), here we would
generalize the Ly norm to reflect the query workload. Let W be a given workload
consisting of a vector of queries’ probabilities ¢y, ..., ¢y, where ¢; is the probability



that ¢; occurs; that is, 0 < ¢; < 1, and ZlN:_Ol ¢; = 1. The weighted-Ly norm of
the vector of (absolute or relative) errors e = (ey, ..., en) is defined as:

WL (e) = lleflw =

where 0 < ¢; <1, Zﬁgl ¢; = 1. Thus, each data value d;, or equivalently each
point query g;, is given some weight ¢; that represents its significance. Note that
W Lo norm is the square-root of the mean squared error for a point query that
is drawn from the given distribution. Thus, minimizing that norm of the error
is equivalent to minimizing the mean squared error of an answer to a query.

In general, the weights given to data values need not necessarily represent a
probability distribution of point queries, but any other significance measure. For
example, in Sec. 5 we use weights to solve the problem of minimizing the mean-
squared relative error measured over the data values (the non-workload-based
case).

Notice that it is a generalization of the M SFE norm: by taking equal weights
for each query, meaning ¢; = % for each i and e; = e, (i), we get the standard
MSE norm. We use the term workload-based error for the WLy norm of the
vector of errors e. When e; are absolute (resp. relative) errors the workload-based
error would be called the WB-MSE (resp. WB-MRE).

2.2 Optimal Thresholding in Orthonormal Bases

The construction is based on Parseval’s formula, and a known theorem that
results from it (Thm. 1).

Parseval’s formula. Let V be a vector space, where v € V is a vector and

. . N
{uo, ...,un—1} is an orthonormal basis of V. We can express v asv = > .~ o;u;.
Then

N-1
lof|* =" of (1)
i=0

An M-term approximation is achieved by representing v using a subset of
coefficients S C {ag,...,an—1} where |S| = M. The error vector is than e =
> igs @iui. By Parseval’s formula, lell? = Yigs a?. This proves the following
theorem.

Theorem 1 (Parseval-based optimal thresholding). Let V be a vector

space, where v € V is a vector and {ug,...,un—_1} is an orthonormal basis of

V. We can represent v by {«o,...,an—1} where v = Zij\:ol o;ui. Suppose we

want to approximate v using a subset S C {ag,...,an_1} where |S| =M < N.
Picking the M largest coefficients to S minimizes the Ly norm of the error vector,
over all possible subsets of M coefficients.

Given an inner-product, based on this theorem one can easily find an optimal
synopses by choosing the largest M coefficients.



2.3 Optimality Over Enhanced Wavelet Synopses

Notice that in the previous section we limited ourselves to picking subsets of
coefficients with original values from the linear combination that spans v (as is
usually done). In case {ug,...,uny_1} is a wavelet basis, these are the coefficients
that results from the wavelet transform. We next show that the optimal thresh-
olding according to Thm. 1 is optimal even according to an enhanced definition
of M-term approximation. We define enhanced wavelet synopses as wavelet syn-
opses that allow arbitrary values to the retained wavelet coefficients, rather than
the original values that resulted from the transform. The set of possible standard
synopses is a subset of the set of possible enhanced synopses, and therefore an
optimal synopsis according to the standard definition is not necessarily optimal
according to the enhanced definition.

Theorem 2. When using an orthonormal basis, choosing the largest M coeffi-
cients with original values is an optimal enhanced synopses.

Proof. The proof is based on the fact that the basis is orthonormal. It is enough
to show that given some synopsis of M coefficients with original values, any
change to the values of some subset of coefficients in the synopsis would only
make the approximation error larger:

Let uq,...,uny be an orthonormal basis and let v = aju; + ... + ayuyny be the
vector we would like to approximate by keeping only M wavelet coefficients.
Without loss of generality, suppose we choose the first M coefficients and have
the following approximation for v: v = Zf\il a;u;. According to Parseval’s for-

mula |e|? = ZZJ\; M1 @ since the basis is orthonormal. Now suppose we would
change the values of some subset of j retained coefficients to new values. Let
us see that due to the orthonormality of the basis it would only make the error
larger. Without loss of generality we would change the first j coefficients, mean-
ing, we would change a4, ..., to be o, ..., a;. In this case the approximation

J
i=1

(o — o) u; + Zij\iMﬂ a;u;. It is easy to see that the error of ap-

- M . .
would be ¥/ = abu; + Zi:j+1 a;u;. The approximation error would be

J
i=1

proximation would be: [le[|? = (v—0", v =) = >7_, (o — a;)2+§j§iM+l a? >

N
Zi:MJrl 0%2~

v—20 =

3 The Workload-based Inner Product

In this section, we define the problem of finding an optimal workload-based
synopses in terms of a weighted-inner-product space, and solve it relying on this
construction. Here we deal with the case where e; are the absolute errors (the
algorithm minimizes the WB-MSFE). An extension to relative errors (WB-MRE)
is introduced in Sec. 5

Our development is as follows:



1. Transforming the data vector D into an equivalent representation as a func-
tion f in a space of piecewise constant functions over [0, 1). (Sec. 3.1)

2. Defining the workload-based inner product. (Sec. 3.2)

3. Using the inner product to define an Ly norm, showing that the newly defined
norm is equivalent to the weighted Lo norm (W Ls). (Sec. 3.3)

4. Defining a weighted Haar basis which is orthonormal with respect to the new
inner product. (Sec. 3.4)

Based on Thm. 1 and Thm. 2 one can easily find an optimal workload-based
wavelet synopses with respect to a weighted Haar wavelet basis.

3.1 Transforming the Data Vector into a Piecewise Constant
Function

We assume that our approximated data vector D is of size N = 27. As in [21],
we treat sequences (vectors) of 27 points as piecewise constant functions defined
on the half-open interval [0,1). In order to do so, we will use the concept of a
vector space from linear algebra. A sequence of one point is just a function that
is constant over the entire interval [0,1); we’ll let V; be the space of all these
functions. A sequence of 2 points is a function that has two constant parts over
the intervals [0, ) and [1,1). We'll call the space containing all these functions
V1. If we continue in this manner, the space V; will include all piecewise constant
functions on the interval [0, 1), with the interval divided equally into 27 different
sub-intervals. We can now think of every one-dimensional sequence D of 27 values

as being an element, or vector f, in V;.

3.2 Defining a Workload-based Inner Product

The first step is to choose an inner product defined on the vector space V;. Since
we want to minimize a workload based error (and not the regular Ls error), we
started by defining a new workload based inner product. The new inner product
is a generalization of the standard inner product. It is a sum of N = 27 weighted
standard products; each of them is defined over an interval of size %:

N-1 i1 N-1
(f,g)=N- (ch/ f(x)g(x)d;v) where 0 < ¢; <1, Zcizl (2)
i=0 ~

i=0
Lemma 1. (f,g) is an inner product.

The proof of the lemma can be found in the full paper. As mentioned before,
a coefficient ¢; represents the probability (or a weight) for the i’th point query

(g;) to appear. Notice that the answer of which is the ith data value, which
is function value at the i’th interval. When all coefficients ¢; are equal to % (a

uniform distribution of queries), we get the standard inner product, and therefore
this is a generalization of the standard inner product.



3.3 Defining a Norm Based on the Inner Product

Based on that inner product we define an inner-product-based (IPB) norm:

[fllies = V(£ /) ()
Lemma 2. The norm || f|lipg measured over the vector of absolute errors is the
weighted Lo morm of this vector, i.e |le||?pg = Zi]i?)l cie? = |lel|?.

The proof of the lemma can be found in the full paper. Notice that when all
coefficients are equal to % we get the regular Ly norm, and therefore this is a
generalization of the regular Ly norm (M SE).

Our goal is to minimize the workload based error which is the W Ly norm of the
vector of errors.

3.4 Defining an Orthonormal Basis

At this stage we would like to use Thm. 1. The next step would thus be finding an
orthonormal (with respect to a workload based inner product) wavelet basis for
the space Vj . The basis is a Weighted Haar Basis. For each workload-based inner
product (defined by a given query workload) there is corresponding orthonormal
weighted Haar basis, and our algorithm finds this basis in linear time, given the
workload of point queries. We describe the bases here, and see how to find a basis
based on a given workload of point queries. We will later use this information in
the algorithmic part.

In order to build a weighted Haar basis, we take the Haar basis functions
and for the k’th basis function we multiply its positive (resp. negative) part by
some xj (resp. yr ). We would like to choose such zj and y, so that we get
an orthonormal basis with respect to our inner product. Thus, instead of using
Haar basis functions (Fig. 1), we use functions of the kind illustrated in Fig. 2,
where x5, and yi are not necessarily (and probably not) equal, so our basis looks
like the one in (Fig. 3). One needs to show how to choose xj, and y.

Let uy be some Haar basis function as described above. Let [a,,ar,) be
the interval over which the basis function is positive and let [ag,,ax,) be the
interval over which the function is negative. Recall that ag,,ar, and ay, are
both multiples of % and therefore the interval precisely contains some number

ioit1 Akg ;akz)

of continuous intervals of the form [, 5] (also ax, = . Moreover, the
1

size of the interval over which the function is positive (resp. negative) is 5; for
some i < j (As we remember, N = 27). Recall that for the i’th interval of size
%, meaning [ﬁ, %) there is a corresponding weight coefficient ¢; which is the
coefficient that is used in the inner product. Notice that each Haar basis func-
tion is positive (negative) over some number of (whole) such intervals. We can
therefore associate the sum of coefficients of the intervals “under” the positive
(negative) part of the function with the positive (negative) part of the function.
Let us denote the sum of weight coefficients (¢;’s) corresponding to intervals that

are under the positive (resp. negative) as [y (resp. ).



Lemma 3. Suppose for each Haar basis function vy we choose xi and yi such

that
Tk Ik
€T = [ — — - r
k lpry + l,% Yi LTy + 7“,%

and multiply the positive (resp. negative) part of vy, by xy (resp. yi); by doing that
we get an orthonormal set of N = 27 functions, meaning we get an orthonormal
basis.

The proof of the lemma can be found in the full paper. Again, notice that
had all the workload coefficients been equal (¢; = +) we would get the standard
Haar basis used to minimize the standard Lo norm.

As we have seen, this is an orthonormal basis to our function space. In order
to see that it is a wavelet basis, we can notice that for each k = 1, ..., 7, the first
2% functions are an orthonormal set belonging to V; (its dimension is 2¥) and

which is therefore a basis of Vj,.

4 The Algorithm for the WWW Transform

In this section we describe the algorithmic part. Given a workload of point
queries and a data vector to be approximated, we build workload-based wavelet
synopses of the data vector using a weighted Haar basis. The algorithm has two
parts:

1. Computing efficiently a Weighted Haar basis, given a workload of point
queries. (Sec. 4.1)

2. Computing efficiently the Weighted Haar Wavelet Transform with respect
to the chosen basis. (Sec. 4.2)

4.1 Computing Efficiently a Weighted Haar Basis

Note that at this point we already have a method to find an orthonormal basis
with respect to a given workload based inner product. Recall that in order to
know zj and yj for every basis function we need to know the corresponding I,
and r;. We are going to compute all those partial sums in linear time. Suppose
that the basis functions are arranged in an array like in a binary tree represen-
tation. The highest resolution functions are at indexes %, ..., N — 1, which are
the lowest level of the tree. The next resolution level functions are at indexes
%, e % — 1, and so on, until the constant basis function is in index 0. Notice
that for the lowest level (highest resolution) functions (indexes &, ..., N —1) we
already have their [;’s and r’s. These are exactly the workload coefficients. It
can be easily seen in Fig. 3 for the lower four functions. Notice that after com-
puting the accumulated sums for the functions at resolution level ¢, we have all
the information to compute the higher level functions: let u; be a function at
resolution level ¢ and wusgy, usg+1 be at level ¢ + 1, where their supports included



in ug’s support (uy is their ancestor in the binary tree of functions). We can use
the following formula for computing I and rx:

Iy =lop + 1o Th = lopg1 + T2kt

See Fig. 3. Thus, we can compute in one pass only the lowest level, and build
the upper levels bottom-up (in a way somewhat similar to the Haar wavelet
transform). The algorithm consists of phases, where in each phase the functions
of a specific level are computed. At the end of a phase, we keep a temporary
array holding all the pairwise sums of all the [;’s and r;’s from that phase and
use them for computing the next phase functions. Clearly, the running time is
J 4+ 8 +..+1=0(N). The number of I/Os is O (N/B) 1/Os (where B is the
block size of the disk) — since the process is similar to the computation Haar
wavelet transform. Recall that given r; and [, one can easily compute the k’th
basis function (its positive and negative parts) using the following formula:

Tk L
T =,/ ———— =, —
NV e+ 2 TN G + 2

4.2 Computing a Weighted Haar Wavelet Transform

Given the basis we would like to efficiently perform the wavelet transform with
respect to that basis. Let us look at the case of N = 2 (Fig. 4). Suppose we
would like to represent the function in Fig. 5. It is easy to compute the following
result (denote «; as the coefficient of f;):

Yyvo + TU1 Vo — U1
= —--- o = —-——————

(67
0 r+y ! Tty

(by solving 2x2 matrix). Notice that the coefficients are weighted averages and
differences, since the transform generalizes the standard Haar transform (by
taking = y = V27 we get the standard Haar transform). It’s easy to reconstruct
the original function from the coefficients:

Vo = Qo + T V1 = Qo — Yoq

This implies a straightforward method to compute the wavelet transform
(which is /O efficient as well) according to the way we compute a regular wavelet
transform with respect to the Haar basis: we go over the data, and compute the
weighted differences which are the coefficients of the bottom level functions. We
keep the weighted averages, which can be represented solely by the rest of the
basis functions (the “lower resolution” functions - as in the regular Haar wavelet
transform), in another array. We repeat the process over the averages time and
time again until we have the overall average, which is added to our array as
the coeflicient of the constant function (vg () = const). While computing the
transform, in addition to reading the values of the signal, we need to read the
proper basis function that is relevant for the current stage (in order to use



the zj and yg of the function that is employed in the above formula). This is
easy to do, since all the functions are stored in an array F' and the index of a
function is determined by the iteration number and is identical to the index of the
corresponding currently computed coefficient. A pseudo code of the algorithm
can be found in the full paper.

The steps of our algorithm are identical to the steps of the Haar algorithm,
with the addition of reading the data at F[i] (the x and yj of the function)
during the i’th iteration. Therefore the I/O complexity of that phase remains
O (N/B) (B is the disk block size) with O (N) running time.

After obtaining the coefficient of the orthonormal basis we keep the largest M
coefficients, along with their corresponding M functions, and throw the small-
est coefficients. This can be done efficiently using an M-approrimate quantile
algorithm [13]. Based on Thm. 1 we obtain an optimal synopsis.

5 Optimal Synopsis for Mean Relative Error

We show how to minimize the weighted Ly norm of the vector of relative errors,
weighted by the query workload, by using weighted wavelets. As a special case,
this minimizes the mean-squared-relative-error measured over the data values.
Recall that in order to minimize the weighted Lo norm of relative errors, we
|di—d;|

2
W) . For simplicity, we show instead how to

N N
need to minimize ) ;" ¢; (

N
e N —d; . . . .
minimize » i1 Ci (ldd%dl) ; the extension to the above is straightforward. Since

D = dy,...,dy is part of the input of the algorithm, it is fixed throughout the
algorithm’s execution. We can thus divide each ¢; by d? and get a new vector of

weights: W = (%, ceey (%") Relying on our previous results, and using the new
1 N

2 SN2
. . . . N . Kl N s —d; .
vector of weights we minimize ., % (|d1 — dz|> =) 16 (‘d‘d%d”) , which
- ;

is the W Ly norm of relative errors. Notice that in the case b; = % (the uniform

case) the algorithm minimizes the mean-relative-error over all data values. As
far as we know, this is the first algorithm that minimizes the mean-relative-error
over the data values.

6 Conclusions

In this paper we introduce the use of weighted wavelets for building optimal
workload-based wavelet synopses. We present two time-optimal and I/O-optimal
algorithms for workload-based wavelet synopses, which minimize the WB-MSE
and and the WB-MRE error measures, with respect to any given query workload.
The advantage of optimal workload-based wavelet synopses, as well as their
robustness, were demonstrated by experimentations (in the full paper).
Recently, and independently of our work, Muthukrishnan [19] presented an
optimal workload-based wavelet synopsis with respect to the standard Haar
basis. The algorithm for building the optimal synopsis is based on dynamic



programming and takes O(N2?M/log M) time. As noted above, standard Haar
basis is not orthonormal w.r.t. the workload-based error metric, and an optimal
synopsis w.r.t. this basis is not necessarily also an optimal enhanced wavelet
synopsis. Obtaining optimal enhanced wavelet synopses for the standard Haar
wavelets may be an interesting open problem. Also, as quadratic time is too
costly for massive data sets, it may be interesting to obtain a time efficient
algorithm for such synopses. As far as approximation error is concerned, although
in general optimal synopses w.r.t. the standard Haar and the weighted Haar
bases are incomparable, both bases have the same characteristics. It would be
interesting to compare the actual approximation errors of the two synopses for
various data sets. This may indeed be the subject of a future work.

In a recent related paper [16], we show how to find optimal wavelet synopses
for range-sum queries, using a framework similar to the one used in this paper.
We define the problem of finding an optimal synopsis for range-sum queries in
terms of a proper inner-product, and find an optimal synopsis, which minimizes
the M SE measured over all possible range-sum queries, in linear time, with
O(N/B) I/Os.
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Fig. 1. An example for a Haar basis function
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Fig. 2. An example for a Weighted Haar Basis function

8 Weighted Haar Basis functions,
along with the workload
coefticients, each coefficient under
its corresponding interval. The
functions of each level (0,1 and 2)
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Fig. 3. the weighted Haar Basis along with the workload coefficients
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Fig. 4. An example for the Weighted Haar Transform
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Fig. 5. a simple function with 2 values over [0,1)



