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Abstract

This paper introduces the queue�read� queue�write �qrqw
 parallel random access
machine �pram
 model� which permits concurrent reading and writing to shared mem�
ory locations� but at a cost proportional to the number of readers&writers to any one
memory location in a given step� Prior to this work there were no formal complexity
models that accounted for the contention to memory locations� despite its large impact
on the performance of parallel programs� The qrqw pram model re�ects the contention
properties of most commercially available parallel machines more accurately than either
the well�studied crcw pram or erew pram models� the crcw model does not ade�
quately penalize algorithms with high contention to shared memory locations� while the
erew model is too strict in its insistence on zero contention at each step�
The qrqw pram is strictly more powerful than the erew pram� This paper shows

a separation of
p
lgn between the two models� and presents faster and more e�cient

qrqw algorithms for several basic problems� such as linear compaction� leader elec�
tion� and processor allocation� Furthermore� we present a work�preserving emulation of
the qrqw pram with only logarithmic slowdown on Valiant�s bsp model� and hence
on hypercube�type non�combining networks� even when latency� synchronization� and
memory granularity overheads are taken into account� This matches the best known
emulation result for the erew pram� and considerably improves upon the best known
e�cient emulation for the crcw pram on such networks� Finally� the paper presents
several lower bound results for this model� including lower bounds on the time required
for broadcasting and for leader election�
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 Introduction

The Parallel Random Access Machine �pram
 model of computation is the most�widely used model
for the design and analysis of parallel algorithms �see� e�g� �KR��� J�aJ��� Rei���
� The pram model
consists of a number of processors operating in lock�step and communicating by reading and writing
locations in a shared memory� Existing pram models can be distinguished by their rules regarding
contention for shared memory locations� These rules are generally classi�ed into two groups�


 Exclusive read�write� Each location can be read or written by at most one processor in each
unit�time pram step�


 Concurrent read�write� Each location can be read or written by any number of processors
in each unit�time pram step� For concurrent writing� the value written depends on the write�
con�ict rule of the model� e�g� in the arbitrary concurrent�write pram� an arbitrary processor
succeeds in writing its value�

These two rules can be applied independently to reads and writes" the resulting models are denoted
in the literature as the erew� crew� ercw� and crcw pram models�

In this paper� we argue that neither the exclusive nor the concurrent rules accurately re�ect
the contention capabilities of most commercial and research machines� and propose a new pram

contention rule� the queue rule� that permits concurrent reading and writing� but at an appropriate
cost�


 Queue read�write� Each location can be read or written by any number of processors in each
step� Concurrent reads or writes to a location are serviced one�at�a�time�

Thus the worst case time to read or write a location is linear in the number of concurrent readers
or writers to the same location�

The queue rule more accurately re�ects the contention properties of machines with simple� non�
combining interconnection networks� than either the exclusive or concurrent rules� The exclusive rule
is too strict� and the concurrent rule ignores the large performance penalty of high contention steps�
Indeed� for most existing machines� including the CRAY T�D� IBM SP�� Intel Paragon� MasPar
MP�� �global router
� MIT J�Machine� nCUBE �S� Stanford DASH� Tera Computer� and Thinking
Machines CM�� �data network
� the contention properties of the machine are well�approximated by
the queue�read� queue�write rule� For the Kendall Square KSR�� the contention properties can be
approximated by the concurrent�read� queue�write rule� Further details are in Section ��

This paper de�nes the queue�read� queue�write �qrqw
 pram model� a variation on the standard
pram that employs the queue rule for both reading and writing� In addition� the processors are
permitted to each have multiple reads or writes in progress at a time� We show that the power of
the qrqw pram model falls strictly between the crcw and erew models� We show separation
results between the models by considering the ��compaction problem� the broadcasting problem�
and the problem of computing the or function� To illustrate some of the techniques used to de�
sign low�contention algorithms that improve upon the best known zero�contention algorithms� we
consider algorithms for two fundamental problems� leader election and linear compaction� under
various scenarios� Finally� this paper extends the work�time framework for parallel algorithms �see�
e�g� �J�aJ���
 into a qrqw work�time framework that considers the contention at each step� and
relates the qrqw pram model to the qrqw work�time framework�

�In a combining network� when two messages destined for the same memory locationmeet at an intermediate node
in the network� the messages are �combined� so that only one message continues towards the destination� For example�
if two writes meet� then only a single write is sent on� In a non�combining network� messages are not combined� so
that all messages destined for the same memory location are delivered to the home node for that location�
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The qrqw pram� like the other pram models mentioned above� abstracts away many features
of real machines� including the latency or delay in accessing the shared memory� the cost of synchro�
nizing the processors� and the fact that memory is partitioned into modules that service requests
serially� A model that incorporates these features is the Bulk�Synchronous Parallel �bsp
 model of
Valiant �Val��a�� In its general form this model is parameterized by its number of processing&memory
components p� throughput g� and periodicity L� A particular case studied by Valiant sets g to be a
constant and L to be %�lg p
" we denote this the standard bsp model� We show in this paper that the
qrqw pram can be e�ectively emulated on the standard bsp model� A p�processor qrqw pram al�
gorithm running in time t can be emulated on a p� lgp�processor standard bsp in O�t lgp
 time with
high probability� It follows by Valiant�s simulation of the standard bsp on hypercubes that the qrqw
pram can be emulated in a work�preserving manner on parallel machines with hypercube�type� non�
combining networks with only logarithmic slowdown� even when latency� memory granularity� and
synchronization overheads are taken into account� This matches the best known emulation for the
erew pram on these networks given in �Val��a�� In contrast� work�preserving emulations for the
crcw pram on such networks are only known with polynomial slowdown �i�e� O�p�
 slowdown� for
a constant � � �
�

Note that the standard %�lg p
 time emulation of crcw on erew �see� e�g� �KR���
 is not
work�preserving� in that the erew performs %�lg p
 times more work than the crcw it emulates�
Since we consider work�preserving speed�ups to be the primary goal in parallel algorithms� with
fast running times the secondary goal� this emulation is unacceptable� The %�lg p
 overhead in work
ensures that the algorithms will not exhibit linear or near�linear speedups� Similarly� the best known
emulations for the crew pram �or ercw pram
 on the erew pram �or standard bsp or hypercube

require logarithmic work overhead for logarithmic slowdown or� alternatively� polynomial slowdown
for constant work overhead�

Since the qrqw pram is strictly more powerful than the erew pram� e�ectively emulated on
hypercube�type non�combining networks �unlike the crcw� crew� or ercw pram models
� and a
better match for real machines� we advocate the qrqw pram with its queue contention rule as a
more appropriate model for high�level algorithm design than a pram with either the exclusive or
concurrent contention rules� The queue contention rule can also be incorporated into lower�level
shared memory models� trading model simplicity for additional accuracy in modeling the cost of
communication �e�g� explicitly modeling the communication bandwidth
� In this initial paper on the
queue contention rule� we restrict our focus to high�level algorithm design on pram models�

In addition to the qrqw pram model� we de�ne in this paper the simd�qrqw pram model�
a strictly weaker model suitable for simd machines� in which all processors execute in lock�step
and each processor can have at most one read&write in progress at a time� In a subsequent pa�
per �GMR�	b� we de�ne the qrqw asynchronous pram model� for general asynchronous algo�
rithms running on mimd machines �see also �GMR���
�

We present several algorithms and a lower bound for leader election and for computing the
or function� The lower bound is ��lgn� lg lgn
 time for the deterministic computation of the or
function on a concurrent�read� queue�write �crqw
 pram with arbitrarily many processors� The
algorithms for both problems take linear work� O�lgn� lg lgn
 time with high probability� In con�
trast� the or function requires ��lgn
 expected time on a randomized crew pram with arbitrarily
many processors ��DKR���� following �CDR�	�
� Also presented is a linear work� O�

p
lgn
 time

w�h�p� algorithm for the linear compaction problem� This problem has applications to automatic
processor allocation for algorithms that are given in the qrqw work�time presentation� In contrast�
the best linear compaction algorithm known on the erew pram is the logarithmic time pre�x sums
algorithm �LF���� On the other hand� for the problem of broadcasting the value of a bit to n pro�
cessors� we show that we can do no better on the qrqw pram than the simple %�lgn
 time erew
pram algorithm� Speci�cally� we show a tight ��lgn
 expected time lower bound for the qrqw
pram�
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Important technical issues arise in designing algorithms for the queue models� that are present in
neither the concurrent nor the exclusive pram models� For example� much of the e�ort in designing
algorithms for the qrqw is in estimating the maximumcontention in a step" our algorithms for leader
election illustrate this point� In the qrqw� one high contention step can dominate the running time
of the algorithm� we cannot a�ord to underestimate the contention signi�cantly�

In a companion paper �GMR�	a�� we present a number of other algorithmic results for the qrqw
pram� Our algorithmic results include linear work� logarithmic or sublogarithmic time randomized
qrqw algorithms for the fundamental problems of multiple compaction� load balancing� generating
a random permutation� parallel hashing� and sorting from U ��� �
� These algorithms improve upon
the best known erew algorithms for these problems� while avoiding the high�contention steps typical
of crcw algorithms� Additionally� we present new algorithms for integer sorting and general sorting�

Most of the results in �GMR�	a�� and some of the results in this paper� are obtained �with
high probability�� A probabilistic event occurs with high probability �w�h�p��� if� for any prespeci�ed
constant 	 � �� it occurs with probability �� ��n�� where n is the size of the input� Thus� we say a
randomized algorithm runs in O�f�n

 time w�h�p� if for every prespeci�ed constant 	 � �� there is
a constant c such that for all n � �� the algorithm runs in c � f�n
 steps or less with probability at
least �� ��n��
The rest of this paper is organized as follows� Section � de�nes the qrqw pram and simd�

qrqw pram models� Section � gives further motivation for the queue models� and comparison
with related work� Section � describes the extension of the work�time framework to the qrqw
models� Section � presents our results for realizing the qrqw pram on feasible networks� Section 	
gives upper and lower bounds for computing the or and leader election under various scenarios�
Section 
 presents our linear work� sublogarithmic time algorithm for linear compaction on a simd�
qrqw pram� Section � presents tight ��lgn
 expected time lower bounds on the qrqw pram for
broadcasting and related problems� Concluding remarks appear in Section ��

The results in this paper appeared in preliminary form in �GMR��� GMR��a� GMR��b��

	 The queue models

This section de�nes our two queue�read queue�write �qrqw
 models�


 The simd�qrqw pram� for algorithms running on simd machines�


 The qrqw pram� for bulk�synchronous algorithms� running on mimd machines�

In both of the qrqw models� the time cost for reading or writing a shared location� x� is propor�
tional to the number of processors concurrently reading or writing x� This cost measure models
machines in which accesses to a location queue up and are serviced one at a time� i�e� most current
commercial and research machines� The simd�qrqw models machines in which processors syn�
chronize at every step� awaiting for all the queues to clear� The qrqw models machines in which
processors synchronize less frequently� awaiting for all the queues to clear only at synchronization
points� In a subsequent paper �GMR�	b� we de�ne the qrqw asynchronous pram model� for
general asynchronous algorithms running on mimd machines �see also �GMR���
� This model has
an asynchronous queue contention rule in which processors read and write locations at their own
pace� without waiting for the queues encountered by other processors to clear� This model allows

�In a bulk�synchronous algorithm �Val�	a� Gib��� Gib���� synchronization among the processors is limited to global
synchronization barriers involving all the processors
 between such barriers� processors execute asynchronously using
shared memory values written prior to the preceding barrier�
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the asynchronous nature of mimd machines to be exploited� at the cost of more complexity in the
model�

The complexity metric for the qrqw models will use the notion of maximum contention� de�ned
as follows�

De�nition ��� Consider a single step of a pram� consisting of a read substep� a compute substep�
and a write substep� The maximum contention of the step is the maximum� over all locations
x� of the number of processors reading x or the number of processors writing x� For simplicity in
handling a corner case� a step with no reads or writes is de�ned to have maximum contention �one��

��� The SIMD�QRQW PRAM model

De�nition ��� The SIMD
QRQW PRAM model is a �synchronous� pram in which concurrent
reads and writes to the same location are permitted� and the time cost for a step with maximum
contention � is �� If there are multiple writers to a location x in a step� an arbitrary write to x
succeeds in writing the value present in x at the end of the step� The time of a simd�qrqw pram

algorithm is the sum of the time costs for its steps� The work is its processor�time product�

This cost measure models� for example� a simd machine such as the MasPar MP�� �Mas��� or
MP��� in which each processor can have at most one read&write in progress at a time� reads&writes
to a location queue up and are serviced one at a time� and all processors await the completion
of the slowest read&write in the step before continuing to the next step� Existing simd machines
provide for the required synchronization of all processors at each step� regardless of the varying
contention encountered by the individual processors� Unlike previous pram models� the work is
not the number of operations� because with the simd�qrqw time metric� operations encountering
non�constant contention are charged non�constant time�

If a pram model is to be used to design bulk�synchronous algorithms on mimd machines� then
the simd�qrqw pram is unnecessarily restrictive� A better model for this scenario is the qrqw
pram� de�ned next�

��� The QRQW PRAM model

De�nition ��� The QRQW PRAM model consists of a number of processors� each with its own
private memory� communicating by reading and writing locations in a shared memory� Processors
execute a sequence of synchronous steps� each consisting of the following three substeps


�� Read substep
 Each processor i reads ri shared memory locations� where the locations are known
at the beginning of the substep�

�� Compute substep
 Each processor i performs ci ram operations involving only its private state
and private memory��

�� Write substep
 Each processor i writes to wi shared memory locations �where the locations and
values written are known at the beginning of the substep��

�As in the existing pram models� each processor is assumed to be a sequential random access machine� See�
e�g� �Rei���� For the qrqw pram� a processormay performmultiple ram operations in a compute substep� e�g� summing
ci numbers stored in its private memory� and is charged accordingly�
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Concurrent reads and writes to the same location are permitted in a step� In the case of multiple
writers to a location x� an arbitrary write to x succeeds in writing the value present in x at the end
of the step�

De�nition ��� Consider a qrqw pram step with maximum contention �� and let m ! maxifri� ci�
wig for the step� i�e� the maximum over all processors i of its number of reads� computes� and writes�
Then the time cost for the step is maxfm��g� The time of a qrqw pram algorithm is the sum
of the time costs for its steps� The work of a qrqw pram algorithm is its processor�time product�

This cost measure models� for example� a mimd machine such as the Tera Computer �ACC�����
in which each processor can have multiple reads&writes in progress at a time� and reads&writes to
a location queue up and are serviced one at a time� Neither the erew pram nor the crcw pram

model allows a processor to have multiple reads&writes in progress at a time� as this generalization
is unnecessary when reads&writes complete in unit time� This feature� which distinguishes the
qrqw pram from the simd�qrqw pram as well as the erew pram and crcw pram� enables the
processors to do useful work while awaiting the completion of reads&writes that encounter contention�
Nevertheless� as we show below� the crcw pram can simulate the qrqw pram to within constant
factors�

The restriction that the processors in a read substep know� at the beginning of the substep� the
locations to be read re�ects the intended emulation of the qrqw pram model on a mimd machine
in which the reads are issued in a pipelined manner� to amortize against the delay �latency
 on such
machines in reading the shared memory� Likewise writes in a write substep are to be pipelined in
the intended emulation� On the other hand� each of the local operations performed in a compute
substep can depend on compute operations in the same substep" since these operations are assumed
to take constant time in the intended emulation� there is no need for pipelining �to within constant
factors
� The emulation inserts a barrier synchronization among all the processors between every
read and write substeps� so that the processors notify each other when it is safe to proceed with the
next substep� This synchronization is accounted for in the emulation� A formal description of the
intended emulation and its performance appears in Section ��

On existing parallel machines� there are a number of factors that determine the time to process
shared memory read and write requests� including contention in the interconnection network and
at the memory modules� Often� reads and writes to distinct shared memory locations may delay
one another� Moreover� issued memory requests cannot be withdrawn� To re�ect these realities of
existing machines� the qrqw pram �as well as the simd�qrqw pram
 does not permit processors
to make inferences on the contention encountered based on the delays incurred� In addition� issued
memory requests may not be withdrawn� and an algorithmhas not completed until all issued memory
requests have been processed� In this way� the qrqw models� although explicitly accounting only
for the delays resulting from multiple requests to the same locations� can be e�ciently emulated on
models that account for these additional concerns� as shown in Section ��

As with the simd�qrqw pram� the work is not the number of operations since operations
encountering non�constant contention may be charged non�constant time� �In fact� the only situation
where the work is a good re�ection of the number of operations is when pipelining is extensively
employed� i�e� when the average over i of �ri  ci  wi
 is ���
�


Also� as with the simd�qrqw pram� there is no explicit metric for the number of steps in an
algorithm� As we show in Section �� there is no need for such a metric in the context of the intended
emulation� On the other hand� the synchronization at the end of each bulk�synchronous step is a
source of overhead on existing machines� and hence one may wish to include this additional metric
when analyzing algorithms on the qrqw models�
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��� Relations between models

The primary advantage of the qrqw pram model over the simd�qrqw pram model is that the
qrqw permits processors each to perform a series of reads and writes in a step while incurring
only a single penalty for the contention of these reads and writes� In the simd�qrqw� a penalty is
charged after each read or write in the series" often the resulting aggregate charge for contention
is far greater than the single charge under the qrqw model� On the other hand� by adding more
processors to the simd�qrqw� we can match the time bounds �but not the work bounds
 obtained
for the qrqw�

Observation ��� A p�processor qrqw pram algorithm running in time t can be emulated on a
pt�processor simd�qrqw pram in time O�t
�

Proof� For each qrqw processor i � ����p�� we assign a team� Ti� of t simd�qrqw processors� with
each team having a leader� li� Each leader li maintains the entire local state of qrqw processor i
during the emulation� For each team Ti� we have an auxiliary array� Ai� of size t for communications
between li and each member of its team� Consider the jth step of a qrqw pram algorithm� with
time cost tj and maximum contention kj � tj� For each qrqw processor i� let ri� ci� and wi be
the number of reads� ram operations� and writes performed by processor i this step� Processor i
is emulated as follows� ��
 The leader li writes the ri locations to be read to Ai� one location per
cell� ��
 Each member of Ti reads its cell in Ai� reads the designated location �if any
 in the shared
memory� and then writes the value read to its cell in Ai� ��
 The leader li reads the values in Ai�
performs the ci ram operations� and then writes the wi locations and values to be written to Ai�
one per cell� Finally� ��
 each member of Ti reads its cell in Ai� and then writes the designated
value to the designated location �if any
 in the shared memory� Step � takes O�ri
 time� step � takes
O�kj
 time� step � takes O�ri  ci  wi
 time� and step � takes O�kj
 time� Thus the overall time
to emulate the jth qrqw step is O�tj
� and the observation follows�

Note that in fact only p � � processors are needed in the above emulation� where � � t is the
maximum time for any one step of the qrqw pram algorithm�

The simd�qrqw pram model permits each processor to have at most one shared memory request
outstanding at a time� as in the standard pram model� This places an upper bound on the number
of requests that must be handled by the interconnection network of the parallel machine� For most
mimd machines� permitting only one request per processor is arti�cially restrictive� and the qrqw
pram model has no such restriction� On the other hand� since there is no bound in the qrqw pram

on the number of outstanding requests� there is a danger that qrqw pram algorithms will �ood
the network with requests beyond its capacity to e�ciently process them� One approach towards
alleviating this potentially serious problem is to divide steps with many shared memory requests
into a sequence of steps with fewer requests per step� In general one could indicate� for each qrqw
pram algorithm� the maximum number of requests in any one step of the algorithm� Then when
implementing the algorithm on a given parallel machine� this number could be compared with the
maximum e�ective network capacity of the machine to determine if the memory requests can be
e�ciently processed by the network�

LetM� andM� be two models� We de�ne M� �M� to denote that any one step ofM� with time
cost t � � can be emulated in O�t
 time on M� using the same number of processors� For concurrent
and queue writes we assume throughout this paper that an arbitrary processor succeeds in the write"
however� the relations stated below hold as long as both machines use the same write�con�ict rule�

Observation ��� erew pram � simd�qrqw pram � qrqw pram � crcw pram

	



QRQW Separation Results

weaker model stronger model time separation problem reference

fdet��rand�g erew fdet��rand�g simd�qrqw ��
p
lgn
 ��compaction x


det� qrqw det� crcw ��lgn� lg lgn
 or function x	��
fdet��rand�g qrqw fdet��rand�g crcw ��lgn
 broadcasting x�

Table �� Results separating the qrqw from the erew and crcwmodels� including both deterministic
time � det�� and randomized expected or w�h�p� time � rand���

Proof� By straightforward emulation� For the crcw emulating a qrqw step of time cost t� ��

for j ! �� � � � �maxifrig� perform the jth read operation �if any
 at each processor in one step using
cr� then ��
 for j ! �� � � � �maxifcig� perform the jth compute operation �if any
 at each processor�
then ��
 for j ! �� � � � �maxifwig� perform the jth write operation �if any
 at each processor in one
step using cw� This takes time maxifrig maxifcig maxifwig � �t�
Results separating the qrqw from the erew and crcw models appear in Table ��

��� A family of queue models

The de�nitions of simd�qrqw pram and qrqw pram can be generalized so that the charge for
maximum contention � is f��
� a non�decreasing function of �� When f��
 ! � for all �� both
models are equivalent to the crcw pram� Likewise� when f��
 ! � and f��
 ! � for � � �� both
models are equivalent to the erew pram� Note that the distinction between the simd�qrqw pram

and the qrqw pram arises only when f��
 � � and is �nite for some ��

Another possible cost function is f��
 ! lg�" such a function may occur in a hypothetical variant
of combining networks� but it is not known to be relevant to any existing machines �there are no
known techniques for achieving this cost function for an arbitrary set of readers&writers
� The
log cost function may prove to be relevant to future machines that employ an optical crossbar to
interconnect the processors �GMR��c� MR�	�� However� in this paper� we will focus our attention
on the cost function� f��
 ! �� that re�ects the realities of proven technologies� �For some machines
that do not handle contention well� super�linear functions such as f��
 ! � lg� may be appropriate"
such cost functions are not considered in this paper�
 Other possible variants of the model permit
write�con�ict rules other than arbitrary" however� we note that the arbitrary rule re�ects the realities
of most current commercial and research machines�

As the queue rule can be applied independently to reads or writes� we can also consider models
such as the simd�crqw or crqw pram� For each such hybrid model� the pram version can trivially
simulate the simd version with no loss� Figure � depicts the relative power of the various models
immediately apparent from the de�nitions� extending the results in Observation ��� to the hybrid
models� Likewise� Table � presents additional separation results for the hybrid models�

� Why QRQW�

The pram model was introduced in ��
� �FW
��� with the crew contention rule� Since that time�
a variety of contention rules have been proposed and studied� with the most�widely studied being
the erew� crew and crcw rules� Variants of the crcw pram such as arbitrary� collision�
common� priority� robust� and tolerant have been proposed and studied �see e�g�� �Mat��� for
de�nitions
" these di�er in their write�con�ict rules� Given the plethora of contention rules already
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Figure �� The relative power of various pram concurrency rules� The same relationships hold for the
simd versions of the queue models� For concurrent write� we assume an arbitrary processor succeeds
in writing� In this �gure an arrow denotes that the pram model� M�� at the tail of the arrow can
simulate the pram model� M�� at its head with at most a small constant loss in performance �and
possibly some improvement�� i�e� M� � M�� Our results characterize more precisely the relative
power of some of the concurrency rules�

in the literature� it is reasonable to ask if there is a need for yet another contention rule� and in
particular� whether the qrqw pram is an important new pram model�

The qrqw pram is a fundamental departure from standard pram models because it is the
�rst pram model to properly account for contention� as re�ected in most current commercial and
research machines� By permitting contention� it re�ects the realities of current machines� and enables
simpler and more e�cient algorithms for many basic problems� By charging for contention� it re�ects
the realities of machines with non�combining networks� i�e� most current commercial and research
machines� In the remainder of this section� we elaborate on these points� and then compare the
qrqw models to related work� We begin with a critique of the exclusive and concurrent rules�

��� EREW is too strict

The exclusive contention rule is almost universally considered by pram proponents to be a realistic
rule for parallel machines� In the erew pram� it is forbidden to have two or more processors attempt
to read or write the same location in the same step� We know of no existing shared memory parallel
machine with this restriction on its global communication� Moreover� the exclusive rule leads to

Separation Results for Hybrid Models

weaker model stronger model time separation problem reference

fdet��rand�g erew fdet��rand�g erqw ��
p
lgn
 ��compaction x


det� fqr�crgew det� fqr�crgqw ��lg lgn
 ��compaction x

with n procs

rand� crew rand� crqw ��lg lgn
 or function x	��
det� fer�qr�crgqw det� fer�qr�crgcw ��lgn� lg lgn
 or function x	��
det� qrfew�qwg det� crfew�qwg ��lgn
 broadcasting x�
rand� qrfew�qwg rand� crfew�qwg ��lgn
 broadcasting

Table �� Separation results for the hybrid queue models� including both deterministic time � det�� and
randomized expected time or w�h�p� time � rand��� All results listed above hold for the simd versions
as well�
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unnecessarily slow algorithms� A simple example is the ��compaction problem� in which there are
two nonempty cells at unknown positions in an array of size n� and the contents of these cells must
be moved to the �rst two locations of the array� An erew pram requires ��

p
lgn
 time to solve

the ��compaction problem" an n�processor crew pram requires ��lg lgn
 time �FKL����� However�
as shown in Section 
� there is a trivial constant time n�processor qrqw pram algorithm for this
problem�

The exclusive contention rule eliminates many randomized algorithmic techniques� Random�
ization used to determine where a processor should read or write �e�g� random sampling� random
hashing
 cannot avoid some small likelihood of concurrent reading or writing� and hence cannot
be incorporated directly into erew algorithms�� Likewise� most asynchronous algorithms cannot
avoid scenarios in which concurrent reading or writing occur� Hence existing asynchronous pram
models �e�g� �CZ��� Gib��� Nis��� MPS���
 do not enforce the exclusive rule� assuming instead a
crcw cost measure��

��� CRCW may be too powerful

At the other extreme� the concurrent contention rule may be too powerful� In the crcw pram� each
step takes unit time� independent of the amount of contention in the step� Thus no distinction is made
between low contention and high contention algorithms� On parallel machines with non�combining
networks� high contention read steps or write steps can be quite slow� as each of the requests for a
highly contended location is serviced one�by�one� creating a serial bottleneck or �hot spot� �PN����
Moreover� intermediate nodes on the path to the contended destination become congested as well� so
a single hot spot can even delay requests destined for other nodes in the network� If all p processors
request the same location� a common occurrence in crcw pram algorithms� a direct implementation
of the algorithm can incur a p�fold loss in speedup due to contention� sometimes becoming no better
than a sequential algorithm�

An active area of research is how to execute a crcw step that includes high contention reads or
writes without creating hot spots� Software approaches� e�g� using sorting �Val��a�� may incur an
overhead considered unacceptable in practice� even on machines that support them� This is arguably
true of the MasPar MP��� for example� where the concurrent�write primitive provided for the MP��
is around �� times slower than writing according to a random permutation �Pre���� As indicated in
Section �� the asymptotically best work�preserving emulation known for simulating the crcw pram

on machines with non�combining networks su�ers polynomial slowdown �Val��a� Val���� Thus� the
running time on the parallel machine will be a polynomial factor slower than the running time
indicated by the crcw model�

Hardware approaches for executing high contention crcw steps without hot spots incorporate
combining logic into the interconnection network� Ranade�s work �Ran��� shows that any crcw step
can be simulated on certain hypercube�based networks in the same asymptotic time as an erew step�
and development of machines based on his technique have been reported �e�g� �AKP��� DS���
� It
is an open question whether the system cost of supporting crcw e�ciently in hardware is justi�ed�
particularly on mimd machines� and work continues in this area �e�g� �DK���
� Existing commercial
machines are primarily designed to process low contention steps e�ciently" high contention steps
are slow operations�

Note that the weaknesses of the exclusive and concurrent contention rules apply independently
to reading and writing� Thus hybrids such as the crew pram or the ercw pram are too strict for

�These techniques can be incorporated into crcw algorithms� and emulated on the erew� but at logarithmic cost
in time and work�

�An exception is the erew variant of Gibbons� asynchronous pram model �Gib���� which permits contention in
synchronization primitives� at a cost� but enforces the exclusive rule on reads and writes occurring between synchro�
nization points�
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writing �reading� respectively
 and may be too powerful for reading �writing� respectively
�

��� Most existing machines are QRQW

Table � classi�es some existing multiprocessors according to the concurrent read and write capa�
bilities of their interprocessor communication� As seen from the table� the contention rule for most
of these machines� including the CRAY T�D� IBM SP�� Intel Paragon� MIT J�Machine� nCUBE �S�
Stanford DASH� and Tera Computer� is well�approximated by the qrqw rule� For the synchronous
MasPar MP�� and MP��� the contention rule is well�approximated by the simd�qrqw rule�

For the Kendall Square KSR�� the contention rule is well�approximated by the crqw rule�
The Thinking Machines CM�� provides a second network that can be used to perform fast scan
operations �Ble���� An appropriate model for this machine would be a qrqw model with unit�time
scan operations�

Note that each of the asynchronous machines �marked A in Table �
 allow for general asyn�
chronous algorithms� Thus their contention rule in its full generality is well�approximated by the
asynchronous queue contention rule provided by the qrqw asynchronous pram �GMR�	b� �ex�
cept for the KSR�� which is well�approximated by an asynchronous crqw contention rule
� On the
other hand� their contention rule with respect to bulk�synchronous algorithms is well�approximated
by the �bulk�synchronous
 queue contention rule provided by the simpler qrqw or crqw pram�

A number of these machines� such as Stanford DASH� provide caches local to each processor"
on reading a shared memory location� a copy is stored in the processor�s cache for future reuse�
Multiple processors with cached copies of a location may then request to read the location� and will
be serviced in parallel from their local caches� To maintain a single consistent value for a location�
these machines typically invalidate all cached copies of the location before permitting a processor
to write to the location� This fast concurrent re�reading of memory locations is not modeled in
the qrqw models� due to the following� If the contents of a shared memory location is stored in a
private memory location when �rst read by a processor� then there is no need to issue a subsequent
shared memory read for this location unless some other processor may have changed the value� the
private copy may be used instead� Moreover� if some other processor did change the value� then fast
re�reading is not possible and there will be a penalty for high contention with or without the caches�
Thus fast re�reading of memory locations seems to have only a secondary e�ect on the contention
encountered in parallel algorithms� and hence has been omitted from the model� for simplicity�

We have conducted experiments to measure the e�ect of contention on a �	���� processor MasPar
MP��� The results of these experiments are given in Figure �� The experiments show that the simd�
qrqw rule is a far more accurate re�ection of running time on the MasPar MP�� than a crcw

contention rule� Indeed� the overall time for the read �write
 step is dominated by the cost of
contention at a fairly small value for the contention� and then the time grows nearly linearly with
the contention� In contrast� the crcw contention rule would predict that the overall time would not
change with the contention� The di�erences between the left and right plots in the �gure demonstrate
that charging k for contention k� as in the simd�qrqw rule� becomes an accurate re�ection of the
running time only when each processor has its own global router port" otherwise� a more complicated
metric would be more accurate� Note that the MasPar MP��� the successor of the MP��� provides
additional router ports� to help alleviate the bottleneck in the MP�� caused by having one port
for every �	 processors� Thus we would expect the MP�� to behave more like the plot on the left�
i�e� more according to the simd�qrqw rule�
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Contention Rules of Some Existing Multiprocessors

Cray T�D �KS��� ( A qrqw

IBM SP� �IBM��� ( A qrqw

Intel Paragon �Bel��� ( A qrqw

Kendall Square KSR� �FBR��� ( A crqw

MasPar MP�� �Mas���� MP�� (
global router S qrqw

xnet S limited crew
nCUBE �S �SV��� ( A qrqw

Thinking Machines CM�� �Lei��b� (
data network A qrqw

control network S fast scan ops
Bus�based machines ( A limited crqw
Fluent �Ran��� AKP��� P S crcw

MIT J�Machine �DKN��� P A qrqw

Stanford DASH �LLG���� P A qrqw

Tera Computer �ACC���� P A qrqw

Table �� Contention rules of some existing multiprocessors� We have included message�passing
machines� as well as shared memory ones� since they are often used to run �slightly modi�ed versions
of� shared memory algorithms or programs� The second column indicates commercial product ��� or
working prototype �P�� The third column indicates synchronous �S� or asynchronous �A� machines�
In the last column� ER or EW denotes that programs for the machine are forbidden from having
multiple requests for a location� QR or QW denotes that multiple requests to a location may be
issued� and requests are generally serviced one�at�a�time� CR or CW denotes that multiple requests
to a location may be issued� and requests are combined in the network�

A few entries do not quite �t the taxonomy and require further explanation� In the xnet of the
MP�� and MP��� processors are limited to reading or writing values stored at nodes a given distance
away in a given compass direction� each processor may broadcast a value to all intermediate nodes
on the path� The control network of the CM�� provides fast scan primitives �Ble	��� such primitives
provide concurrent reading and writing and more �only� for well�structured sets of requests that �t
the segmented�scan paradigm �Ble���� In bus�based machines� the bus typically services only one
shared memory location at a time� all processors requesting to read the location can be serviced at
the same time without penalty� Finally� a number of these machines provide caches that permit fast
concurrent re�reading of shared memory locations
 once a set of processors have read a location�
they may subsequently re�read the location without incurring a penalty for contention� as long as no
processor has written to the location in the meantime�
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Figure �� Performance measurements on the MasPar MP�� for a read or write step� under increasing
contention to a location
 Top� timing measurements� Bottom� plot of the measurements on a log�
log scale� showing the running time �y�coordinate� as a function of the contention in the step �x�
coordinate�� Results for ��� and ��� processors are shown� In the base experiment �contention ��
x�coordinate ��� each processor reads �writes� according to a random permutation� In the general
experiment �contention �i� x�coordinate i�� the �rst �i processors read �write� the same location M �
while the remaining processors read �write� according to the original random permutation� Shown
are the cumulative times of repeating the experiment on �� di�erent random permutations� In the
plots� the y�coordinate depicts the base � logarithm of the number of milliseconds needed�

The experiments show that high contention steps are several orders of magnitude slower than
random permutations� and moreover� that doubling the contention nearly doubles the running time� at
least for medium to high contention steps� The dependence of the running time on the contention is
more dramatic in the experiments with ���� processors than with ����	� processors� for the following
reason� In the ����	� processor MasPar MP��� each global router port is shared by �� processors�
creating an additional serial bottleneck� The experiments with ���� processors use only one processor
per port� thereby avoiding this serial bottleneck�
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��� Related work

In an early related work� Greenberg �Gre��� considered broadcast communication schemes� such as
the Ethernet� that have queues for submitted messages� More recently� Cypher �Cyp��� analyzed
the performance of a maximum��nding algorithm under assumptions similar to the simd�qrqw
pram� Dietzfelbinger� Kutylowski and Reischuk �DKR��� de�ned the few�write pram� that permits
one�step concurrent writing of up to � writes� where � is a parameter of the model� as well as
unlimited concurrent reading� Valiant �Val��a� introduced the bspmodel �see Section �
� and studied
a specialization of the model with logarithmic periodicity and constant throughput� which we call
here the standard bsp model� In �Val��a� it is shown that a v�processor pram step with contention
� can be simulated on a p�processor standard bsp in O�v�p � lg p
 time w�h�p� A large number of
papers have studied the Distributed Memory Machine� in which the shared memory is partitioned
into modules such that at most one memory location within each module can be accessed at a time�
Concurrent reads and writes may or may not be allowed depending on the model� �See �Lei��a�
Val��b� and the references therein�
 An early example is the CTA �or Candidate Type Architecture

machine model proposed by Snyder �Sny�	� which consists of a set of processors connected by a
sparse communication network of unspeci�ed topology and linked to a controller� The CTA is
parametrized by the number of processors and the latency of interprocessor communication� Aumann
and Rabin �AR��� showed that a pram algorithm can be simulated on a very general asynchronous
parallel system that permits O�lgn
 contention to a location in unit time�

There have been several recent papers presenting independent work in related areas� Culler
et al� �CKP���� proposed the LogP model� a lower�level message�passing model in which there is
limited communication bandwidth� a processor can send or receive at most one message every g
cycles� where g is a parameter of the model� There is also a limit on the number of messages in
the network at the same time� The LogP model permits general asynchronous algorithms� Liu�
Aiello and Bhatt �LAB��� studied a message�passing model in which messages destined for the same
processor are serviced one�at�a�time in an arbitrary order� Their model permits general asynchronous
algorithms� but each processor can have at most one message outstanding at a time� Dwork� Herlihy
and Waarts �DHW��� de�ned an asynchronous shared memory model with a stall metric� If several
processes have reads or writes pending to a location� v� and one of them receives a response� then all
the others incur a stall� Hence the charge for contention is linear in the contention� with requests to
a location being serviced one�at�a�time� Their model permits general asynchronous algorithms� but
each processor can have at most one read or write outstanding at a time� Unlike their model� the
qrqw models capture directly how the contention delays the overall running time of the algorithm�
and are proposed as alternatives to other pram models for high�level algorithm design� Unlike each
of these models� the qrqw pram does not explicitly limit the number of outstanding requests� The
simd�qrqw pram� on the other hand� has the same restriction as the Liu et al� and Dwork et al�
models� namely� one request per processor�

In contrast to many of the models mentioned above� the qrqw model focuses on the contention
to locations� rather than to memory modules or processors� Any algorithm with high location
contention will perform poorly on machines with non�combining networks� regardless of the number
of memory modules" any lower bound on location contention is a lower bound on memory module
contention� By focusing on locations� the qrqw model is independent of the particular layout
of memory on the machine� e�g� the number of memory modules� Moreover� it is more relevant
to cache�only memory architectures �coma
� such as the KSR�� that dynamically map memory
locations to processors as the computation proceeds� Location contention is also a relevant metric
for cache coherence overhead� since the number of invalidates or updates that must be sent on a
write is often proportional to the number of processors concurrently accessing the location being
written �LLG����� The qrqw models� like the standard pram and other similar models� are true
shared memory models� providing a simple view of the shared memory as a collection of independent
cells�
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� Adding contention to the work�time framework

In the work�time presentation� a parallel algorithm is described in terms of a sequence of steps�
where each step may include any number of concurrent read� compute� or write operations �J�aJ����
In this context� the work is the total number of operations� and the time is the number of steps�
This is sometimes the most natural way to express a parallel algorithm� and forms the basis of many
data parallel languages �e�g� Nesl �BCH����
� For standard pram models� Brent�s scheduling
principle �Bre
�� can often be applied to obtain an e�cient O�work�p time
 time algorithm for a
p�processor pram�

��� The QRQW work�time framework

We show here that the work�time paradigm can be used to advantage for the qrqw pram� It
is extended into a qrqw work�time presentation by adding at each parallel step i the additional
parameter ki� the maximum contention at this step� Given an algorithm A in the qrqw work�time
presentation� de�ne the work to be the total number of operations
 and the time to be the sum over
all steps of the maximum contention ki of each step �as in the simd�qrqw pram model
� We note
that one of the useful features of the traditional work�time presentation is that the time evaluation
is independent of the work evaluation� Perhaps somewhat surprisingly� in the qrqw work�time
presentation� too� the time evaluation �which is based on the contention at each step
 is independent
of the work evaluation� there is no bene�t or loss in having steps with high contention also have high
work� as long as the total contention and work remain the same� An algorithm given in the qrqw
work�time presentation can be transformed into an e�cient qrqw pram algorithm� as follows�

Theorem ��� Assume processor allocation is free� Any algorithm in the qrqw work�time presen�
tation with x operations and time t �where t is the sum of the maximum contention at each step�
runs in at most x�p t time on a p�processor qrqw pram�

Proof� Let the number of parallel steps in the algorithm be r� Let xi be the number of operations
in the ith parallel step� and let ki � � be the maximum contention in the ith parallel step� � �
i � r� Hence t !

Pr
i�� ki� We map the operations in the ith step uniformly onto the p qrqw

pram processors� Thus each qrqw pram processor will receive at most ni ! dxi�pe operations�
The maximum contention at any memory location remains the same as in the original work�time
algorithm� i�e� at most ki� Hence the time cost for the ith step on a p processor qrqw pram is
maxfni� kig� The overall algorithm� therefore� takes time

rX

i��

maxfdxi�pe� kig �
rX

i��

��xi�p
  ki
 ! x�p t�

Thus Brent�s scheduling principle can indeed be extended to the qrqw work�time framework�

��� Automatic processor allocation

The mechanism of translating an algorithm from a work�time presentation into a pram description
is not addressed by Theorem ���� which assumes processor allocation is free� If the pram model is
extended to include a unit time scan operation �Ble���� as may be appropriate for some machines

�This contrasts with the work in a qrqw pram or simd�qrqw algorithm� which is the processor�time product�
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such as the CM��� then the processor allocation issue can be resolved with only small overhead�
The rest of this section deals with the standard pram models that do not incorporate the scan
operation�

Traditionally� the processor allocation needed to implement Brent�s scheduling principle has been
devised in an ad�hoc manner� However� it is known that in several common situations an e�cient
automatic implementation is feasible� especially on the crcw� often using linear compaction and
load balancing algorithms as essential tools �see �Mat��� and references therein
� In this section� we
adapt these techniques to the qrqw pram model�

Rather than tracing the details of each technique� it would be helpful to show that in general the
contention parameter on the qrqw does not change the validity of these crcw techniques� Indeed�
the fact that time evaluation and work evaluation are done independently in the qrqw work�time
presentation suggests that scheduling techniques on the crcw pram should be useful for the qrqw
pram as well� Next we elaborate on this issue�

Let A be a class of algorithms given in the qrqw work�time presentation� A qrqw scheduling
scheme SA for A is a scheme that maps any algorithm A in A into a qrqw pram algorithm� If
algorithm A has work�time bounds of w and t� then SA will convert A into a p�processor qrqw
pram algorithm for some suitable number of processors p that runs in time � ! t tA �w wA
�p
and work � � p� where tA and wA are the overhead in time and work for the scheduling scheme SA�
The scheduling scheme SA is work preserving if � � p ! O�w
�

Similar de�nitions hold for a scheduling scheme for a class of crcw pram algorithms given in
the work�time presentation�

Consider a class of algorithms B given in a crcw work�time presentation� and let SB be a
scheduling scheme that adapts each algorithm B in B into a crcw pram algorithm B�� Let A
be the class of algorithms in the qrqw work�time presentation corresponding to B� That is� each
algorithmA in A is identical to an algorithmB in B except that the time of each parallel step is taken
to be the maximum contention of that step� Thus algorithms A and B perform the same amount
of work� though the running time of algorithm A could be larger� Let SA be a scheduling scheme
on a qrqw pram corresponding to the crcw pram scheduling scheme SB� That is� the scheduling
scheme SA adapts each algorithm A in A into a qrqw pram algorithm A� which� except for the
scheduling overhead� is identical in execution �but not necessarily in time complexity
 to the crcw
pram algorithm B� derived by SB from the algorithm B in B to which algorithm A corresponds�

Lemma ��� Let wA� tA and wB� tB be the work�time overhead of SA and SB respectively� If SB is
work�preserving on the crcw pram and wA ! O�wB
 then SA is work�preserving on the qrqw

pram� In particular� an algorithm A in A with work�time bounds of w and t will run optimally on
a qrqw pram in time O�w�q
 using q processors when q � w��t tA
�

Proof� Let A correspond to a crcw work�time algorithm B in B that runs in time t� with work
w�� Note that t � t� and w ! w� since A corresponds to B� On a p�processor crcw pram� SB maps
algorithm B to run in time t�  tB  �w  wB
�p� Thus p � �t�  tB  �w  wB
�p
 ! O�w
 for some
value of p� since SB is work�preserving� This implies that wB ! O�w
� and hence wA ! O�w
�

Now let SA map algorithm A into a qrqw pram algorithm A� with q � w��t tA
 processors�
Then algorithm A� will run in time � ! t tA  �w wA
�q on the q�processor qrqw pram which
gives the desired work preserving schedule since

q � � ! q � �t  tA
  w  wA � w  w  O�w
 ! O�w
�
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Note that we can always transform a crcw pram scheduling scheme into an equivalent qrqw
pram scheduling scheme simply by viewing the overhead of the crcw scheduling scheme in the
work�time framework and interpreting it as a �possibly slower
 qrqw scheduling scheme with the
same work overhead� This leads to the following corollary to the above lemma�

Corollary ��� Let B be a class of algorithms given in a crcw work�time presentation and let A be
a class of algorithms in the qrqw work�time presentation corresponding to B� Let SB be a crcw

scheduling scheme for B and let SA be the equivalent qrqw scheduling scheme for A� If SB is
work�preserving on the crcw pram then SA is work�preserving on the qrqw pram�

The above corollary shows that it is always possible to derive a work�preserving qrqw scheduling
scheme for a class of qrqw work�time algorithms corresponding to a class of crcw work�time
algorithms that have a work�preserving schedule� However� such a qrqw scheduling scheme can
be very slow� In particular if the algorithm for the crcw scheduling scheme has a read or write
with concurrency %�wB
� where wB is the work overhead of the crcw scheduling scheme� then the
work�preserving qrqw scheduling scheme degenerates into a sequential algorithm� A more useful
way to apply Lemma ��� is to substitute a fast work�preserving qrqw pram algorithm for the qrqw
scheduling scheme in place of the crcw scheduling scheme�

In what follows� we give three examples of general classes of algorithms for which automatic
processor allocation techniques can be applied to advantage� geometric�decaying algorithms� general
task�decaying algorithms� and spawning algorithms� Processor allocation is done by a scheduling
scheme that uses an algorithm for linear �approximate� compaction� The linear compaction problem
generalizes the ��compaction problem� as follows� Given k nonempty cells at unknown positions in
an array of size n� with k known� move the contents of the nonempty cells to an output array of
O�k
 cells� The linear compaction problem can be solved by a randomized crcw pram algorithm in
time T �lc�n
 ! O�lg� n
 time and linear work w�h�p� �GMV���� In Section 
 �Theorem 
�	
 we show
that the linear compaction problem can be solved by a randomized simd�qrqw pram algorithm in
time Tlc�n
 ! O�

p
lgn
 and linear work w�h�p�

Sometimes the linear compaction algorithm is used under the assumption that the number of non�
empty cells is at most k� An unsuccessful termination of the algorithm is used to determine that the
input consists of more than k non�empty cells� To make such determination possible� it is necessary
to employ an algorithm for computing the or function� as well as an algorithm for the broadcasting
problem� Furthermore� recall that a subtle property of the qrqw models is that unsuccessful steps
may turn out to be overly expensive if they incur �unexpected
 high contention� �This is a rather
signi�cant technical issue in the algorithms of Section 	�
 We assume here that the number of non�
empty cells never exceeds �k for some constant � � �� where k is the estimated upper bound� In
such cases� the running time of the linear compaction algorithm of Theorem 
�	 will increase by at
most a constant factor� Let Tlcd�n
 be the running time of a linear compaction algorithm followed
by a determination of whether the algorithm was successful or not on an n�processor qrqw pram�
and let T ��lcd�n
 be the corresponding running time on a crqw pram�

In Section � we show that on the qrqw pram broadcasting requires ��lgn
 expected time�
Therefore when it is necessary to determine if a run of linear compaction was unsuccessful on the
qrqw pram� it is best to use a %�lgn
 time erew pram algorithm for pre�x sums �LF���� Hence�
Tlcd�n
 ! %�lgn
� Performing a broadcast on the simd�crqw pram is trivial in constant time� In
Section 	 �Theorem 	��
 we show that the or problem can be solved by a simd�crqw pram in time
O�lgn� lg lgn
 and linear work w�h�p� Hence� T ��lcd�n
 ! O�lgn� lg lgn
 w�h�p�

Task
decaying algorithms� A task�decaying algorithm �or simply a decaying algorithm
 is one
that starts with a collection of unit tasks� Each of these tasks progresses for a certain number of
steps of the algorithm� and then dies� A task is said to be a live task until it dies� No other tasks
are created during the course of the algorithm� The work load wi is the number of live tasks at step
i of the algorithm�
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Geometric�decaying algorithms
 A decaying algorithm in either the qrqw or the crcw work�time
presentation is geometric�decaying if the sequence of work loads fwig is upper bounded by a de�
creasing geometric series� Typically the work w of such algorithms is O�n
 where n is the problem
size� Let A and B be the class of geometric�decaying algorithms in the qrqw and crcw work�time
presentations respectively� Using techniques from �GM��� GM�	� MV��� and Lemma ��� we have�

Theorem ��� Let A be a geometric�decaying algorithm in a qrqw work�time presentation with
time t and work n� Then Algorithm A can be implemented on a p�processor qrqw pram to run in
time O�n�p
 when p ! O�n��t Tlc�n
 lg�Tlc�n



�

Proof� Let B be a geometric decaying algorithm in the crcw work�time presentation to which
Algorithm A corresponds� A work�preserving scheduling scheme SB that can adapt Algorithm B
into a p�processor crcw pram algorithm B� is given in �MV���� The scheduling scheme SB consists
of lg�n�p
 applications of an algorithm for linear compaction problem of size p� On the qrqw pram

we will use a scheduling scheme SA corresponding to SB� When mapping into a p�processor qrqw
pram� scheduling scheme SA will consist of lg�n�p
 applications of a qrqw pram algorithm for
linear compaction problem of size p� The time overhead incurred by scheduling scheme SA is tA !
O�Tlc�p
 lg�n�p

� and the work overhead is p � tA� We observe� as in �MV���� that if Tlc�p
 lg�n�p
 �
n�p� then lg�n�p
 ! O�lg�Tlc�n


� and hence for p � n��Tlc�p
 lg�Tlc�n


� scheduling scheme SA
has a work overhead of O�n
� Therefore� by Lemma ���� SA maps algorithm A into a p�processor
qrqw pram algorithm A� to run in time O�n�p
 provided p ! O�n��t Tlc�p
 lg�Tlc�n


�

By Theorem 
�	 we obtain

Corollary ��� Algorithm A in Theorem ��� can be implemented on a p�processor qrqw pram to
run in time O�n�p
 w�h�p� when p ! O�n��t 

p
lgn lg lgn

�

General task�decaying algorithms
 Recall that in a task�decaying algorithm in either the qrqw or
the crcwwork�time presentation� the sequence of work loads fwig is a monotonically non�increasing
series� Thus� task�decaying algorithms generalize geometric�decaying algorithms� A task�decaying
algorithm is predicted if an approximate bound on the sequence of work loads fwig is known in
advance" speci�cally� if a sequence fw�

ig is given such that for all i� w�
i � wi and

P
iw

�
i ! O�

P
iwi
�

Let A and B be the class of general task�decaying algorithms in the qrqw and crcw work�time
presentations respectively�

Theorem ��� Let A be a task�decaying algorithm in a qrqw work�time presentation with time
t and work n� Then Algorithm A can be implemented to run in time O�n�p
 on a p�processor
qrqw pram when p ! O�n��t  Tlcd�n
 lg�Tlcd�n



 and on a p�processor crqw pram when
p ! O�n��t T ��lcd�n
 lg�T

��
lcd�n



� If Algorithm A is also predicted then it can be implemented on a

p�processor qrqw pram to run in time O�n�p
 when p ! O�n��t Tlc�n
 lg�Tlc�n



�

Proof� Let B be a predicted task�decaying algorithm in a crcw work�time presentation to which
Algorithm A corresponds� A work�preserving scheduling scheme SB that can adapt Algorithm B
into a p�processor crcw pram algorithm B� is given in �MV���� The scheduling scheme SB is
based on several applications of an algorithm for the linear compaction problem of size p� The
analysis in �MV��� is based on showing that the cost of all but lg�n�p
 applications of the linear
compaction algorithm can be amortized against the execution of Algorithm B� with only a constant
factor overhead� Hence the time overhead of SB is tB ! O�T �lc�n
 lg�n�p

� As for the geometric
decaying�algorithm� the time overhead can be shown to be tB ! O�T �lc�n
 lg�T

�
lc�n


�

Consider a scheduling scheme SA� corresponding to SB� which adapts Algorithm A to a p�
processor qrqw pram algorithm A�� An amortization argument similar to the one used for SB

�




implies that the cost of all but lg�n�p
 applications of the linear compaction algorithm can be
amortized against the execution of Algorithm A� with only a constant factor overhead� The time
overhead of SA is therefore tA ! O�Tlc�n
 lg�n�p

� and hence tA ! O�Tlc�n
 lg�Tlc�n


� and the
work overhead is p � tA� Hence for p ! O�n��Tlc�n
 lg�Tlc�n


 this schedule has a work overhead of
O�n
� By Lemma ��� the scheduling scheme SA maps A into a p�processor qrqw pram in O�n�p

time provided p ! O�n��t Tlc�n
 lg�Tlc�n



�

If Algorithm B is not predicted then each application of the linear compaction algorithm must
be followed by a detection of whether or not there was a successful termination� In such case�
the underestimation is by at most a factor of �� Similar arguments to the above imply that the
corresponding algorithm A can be adapted to a qrqw pram algorithm with running time O�n�p

provided p � n��t Tlcd�n
 lg�Tlcd�n


 and to a crqw pram algorithm with running time O�n�p

provided p � n��t T ��lcd�n
 lg�T

��
lcd�n




By the result stated above we have�

Corollary ��� Algorithm A in Theorem ��� can be implemented to run in time O�n�p
 w�h�p� on
a p�processor qrqw pram when p ! O�n��t lgn lg lgn

 and on a p�processor crqw pram when
p ! O�n��t lgn

� If Algorithm A is predicted then it can be implemented on a p�processor qrqw
pram t run in time O�n�p
 w�h�p� when p ! O�n��t 

p
lgn lg lgn

�

Spawning algorithms� A spawning algorithm starts with a collection of unit tasks� and at each
step of the algorithm� each task can

i� progress to the next step of the algorithm"

ii� progress to the next step of the algorithm and spawn another new task" or

iii� not progress to the next step and die�

The total number of tasks in a spawning algorithm may increase or decrease in each step� Thus�
the spawning model generalizes the model for task�decaying algorithms� As in the task�decaying
model� a spawning algorithm is predicted if an approximate bound on the sequence of work loads
fwig is known in advance" speci�cally� if a sequence fw�

ig is given such that for all i� w�
i � wi andP

i w
�
i ! O�

P
iwi
�

Theorem ��� Let A be a spawning algorithm in a qrqw work�time presentation running in time t
and work n� and let t� be the number of parallel steps in A� Then Algorithm A can be implemented
to run in time O�n�p
 on a p�processor qrqw pram when p ! O�n��t  t� � Tlcd�n


 and on a p�
processor crqw pram when p ! O�n��t t� � T ��lcd�n


� If Algorithm A is also predicted then it can
be implemented to run in time O�n�p
 on a p�processor qrqw pram when p ! O�n��t t� �Tlc�n


�

Proof� Let B be a predicted spawning algorithm in a crcw work�time presentation to which
AlgorithmA corresponds� Then� the running time of AlgorithmB is t�� A work�preserving scheduling
scheme SB that can adapt Algorithm B into a p�processor crcw pram algorithm B� is given
in �Mat���� The scheduling scheme SB consists of applying an algorithm for a linear compaction
problem of size p a constant number of times after each parallel step� The time overhead of SB is
therefore O�t� � T �lc�n

�
Consider a scheduling scheme SA� corresponding to SB� which adapts Algorithm A to a p�

processor qrqw pram algorithm A�� The scheduling scheme SA consists of applying an algorithm
for a linear compaction problem of size p a constant number of times after each parallel step� The

��



time overhead incurred by SA is thus tA ! O�t� � Tlc�n

 and the work overhead is wA ! p � tA�
Hence by Lemma ��� algorithm A� runs in time O�n�p
 on a p�processor qrqw pram provided
p ! O�n��t t� � Tlc�n


�
If AlgorithmB is not predicted then� as in the case of the task�decaying algorithmof Theorem ��	�

each application of the linear compaction algorithm must be followed by a detection of whether or
not there was a successful termination� Similar arguments to the above imply that the corresponding
algorithmA can be adapted to a p�processor qrqw pram algorithm running in timeO�n�p
 provided
p ! O�n��t  t� � Tlcd�n


� and to a p�processor crqw pram algorithm running in time O�n�p

provided p ! O�n��t t� � T ��lcd�n


�

Corollary ��	 Algorithm A in Theorem ��	 can be implemented to run in time O�n�p
 w�h�p� on
a p�processor qrqw pram when p ! O�n��t  t� � lgn

 and on a p�processor crqw pram when
p ! O�n��t t� � lgn� lg lgn

� If Algorithm A is predicted then it can be implemented to run in time
O�n�p
 w�h�p� on a p�processor qrqw pram when p ! O�n��t t� � plgn

�

The spawning model can be further generalized to include a start operation in which one task
may spawn n new tasks to begin in the next time step� This extended model is called v�pram in
�Goo��� where it was suggested� It was shown in �Goo��� that the work�preserving scheme for the
spawning model can be extended to the v�pram model as well� with the same overhead� Accordingly�
Theorem ��� and Corollary ��� apply to the v�pram model�

A more general type of spawning algorithm� the L�spawning algorithm� is studied in �GMR�	a��
In the L�spawning model� each task can spawn up to L � � additional tasks at each step� It is
shown in �GMR�	a� that an L�spawning algorithm with time t� work n� and t� parallel steps can
be implemented on a p�processor qrqw pram to run in time O�n�p
 w�h�p� when p ! O�n��t  
t�
p
lgn lg lgL t� lgL

� This implementation applies a more general load balancing algorithm given

in �GMR�	a��

� Realization on feasible networks

The Bulk�Synchronous Parallel �bsp
 model was introduced by Valiant �Val��a� Val��b� as a model
of parallel computation that takes into account overheads incurred by latency� synchronization and
memory granularity� It consists of components that can perform local ram computations and com�
municate with one another through a router which delivers messages between pairs of components�
Messages to a component are serviced one�at�a�time� The bsp provides facilities for synchronizing
the components at regular intervals� There are three parameters to the model� p� the number of
components� periodicity L� the number of time units between synchronizations� and throughput g� a
measure of the bandwidth limitations of the router� A particular case studied by Valiant is one that
sets g to be a constant and L to be %�lg p
� and has each synchronization involve all the components"
we denote this the standard bsp model�

A standard bsp computation consists of a sequence of supersteps� with each superstep separated
from the next by a global synchronization point among all the components� In each superstep�
each component sends messages� receives messages� and performs local ram steps� Operations at
a component �message initiations� message receipts� ram operations
 are assumed to take constant
time� No assumption is made about the relative delivery times of messages within a superstep� and
local operations may only use data values locally available to the component prior to the start of
the superstep� If the operations in a superstep� including message deliveries� do not complete in L
time units� additional intervals of L time units are allocated to the superstep until it completes�

The bsp model has been advocated as one that forms a bridge between software and hardware
in parallel machines" that is� between abstract models for algorithm design and realistic parallel

��



machines� This approach is supported in �Val��a� Val��b� by providing a fast� work�preserving
emulation of the standard bsp model on hypercube�type non�combining networks on the one hand�
and a fast� work�preserving emulation of the erew pram on the standard bsp on the other hand�
In particular� it is shown that the erew pram can be emulated in a work�preserving manner with
logarithmic slowdown on the standard bsp� while the standard bsp can be emulated in a work�
preserving manner with constant slowdown on� e�g�� the multiport hypercube� In the multiport
hypercube on p nodes� each node can receive a message on each of its lg p incoming wires and
route them along the appropriate outgoing wires in constant time� subject to the constraint that at
most one message can be sent along each outgoing wire� These emulations show that the choice of
L ! %�lg p
 and g ! %��
 used in the standard bsp is su�cient to hide the latency� synchronization�
and memory granularity overheads occurring in the emulations�

Valiant �Val��a� shows that a v�processor pram step with contention � can be simulated on a
p�processor standard bsp in O�v�p  � lg p
 time w�h�p� It follows readily from this result that a
p�processor simd�qrqw pram algorithm running in time t can be emulated on a �p� lgp
�component
standard bsp model in O�t lgp
 time w�h�p�

In this section we show that the more powerful qrqw pram can also be emulated in a work�
preserving manner with only logarithmic slowdown on the standard bsp as well as on hypercube�type
networks� The proof of this result is complicated by the fact that a qrqw step with time cost k
may have up to �kp reads and writes� whereas in the previous emulation results� the pram step
being emulated had at most �p reads and writes� independent of k� As in the previous emulations
of pram models on the standard bsp given in �Val��a�� we apply a random hash function to map
the pram shared memory onto the bsp components" this function is assumed to map each shared
memory location to a component chosen uniformly and independently at random�

Theorem ��� A p�processor qrqw pram algorithm �or simd�qrqw pram algorithm� running in
time t can be emulated on a �p� lgp
�component standard bsp model in O�t lgp
 time w�h�p�

Proof� Consider the ith step of the qrqw pram algorithm� with time cost ki� For simplicity of
exposition� we assume that each processor has exactly ki shared memory accesses� where an access is
either a read or a write� Let m�� � � � �md be the di�erent memory locations accessed in this step� and
let qj be the number of accesses to location mj � � � j � d� For the purpose of this analysis we add
	pki memory accesses to this step� for a constant 	 � ��� consisting of accesses with contention ki
to locations md��� � � � �md� � where d

� ! d 	p� With this addition� the ith step has vi� ! �	  �
pki
concurrent accesses to d� di�erent memory locations� and the maximum contention is ki� We set

qj ! ki for d  � � j � d� and note that v� !
Pd�

j�� qj� We now show that the bound stated in
the theorem holds for this augmented problem� Clearly� this implies that the bound holds for the
original problem�

We assume that the memory has been randomly hashed onto the p� lgp components of the BSP�
Consider a �xed component C� As in �Val��a�� we de�ne a random variable xj � � � j � d�� where
xj ! qj�ki if mj is hashed onto C and zero otherwise� Let X !

Pd�

j�� xj � We note that xj ! qj�ki
with probability lg p�p� and ki �X is the number of messages sent to C in the ith step� Then

E�xj
 ! qj lgp��pki
� � � j � d� �

Let 
 be the mean of the expectations of the xj�


 !
d�X

j��

�qj lg p
��pkid
�
 ! vi

� lg p��pkid�
 ! �	  �
pki lg p��pkid�
 �

So 
 ! �	  �
 lg p�d�� By Hoe�ding�s inequality �Hoe	���

Pr�X � �
 z
d�
 � e�z
�d���� �

��



provided z � min�
� �� 

� Let z ! 
��� Then

Pr�X � �
d���
 � e��d
���� ! e������ lg p��� ! ��p���� �

By choosing 	 su�ciently large� we have that each component receives at most �
d�ki�� ! %�ki lgp

messages in the ith qrqw step w�h�p�

Each bsp component emulates lg p qrqw pram processors� It sends O�ki lgp
 �read� messages
and receives O�ki lg p
 �w�h�p�
 such messages� In the next superstep� it sends O�ki lg p
 �w�h�p�

�read reply� messages and receives O�ki lg p
 such replies� Finally� in the next superstep� it performs
O�ki lg p
 local ram operations� sends O�ki lg p
 �write� messages� and receives O�ki lg p
 �w�h�p�

such messages� updating the values of the appropriate locations� Since the periodicity L is %�lg p

and the gap g is constant� the time taken to complete the ith step on the bsp is O�ki lg p
 w�h�p�

Thus� w�h�p� the bsp completes the emulation of the qrqw computation in O�
Pm

i�� ki lgp
 time�
i�e� in O�t lgp
 time�

Note that unlike Valiant�s emulation of the erew pram on standard bsp� the emulation above
may result in a rather uneven distribution of messages among the components whenever there is
an uneven distribution of contention among the locations� This raises concerns regarding possible
contention in routing the messages between the components� However� the �standard
 bsp model
ignores all issues of routing other than the number of messages sent and received at each component�
and hence the proof of Theorem ��� addresses only these same routing issues�

Further issues in routing do arise in emulating the pram or bsp on models such as the multiport
hypercube� Valiant de�nes the slackness of a parallel algorithm being emulated to be the ratio of
the number of virtual processors in the algorithm to the number of �physical� processors in the
emulating model� In �Val��a�� Valiant showed that a p�component standard bsp algorithm with
slackness at least lg p and running in time t can be emulated on a p�node multiport hypercube in
O�t
 time w�h�p� Since the slackness in the emulation in Theorem ��� is lgp� we have the following�

Theorem ��� A p�processor qrqw algorithm �or simd�qrqw pram algorithm� running in time t
can be emulated on a �p� lg p
�node multiport hypercube in O�t lg p
 time w�h�p�

Thus the uneven distribution of messages that may result from emulating a qrqw pram algo�
rithm on the standard bsp does not prevent a fast� work�preserving emulation of the qrqw pram

on the multiport hypercube�

� Leader election and computing the OR

Given a Boolean array of n bits� the or function is the problem of determining if there is a bit with
value � among the n input bits� The leader election problem is the problem of electing a leader bit
from among the k out of n bits that are � �k unknown
� The output is the index in ����n� of the bit�
if k � �� or �� if k ! �� This generalizes the or function� as long as k ! � is possible�

In this section we present several randomized and deterministic algorithms for solving these
problems on queue�write prams� Our main result is a randomized algorithm for the two problems
on the crqw pram that performs linear work and runs in O�lgn� lg lgn
 time with high probability�
This result is somewhat surprising since it improves on the best possible time bound �which is
%�lgn

 for any deterministic or randomized crew pram algorithm for the two problems�

Most of the randomized algorithms we present are of the Las Vegas type� while a few are of the
Monte Carlo type� A Las Vegas algorithm is a randomized algorithm that always outputs a correct
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answer� and obtains the stated bounds with some stated probability� A Monte Carlo algorithm� in
contrast� is a randomized algorithm that outputs a correct answer with some stated probability� In
the analysis of some of our randomized algorithms� we apply the Cherno� bound stated in Section ��

PrfX � �E�X�g � e�������ln ���E	X
 � for all � � ��

In particular� we use the following corollary to this Cherno� bound�

Observation ��� Let X be a binomial random variable� For all f ! O�lgn
� if E�X� � ���f � then
X ! O�lgn�f
 w�h�p� Furthermore� if E�X� � � then X ! O�lgn� lg lgn
 w�h�p�

Proof� Let � ! c lgn�fE�X�� for a constant c � maxf�� f� lgng to be determined� Then � �
��E�X� � �f � By the Cherno� bound�

PrfX � c lgn�fg � e�������ln ����c�f� lgn � e��c��f� ln � lgn

! e��c��f� lg ��ln n ! ��n�c��f� lg � � ��nc�� �

Hence for any 	 � �� there exists a constant c ! maxf�	� f� lgng such that PrfX � c lgn�fg � ��n��
If E�X� � �� we take � ! c lgn� lg lgnE�X�� for a constant c � � to be determined� Then

lg� � lg lgn� lg lg lgn � � lg lgn��� By the Cherno� bound�
PrfX � c lgn� lg lgng � e�������ln ����c� lg lgn� lgn � e��c�� lg lg n� ln � lgn

! e��c�� lg lgn� lg ��ln n ! ��n�c�� lg lgn� lg � � ��nc�� �

Hence for any 	 � �� there exists a constant c ! �	 such that PrfX � c lgn� lg lgng � ��n��

��� Deterministic algorithms

By having each processor whose input bit is � write the index of the bit in the output memory cell�
we obtain a simple deterministic simd�erqw pram algorithm for leader election �and similarly for
the or function
 that runs in maxf�� kg time using n processors� where k is the number of input
bits that are � �k unknown
� This is a fast algorithm if we know in advance that the value of k
is small� However� for the general leader election problem� a better algorithm is the natural erew
pram algorithm for leader election which uses a parallel pre�x algorithm to compute the location
of the �rst � in the input" this takes %�lgn
 time and %�n
 work�

We can derive an ��lgn� lg lgn
 lower bound for the or function using a lower bound result
of Dietzfelbinger� Kutylowski and Reischuk �DKR��� for the few�write pram� Recall that the few�
write pram models are parameterized by the number of concurrent writes to a location permitted
in a unit�time step� �Exceeding this number is not permitted�
 Let the ��write pram denote the
few�write pram model that permits concurrent writing of up to � writes to a location� as well as
unlimited concurrent reading� We begin by proving a more general result for emulating the crqw
on the few�write pram� and then provide the or lower bound�

Observation ��� A p�processor crqw pram deterministic algorithm running in time t can be
emulated on a p�processor t�write pram in time O�t
�

Proof� Since the crqw algorithm runs in time at most t on all inputs� then the maximum write
contention is at most t on all inputs� Hence the t�write pram can be used to emulate each write
substep� and the emulation proceeds as was done for the crcw �Observation ���
�

Theorem ��� Any deterministic algorithm for computing the or function on a crqw pram with
arbitrarily many processors requires ��lgn� lg lgn
 time�

��



Proof� Dietzfelbinger� Kutylowski and Reischuk �DKR��� proved an ��lgn� lg�
 lower bound for
the or function on the ��write pram� Let T be the time for the or function on the crqw pram�
Then by Observation 	��� the or function can be computed on the T �write pram in O�T 
 time� Thus
T ! ��lgn� lgT 
� and hence T lgT ! ��lgn
� Now if T ! o�lgn� lg lgn
� then lgT ! o�lg lgn
�
contradicting T lgT ! ��lgn
� Thus T ! ��lgn� lg lgn
�

Since the ercw pram can compute the or function in constant time� Theorem 	�� implies the
following separation result�

Corollary ��� There is an ��lgn� lg lgn
 time separation between a deterministic fer�qr�crgqw
pram with arbitrarily many processors and a deterministic fer�qr�crgcw pram�

Cook� Dwork and Reischuk �CDR�	� proved that any deterministic algorithm for computing the
or function on a crew pram with arbitrarily many processors requires ��lgn
 time� Dietzfelbinger�
Kutylowski and Reischuk �DKR��� later proved a similar lower bound for randomized crew pram

algorithms� The di�culty in extending either of these results to the crqw pram is that in the
crqw pram� the running time of a step may be di�erent on di�erent inputs� Thus in a crqw write
step with contention k for a given input I� the lower bound argument of �CDR�	� DKR��� will allow
processors to gain knowledge about input I as a function of the maximum contention� K� for the
step over all inputs� and K could be much larger than k�

��� Randomized algorithms for special cases

In this subsection� we present a series of randomized leader election algorithms� under various sce�
narios� First� consider the leader election problem when the value of k is known� On the simd�qrqw
pram� a simple� fast� randomized algorithm for this problem is to have the k processors whose input
bits are � write to the output cell with probability ��k� This runs in constant time on the simd�
qrqw� and� as a low�contention algorithm� will run fast in practice� The failure probability can be
reduced by repeating the algorithm�

Observation ��� Consider the problem of electing a leader bit from among the k out of n bits that
are �� where k is known� There is a �randomized� Monte Carlo simd�erqw pram algorithm that
runs in O��
 expected time and O�n
 expected work� and probability of failure less than ��e� There
is a �randomized� Las Vegas simd�crqw pram algorithm that runs in O��
 expected time and O�n

expected work�

Proof� The index of each bit whose value is � is written into the output cell with probability
��k� This has constant expected contention� and the probability that no value is written is �� �
��k
k � ��e� To obtain a Las Vegas algorithm� the write step is repeated until there is at least
one writer� Termination is detected by using the concurrent�read capability� The expected time is
O��  ��e ��e�  ��e�  � � �
 which is O��
�

The expected time for this algorithm is constant" however� we are interested in high probability
results� The next two theorems deal with high probability randomized algorithms for the case when
a good estimate for k is known� and the case when a good upper bound for the value of k is known�

Given a good estimate for k� In the following� we describe a fast leader election algorithm when

the number of bits competing for leadership is known to within a multiplicative factor of �
p
lgn�

Theorem ��� Consider the problem of electing a leader bit from among the k out of n bits that

are �� Let #k be known to be within a factor of �
p
lgn of k� i�e� #k��

p
lgn � k � #k�

p
lg n� There is a
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Monte Carlo simd�erqw pram algorithm that� w�h�p�� elects a leader in O�
p
lgn
 time with O�n


work� On the simd�crqw pram� or if #k � �
p

lgn� the same bounds can be obtained for a Las Vegas
algorithm�

Proof� We describe the algorithm for n�
p
lgn processors� Let p ! min��� �c

p
lgn�#k
� for a constant

c � �� to be determined by the analysis� Let A be an array of size m ! ��c���
p
lgn� initialized to

all zeros� The input bits are partitioned among the processors such that each processor is assignedp
lgn bits�

Step �� Each processor selects a leader from among its input bits that are �� if any�

Step �� Each processor with a leader writes� with probability p� the index of the leader bit to a cell
of A selected uniformly at random�

Step �� m of the processors participate to select a nonzero index from among those written to A�

If #k � �
p
lgn then p ! � and this is a Las Vegas algorithm� Else a Las Vegas algorithm is obtained

by repeating steps � and � until there is a nonzero index in A� Termination is detected by using the
concurrent�read capability�

Step � takes O�
p
lgn
 time� Since m ! �O�

p
lgn�� an erew binary fanin approach can be used

to obtain the same time bounds for step �� For step �� we will show that the contention is O�
p
lgn


w�h�p� Let Xi be the number of writers to cell i of A� Then

E�Xi� � kp�m � k�c
p
lgn�#km � k�#k��

p
lg n � ���

p
lgn �

It follows from Observation 	�� that the maximum contention over all cells of A is O�
p
lgn
 w�h�p�

It remains to show that w�h�p�� there is at least one writer to A �assuming that k � �
� If
#k � �c

p
lgn� then p ! � and hence there will be one writer to A for each processor that has an input

bit that is �� Else #k � �c
p
lgn� and the probability that there are no writers to A is at most

�� � p
k�
p
lgn ! ���� �����p

��p
pk�

p
lgn � ���e
pk�

p
lgn�

! ���e
�k�
�k��c

p
lg n�

p
lgn � ���e
��c���

p
lgn�

p
lgn�

It follows that c can be chosen so that there is at least one writer w�h�p�

Given an upper bound on k� We next consider the case where we only have an upper bound�
kmax� on the number of input bits that are �" the results we obtain are not quite as good as when k

is known to within a factor of �
p
lgn� but better than the case when no bound on k �other than n


is known� The algorithm is a straightforward modi�cation of the previous algorithm �Theorem 	�	
�

Theorem ��� Consider the problem of electing a leader bit from among k out of n bits that are ��
given an upper bound� kmax� on k� There is a Las Vegas simd�erqw pram algorithm that runs in
O�lgkmax  

p
lgn
 time with O�n
 work w�h�p�

Proof� We describe the algorithm for n��lg kmax 
p
lgn
 processors� The input bits are partitioned

among the processors such that each processor is assigned lg kmax 
p
lgn bits� If kmax ! ��n

�
 for
some constant � � � � �� apply the erew parallel pre�x algorithm� as mentioned in Section 	��� to

obtain the stated bounds� Otherwise� let A be an array of size m ! kmax � �
p

lgn� initialized to all

��



zeros �note that m ! O�n

� Each processor selects a leader from among its input bits that are �� if
any� Then each processor with a leader writes to a cell of A selected uniformly at random� Finally�
m of the processors participate to select a nonzero index from among those written to A� The �rst
and third steps take O�lg kmax  

p
lgn
 time� In the second step� the expected contention to a cell

i in A is at most ���
p
lgn� It follows from Observation 	�� that the maximum contention over all

cells of A is O�
p
lgn
 w�h�p�

��� A general randomized algorithm

It is shown in �DKR��� that the or function on n bits requires ��lgn
 time on a randomized crew
pram� �This lower bound is for randomized algorithms that have zero probability of a concurrent
write� and correctly compute the or with probability bounded away from �&��
 In contrast to this
lower bound� we show in this subsection that a randomized simd�crqw pram can compute the or
function on n bits in O�lgn� lg lgn
 time and linear work w�h�p�

Theorem ��� There is a Las Vegas simd�crqw pram algorithm for the leader election problem
�and the or function� that runs in O�lgn� lg lgn
 time and linear work w�h�p�

Proof� We �rst show the time bound using n lg lgn processors� We describe the algorithm for the
or function� which can be trivially modi�ed to solve the leader election problem� Since the number�
k� of contending ��bits is unknown� we will search for the true value of k� We take larger and larger
samples until we either �nd a sample that contains at least one input bit that is �� or learn that all
input bits are �� We must ensure that w�h�p�� there will be at least one writer �with a �
 prior to
the iteration in which there are too many writers �i�e� the iteration where the contention would not
be O�lgn� lg lgn

� The new algorithmic result below is a technique for amplifying probabilities on
the simd�qrqw model so that this occurs�

�� Let s ! c lgn� lg lgn� with c � � a constant determined by the analysis� Let A be an array of
s� lg lgn memory cells� A� be an array of s lg lgn memory cells� and A�� be an array of lg lgn
memory cells� each initialized to all zeros� The output is to be written in memory cell x� We
assign lg lgn processors to each input bit� Each processor reads its input bit� Let p ! s��n�

�� Each processor with input bit � is active with probability p� Each such active processor writes
its index to some cell i of A chosen uniformly at random� and then reads that cell� If the cell
contains its index �i�e� no other processor overwrote it
� then it writes its index to cell i� of
A�� i� ! i mod s lg lgn� and then reads that cell� If the cell contains its index� then it writes
its index to cell i�� of A��� i�� ! i� mod lg lgn� and then reads that cell� If the cell contains its
index� then it writes a � into memory cell x�

�� Each processor reads x� If x ! �� repeat steps � and � with p ! ps� If p � �� repeat one last
time with p ! � and then stop�

Note that x is set to � only if there is a processor with a �� Conversely� each processor whose input
bit is � either writes a � into x� writes its index in a cell of A in the iteration that x is set to �� or
stops when x ! �" hence the algorithm always outputs the correct answer� There are O�lgn� lg s

iterations� If no processor writes to A in an iteration� then the iteration takes O��
 time� Else there
is one last iteration in which writes to A� A�� A��� and x occur�

We now analyze the contention of these last four write steps� Let pj be the probability used at
iteration j" i�e� pj ! sj���n� Let k be the number of �original
 input bits that are '��� Since we have

��



a write step� � � k � n� Let t � � be an integer such that n�st � k � n�st��� Consider iteration
t �� if it occurs� The probability that no processor writes is at most

�� � pt��

k lg lgn � ���e
pt��k lg lgn

! ���e
ks
t�� lg lgn�n

� ���e
s lg lgn � ���e
c lgn

! ���e
c
�� ln n ! ��nc

�

�

for some constant c�� Hence� if k � �� there will be no iteration t � w�h�p�

Let W be the number of active processors at iteration t �� if it occurs� Then

E�W � ! pt��k lg lgn ! st��k lg lgn�n�

By the choice of t� s � st��k�n � �� and hence s� lg lgn � E�W � � s lg lgn� Let Xi be the number
of writers to cell i of A in iteration t  �� Then

E�Xi� ! E�W ��s� lg lgn � ��
By Observation 	��� and since there are s� lg lgn ! o�n
 cells� the maximumcontention for this write
is O�lgn� lg lgn
 w�h�p�

This bounds as well the contention of any iteration less than t � in which a write to A occurs
�and hence is the last iteration
� Since there is at most one winner from each cell of A and exactly
s cells of A that map to one cell of A�� the maximum contention to a cell of A� is s� Likewise� the
maximum contention to a cell of A�� is s and the maximum contention to cell x is lg lgn�

It follows that the overall running time is O�lgn� lg lgn
 w�h�p�

Finally� in order to make the algorithm work�optimal� we should achieve the same time bound
using only n � lg lgn� lgn processors� For this we use an initial computation phase in which we reduce
the size of the input from n to n� lgn� For this we divide the processors into n� lgn groups of lg lgn
processors� and assign to each group the simple task of �nding the or of a block of lgn input bits in
O�lgn� lg lgn
 time� We then apply the algorithm described above to the reduced array of n� lgn
bits� This gives us the desired work�optimal randomized algorithm for the or function on n bits in
O�lgn� lg lgn
 time w�h�p�

We note that the only large concurrent�read in the previous algorithm is the reading of x in step
� of the algorithm�

Corollary ��	 There is an ��lg lgn
 time separation between a randomized crew pram with ar�
bitrarily many processors and a randomized simd�crqw pram�

� Linear compaction

Consider an array of size n with k nonempty cells� with k known� but the positions of the k nonempty
cells not known� The k�compaction problem is to move the contents of the nonempty cells to the �rst
k locations of the array� The linear compaction problem is to move the contents of the nonempty
cells to an output array of O�k
 cells� The best known erew pram algorithms for both problems
take %�lgn
 time� using parallel pre�x sums �LF���� Even for the case k ! �� there is a randomized
��
p
lgn
 expected time lower bound for the erew pram ��Mac���� following �FKL����
� and a

deterministic lower bound of ��lg lgn
 for an n�processor crew pram �FKL�����

The simple deterministic simd�erqw pram algorithm for leader election discussed in Section 	��
can be trivially extended to the k�compaction problem as follows�

�	



Observation ��� There is a deterministic simd�erqw pram algorithm for the k�compaction prob�
lem that runs in O�k�
 time with O�n
 work�

Proof� The input is partitioned into subarrays of k� cells� Each of the n�k� processors reads the
cells in its subarray and creates a linked list of the items in its nonempty cells� Since there are
only k nonempty cells� no processor can have more than k items in its linked list� The algorithm
proceeds in k rounds� in which processors attempt to place each item on their list� At round i� each
processor with an unplaced item writes its index to cell i of the array� A designated processor then
reads the cell� and if the index found is j� it signals processor j �by writing to a cell designated for
j
� which then transfers the contents of its current item to the cell and continues to the next round
with its next unplaced item �if any
� All other processors continue with the same item as before�
The contention in round i is at most k � i  �� so the algorithm runs in O�k�
 time�

By taking k ! �� and recalling the lower bounds mentioned earlier for the erew and crew

pram� we obtain the following two results� which are cited in Table � and Table � in Section ��

Corollary ��� There is an ��
p
lgn
 time separation between a �deterministic or randomized� erew

pram with arbitrarily many processors and a �deterministic or randomized� simd�erqw pram�

Corollary ��� There is an ��lg lgn
 time separation between a deterministic fqr�crgew pram

with n processors and a deterministic simd�fqr�crgqw pram with n processors�

In the remainder of this section� we develop a simd�qrqw pram algorithm for the linear com�
paction problem that runs in O�

p
lgn
 time with linear work w�h�p� Within our algorithm� we will

employ the following well�known technique for k�compaction� which runs in O�lgn
 time using only
k processors on an erew pram�

Observation ��� The k�compaction problem with one processor assigned to each nonempty cell can
be solved by an erew pram algorithm in O�lgn
 time�

Proof� View the n elements as leaves of a full binary tree� At the ith step we work at level i above
the leaves� and inductively� for each node v at this level� we have the solution �in the form of a linked
list
 for the leaves in the subtrees rooted at the two children of v� To combine these solutions at v we
only need to make the last distinguished element in the subtree of the left child of v as the successor
of the �rst distinguished element in the right subtree of v� This can be performed by a constant
time erew computation� Finally we perform list ranking on the linked list of distinguished elements
�using Wyllie�s pointer jumping approach �KR���
 and transfer the elements to their location in the
output array�

Note that the input array need not be initialized� since we have an active processor for each
distinguished element� we can detect distinguished elements by a change in the value of a memory
cell�

To prove our simd�qrqw pram result� we start by proving the following lemma� which shows
how to achieve the desired time bound� However� the algorithm performs superlinear work when k
is large� We then show how to use this lemma to obtain a linear work algorithm with the same time
bound�

Lemma ��� There is a Las Vegas simd�qrqw pram algorithm for linear compaction that runs in
O�
p
lgn
 time w�h�p� if

p
lgn processors are assigned to each nonempty cell�

�




Proof� Let an item denote a nonempty input cell� Let r !
p
lgn� the number of processors

assigned to each item� Let A be an auxiliary array of size m ! c�rk�
c�
p
lg n� for constants c� � ��

c� � � determined by the analysis� View the array A as partitioned into k� lgn subarrays of size

m� ! c�r�
c�
p

lgn lgn�

�� For each item� select a subarray of A uniformly at random� Each processor assigned to the
item selects a cell in that subarray uniformly at random and tries to claim that cell�

�� At this point� between zero and r cells of A have been claimed on behalf of each item� Denote
an item successful if at least one cell of A has been claimed on its behalf� For each successful
item� select one of its cells in A� and mark the rest as unclaimed�

�� In parallel for all subarrays� compact the claimed cells within each subarray using Observa�
tion 
��� We compact within subarrays here since� for large k� compacting all of A is too
slow�

�� View the output array as partitioned into k� lgn subarrays of size c� lgn� For each j� if there
are nj unclaimed cells in subarray j of the output� then the contents of �up to
 nj claimed cells
in subarray j of A are transferred to output subarray j� �In the �rst pass of the algorithm�
nj ! c� lgn� but in any subsequent pass� nj may be smaller�
 If there are more than nj claimed
cells in a subarray j� then for i � nj � the item associated with the ith claimed cell in subarray
j of A is denoted unsuccessful�

�� For each unsuccessful item� each of its r processors returns to step ��

Since the processors assigned to an item repeat the algorithm until at least one of them has
successfully claimed an output cell� this is a Las Vegas algorithm� �Note that processors may
complete their participation in the algorithm at di�erent times� not knowing when all processors
have terminated�
 Let Xj be the number of items selecting subarray j of A in step �� Then
E�Xj� ! k�dk� lgne � lgn� By Cherno� bounds� for c� � � de�ned above�

PrfXj � c� lgng � e�����c��ln c��c� lgn � e�cc� lgn� � ��nc� �

After step �� there is at most one claimed cell for each item� so w�h�p�� there are at most c� lgn
claimed cells in a subarray� A processor tries to claim a cell in step � by �rst writing its index to the
cell� then reading the cell� if it reads its index� it has claimed the cell� and it writes the contents of
its input cell to the claimed cell� For each subarray j� let Yj�i be the number of processors selecting

cell i of subarray j of A in step �� Then E�Yj�i� � r � c� lgn�m� � ���c�
p
lgn� It follows from

Observation 	�� that the time for step � is O�
p
lgn
 w�h�p�

Step � can be done in O�lg r
 time� Step � applies Observation 
��� and runs in O�lgm�
 time�
which is O�

p
lgn
 time� For step �� for each j� the current value of nj� as well as the index of the

�rst unclaimed output cell in subarray j� can be broadcast in O�lg lgn
 time" the transferring takes
constant time�

As for step �� there are two types of unsuccessful items� As argued above� w�h�p�� there are at
most c� lgn claimed cells in a subarray� It follows that the probability that an item is unsuccessful

in step � is less than �r � c� lgn�m�
r ! ����c�
p
lgn


p
lgn � ��nc�� Moreover� it follows that� w�h�p��

no cells are marked unsuccessful in step �� So w�h�p�� all cells are successful in the �rst pass of the
algorithm�

Theorem ��� There is a Las Vegas simd�qrqw pram algorithm for linear compaction that runs
in O�

p
lgn
 time with O�n
 work w�h�p�

��



Proof� We describe the algorithm for n�
p
lgn processors� Let an item denote a nonempty input

cell� Note that we make no assumption on the distribution of the items within the input array�

�� View the n input cells as partitioned into subarrays of size � lg� n� Assign � lg��� n processors
per subarray� In parallel for all subarrays compact the items in each subarray� using parallel
pre�x�

�� For subarrays with at most � lgn items� we assign
p
lgn processors per item� and apply

Lemma 
���

�� For subarrays with more than � lgn items� we view the items as partitioned into blocks of size
lgn� There are at most � lgn such blocks in a subarray� so we assign

p
lgn processors per

block� Viewing each block as a �super�item�� apply Lemma 
�� to compact the super�items
into an array of size O�k� lgn
� Then we transfer the items in each block to the output array
of size O�k
� in the obvious way�

Each of steps ��� takes O�
p
lgn
 time w�h�p�

� Broadcasting

Given b � f�� �g in a single memory location� the broadcasting problem is to copy b into n �xed
memory locations� There is a simple linear work� O�lgn
 time erew pram algorithm for this
problem� In this section we show that this algorithm is the best possible even for the �randomized

qrqw pram by providing an ��lgn
 lower bound on the expected running time of any deterministic
or randomized qrqw pram algorithm for this problem�

Our lower bound exploits the fact that the input domain for the broadcasting problem has only
two values� We show that for any problem with an input domain of size �� a simd�qrqw pram

algorithm is no faster than the best erew pram algorithm for the problem� and even a qrqw

pram algorithm is at most two times faster than the best erew pram algorithm for the problem�
We also show that a randomized algorithm for the problem is at most two times faster than the
best deterministic algorithm for the problem� These results� in turn� imply our lower bound for
broadcasting and related problems due to a lower bound for broadcasting on the erew pram given
by �BKK����

Our simulation of the simd�qrqw pram and the qrqw pram on the erew pram results in a
non�uniform algorithm on the erew pram� An algorithm is non�uniform if it consists of di�erent
programs for di�erent input sizes� and the program for a given input size i cannot be generated
easily simply by specifying the value of i� Most algorithms used in practice are uniform �i�e�� not
non�uniform
� in which a single program works for all input sizes� A non�uniform algorithm is not
desirable from a practical point of view� since the time bound for the algorithm is not guaranteed
to be achieved on a given input unless we have already generated the program for that input size�
However� the lower bound of �BKK��� holds for both uniform and non�uniform algorithms �as is the
case with most lower bounds
� and hence our simulation result gives the desired lower bound for the
simd�qrqw pram and the qrqw pram�

��� Constant size input domain problems

We �rst deal with the simd�qrqw pram� We show that any simd�qrqw pram algorithm for a
problem de�ned on a domain with only two values that runs in time T can be converted into an
erew pram algorithm that also runs in time T � The erew pram may be non�uniform and may
have a description that is of unbounded size� For an exact de�nition of the model see �CDR�	��

��



Lemma ��� Let T be the running time for an algorithm A that solves a problem P with input
domain of size � on a simd�qrqw pram� Then� there exists an algorithm B that solves P in time T
on an erew pram� using the same number of processors and the same working space� Algorithm B
is non�uniform and its description is of size O�T 
 memory locations per processor�

Proof� Assume� without loss of generality� that the input domain is f�� �g� The lemma is proved
by constructing the erew pram AlgorithmB fromAlgorithmA� Consider the ith step in Algorithm
A� and let �i�b
 be the maximum contention in this step on input b� Let ��i ! minf�i��
� �i��
g
�if minf�i��
� �i��
g ! � then ��i ! �
� Step i will be implemented in Algorithm B in at most
��i substeps� as described below� Therefore� the running time of algorithm B is at most

P
i �

�
i !P

iminf�i��
� �i��
g � T � We describe �rst the construction for the read step�

Let $i�j�b be the set of processors that read from memory cell j in step i on input b � f�� �g�
Let $i�j ! $i�j�� � $i�j��� For processors in each set $i�j�b n $i�j� we can prepare a priori copies of
the contents of memory cell j� c�i� b
� so that they can do the read operation from their appropriate
copies without con�ict� as described below�

For processors in each set $i�j� we serialize their computation by providing an a priori ranking
from ����j$i�jj� to all the processors in $i�j� and scheduling the processors according to their ranks�
The program for Algorithm B includes for each processor a sequence hi�M �i� b
� r�i� b
� �i� c�i� b
i�
i ! �� � � � � T � b � f�� �g� where M �i� b
 is the memory cell from which the processor reads in step i on
input b" r�i� b
 is the rank of the processor at step i if the processor is in $i�M�i�b�� and is null otherwise"
c�i� b
 is the contents at step i of memory cell M �i� b
 if the processor is in $i�M�i�b��b n$i�M�i�b�� and
is null otherwise" and �i ! maxj j$i�jj� �Note that the processor does not need to know the value
of b� If� however� M �i� �
 �! M �i� �
 or r�i� �
 �! r�i� �
 then it implicitly knows the value of b at
this stage" this knowledge can be made explicit by replacing the quintuple above by the sextuple
hi�M �i� b
� r�i� b
� �i� c�i� b
� b�i where b� � f�� �� �g�
 This sequence can be speci�ed in O�T 
 memory
locations" the program is non�uniform and of unbounded size� In step i� each processor whose r�i� b

is not null will execute its read operation from memory location M �i� b
 in substep r�i� b
� Each
processor whose r�i� b
 is null will read c�i� b
� After a total of �i substeps� all processors proceed to
step i  ��

It remains to show how to handle the write steps� Consider a memory location j in step i� and
let $i�j � $i�j��� and $i�j�� be de�ned as for the read step� On input b� it is su�cient to select a
priori one processor from $i�j�b that will do the write step to location j� If $i�j is not empty then
one of the processors in $i�j will be arbitrarily selected� If $i�j is empty� one of the processors in
$i�j�b will be arbitrarily selected� unless it is empty� The write operation will be executed by the
selected processor at substep �i� Thus� all the read operations will be completed before the write
operation is executed" moreover� there is no additional time overhead due to the execution of the
write operations�

With this scheme� the ith step of Algorithm A is executed in �i � ��i steps by AlgorithmB� thus
giving the desired result�

We now strengthen the above result for the simd�qrqw pram to work for the qrqw pram with
only a constant factor increase in the running time of the simulating erew pram algorithm�

Lemma ��� Let T be the running time for an algorithm A that solves a problem P with input
domain of size � on a qrqw pram� Then� there exists an algorithm B that solves P in time O�T 

on an erew pram� using the same number of processors and the same working space� Algorithm B
is non�uniform and its description is of size O�T 
 memory locations per processor�
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Proof� We show how to handle the read steps of Algorithm A" write steps are treated similarly�
Consider the ith read step in Algorithm A on input b� Let the time cost of this step be ti� Let Rk

be the set of reads for processor pk� and let Mj be the set of read requests for memory location mj

in step i on input b� Note that ti is the maximum cardinality of the sets Rk�Mj� over all processor
and memory indices k� j�

We construct a bipartite graph Bi�b ! �P�M�Ei�b
� where P contains a vertex for each processor�
M contains a vertex for each memory location� and there is an edge �pk�mj
 � Ei�b if and only if
processor pk reads memory location mj in step i on input b�

The maximum degree of any vertex in the graph Bi�b is ti� Since Bi�b is bipartite it has a proper
edge coloring with ti colors �Theorem 	�� in �BM
	�
� i�e� a mapping c � Ei�b � f�� �� � � � � tig such
that for any pair of edges e� f incident on the same vertex� c�e
 �! c�f
� Thus for a given input b
we can serialize the ith step of Algorithm A into ti exclusive read substeps by performing the read
corresponding to the edges colored l in the lth substep�

Since the input domain is of size �� b can take on only two values� say � and �� and each
processor can be in at most two di�erent states at a given time step� no matter what the input is�
In Algorithm B for each step� we run the serialization of the step on input b ! � followed by the
serialization of the step on input b ! �� If processor pk is in a state that corresponds only to input
#b � f�� �g then it performs the read only in the serialization for b ! #b� If pk is in the same state
whether b ! � or b ! �� then pk performs the read only in the serialization for b ! �� This results in
a �non�uniform
 erew pram algorithm that performs the same computation as Algorithm A� using
the same number of processors and the same working space� and runs in time O�T 
� The length of
the program is the length of the serialization� which is O�T 
�

There was no attempt to minimize the constants in the above algorithm� Techniques similar to
those applied in the proof of Lemma ��� can be used here to reduce the constants�

We now show that randomization cannot help too much when the input domain is small�

Lemma ��� Let Td be a lower bound on the time required by a deterministic algorithm to solve a
problem P with input taken from a domain of size jIj� Then� for any randomized algorithm that
solves P � the expected running time Tr on any input is bounded by Tr � Td�jIj�

Proof� Let Ta be the average running time for the uniform input distribution� minimized over
all possible deterministic algorithms� to solve P � Clearly� since the number of possible inputs is jIj�
Ta � Td�jIj� Further� by a classic result of Yao �Yao

�� Tr � Ta� �Yao�s result is more general" for
a short proof of this claim see �FMRW����
 Therefore� Tr � Ta � Td�jIj�

��� Lower bounds for broadcasting and related problems

Beame� Kik and Kutylowski �BKK��� showed that computing the broadcasting problem on a non�
uniform erew pram with unbounded program size� an unbounded number of processors� and un�
bounded space requires ��lgn
 time� The results of the previous subsection give us the following
theorem�

Theorem ��� Any deterministic or randomized algorithm that computes the broadcasting problem
into n memory locations on a qrqw pram with an unbounded number of processors and unbounded
space requires expected time ��lgn
�

��



Proof� The lower bound for deterministic algorithms follows by the lower bound in �BKK��� and
Lemma ��� since the size of the input domain for the broadcasting problem is �� The lower bound
for randomized algorithms follows by Lemma ����

Since a crew pram can broadcast into n memory locations in constant time� Theorem ���
immediately implies the following separation results�

Corollary ��� There is an ��lgn
 time separation between a �deterministic or randomized� qrqw
pram with arbitrarily many processors and a �deterministic or randomized� crqw pram� The same
separation result holds for a Queue�Read� Exclusive�Write �qrew� pram relative to a crew pram�

In the section on load balancing we will make use of the following generalization of the broad�
casting problem�

Theorem ��� Any deterministic or randomized algorithm that broadcasts the value of a bit to any
subset of k processors in a qrqw pram requires expected time ��lg k
�

Proof� Let Algorithm A be a qrqw algorithm that succeeds in broadcasting the value of a bit
to some subset of k processors in time t� We use Algorithm A to derive a �non�uniform
 qrqw
pram algorithm for the broadcasting problem into k �xed memory locations as follows� We �rst run
Algorithm A to broadcast the value of the bit to some subset of k processors� We then transmit the
value of the bit from the ith processor in the subset to the ith output memory location� � � i � k�
This can be performed in one step with time cost � since we can precompute from Algorithm A the
exact indices of the k processors to which the value of the bit will be transmitted� Thus we can solve
the broadcasting problem in t � steps� It follows from Theorem ��� that t ! ��lg k
�

� Conclusions

This paper has proposed a new model for shared memory machines� the qrqw pram model� that
takes into account the amount of contention in memory accesses� This model is motivated by the
contention characteristics of currently available commercial machines� We have presented several
results for this model� including a fast� work�preserving emulation of the qrqw pram on hypercube�
type� noncombining networks� a work�time framework and some automatic processor allocation
schemes for the model� several linear work� sub�logarithmic time algorithms for the fundamental
problems of leader election on a crqw pram and linear compaction on a qrqw pram� and some
lower bounds�

In a companion paper �GMR�	a�� we present many new results for the qrqw pram� Among the
algorithmic results presented are low�contention� fast� work�optimal qrqw algorithms for multiple
compaction� load balancing� generating a random permutation and parallel hashing� These results
and the results presented in this paper demonstrate the advantage of the qrqw over the erew� To�
gether with the penalty in running high�contention crcw or crew algorithms on existing machines�
this supports the qrqw pram as a more appropriate model for high�level algorithm design�

Finally� in related work �GMR�	b� we explore the properties of the asynchronous qrqw pram�
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