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Abstract

The queue�read� queue�write 	qrqw
 parallel random access machine 	pram
 model
permits concurrent reading and writing to shared memory locations� but at a cost propor�
tional to the number of readers�writers to any one memory location in a given step� The
qrqw pram model re"ects the contention properties of most commercially available par�
allel machines more accurately than either the well�studied crcw pram or erew pram

models� and can be e�ciently emulated with only logarithmic slowdown on hypercube�
type non�combining networks�
This paper describes fast� low�contention� work�optimal� randomized qrqw pram

algorithms for the fundamental problems of load balancing� multiple compaction� gener�
ating a random permutation� parallel hashing� and distributive sorting� These logarith�
mic or sublogarithmic time algorithms considerably improve upon the best known erew
pram algorithms for these problems� while avoiding the high�contention steps typical
of crcw pram algorithms� An illustrative experiment demonstrates the performance
advantage of a new qrqw random permutation algorithm when compared with the pop�
ular erew algorithm� Finally� this paper presents new randomized algorithms for integer
sorting and general sorting�
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� Introduction

The Parallel Random Access Machine 	pram
 model of computation is the most�widely used model
for the design and analysis of parallel algorithms 	see� e�g� �KR��� J�aJ��� Rei���
� The pram

model consists of a number of processors operating in lock�step and communicating by reading
and writing locations in a shared memory� Standard pram models can be distinguished by their
rules regarding contention for shared memory locations� These rules are generally classi�ed into the
exclusive read�write rule in which each location can be read or written by at most one processor in
each unit�time pram step� and the concurrent read�write rule in which each location can be read or
written by any number of processors in each unit�time pram step� These two rules can be applied
independently to reads and writes� the resulting models are denoted in the literature as the erew�
crew� ercw� and crcw pram models�

In a previous paper �GMR��a�� we argued that neither the exclusive nor the concurrent rules ac�
curately re"ect the contention capabilities of most commercial and research machines� and proposed
a new pram contention rule� the queue rule� that permits concurrent reading and writing� but at an
appropriate cost�

Queue read�write� Each location can be read or written by any number of processors in
each step� Concurrent reads or writes to a location are serviced one�at�a�time�

Thus the worst case time to read or write a location is linear in the number of concurrent readers
or writers to the same location�

The queue rule more accurately re"ects the contention properties of machines with simple� non�
combining interconnection networks than either the exclusive or concurrent rules� The exclusive rule
is too strict� and the concurrent rule ignores the large performance penalty of high contention steps�
Indeed� for most existing machines� including the CRAY T�D� IBM SP�� Intel Paragon� MasPar
MP�� and MP�� 	global router
� MIT J�Machine� nCUBE �S� Stanford DASH� Tera Computer�
and Thinking Machines CM�� 	data network
� the contention properties of the machine are well�
approximated by the queue�read� queue�write rule� For the Kendall Square KSR�� the contention
properties can be approximated by the concurrent�read� queue�write rule��

In �GMR��a� we de�ned the Queue�Read� Queue�Write 	qrqw
 pram model� a model for the
design and analysis of coarsely�synchronized parallel algorithms running on mimd machines� and
investigated some of its capabilities� In particular� we showed that the qrqw pram can be e�ectively
emulated on the Bulk�Synchronous Parallel 	bsp
 model of Valiant �Val����

Theorem ��� ��GMR�	a�� A p�processor qrqw pram algorithm running in time t can be emu�
lated on a 	p� lgp
�component standard bsp model� in O	t lg p
 time with high probability�

It follows from Valiant!s work �Val��� and Theorem ��� that the qrqw pram can be emulated
in a work�preserving manner on hypercube�type� non�combining networks with only logarithmic
slowdown� even when latency� memory granularity� and synchronization overheads are taken into
account� This matches the best known emulation for the erew pram on these networks given
in �Val���� in contrast� work�preserving emulations for the crcw pram on such networks are only
known with polynomial slowdown�� We refer the reader to �GMR��a� for further details relating the
qrqw pram to existing models and machines�

�In the KSR�� multiple requests to read the same location are combined in the network� so there is no penalty for
high contention steps� Note that caches have only a secondary e�ect on the contention rule� see �GMR
�a� for details�

	We denote as the standard bsp model a particular case studied by Valiant in which the model�s throughput
parameter� g� is taken to be a constant and its periodicity parameter� L� is taken to be �	lg p
�


Note that the standard �	lg p
 time emulation of crcw on erew 	see� e�g� �KR
��
 is not work�preserving� in that

�



The qrqw pram is strictly more powerful than the erew pram� while being as e�ciently
emulated on a bsp or a hypercube�type� non�combining network� and is also a better match for
real machines� Hence an important theoretical and practical question is the extent to which fast�
work�optimal� low�contention 	qrqw
 algorithms can be designed for problems for which there are
no known fast� work�optimal� zero�contention 	erew
 algorithms� This paper considers �ve such
problems � generating a random permutation� multiple compaction� distributive sorting� parallel
hashing� and load balancing � and presents fast� work�optimal qrqw pram algorithms for these
fundamental problems� These results are summarized in Table �� and are contrasted with the best
known erew pram algorithms for the same problems� All of our algorithms are randomized� and
are of the �Las Vegas� type� they always output correct results� and obtain the stated bounds with
high probability�

Another important question is the extent to which erew pram algorithms can be replaced by
qrqw pram algorithms that are simpler� and therefore perhaps more appealing for implementation�
In this context we would allow the theoretical e�ciency of the simpler qrqw pram algorithm
to be similar or even somewhat inferior to that of the erew pram algorithms as long as the
resulting algorithm is simpler� This paper considers such algorithms for the general sorting problem�
It presents a qrqw pram algorithm that is considerably simpler than the known erew pram

algorithms with comparable asymptotic performance� The new algorithm is arguably as simple as
the known crcw pram algorithms�

All of the algorithms we present in this paper are randomized� and many of our results are
obtained �with high probability� 	w�h�p�
� A probabilistic event occurs with high probability �w�h�p���
if� for any prespeci�ed constant � � �� it occurs with probability �� ��n�� where n is the size of the
input� Thus� we say a randomized algorithm runs in O	f	n

 time w�h�p� if for every prespeci�ed
constant � � �� there is a constant c such that for all n � �� the algorithm runs in c � f	n
 steps or
less with probability at least �� ��n��
We provide next a summary of our algorithmic results� and point out a few technical issues that

are relevant for qrqw pram algorithms�

��� Summary of results

Our �rst results are for the load balancing problem� considered in Section �� We present a linear
work randomized algorithm whose running time is O	

p
lgn lg lgL lgL
� where L is the ratio of the

maximum to the average load per processor� Our load balancing algorithm is an adaptation of a
crcw pram algorithm by Gil �Gil�
�� which runs in O	lg lgn
 time w�h�p� Gil!s algorithm uses as a
subroutine an algorithm for the so�called �renaming� problem� Our low�contention implementation
is essentially obtained by substituting this subroutine with a qrqw pram algorithm for linear
compaction� presented in �GMR��a�� and by replacing concurrent read operations executed during
bookkeeping steps with local broadcasting steps�

For small values of L� our load balancing algorithm can be much faster than the �	lg n
 time�
pre�x�sum based erew pram algorithm� However� for L � �	n�
 with constant � � �� the lgL term
implies a running time of O	lgn
� In contrast� load balancing on n processors can be performed on
a crcw pram in O	lg� n
 time� w�h�p�� independent of L �GMV���� We show that the lgL term is
unavoidable by presenting a lower bound of �	lgL
 expected time on the qrqw pram for the load
balancing problem� Our lower bound result is based on a reduction from the broadcasting problem

the erew performs�	lg p
 times more work than the crcw it emulates� Hence� it cannot be used to obtain erew pram

algorithms� much less hypercube algorithms� with linear or near�linear speedups� Similarly� the best known emulations
for the crew pram 	or ercw pram
 on the erew pram 	or standard bsp or hypercube
 require logarithmic work
overhead for logarithmic slowdown or� alternatively� polynomial slowdown for constant work overhead�

�The function lg�j�	�
 is de�ned as the j�th iterate of lg� lg��� x � lgx� and for j � �� lg�j� x � lg lg�j��� x� The

function lg�	�
 is de�ned as lg� x � min
�
j � lg�j� x � �

�
�

�



Summary of Algorithmic Results

problem previous result 	erew
 new result 	qrqw

random O�lg n� time� O�n lg n� work �Hag��� O�lg n� time� linear work w�h�p�

permutation O�lg n lg lg n� time� O
	
n lg n

lg lg n



work �AH���

O

�
lg��� np
lg lg n

�
time� O�n

p
lg n lg lg n� work �AH���

O�n�� time� constant � � 	� linear work �KRS�	�

multiple same as above O�lg n� time� linear work w�h�p�

compaction
sorting from same as above O�lg n� time� linear work w�h�p�

U 	�� �

parallel same as above O�lg n� time� linear work w�h�p�

hashing with lg� n slowdown �GMV��� MV�
�

load balancing� O�lg n� time� linear work �LF�	� O�
p
lg n lg lg L� lgL� time�

max load L linear work w�h�p�

Table �� Fast� e�cient low�contention parallel algorithms for several fundamental problems� For the
�rst four problems above� we obtain work�optimal low�contention �qrqw pram� algorithms running
in logarithmic time� whereas the best known work�optimal zero�contention � erew pram� algorithms
run in polynomial time� For load balancing� we improve upon the erew result whenever the ratio
of the maximum to the average load is not too large� The erew results shown are the best known
for either deterministic or randomized algorithms� The erew results for the �rst three problems are
obtained by easy reductions to the integer sorting problem� The result for the fourth is obtained using
a crcw hashing algorithm and a general simulation of the crcw pram on the erew pram� The
load balancing erew pram result is a simple application of a pre�x sums algorithm�

to the load balancing problem� and using the lower bound for broadcasting presented in �GMR��a��

The load balancing algorithm is a useful tool for processor allocation� We use it to obtain an
algorithm that automatically handles processor allocation for any algorithm that can be described
within certain speci�cations 	such algorithms are called �L�spawning algorithms�
� We use this
general result in our work�optimal algorithms for the multiple compaction problem and for the
problem of generating a random cyclic permutation�

In Section 
 we consider the multiple compaction problem� which has an important application
in a crcw pram algorithm for integer sorting �RR���� We present a linear work� O	lgn
 time
randomized qrqw pram algorithm� which is quite di�erent than the known crcw pram algorithms
for the problem� Some parts of the algorithm follow a general strategy used in a crcw pram

algorithm that runs in O	lg� n
 time �GMV���� and in particular the log�star paradigm �Mat����
The qrqw pram algorithm for multiple compaction has applications for qrqw or crqw algorithms
for integer sorting� general sorting� and sorting from U 	�� �
�

The problem of generating a random permutation is considered in Section �� We present a linear
work� O	lgn
 time randomized qrqw pram algorithm that is essentially the same as the O	lg lgn

time crcw pram algorithm of �Gil�
�� analyzed for the qrqw metric� Two algorithms are presented
for the problem of generating random cyclic permutations� A linear work� O	lgn lg� n� lg lgn
 time
randomized algorithm is adapted 	with some modi�cations
 from an O	lg� n
 time crcw pram

algorithm of �MV��a�� A faster qrqw pram algorithm� which takes O	
p
lgn
 time w�h�p� but uses

n processors� is based on the linear compaction algorithm presented in �GMR��a�� The idea behind
the algorithm is to use a relatively large array into which processors are �compacted�� so that the
number of processors accessing the same array location is not too large�

We also demonstrate in Section � the e�ciency of a qrqw pram low�contention random per�
mutation algorithm� compared with the popular erew algorithm� through several experiments on
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the MasPar MP�� parallel machine �Mas���� Recently� the qrqw random permutation algorithm
was also implemented on a cray J
�� and was shown to be considerably faster than the best known
	sorting�based
 erew algorithm �BGMZ����

In Section � we present a linear work� O	lgn
 time randomized qrqw pram algorithm for
constructing a hash table and for parallel membership queries into the table� Our algorithm is based
on an O	lg lgn
 time crcw algorithm of �GM�
b�� which uses an oblivious execution technique
to keep to minimum the required �bookkeeping� operations� In order to obtain a fast� e�cient
qrqw algorithm� we replace the polynomial hash functions used in the crcw algorithm by hash
functions �DM��� which have collision behavior that looks quite random� To implement an e�cient
access to these hash functions� we devise a low�contention qrqw pram algorithm which is based on
the following simple� yet useful� idea� if a program variable is to be read by k 	a priori unknown

processors� then we replace the program variable with k copies of the same value� we then let each
of the k processors select one of the copies at random and read the selected copy�

Our sorting algorithms are given in Section �� We present linear work� O	lgn
 time randomized
algorithms for sorting from U 	�� �
 on the qrqw pram� and for integer sorting on the crqw pram�
We use the latter result in a fast� e�cient emulation of the powerful fetch�add pram on the
crqw pram� In addition� we adapt the

p
n�sample sort crew pram algorithm of Reischuk �Rei���

to obtain a simple� work�optimal qrqw pram algorithm for general sorting� The qrqw algorithm
employs a novel binary search fat�tree data structure�
 the added fatness over a traditional binary
search tree ensures that� with high probability� each step of the search encounters low contention�

��� Techniques for QRQW PRAM algorithms

Important technical issues arise in designing algorithms for the queue models� that are present in
neither the concurrent nor the exclusive pram models� For example� much of the e�ort in designing
algorithms for the qrqw models is in estimating the maximumcontention in a step� and occasionally
identifying the number of processors that try to access the same memory address� As one high
contention step can dominate the running time of the algorithm� we cannot a�ord to underestimate
the contentions signi�cantly�

There are several techniques for replacing a high contention step with a sequence of a few low
contention steps� One such technique is to replace concurrent read operations by local broadcasting
steps� as done in the algorithms for load balancing� multiple compaction� and random permutation�
Another technique is using larger arrays into which processors are �compacted�� so as to reduce the
size of collision sets� this is used in the linear compaction algorithm in �GMR��a�� as well as in an
algorithm for random cyclic permutation� A third important technique is that of duplicating the
contents of one or more program variables� and then having each processor access a random copy of
such a variable� thereby reducing contention� Algorithms that use this technique include the hashing
and the general sorting algorithms�

Some qrqw pram algorithms consist of iterations that include a random scatter step� in which
processors access a random cell in a linear size array� this is an example of the duplication scheme
mentioned above� The maximum contention in such steps is �	lg n� lg lgn
 w�h�p�� implying that to
obtain O	lgn
 time the number of iterations must not exceed O	lg lgn
� Indeed� some of the O	lgn

time qrqw pram algorithms are based on �highly parallel� crcw pram randomized algorithms�
whose running time on the crcw is w�h�p� O	lg lgn
 or O	lg� n
 �Mat���� Algorithms that use the
�doubly�logarithmic paradigm� include those for load balancing� random permutation� and hashing�
Algorithms that use the �log�star paradigm� include those for multiple compaction and random
cyclic permutation�

�The term fat�tree was previously used by Leiserson �Lei��� in the context of interconnection networks� to describe
a tree that becomes thicker as it gets closer to the root�






It appears that coordination among processors may occasionally be quite expensive on the qrqw
pram� as implied by the lower bounds for broadcasting �GMR��a� and load balancing� and should
be avoided if at all possible� Fast crcw pram algorithms tend to have very little such coordination�
which makes them good candidates as basis for adaptation to qrqw pram algorithms� Indeed�
one of the main features in the O	lg lgn
 time crcw pram hashing algorithm �GM�
b� which is
the basis for our qrqw pram algorithm is the �oblivious execution� technique� which allows the
computation to proceed without coordination among processors� By contrast� an O	lgn
 time crcw
pram hashing algorithm �MV��b� makes extensive use of 	semi�
sorting for processor coordination�
which on the qrqw pram would be both slow and ine�cient�

Finally� we remark on the role that randomization plays for our qrqw pram algorithms� We
recall that the power of the qrqw pram model� in comparison with the erew pram model� is in
the fact that it is not necessary to schedule the memory accesses explicitly so as to avoid concurrent
access� There are two natural ways to leverage on this power� One way is the use of irregular
small contention 	deterministic
 memory accesses� as illustrated in �GMR��a� in the context of the
��compaction problem� Another way is to use randomization as a technique for random assignment
of resources� be it read operations as in the hashing algorithm and in the fat�tree data structure�
or write operations as in the linear compaction� multiple compaction� load balancing and random
permutation algorithms� This technique has been essentially used in all the algorithms presented in
this paper� and has proved to be a simple and e�ective tool for low�contention parallel algorithms�

The rest of this paper is organized as follows� In Section � we review the de�nition of the qrqw
model and some previous results for the model� Then� as indicated above� Sections ��� consider load
balancing� multiple compaction� generating a random permutation� hashing� and sorting� Finally�
Section � contains concluding remarks�

The results in this paper appeared in preliminary form in �GMR��� GMR�
a� GMR�
b��

� Preliminaries

��� The QRQW PRAM model

We begin by reviewing the de�nition of the qrqw pram model �GMR��a��

De�nition 
�� Consider a single step of a pram� consisting of a read substep� a compute substep�
and a write substep� The maximum contention of the step is the maximum� over all locations
x� of the number of processors reading x or the number of processors writing x� For simplicity in
handling a corner case� a step with no reads or writes is de�ned to have maximum contention �one��

De�nition 
�
 The QRQW PRAM model consists of a number of processors� each with its own
private memory� communicating by reading and writing locations in a shared memory� Processors
execute a sequence of synchronous steps� each consisting of the following three substeps�


� Read substep� Each processor i reads ri shared memory locations� where the locations are known
at the beginning of the substep�

	� Compute substep� Each processor i performs ci ram operations� involving only its private state
and private memory�

�� Write substep� Each processor i writes to wi shared memory locations �where the locations and
values written are known at the beginning of the substep��

�



Concurrent reads and writes to the same location are permitted in a step� In the case of multiple
writers to a location x� an arbitrary write to x succeeds in writing the value present in x at the end
of the step�

De�nition 
�� Consider a qrqw pram step with maximum contention �� and let m � maxifri� ci�
wig for the step� i�e� the maximum over all processors i of its number of reads� computes� and writes�
Then the time cost for the step is maxfm��g� The time of a qrqw pram algorithm is the sum
of the time costs for its steps� The work of a qrqw pram algorithm is its processor�time product�

This cost measure models� for example� a mimd machine such as the Tera Computer �ACC�����
in which each processor can have multiple reads�writes in progress at a time� and reads�writes to
a location queue up and are serviced one at a time� Note that as a pure shared memory model�
the qrqw pram model is independent of the particular layout of memory on the machine� e�g� the
number of memory modules� and can be used to model even cache�based 	coma
 machines� e�g� the
KSR� �FBR���� in which the mapping of memory cells to machine nodes varies dynamically as the
computation proceeds�

Our previous paper also de�ned the simd�qrqw pram model� a restricted version of the qrqw
pram in which ri � ci � wi � � for all processors i at each step� This model is suitable for
simd machines such as the MasPar MP�� or MP��� in which each processor can have at most one
read�write in progress at a time� reads�writes to a location queue up and are serviced one at a time�
and all processors await the completion of the slowest read�write in the step before continuing to the
next step� Another variant is the crqw pram� in which unlimited concurrent reading is permitted�
for this model� the maximum contention for a step is de�ned to be the maximum over all locations
of the number of writers to the location� Several of our results in Section � are for the crqw pram�

��� Previous results

In addition to de�ning the qrqw models� our previous paper �GMR��a� presented a number of
results characterizing the power of the qrqw models relative to other models� For two models� M�

and M�� let M� 
 M� denote that one step of M� with time cost t � � can be emulated in O	t

time on M� using the same number of processors� We have�

Fact 
�� ��GMR�	a�� erew pram 
 simd�qrqw pram 
 qrqw pram 
 crqw pram 
 crcw

pram�

Moreover� we have characterized the relative power of these models as follows�

Theorem 
�
 ��GMR�	a�� The following relations hold�


� There is an �	
p
lgn
 time separation between an erew pram with arbitrarily many processors

and an n�processor simd�qrqw pram�

	� A simd�qrqw pram can emulate a qrqw pram to within constant time factors� given su��
ciently many extra processors�

�� There is an �	lgn
 time separation between a qrqw pram with arbitrarily many processors
and an n�processor crqw pram�


� There is an �	lgn� lg lgn
 time separation between a deterministic crqw pram with arbitrar�
ily many processors and a deterministic n�processor crcw pram�

�



In the previous paper� we showed that the work�time framework is well�suited to the qrqw
pram� In the qrqw work�time presentation� a parallel algorithm is described as a sequence of steps�
where each step may include any number of concurrent read� compute� or write operations� In this
context� the work is de�ned to be the total number of operations� and the time is de�ned to be the
sum over all steps of the maximum contention of the step� Then Brent!s scheduling principle �Bre�
�
can be applied to give a qrqw pram algorithm running in O	work�p time
 time on p processors�

Theorem 
�� ��GMR�	a�� Assume processor allocation is free� Any algorithm in the qrqw

work�time presentation with x operations and t time �t is the sum of the maximum contention
at each step� runs in at most x�p t time on a p�processor qrqw pram�

We further showed a number of general scenarios under which automatic techniques can be used to
e�ciently handle processor allocation issues� Consider� for instance� geometric�decaying algorithms�
in which the sequence of work loads 	i�e� operations per step
� fwig� is upper bounded by a decreasing
geometric series� and each task at step i was appointed by one task at the preceding step i� �� For
this scenario� we have shown a technique for automatic processor allocation that yields the following
result�

Theorem 
�
 ��GMR�	a�� Let A be a geometric�decaying algorithm in a qrqw work�time pre�
sentation with time t and work n� Then Algorithm A can be implemented on a p�processor qrqw
pram in time O	n�p
 w�h�p� if p � O	n�	t 

p
lgn lg lgn



For ease of exposition� most of the qrqw algorithms in this paper are presented using the qrqw
work�time framework� Theorem ��
 is used as appropriate�

Among the algorithmic results in our previous paper �GMR��a� are sublogarithmic time random�
ized algorithms on the queue�write pram model for two problems for which the fastest algorithm
known on the corresponding exclusive�write pram model takes �	lg n
 time� The two results are an
O	lgn� lg lgn
 time� linear work w�h�p� simd�crqw pram algorithm for computing the or of n bits
and an O	

p
lgn
 time� linear work w�h�p� simd�qrqw pram algorithm for the linear compaction

problem�

In addition� we present an �	lgn
 expected time lower bound on a qrqw pram with an un�
bounded number of processors for the problem of broadcasting the contents of a given memory
location to n memory locations�

��� Probability facts and notations

A Las Vegas algorithm is a randomized algorithm that always outputs a correct answer� and obtains
the stated bounds with some stated probability� All of the randomized algorithms in this paper are
Las Vegas algorithms� obtaining the stated qrqw pram bounds with high probability� Recall that
a probabilistic event occurs with high probability �w�h�p��� if� for any prespeci�ed constant � � ��
it occurs with probability � � ��n�� where n is the size of the input� Thus� we say a randomized
algorithm runs in O	f	n

 time w�h�p� if for every prespeci�ed constant � � �� there is a constant c
such that for all n � �� the algorithm runs in c � f	n
 steps or less with probability at least �� ��n��
Often� we can test whether the algorithm has succeeded� and if not repeat it� In this case� it su�ces
to design an algorithm that succeeds with probability � � ��n� for some positive constant �� since
we can repeat the algorithm ��� times if necessary� to boost the algorithm success probability to the
desired �� ��n�� With this in mind� we will freely use �with high probability� in this paper to refer
to events or bounds that occur with probability �� ��n� for some positive constant ��
In the results that follow� we apply the following Cherno� bound on the tail of a binomial random

variable X 	�Lei���� p����
�

�



Fact 
�� PrfX � �E�X�g � e�������ln ���E�X� � for all � � � �

A convenient corollary to this Cherno� bound is the following 	see� e�g� �GMR��a�
�

Observation 
�	 Let X be a binomial random variable� For all f � O	lgn
� if E�X� � ���f � then
X � O	lgn�f
 w�h�p� Furthermore� if E�X� � � then X � O	lgn� lg lgn
 w�h�p�

� Load balancing

Let m independent tasks be distributed among n virtual processors� and let L be the maximum
number of tasks 	i�e� the maximum �load�
 on any of the processors� In the load balancing problem�
the input to each processor Pi consists of mi� the number of tasks allocated to this processor 	its
�load�
� together with a pointer to an array of task representations� no other information about the
global partition is available� except form and L� The load balancing problem asks for a redistribution
of the tasks among the processors so that each processor has O	�  m�n
 tasks�

Our load balancing algorithms will use a more general representation for the tasks during the
course of the computation� In this representation� which we call the array of arrays format� the
tasks assigned to each processor are speci�ed by an array of pointers to arrays of tasks� so that each
task is in exactly one of those task arrays� The format speci�ed for the input to the load balancing
problem is a speci�c instance of the array of arrays format in which the array of pointers contains
only one element� Note that if the input is speci�ed in the more general array of arrays format� then
we can convert it into the prescribed input format in O	lgL
 time with O	m
 work as follows� We
convert the task arrays into linked lists� We then link these linked lists for the di�erent arrays for a
given processor into a single linked list� Both of these steps can be performed in constant time and
O	m
 work over all processors� We then perform list ranking on the linked list for each processor�
and transfer the tasks in the linked list into an array of suitable size� This can be performed in
O	lgL
 time and O	m
 work� In view of this conversion procedure� we assume� for convenience� that
the input is in the form prescribed above�

We note the following property of the array representation for tasks� Given the array represen�
tation for tasks for each processor as speci�ed above for the input� a given processor Pi can acquire
a block of k tasks assigned to processor Pj starting at a given location r in Pj!s task representation
in constant time� given the values of i� k and r� If Pj!s task representation is the array of arrays
format� then Pi can access a block of k tasks starting at position r of the sth array of Pi in constant
time� given the values of i� k� r and s�

We will assume that m � �n� and that L � n� This assumption is justi�ed below� by showing a
constant time reduction from the general load balancing problem�

Consider a general load balancing problem� The tasks at each processor Pi can be grouped into
super�tasks of dm�ne tasks each� with possibly one smaller super�task� The number of super�tasks
per processor is dmi�dm�nee� Therefore� the total number of super�tasks is

Pn
i�� dmi�dm�nee � �n

and the maximum load per processor is dmi�dm�nee � n� A load balancing algorithm for the super�
tasks will allocate a constant number of super�tasks per processor� Therefore� the number of tasks
allocated per processor will be O	dm�ne
� as required� We refer to the maximum load in the new
input� dmi�dm�nee as the normalized maximum load �

In this section we show that �	lgL
 time is required to solve the load balancing problem with
maximum load L on a qrqw pram� We then present a qrqw pram algorithm for this problem on
n processors with m � O	n
 tasks that runs in time O	lgL 

p
lgn � lg lgL
� The plgn term in the

time bound arises from the use of an algorithm for the $linear compaction! problem� for which we
use the qrqw pram algorithm in �GMR��a�� which runs in O	

p
lgn
 time w�h�p� In the case when

�



m � �	n
 our load balancing algorithm continues to have the time bound of O	lgL 
p
lgn � lg lgL
�

but the output representation of tasks will be an array of $super�tasks!� each of size dm�ne� where
each super�task is represented by a pointer into the input task arrays�

��� A lower bound

In this section we show that the load balancing problem requires �	lgL
 time on the qrqw pram�
where L is the maximum load on any processor� The lower bound uses the following lower bound
on the $broadcasting! problem� which is given in �GMR��a��

Theorem ��� ��GMR�	a�� Any deterministic or randomized algorithm that broadcasts the value
of a bit to any subset of k processors in a qrqw pram requires expected time �	lg k
� regardless of
the number of processors used�

We now present our lower bound for the load balancing problem�

Theorem ��
 Any deterministic or probabilistic qrqw pram algorithm for the load balancing prob�
lem with maximum initial load L requires �	lgL
 time regardless of the number of processors used�

Proof� Let the load balancing algorithm guarantee that each processor has at most c	�  m�n

tasks� for a suitable constant c � �� Our proof is based on showing a constant time erew pram

reduction from the problem of broadcasting the value of a bit to any subset of 	��c
 � L processors
out of a total of n processors to the following load balancing problem� one processor P has L tasks�
and the remaining n � � processors have � tasks� If the value of the bit to be broadcast is � then
the L tasks are located in an array starting at memory location n  �� if the value of the bit to be
broadcast is � then the L tasks are located in an array starting at memory location �n �� All of
the tasks are $dummy! tasks� with constant size representation� This reduction can be implemented
in constant time by having the ith processor enter the task representation for the ith dummy task
to the array starting at location n  � and to the array starting at location �n  �� Processor P
initializes the pointer to the array of task representations to n � or �n � depending on whether
its bit value is � or �� and sets its load to be L�

The solution to the above load balancing problem consists of a subset S of at least L�c processors�
each receiving a pointer to a subarray consisting of at most c tasks� These subarrays are either in
the block of memory between n � and �n or between �n � and �n� Depending on which range the
pointer lies� each of the processors in S can determine whether the value b of the bit in processor P
is � or �� Hence by Theorem ��� it follows that the load balancing problem requires �		��c
 � lgL

expected time� i�e� �	lgL
 expected time�

��� An algorithm

Let Tlb	n� L�M
 be the time needed to solve the load balancing problem of size n with maximum
normalized load L� using linear work on a modelM� By Theorem ���� ifM is a qrqw pram� then
Tlb	n� L�M
 � �	lgL
�

A problem related to load balancing is the previously studied linear compaction problem� Con�
sider an array of size n with k nonempty cells� with k known� The linear compaction problem is to
move the contents of the non�empty cells to an output array of O	k
 cells� Let Tlc	n�M
 be the time
for solving the linear compaction problem of size n� using n processors on a model M� Our load
balancing algorithm is primarily based on repeated applications of a linear compaction algorithm�
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Lemma ��� Let M be a model at least as strong as the erew pram� Then

Tlb	n� L�M
 � O	lgL Tlc	n�M
 � lg lgL
 �

Proof� Assume �rst that the number of available processors is �n� We later show how to reduce
the number of processors to n�Tlb	n� L�M
� as required�

Our algorithm is based on a crcw load balancing algorithm by �Gil���� which consists of
O	lg lgL
 applications of a dispersal stage� Each dispersal stage uses a linear compaction algo�
rithm as a main building block�

Let u�� u�� � � � be a sequence de�ned by ui�� � �
p
ui and u� �

p
L� It is straightforward to

verify by induction on i that ui � ������i��

L���i���

for i � �� and hence uk becomes constant for
i � O	lg lgn
� For simplicity� we will assume that the numbers

p
ui� i � �� �� � � �� as well as other

outcomes of calculations below� are integers� it is straightforward� albeit somewhat tedious� to adapt
the setting of parameters and the analysis to handle the general case�

As an invariant� we let u�i be an upper bound on the maximum load among the processors at the
beginning of the 	i  �
st dispersal stage� A processor is said to be overloaded if it has at least �ui
tasks� The 	i  �
st dispersal stage reduces the upper bound on the maximum load per processor
to u�i�� � 
ui� as follows�

Step �� The overloaded processors are injectively mapped into an auxiliary array of size �n�ui�

Step 
� For each cell of the auxiliary array there is a team of ui processors standing by� each of
them adopts up to �ui tasks of the overloaded processor that was mapped into this cell� thereby
freeing the overloaded processor from all its tasks� Each processor has now at most �ui old
tasks and at most �ui new tasks� Therefore� the upper bound on the maximum load among
the processors becomes 
ui � u�i��� as required�

Clearly� after i� � lg lgL stages � ui� is reduced to a constant� and we are done�

Implementation of step �� An injective mapping is obtained by using a linear compaction
algorithm� in O	Tlc	n�M

 time� Note that since the total number of tasks is at most �n� there
are at most n�ui overloaded processors� The contribution of step � to the entire algorithm is
therefore O	Tlc	n�M
 lg lgL
 time�

Implementation of step 
� Each processor Pj keeps an array of pointers Qj to the arrays of
tasks which currently belong to the processor� In each stage� the size of this pointer array at most
doubles� so in the ith stage� the size of this pointer array is no more than wi � g � �i� where g is the
initial size of the pointer array� Since the initial size of the pointer array is � 	by our convention for
the input representation
� the size of this array in the ith stage is bounded by �i for each processor�

Processor Pj also keeps an additional array Tj which represents the pre�x sums Tj �
� �
P�

k�� tj�k�
� � 
 � wi� where tj�k is the number of tasks in the kth task array of processor Pj� The tasks of
the 
th subarray of an overloaded processor Pj are to be adopted by dtj���uie processors� The
pointer to the 
th subarray of Pj is broadcast together with Tj �
 � �� and Tj�
� to processors Pv�
v � fdTj �
� ���uie  �� � � � � dTj�
��uieg� in the team which is allocated to Pj 	here v is the numbering
of processors within the team
� Each processor can infer from this information the pointer	s
 to the
subarray	s
 of tasks it needs to adopt and hence perform the appropriate updates� Note that an
overloaded processor Pj may also be part of a team allocated to another overloaded processor�
Therefore� before the above update takes place� each overloaded processor Pj updates both its
pointers array Qj and its pre�x sums array Tj to null�
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The time for step � is dominated by the broadcasting substep and the time needed to compute
the pre�x sums on the array of pointers Qj as well as to construct the array of pointers Qj�� for the
next stage� It is straightforward to see that the broadcasting substep can be implemented in O	lgui

time� and the computations on array Qj can be performed in O	lgwi
 time� The overall time for
the ith stage is O	lgui
 as long as ui � wi� which holds for all but the last �	lg lg lgL
 stages of the
algorithm� Let i� � lg lgL � lg lg lgL� The time taken by the �rst i� steps of the algorithm is
	to within a constant factor


i���X
i��

lgui �
i���X
i��

lg	������i��

L���i���


 �
i���X
i��

	�  ���i��� lgL
 � lgL �i� �

which is O	lgL
� The total running time for the �rst i� stages of the algorithm is therefore O	lgL 
Tlc	n�M
 lg lgL
� using n processors�

It is not di�cult to see that at the end of step i�� ui� � O	lgL
 and wi� � O	lgL� lg lgL

� O	lgL
� Since each processor has a total of O	lgL
 tasks arranged in a collection of wi� � O	lgL

arrays� each processor can sequentially collect together all of the tasks in all of its task arrays into a
single task array in O	lgL
 time� Now we have a new load balancing problem on n processors with
maximum load O	lgL
� We apply steps � and � repeatedly to this problem until the load balancing
is completed� This second phase clearly takes no more time than the �rst phase� Hence� the overall
running time of the algorithm is O	lgL  Tlc	n�M
 lg lgL
� using n processors�

Finally� each processor can convert its task representation from the array of array format to the
single array format in constant time since it has only a constant number of tasks assigned to it at
the end of the algorithm�

Reducing the number of processors� It remains to show how to implement the above algorithm
	which assumes �n virtual processors
 on p � n processors with an additive time overhead ofO	n�p
�

The �n virtual processors are partitioned into p groups of g � �n�p processors each� and the jth
group is assigned to the jth physical processor� � � j � p� We will combine the tasks in the virtual
processors into $super�tasks! that contain g original tasks 	with possibly a few smaller super�tasks

and perform load balancing on these super�tasks� For this� the jth real processor Pj will perform
the following computation on the virtual processors in the jth group� � � j � p�

�� Designate the virtual processors in the jth group whose load is at least g � �n�p as �heavy
processors� and the remaining processors in the jth group as �light processors��

�� For each heavy processor Hi�j in the jth group� let its load be mi� Combine its tasks into super�
tasks of size g� with possibly one smaller super�task by setting its new load to be dmi�	�n�p
e�
and setting its $normalizing! factor to be g�

�� Perform load balancing on the super�tasks in the heavy processors using the linear processor
algorithm given earlier� This is a load balancing problem on p processors with O	p
 super�tasks
and an initial maximum load of O	L
 super�tasks per processor�


� At this stage each physical processor has O	g�
 original tasks consisting of a constant number
of super�tasks 	of size g
 from heavy processors and tasks from up to g light processors� each
of which has at most g tasks� These tasks are organized in a pointer array of size O	g
� Each
physical processor processes this pointer array and its array	s
 of tasks so that the tasks are
once again grouped into super tasks of size g 	and possibly one smaller super�task in the jth
group
� and such that a chunk of r super�tasks� starting with 
th super�task can be retrieved
in constant time� given r and 
� This preprocessing can be performed in O	g
 time sequentially
by each physical processor�
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�� We now have a load balancing problem on O	p
 super�tasks using p processors� with an initial
maximum load of O	g
 super�tasks per physical processor and with the initial size of each
pointer array being w� � O	g
� We solve this problem in O	lg lg g
 stages using the linear
processor algorithm given earlier� Since the initial pointer array is as large as the maximum
load per processor� we need to be careful about the processing of the pointer arrays and
the task distribution step in order to stay within the time and work bounds� We perform this
computation as follows� We add the pointer array for each new set of tasks added to a processor
as a separate pointer array� and the processors in the team assigned to distribute the tasks
in this processor will search serially through the di�erent pointer arrays in this processor to
determine the ones that contain its collection of tasks� Since we have at most O	

p
g
 processors

in a team and �lg lg g � O	lg g
 di�erent pointer arrays in any processor at any stage� this step
can be performed in O	

p
g � lg g
 time per stage leading to a total of O	pg � lgg � lg lg g
� which

is O	g
 time for processing the pointer arrays through all stages of the algorithm� At the end
of this step� each physical processor has O	g
 tasks as required�

It is straightforward to see that the above algorithm runs in time O	lgL  Tlc	P�M
 � lg lgL
 	for
step �
  O	lg g  Tlc	P�M
 � lg lg g  g
 	for step �
� which is O	lgL  Tlc	n�M
 � lg lgL  n�p
�
Finally� if needed� each physical processor Pj can distribute its O	g
 tasks in O	g � n�p
 time to
the �n�p virtual processors in its group by a sequential algorithm�

By using the linear compaction algorithm given in �GMR��a�� where forM being a simd�qrqw
pram Tlc	n�M
 � O	

p
lgn
 w�h�p�� we obtain

Theorem ��
 The load balancing problem with maximum normalized load L can be solved by a
p�processor simd�qrqw pram algorithm in O	

p
lgn lg lgL  lgL
 time and linear work w�h�p�

In particular�

Corollary ��� The load balancing problem with maximum normalized load L � �O�
p

lgn lg lgn� can
be solved by a p�processor simd�qrqw pram algorithm in O	

p
lgn lg lgn
 time and linear work

w�h�p�

��� Application to automatic processor allocation

As mentioned in Section �� the paper �GMR��a� gave a few examples of general classes of algorithms
for which automatic processor allocation techniques can be applied to advantage� Such classes
include geometric�decaying algorithms� general task�decaying algorithms� and spawning algorithms�
Processor allocation is done by a scheduling scheme using an algorithm for linear compaction�

We show now that load balancing can be used to provide automatic processor allocation to a
more general class of algorithms� the L�spawning algorithms� In an L�spawning model � at each
step each task can spawn at most L � � more tasks� The total number of tasks may increase
or decrease at each step� Thus� the L�spawning model generalizes the spawning model 	which
is equivalent to the ��spawning model
� as well as the models for task�decaying algorithms and
geometric�decaying algorithms� Let wi be the total number of tasks at the beginning of step i of an
L�spawning algorithmA� Similarly to the task�decaying and to the spawning models� an L�spawning
algorithm A is predicted if an approximate bound on the sequence of work loads fwig is known in
advance� Speci�cally� if a sequence fnig is given such that for all i� ni � wi and

P
i ni � O	

P
iwi
�

Furthermore� it is required that for all i� ni � L � ni���
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Theorem ��	 Let A be an algorithm in the qrqw work�time presentation obeying the L�spawning
model with time t and work n� and let t� be the number of parallel steps in A� If Algorithm A
is predicted then it can be implemented on a p�processor qrqw pram to run in time O	n�p
 if
p � O	n�	t t� � Tlb	n� L�M


� where M is the qrqw pram model�

Proof� The processor allocation technique extends the techniques for the ��spawning model used
in �Mat��� for the crcw pram and in �GMR��a� for the qrqw pram� Let p be the number of qrqw
pram processors� Let wi be the total number of tasks at the beginning of step i of AlgorithmA� and

let ni be the approximate bounds on wi� as de�ned above� Thus�
Pt�

i��wi � n and
Pt�

i�� ni � O	n
�
In order to get an O	n
�work implementation on the qrqw pram� we keep the invariant that at each
step the tasks are evenly distributed among the p processors� i�e� the number of tasks per processor
at the beginning of step i is at most cni�p� for some constant c � ��

Step i of Algorithm A is implemented as in the algorithm of Theorem ���� using the p�processor
qrqw pram� After step i� each task may spawn at most L � � new tasks� Therefore� the total
number of tasks� ni��� becomes at most Lni� and the number of tasks per processor becomes at
most cLni�p� A load balancing algorithm is used to redistribute the tasks among the processors so
that the number of tasks per processor becomes at most cni���p� If ni�� � ni��� then the maximum
normalized load is at most �cL� and hence the time for load balancing is at most Tlb	p� �cL�M
�
which is O	Tlb	p� L�M

� So consider the general case where ni�� may drop below ni��� In such
cases� we will add 	for the sake of analysis only
 dummy tasks to increase ni�� so that the maximum
normalized load is at most �cL� and then argue that the addition of these dummy tasks increases
the time and work bounds by at most a factor of � over the original algorithm�

In more detail� we partition the steps of Algorithm A into phases� where a phase consists of
a maximal subsequence of steps for which the ni!s each decrease by more than a factor of �� Let
�� � n�� and for i � �� � � � � t

�� let �i � maxfni� �i����g� For each step i� we add maxf�� �i � nig
dummy tasks� Consider any phase� comprised of steps j through k� Then �j � nj � and �j � � � � � �k
constitute a decreasing geometric series� Thus

Pk
i�j �i � �nj� so adding the dummy tasks increases

the time and work bounds for the algorithm by at most a factor of ��

By Theorem ��� and the invariant� the implementation of all steps i� i � �� �� � � �� t�� when dummy
tasks are included� takes O	n�p t
 time� The implementation of all the load balancing steps when
dummy tasks are included adds an additive overhead of O	t� � Tlb	p� L�M

� Hence the algorithm
runs in time O	n�p
 when p � O	n�	t t� � Tlb	p� L�M

� The theorem follows�

By Theorem ��
 we obtain�

Corollary ��� Algorithm A in Theorem ��� can be implemented on a p�processor qrqw pram to
run in time O	n�p
 w�h�p� when p � O	n�	t t�

p
lgn lg lgL t� lgL

�

In particular�

Corollary ��� Let A be an algorithm in the qrqw work�time presentation obeying the L�spawning
model with time t and work n� and let t� be the number of parallel steps in A� Then� if L �

�O�
p

lgn lg lgn�� and Algorithm A is predicted� then A can be implemented on a p�processor qrqw
pram to run in time O	n�p
 w�h�p� when p � O	n�	t t� � plgn lg lgL

�

An application of Corollary ��� is given in the next section�

The above results can be extended to algorithms obeying the L�spawning model that are not
predicted� if the crqw pram model is used� Speci�cally� consider a crqw work�time presentation�

��



which is de�ned to be the same as the qrqw work�time presentation except that time is accounted
for using the crqw metric instead of the qrqw metric� An algorithm A in the crqw work�time
presentation obeying the L�spawning model with time t� work n� and number of parallel steps t�

can be implemented on a p�processor crqw pram to run in time O	n�p
 when p � O	n�	t  t� �
Tlb	n� L�M


� whereM is the crqw pram model� The proof is similar to the proof of Theorem ����
and is omitted�

� Multiple compaction

In this section we present a logarithmic time� linear work qrqw pram algorithm for the multiple
compaction problem� We start by recalling the de�nitions of the compaction and linear compaction
problems� which we studied in the context of the qrqw pram in �GMR��a��

Compaction Problem� Given an array A����n� with k nonzero cells� where k is known but the
positions of the k nonzero cells are not known� move the contents of the nonzero cells to the �rst k
locations of array A�

Linear Compaction Problem� Given an input to the compaction problem 	i�e� an array A����n�
with k nonzero cells� where k is known but the positions of the k nonzero cells are not known
� move
the contents of the nonzero cells to an output array of size O	k
�

In �GMR��a� we give a randomized algorithm for linear compaction on the qrqw pram that�
w�h�p�� runs in O	

p
lgn
 time while performing linear work� The same algorithm with an additional

simple post�processing step solves the compaction problem in O	
p
lgn lgk
 time and linear work�

w�h�p�

The multiple compaction problem that we consider in this section is a generalization of the linear
compaction problem� The input consists of n items given in an array A����n�� each item has a label�
a count� and a pointer� all from ����O	n
�� The labels partition the items into k sets #�� � � � �#k�
k � n� where #j is the set of items labeled with j� For simplicity we will let k � n� and allow some
of the #j to be empty� The count of an item belonging to #j is an upper bound� nj � count	#j
� on
the number of items in #j� such that

Pn
j�� nj � c �n for some constant c � �� Also given is an array

B����c�n�� where c� � 
c is a constant� Array B is partitioned into subarrays such that each set #j

has a private subarray of size at least 
nj� the subarrays are assigned in some arbitrary order� The
pointer of an item belonging to a set #j is the starting point in B of the subarray assigned to #j�

Multiple Compaction Problem� Given an input of the form stated in the above paragraph�
move each item in array A into a private cell in the subarray for its set in array B�

An important application of multiple compaction is in a randomized crcw pram algorithm for
integer sorting �RR���� In Section �� we will use the algorithm for multiple compaction given in this
section to obtain a logarithmic time� linear work crqw pram algorithm for integer sorting� as well
as to obtain e�cient qrqw or crqw algorithms for general sorting and sorting from U 	�� �
�

Our main result in this section is a qrqw pram algorithm for multiple compaction that runs in
O	lgn
 time and linear work w�h�p� as stated in the following theorem�

Theorem 
�� The multiple compaction problem can be solved by a qrqw pram algorithm in
O	lgn
 time and linear work w�h�p�

Proof� We consider two special cases of the multiple compaction problem� In the heavy multiple
compaction problem� the count of each set is at least 
 � lg� n� for a suitable constant 
 � �� and in
the light multiple compaction problem� the count of each set is at most 
 � lg� n� In Section 
�� we
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describe our algorithm for heavy multiple compaction� and prove that it runs in O	lgn
 time and
linear work w�h�p� on a qrqw pram 	Lemma 
��
� Then in Section 
�� we describe our algorithm
for light multiple compaction� and prove that it also runs in O	lgn
 time and linear work w�h�p� on a
qrqw pram 	Lemma 
�

� To solve the overall multiple compaction problem� it su�ces to perform
one application each of the heavy and light multiple compaction algorithms� Thus the theorem
follows from Lemma 
�� and Lemma 
�
�

��� The heavy multiple compaction algorithm

We follow the general strategy used in the multiple compaction algorithm given in �GMV��� for
the crcw pram� and the log�star paradigm of �MV��a� Mat���� To highlight and distinguish the
dependence of our algorithm on the input size and the con�dence bounds� we consider an input of
size n and show a Las Vegas algorithm that� for any m� obtains its time bounds 	which are a function
of n and m
 with high probability in m 	i�e� with probability �� ��m� for any constant � � �
�

The log�star paradigm as adapted to our algorithm consists of O	lg� n
 basic rounds� An item
is initially active and becomes inactive when it is moved into a private cell in the subarray for its
set� The number of active items in set #j at the beginning of round i � � is at most nj�	�i��qi
�
where fqig is a sequence de�ned by

qi�� � minf�qi � 
 � lgmg�

with q� a su�ciently large constant� Round � is repeated a constant number of times to establish
the base case of this invariant� The number of rounds is de�ned as i� � minfi � qi � 
 lgmg�
Round i consists of two steps�

	i
 Allocation� where each active item in #j is allocated with a set of qi processors 	a �team�
�
and

	ii
 Deactivation� where a processor handling an active item of a set #j tries to get hold of a private
cell in the subarray assigned to #j� by selecting a cell in the subarray at random and writing
its index into that cell� An active item is deactivated if any one of the processors assigned to
it is able to obtain a private cell for the item�

In each round� the number of processors trying to write to the subarray for #j 	of size 
nj
 is at
most nj � A processor fails in a write attempt if there is already a value written in that location from
a previous step� To simplify the analysis� we will also consider a write attempt to be a failure if
another processor tries to write into the location in the same step� this only increases the probability
of failure� Then� the failure probability of each processor is at most ���� moreover� these probabilities
are �pseudo�independent� in the sense that the bound on the failure probability of an item is valid
no matter what happens with other items� If any of the processors for an active item succeeds in
claiming a cell� then the item becomes inactive by selecting one of its successful processors� Since qi
processors are allocated to each item� the probability that an entire team for an item fails is at
most ��qi �

We claim that the number of active items in each set #j at the end of round i � i� is at most
max	nj�	�

iqi��
� lgm
 w�h�p� in m� Assume inductively that at the end of round i� �� the number
of active items in each set #j is at most max	nj�	�i��qi
� lgm
� the base case can be easily obtained
by repeating the �rst round for a constant number of times� If nj�	�i��qi
 � lgm then the expected
number of items that fail is at most 	nj�	�i��qi

 � ��qi � If this expected number is �	lgm
� then
by Cherno� bounds 	Fact ���
� the number of items that fail is O	nj�	qi � �i��qi��

 w�h�p� in m�
i�e� no more than nj�	�iqi��
� if this expected number is o	lgm
� then again by Cherno� bounds�

��



the number of items that fail is less than lgm w�h�p� in m� This establishes the claim on the number
of active items remaining at the end of each round�

Thus at the beginning of round i�� the number of active items in each set #j is at most

max	nj�	�
i���qi�
� lgm
 w�h�p� in m� i�e� at most nj�
 lgm 	recall that nj � 
 lg�m
� Since

qi� � 
 lgm processors are allocated to each item in round i�� all active items succeed in this
round w�h�p� in m� A Las Vegas algorithm can be obtained by repeating this last round on the
remaining active items until all such items have been placed�

Now we describe an implementation of this algorithm on the qrqw pram� The algorithm
can be easily implemented on the L�spawning model of Section ���� taking L � qi� � 
 lgm�
Moreover� the L�spawning algorithm is predicted� The number of parallel steps is t� � O	lg� n
� The
expected contention at each deactivation step is less than �� so by Observation ���� the maximum
contention at each deactivation step is O	lgm� lg lgm
 w�h�p� in m� and the time of the algorithm is

therefore t � O	lg� n lgm� lg lgm
� The work of the algorithm is O	
Pi�

i�� n��
i
 which is O	n
� By

Corollary ���� the algorithm described above can be implemented on the qrqw pram in O	n
 work
and O	lg� n lgm� lg lgm  lg� n

p
lgm lg lg lgm
 time� i�e� O	lg� n lgm� lg lgm
 time� w�h�p� in m�

We next describe a more direct implementation of the L�spawning algorithm above� which does
not require the use of the linear compaction algorithm 	as in Corollary ���
� Consider a partition of
the input elements in array A into groups of size lg�m� Since the expected number of active items
in each group is �	lgm
 in each round� by Cherno� bounds 	Fact ���
� the number of active items
within each group is� w�h�p� in m� within a constant factor of the expected value� Therefore� the
allocation step can be implemented within each group� Speci�cally� within each group a linear�work
O	lg	lg�m

�time pre�x sum algorithm is used to

	i
 identify successful copies and select one of them to deactivate their item�

	ii
 count the number of active items in the group�

	iii
 duplicate each active item into qi copies� and

	iv
 partition the set of copies into equal�sized chunks� one chunk per processor�

Thus� the deactivation step of round i can be implemented in O	lg lgm
 time and O	n��i
 work
w�h�p� in m� This leads to the following lemma�

Lemma 
�
 The multiple compaction problem in which the count of each set is at least 
 � lg�m for
a suitable constant 
 � � can be solved by a qrqw pram algorithm in O	lg� n lgm� lg lgm
 time
and O	n
 work w�h�p� in m� The heavy multiple compaction problem �the case n � m� can be solved
in O	lgn lg� n� lg lgn
 time and linear work w�h�p� in n�

In Section �� we will use a relaxed version of the heavy multiple compaction problem in which
the input assumption that all counts nj are upper bounds on the sizes of their respective sets #j is
true w�h�p� only � When some set #j has more than nj items� the algorithm is permitted to report
failure� The algorithm given above can be readily adapted to handle this relaxed version� within
the same time and work bounds� as follows� After round i�� use the output subarray to count the
number of items in each set #j� if there exists a set #j with more than nj items� report failure� This
can be done in O	lgn
 time and linear work using pre�x sum computations� Repeat round i� and
this test until either all items are placed or failure is reported�
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��� The light multiple compaction algorithm

In this section we present an O	lgn
 time� linear work qrqw pram algorithm for the multiple com�
paction problem when the count of every set is at most 
 lg� n� i�e� for the light multiple compaction
problem� The main steps in the algorithm are as follows�

	i
 Elect a leader for every set #j as follows� Write each item into a random location in its output
subarray� Then use a simple pre�x sums computation on the output array to identify the item
written in the �rst non�empty location in each subarray� Designate this item as the leader for
its set�

	ii
 Have the leader of every set #j write the value of nj in location j of an array C����n�� For
every empty set #j write the value � 	empty sets are assumed to have one dummy member
�

	iii
 Let each subarray of size 
 lg� n in C de�ne a superset containing the sets represented in this
subarray� Note that each superset is of size between 
 lg� n and 	
 lg� n
��

	iv
 Process the data for the supersets de�ned in step 	iii
 to serve as an input for the heavy
multiple compaction problem as follows� Compute pre�x sums in array C to determine the
starting position of the subarray for each superset in the 	new
 output array for the supersets�
The leader for each set in the superset writes the label of the superset� its count� and its pointer
in the starting position of the output subarray for its set� The processors then apply a simple
broadcast computation to broadcast this information to all locations within each subarray
in an optimal logarithmic time erew pram computation� Each item then reads a random
location in its output subarray to determine the label of its superset� its count� and its pointer�

	v
 Apply the heavy multiple compaction algorithm of Lemma 
�� to place each superset item in
the appropriate subarray�

	vi
 Within each superset� sort the items with the keys being the input labels modulo 
 lg� n� This
places items with the same input label consecutively within the subarray�

	vii
 Rank each item within the consecutive subarray for its input label� using a pre�x sums com�
putation� Then move each item� say with rank i� to the ith position in the original output
subarray for its input label� using its input pointer�

The maximumcontention in steps 	i
 and 	iv
 is O	lgn� lg lgn
 w�h�p�� by Observation ���� Thus
each of the steps 	i
�	v
 and 	vii
 above is easily seen to run on a qrqw pram in O	lgn
 time and
linear work w�h�p� For step 	vi
� we apply the following result�

Fact 
�� �see� e�g� �Rei���� The erew pram can stably�sort n integers in the range ���� lgc n��
for any integer constant c� in O	lgn
 time and linear work�

Proof� The following steps stably�sort integer keys in the range ���� lgn�� the desired result is
obtained by repeating these steps c times on increasingly signi�cant bits of the input integers�

We use p � n� lgn processors� The input items are partitioned into p groups of size lgn� by their
location in the input array� Each group consists of lgn subgroups 	some of them perhaps empty
�
according to the key values� We use a two�dimensional array Nlgn�p� N �i� j� will represent the number
of keys with value i in group j� Thus� each row i in N will represent the sizes of subgroups of keys
with value i� whereas each column j in N will represent the subgroups of group j� The algorithm
consists of the following steps� 	i
 each processor j� j � �� � � � � p� traverses its group j� counts the
number of items in each subgroup i� and records them intoN �i� j�� i � �� � � � � lgn� 	ii
 each processor j
traverses its group and puts the items of each subgroup in a separate list� ordered in the same relative
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order as in the input� 	iii
 the p processors compute the pre�x sums of the numbers N �i� j� 	in row
major order
 into the two�dimensional array Slgn�p� 	iv
 each processor j traverses its group j� and
computes the global rank r of each element in its group� if x is an element in a subgroup i that is
ranked ri	x
 in its subgroup!s list� then the global rank of x is r	x
 � S�i� j��� ri	x
� and 	v
 each
processor copies all the items in its group into the output array in sorted order by their global rank�
All steps can be easily implemented in O	lgn
 time�

This gives us the following lemma�

Lemma 
�
 The multiple compaction problem in which the count of each set is at most 
 � lg� n for
the constant 
 in Lemma 
�	 �i�e� the light multiple compaction problem� can be solved on a qrqw

pram in O	lgn
 time and linear work w�h�p�

� Random permutation

The random permutation problem is to generate a permutation of f�� � � � � ng such that all permuta�
tions are equally likely� The random cyclic permutation problem is to generate a cyclic permutation
	one that consists of a single cycle
 of f�� � � � � ng such that all such permutations are equally likely�
Examples of cyclic and noncyclic permutations are given in Figure �� As indicated in Table �� the
best known linear work random permutation algorithm for the erew pram run in O	n�
 time� for
�xed � � �� This is also the best bound known for the random cyclic permutation problem� Polylog
time erew algorithms known for both problems are work ine�cient by at least a

p
lgn lg lgn factor�

i � � � 
 � i � � � 
 �
		i
 � � 
 � � �	i
 
 � � � �

	
����
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Figure �� Permutations� On the left� a cyclic permutation� �� and a corresponding cycle representation� On the
right� a noncyclic permutation� �� and a corresponding cycle representation�

In this section� we present three qrqw pram algorithms that signi�cantly improve upon the best
erew algorithms� The �rst� an adapted crcw algorithm� solves the random permutation problem
in O	lgn
 time� linear work w�h�p� The second� a newly designed algorithm� solves the random
cyclic permutation problem in O	

p
lgn
 time w�h�p�� using n processors� The third� an adapted

crcw algorithm� solves the random cyclic permutation problem in O	lgn lg� n� lg lgn
 time� linear
work w�h�p� This section concludes with some results obtained from running random permutation
algorithms on the MasPar MP�� �Mas����

��� Algorithms

Dart throwing is a popular technique for random permutation on the crcw pram �MR��� RR���
MV��a� Hag��� Mat���� The random permutation algorithms in the cited references all essentially
consist of two basic steps� First� the items �� � � � � n are placed at random into a linear size array�
by a process in which each item attempts to claim a random cell in the array until it succeeds 	in
later rounds� multiple processors may work on behalf of each item
� If multiple items attempt to
claim the same cell in the same step 	by writing to the cell
� all such attempts are considered to be
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failures� this ensures that the policy for arbitrating between multiple writers to a cell does not bias
the random permutation� At the end of this �rst step� the relative order of the items in the array
gives an implicit random permutation� In the second step� the items are compressed into an array
����n�� in order to compute the permutation explicitly�

A simple compression can be obtained by compacting the items using a pre�x sums algo�
rithm �MR��� RR���� An alternative compression technique that circumvents the need for com�
paction was presented in �MV��a�� each item in the linear size array �nds its neighboring item�
and points to it� using the pointers all items can be placed in an array ����n� in constant time� re�
sulting with a random cyclic permutation� 	A general random permutation is obtained in �MV��a�
by breaking the global cycle into smaller cycles in an appropriate manner� using a pre�x�minima
computation�


The di�erence between the two compression techniques is illustrated by the following example�
Let n � �� and consider the items placed at random into an array of size ��� as follows�


 � � � �

In the �rst technique� the items are compacted in order� yielding the permutation on the right in Fig�
ure �� In the second technique� the items specify the cycle representation� yielding the permutation
on the left in Figure ��

In each of the qrqw pram algorithms in this section� we need to detect whether a processor
attempting to claim a cell x succeeds� i�e� whether the attempt is the only claim on cell x� This is
accomplished for all attempts over all cells in a constant number of steps as follows� Each processor
�rst writes its index into its selected cell� then reads the cell� Any processor that does not read its
own index has detected multiple claims on that cell and hence has failed to claim the cell� it writes
again to the cell� Finally� each processor that did read its own index reads again the cell� if the cell
no longer contains its index� it has failed to claim the cell� otherwise it has succeeded�

����� A random permutation algorithm

Theorem ��� The random permutation problem can be solved by a qrqw pram algorithm in
O	lgn
 time and linear work w�h�p�

Proof� We use an algorithm adapted from a randomized crcw algorithm of Gil �Gil��� for the
renaming problem� in which the processors in an anonymous set of at most n processors are given
distinct names from ����O	n
�� For each of c lg lgn rounds� for a constant c � �� each unplaced item
selects a random cell from a subarray of an array A 	a new subarray is used for each round
� if no
other item selects the same cell� the item has been successfully placed� The size of the subarray used
in the �rst round is d � n� for some constant d � �� and the size decreases by a factor of two at each
round� If� after c lg lgn rounds� not all items have been placed� restart from the beginning� After all
items have been placed� the array A is compacted to size n�

Gil �Gil��� shows that� w�h�p�� the algorithm completes without restarting� Moreover� w�h�p�� the
number of active items decreases more rapidly than the subarray size� In such cases� the contention
to a memory cell at each round is a binomial random variable with an expected value less than ��
It follows by Observation ��� that w�h�p�� the maximum contention is O	lgn� lg lgn
 at each round�
and hence the total time is O	lgn
 w�h�p� The total work is O	n
 w�h�p� Processor allocation can
be done directly or by applying Theorem ��
�

We note that there are other crcw algorithms that may also give similar complexity bounds�
Also� if the output may consist of an implicit 	or �padded�
 random permutation 	i�e� without the
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compression step
 then the time is sublogarithmic� and can be somewhat improved if the algorithm
from �MV��a� is used� Such an algorithm is actually described in the proof of Theorem ����

����
 A fast random cyclic permutation algorithm

For random cyclic permutation� we observe that the contention during the dart throwing can be
reduced by using a larger array� this was the technique used in the linear compaction algorithm
given in �GMR��a�� However� this reduction in contention due to throwing into a larger array must
be balanced against the additional time spent by an item �nding its successor in the larger array�
Consider an array of size O	n�f 
� for lg lgn � f � lgn� into which n random darts are thrown�
By Observation ���� the maximum contention will be O	lgn�f
 w�h�p�� the maximum gap between
darts can be shown to be O	�f 
 w�h�p� Successors can be found in time logarithmic in the maximum
gap� Hence we have an O	lgn�f  f
 time requirement for this approach� which is minimized when
f �

p
lgn� The algorithm given below is based on this approach� Since the contention at each

round of dart throwing is O	
p
lgn
� even after many of the items have been placed� we aim for only

a constant number of rounds�

Theorem ��
 The random cyclic permutation problem can be solved by an n�processor qrqw pram

algorithm in O	
p
lgn
 time w�h�p�

Proof� Let A be an auxiliary array of size m � nf�c�f � where f �
p
lgn� for a constant c � �

determined by the analysis�

�� Each item attempts to claim f random cells in A� an attempt succeeds if there is no other
claim on that cell�

�� W�h�p�� each item will have at least one claimed cell� Each item marks all but its �rst such
claimed cell as unclaimed�

�� Each item �nds its successor in A 	with wrap�around
� as follows� Consider a binary tree
imposed on A� Each item begins at its leaf and walks up the tree level by level for at most �cf
levels� until it encounters an item to its left and to its right in A� In particular� at each node�
v� we maintain a linked list of the items in the subtree rooted at v by linking the rightmost
item in v!s left subtree with the leftmost item in v!s right subtree� Then� for each item that is
the rightmost item in its subtree at level �cf 	and hence has failed to �nd its successor
� link
the item to the leftmost item 	if any
 in the subtree immediately to its right at this level� Note
that this �nds successors for all items whose successors are within a distance of ��cf cells�


� For each item� i� with successor j� write j to the ith output cell�

The probability of an item failing to be placed in step � is less than

	nf�m
f � 	���cf 
f � ���c lgn � ��nc�

To analyze the probability that all successors will be found in step �� consider an arbitrary subarray
of A of size ��cf � Each dart hits a cell in the subarray with probability p � ��cf�m� The probability
that no item is in the subarray is less than

	� � p
n � 	��e
pn � ��e�
�cf�f�cf � ��e�

c
p

lg n�
p

lgn �

It follows that w�h�p�� all subarrays of A of size ��cf have at least one item� In particular� for any
given item� the subarray starting just to its right in A will contain its successor w�h�p� Thus w�h�p��
the above algorithm outputs a random cyclic permutation�
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Note that detecting whether we are done and notifying all the processors requires �	lgn
 time� by
Theorem ���� so this cannot be done� We can ensure� however� that the algorithm always produces a
valid random cyclic permutation� by adding the following steps to handle the unlikely scenario where
there are unplaced items or items whose successors have not been determined� Let x be a memory
location apart from the array A� Any processor assigned an item that remains unplaced or without
a known successor writes its ID to x� the resulting value in x designates the processor that will
complete the work sequentially� The designated processor checks each item to see if it is unplaced�
and if so� attempts to place the item into a random cell of A until it succeeds in �nding an unclaimed
cell� Finally� after all the items have been placed� the processor steps through A to determine the
successors for all items� and �lls in the output array� Thus we have a Las Vegas algorithm� but since
we do not inform all the processors when the algorithm completes� some processors may not know
when it is safe to use the output�

To complete the proof of the theorem� we show that the time and work for the algorithmmatches
the bounds stated in the theorem� Step � is O	nf
 work and� by Observation ���� O	f
 contention
w�h�p� Step � is O	n
 work and O	�
 contention� Step � is O	f
 substeps of O	n
 work and O	�

contention each� Step 
 is O	n
 work and O	�
 contention� The sequential cleanup phase described
in the previous paragraph occurs with polynomially small probability� and can be ignored in the
analysis�

����� An e�cient random cyclic permutation algorithm

We next show how to solve the random cyclic permutation problem in sublogarithmic time and linear
work� The algorithm is based on an O	lg� n
 time crcw pram algorithms for linear compaction
and random permutation �MV��a��

Theorem ��� The random cyclic permutation problem can be solved by a qrqw pram algorithm
in O	lgn lg� n� lg lgn
 time and linear work w�h�p�

Proof� We adapt the heavy multiple compaction algorithm from Section 
�� as follows� First� we
consider the special case where there is but a single label� Second� we permit an item to claim a cell
only if it is the only item attempting to claim the cell� to ensure that the items are placed at random
into the array� Third� after completing all the rounds of the log�star paradigm� we determine the
successor for each item� using the approach described in Theorem ���� as follows� Consider a binary
tree imposed on A and walk up the tree � lg lgn levels� At each node� v� maintain a linked list of the
items in the subtree rooted at v by linking the rightmost item in v!s left subtree with the leftmost
item in v!s right subtree� Then for each node� v� at level � lg lgn� link v!s rightmost item to the
leftmost item of the next node to v!s right at this level 	with wrap�around
� This �nds successors
for all items whose successors are within a distance of lg� n cells� We complete the algorithm by
having each item� i� with successor j� write j to the ith output cell� A Las Vegas algorithm can be
obtained by following the procedure given in Theorem ����

The analysis of the heavy multiple compaction algorithm using the qi��spawning model given
in Section 
�� can be readily adapted to show that the time for each of the O	lg� n
 rounds is
O	lgn� lg lgn
 w�h�p�� that the overall work is O	n
 w�h�p�� and that w�h�p�� all items are placed
prior to �nding the successors� Walking up the tree takes O	lg lgn
 time and O	n
 work 	the work
is linear here since the tree has only O	n
 nodes
� To analyze the probability that all successors will
be found in walking up the tree� consider an arbitrary subarray of A of size lg� n� Each dart hits
a cell in the subarray with probability p � lg� n�cn� where cn is the size of A� c a constant� The

probability that no item is in the subarray is less than 	�� p
n � ��elg
� n�c� It follows that w�h�p��

all subarrays of A of size lg� n have at least one item� In particular� for any given item� the subarray
starting just to its right in A 	with wrap�around
 will contain its successor w�h�p�
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The implementation of the algorithm described above on a qrqw pram is similar to the imple�
mentation of the heavy multiple compaction algorithm� That is� it can be described in an O	lgn
�
spawning model and be implemented using Corollary ���� or it can be implemented directly as in
the proof of Lemma 
��� The theorem follows�

��� Preliminary experimental results

We have performed several illustrative experiments comparing random permutation algorithms�
these experiments were performed on a �����
 processor MasPar MP�� �Mas���� The goal was to
see whether a good qrqw algorithm would outperform the popular erew algorithm� We have
implemented the random permutation algorithm given in Theorem ���� as well as a variant of
this algorithm that uses more extensively the builtin library routine provided by the MP�� for
performing scan operations� and compared their performance to the popular sorting�based erew

random permutation algorithm�	

We perform two sets of experiments� In the �rst set� we use all �����
 processors to generate
random permutations of f�� � � � � ����
g� i�e� we study the case where n � p � ��� ��
� Then in the
second set� we use only ���
 processors of the full machine to generate random permutations of
f�� � � � � ���
g� i�e� we study the case where n � p � ���
� The results are shown in Table �� In both
cases� the qrqw algorithm described in Theorem ��� is the fastest� In the rest of this section� we
present the details of our experiments� We begin with a brief description of the MasPar MP���

Random Permutation on the MasPar MP��

algorithm �	K proc� �K proc�
sorting�based 	erew
 ����� ms ����� ms
dart�throwing with scans ���� ms ���� ms
dart�throwing for qrqw ���� ms ���� ms

Table �� Each running time represents the average of generating ���� random permutations of
f�� � � � � pg� where p is the number of processors� The experiments with �K processors were run on
the same machine as the experiments with ��K processors� but using only one processor per router
cluster� See the text for more details�

In the MasPar MP��� the �����
 processors are connected by a mesh�like point�to�point network
called the X�Net� as well as by a multistage network used for global routing� Processors are parti�
tioned into clusters� such that the �� processors in a cluster share a single output port and a single
input port to the multistage network� Each processor has ��K bytes of local memory� processors
can read or write to locations in each other!s local memories using either network� The MP�� is a
simd machine�

In simd machines� the processors execute in lock�step� thus if any processor is delayed due to
contention at a location� all processors are delayed� On the MasPar� processors wait after each
read�write for the read�write with the maximum contention� This feature is captured by the simd�
qrqw pram model�

Our implementations were done using version ��� of the system software provided for the MP���
The programs were written in the MPL language� an extension of C that permits data parallel
operations� MPL provides �plural� versions of many C data types� for de�ning variables suitable for
data parallel operation� A plural int for example is a data type with an integer on each processor�
adding two plural int variables results in a plural int variable that is the component�wise sum�

�Random cyclic permutation algorithms 	such as those given in Theorem ��� and Theorem ���
 were not considered
in our comparison�
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A number of builtin library routines are provided with the MPL language� including primitives
for routing on the multistage network or the X�Net� for various scan operations� and for random
number generation� The timings were done using the timing functions provided with MPL� and
did not include the cost of generating an initial random seed for each processor at the start of the
experiments�

In our �rst set of experiments� we compare the following three randomized Las Vegas algorithms�
for ��� ��
 processors 	n � p � ��� ��

�

� A sorting�based algorithm� Each processor selects a random number between � and ������
These numbers are sorted� and 		i
 � the rank of i!s number in the sorted order� In the unlikely
event that two processors select the same number� we repeat the algorithm�

We use a builtin library routine for the sorting and ranking 	rank��
 and for detecting if the
algorithm needs to be repeated 	globalor
� This is arguably the simplest and most popular
erew pram algorithm for random permutation�

� A dart�throwing algorithm using scan� At each iteration� until all items have been placed�
Each unplaced item selects a random cell from an array A of size n � �� an item succeeds in
claiming a cell if no other item selects the same cell this iteration� 	This is detected using
the �write�read�write�read� procedure outlined at the beginning of Section ����
 Compact the
successful items in A and transfer them to locations 		K  �
� 		K  �
� � � � � 		K  k
� where
K is the number of items that succeeded in previous iterations and k is the number of items
that succeeded in this iteration� Array 	 will contain the random permutation�

We use a builtin scan�type routine for the compaction 	enumerate
 and for detecting when
all items have been placed 	globalor
�

� A dart�throwing algorithm for the qrqw� We implement the algorithm described in
Theorem ���� using n processors 	and no reallocation
� and taking the initial subarray size to
be �n� ��
We use a builtin library routine for detecting when all items have been placed 	globalor
 and
for the compaction at the end 	scanAdd��
�

The MP�� provides for single�step data parallel operation on plural variables� i�e� parallel opera�
tion on p data items� one per processor� In the initial iterations of the dart�throwing algorithm for
the qrqw� p processors throw darts into a subarray of size m� for some m greater than p� however
parallel operation on p data items out of a larger set m of possible data items is not e�ciently
supported by the MP��� We employ m�p plural variables to represent the subarray of size m� We
emulate each dart throwing step by m�p substeps cycling through these plural variables� such that
each processor throws its dart only during the substep for the plural variable containing its randomly
selected cell� This overhead increases with m� on the other hand� decreasing m results in a lower
success probability for each item and hence extra iterations may be needed before all items succeed
in claiming a cell� With this trade�o� in mind� we have explored a range of possible array sizes for
each of the dart�throwing algorithms� and selected the one that resulted in the best performance�

The �rst column of timings in Table � shows the results of these experiments� Both dart�throwing
algorithms outperform the erew algorithm� with the qrqw algorithm the fastest�

In our second set of experiments� we explore the performance of the three algorithms on an
optimistic con�guration of the MP��� In particular� we employ only ���
 processors of the MP���
one per cluster� so that each processor has its own input port and output port to the multistage
network� Moreover� we use plural variables that are the full size of the machine� permitting one�step
parallel operation on p � ���
 data items out of a larger set m � ��� ��
 of possible data items
	overcoming the bottleneck described above
� This improves the relative performance of the qrqw
algorithm� For this con�guration� we again explored a range of possible initial array sizes� and report
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in Table � on the choice resulting in the best performance� namely� an initial subarray of size 
n���
Note that the inactive ��K processors are used solely for the extra memory they provide� only the
active �K processors execute useful steps in the program�

The second column of timings in Table � shows the results of these experiments� As can be seen
from this table� the qrqw algorithm is over three times faster than the erew algorithm� and the
dart�throwing with scans algorithm is in between�

Asymptotic analysis of the implemented algorithms� We provide an asymptotic analysis of
the implemented algorithms to determine if the relative order of the analyzed bounds corresponds
to the relative order of the measured performance on the MP��� We consider two possible models
on which to base our analysis� the simd�qrqw pram described at the end of Section ���� and
the scan�simd�qrqw pram� de�ned to be a simd�qrqw pram augmented with a unit time scan
operation� As mentioned above� features of the MP�� are more closely re"ected in the simd�qrqw
pram model� Considering both the simd�qrqw pram and scan�simd�qrqw pram models allows
us to explore whether the builtin scan operations on the MP�� should be considered unit time
operations when modeling the MP���

We analyze the three implemented algorithms in turn�

The sorting�based algorithm uses bitonic sorting 	the sorting method employed by the MP��
system sort routines
� and hence takes O	lg� n
 time w�h�p� on the n�processor simd�qrqw pram

or scan�simd�qrqw pram 	same bounds as for the erew pram
�

The �rst dart�throwing algorithm takes O	lgn lg lgn
 time w�h�p� on the n�processor simd�qrqw
pram� and is readily shown to take O	lgn
 time w�h�p� on the n�processor scan�simd�qrqw pram�
	A more careful analysis for the scan�simd�qrqw pram yields a time bound that is slightly sublog�
arithmic�


The random permutation algorithm given in Theorem ��� takes O	lgn
 time w�h�p� on the n�
processor simd�qrqw pram� On the n�processor scan�simd�qrqw pram� the time is again slightly
sublogarithmic�

We conclude that for the particular implementations studied above� the relative order according
to the simd�qrqw pram matches the observed performance� and to a lesser extent� the same can
be said for the scan�simd�qrqw pram� The simd�qrqw pram has the advantage over the scan�
simd�qrqw pram in predicting the faster of the two dart�throwing algorithms�

Related experimental results� Recall that the random permutation algorithm described in
Theorem ��� permitted each processor to have multiple reads�writes in progress at a time� and that
this pipelining feature was exploited to obtain a work�optimal algorithm on the qrqw pram� On the
MasPar� however� each processor can have at most one read�write in progress at a time� so we were
not able to exploit this aspect of the algorithm 	and in fact the resulting implemented algorithm
is not work�optimal
� Recently� the random permutation algorithm described in Theorem ��� was
implemented on an ��processor cray J
�� a parallel vector machine that permits this pipelining
feature� This algorithm was compared with the fastest known sorting�based random permutation
algorithm on the cray J
�� and was shown to be considerably faster over a range of problem sizes
	e�g� a factor of ��� faster in generating a random permutation for n � ��� ��

 �BGMZ����

� Parallel hashing

Given a �nite universe U and a set S � U of size n� the hashing problem is to construct a linear�
size data structure 	a �hash table�
 that can support lookup operations� i�e� queries of the type �is
x � S�� for any x � U� We show�

�




Theorem 	�� A hash table for S can be constructed in O	lgn
 time and linear work w�h�p� on
a qrqw pram� Subsequently� lookup queries for n given distinct keys can be completed in
O	lgn� lg lgn
 time and linear work w�h�p� on a qrqw pram�

The set S of keys to be stored in the hash table as well as the set of keys appearing in lookup
queries can be arbitrary subsets of U�We assume that the choice of sets is independent of the random
bits used by the algorithm� Our result is for distinct keys� As shown in Table �� the best known
linear work erew pram algorithm for this problem runs in O	n�
 time�

��� Basics

Consider the universe U � f�� �� � � �� q � �g where q is some prime� A hash function h� U
h�	

��� � � � � s� ��� maps the universe U into a smaller universe of size s� Given a set S � U of size n� the
hash function h splits S into buckets Bh

i �� fx � S jh	x
 � ig of sizes bhi � jBh
i j� � � i � s� The

function h is c�perfect for S if bhi � c for all � � i � s� h is perfect for S if it is ��perfect for it�

Let d be a constant� The class of d�degree polynomial hash functions is de�ned as follows�

Hd
s ��

�
h

���� h	x
 ��
� dX
i��

aix
i mod q

�
mod s� ai � U

�
�

Fact 	�
 ��KRS���� Let h be selected at random from Hd
n��� � Then� for each i� i � �� � � � � n���

Prob
	
bhi � �n

�


� O	n��d��
 �

The class H�
s is denoted the class of linear hash functions�

Siegel �Sie��� and then Dietzfelbinger and Meyer auf der Heide �DM��� showed how polynomial
hash functions can be combined to create a new class of hash functions� The class R � Rd� �d�	k� n

of hash functions� de�ned in �DM���� is the set of all 	k  �
�tuples h � hf� g� a�� a�� � � � � aki� where
f � Hd�

k � for some constant d�� g � Hd�
n � for some constant d�� and a�� a�� � � � � ak � f�� � � � � n� �g�

The action of h � R on x � U is de�ned as h	x
 �� 	g	x
  af�x�
 mod n�

With high probability� a random hash function from R has a distribution of bucket sizes that is
very close to that of a truly random function� In particular�

Fact 	�� ��DM���� Let � � � � ��� and let k � n���� For h randomly chosen from R� h is
O	lgn� lg lgn
�perfect with high probability�

The two�level hashing scheme� Fredman� Komlos� and Szemeredi �FKS�
� introduced a simple
and elegant two�level scheme for constructing a perfect hash function� a �rst�level hash function h
partitions the input set S into n buckets Bh

i � � � i � n� this function is constructed in a �rst phase
and is assumed to imply a certain distribution on the bucket sizes bhi � For each bucket B

h
i � a private

memory block of appropriate size is allocated and a second�level function hi maps the elements of
Bh
i injectively into its block� these functions are constructed in a second phase� Fredman� Komlos�
and Szemeredi showed that both the �rst level and the second level can be constructed in linear
expected time� by using linear hash functions only� and by allocating to each bucket Bh

i a memory
block of quadratic size O		bhi 


�
�

��



��� The hashing algorithm

Our algorithm is based on an O	lg lgn
 time crcw hashing algorithm of Gil and Matias �GM�
a�
GM�
b� 	see also �GM���
� Their algorithm uses a technique of oblivious execution that circumvents
the need to learn the bucket sizes bhi � in order to allocate appropriately�sized memory blocks and
construct the second level functions hi� We �rst sketch the high�contention crcw algorithm and
then derive our low�contention qrqw algorithm�

�� Partition the input set into n buckets by a random hash function from Hd
n� where d is an

appropriate constant�

�� For t �� � to O	lg lgn
 do

	a
 Allocation� Allocate mt memory blocks� each of size xt� where mt and xt are carefully

selected parameters 	xt behaves as ��
t

for some constant � and mt � n��txt
� Let each
bucket select a block at random� and try to claim it by writing the bucket number in a
designated memory cell�

	b
 Hashing� Each bucket that successfully claimed an allocated block in the previous step
tries to injectively map its keys into the block using a random linear hash function from
H�

xt
� If it succeeds� it records the description of the hash function and the address of the

memory block for that bucket� Buckets that fail carry on to the next iteration�

The algorithm above is a high�contention one� since the bucket sizes when using a hash function from
Hd

n may be polynomially large� while the memory block sizes xt are small 	e�g� x� is a constant
� To
obtain an e�cient low�contention algorithm� we �rst replace the polynomial class Hd

n in step � with
the class R de�ned above� taking k � n���� � � � � ���� functions from this class have relatively
small bucket sizes 	Fact ���
� The disadvantage of using functions from R is that each function
h � R is represented by n��� �	�
 numbers that need to be selected at random in an initialization
step� and then used to evaluate in parallel h	x
 for x � S as well as any subsequent query set� A
straightforward implementation of this evaluation results in polynomial contention� We devise a
low�contention scheme for the evaluation� yielding the following result�

Lemma 	�
 A function h can be selected at random from R and preprocessed for e�cient evaluation
in O	lgn
 time and linear work w�h�p� Subsequently� for any set S � U of size n� h	x
 can be
evaluated in parallel for all x � S on a qrqw pram in O	lgn� lg lgn
 time and linear work w�h�p�

Proof� Recall that h � hf� g� a�� a�� � � � � an���i� for some constant �� where each aj is selected at
random from f�� � � � � n� �g� These n���  �	�
 parameters are selected by as many processors and
then duplicated in O	lgn
 time and linear work� using a simple binary broadcasting algorithm� the
functions f and g are duplicated n times and each of the aj is duplicated 
n�n

��� � 
n� times� The
total representation requires linear space�

Recall that for a key x � S� we compute h	x
 �� 	g	x
  af�x�
 mod n� Thus� for each key we
need to read the values of f � g� and af�x�� Reading f and g is easy� the i!th key reads the i!th
copies of these two functions� The main di�culty is in reading af�x� as contention cannot be entirely
avoided� For each key x � S� a processor allocated to the key evaluates f	x
 and then chooses at
random one of the copies of af�x� and reads it� By Fact ����

Prob
�
bfi � �n� for � � i � n���

�
� ��O	n�����d���
 �

Therefore� w�h�p� the contention distribution obtained in the read step of af�x� is upper bounded

by a distribution obtained by n��� instances of throwing �n� balls into 
n� urns at random� In
particular� it follows from Fact ��� that the maximum contention is O	lgn� lg lgn
 w�h�p�

��



The Gil and Matias algorithm sketched above requires a careful selection of its constants and
parameters� so that O	lg lgn
 iterations provably su�ce� Likewise� our adaptation of their algorithm
requires a careful selection of its constants and parameters to leverage their analysis and obtain the
desired result� as follows� In selecting the hash function that de�nes the buckets� it su�ces to take
R� � Rd��d�	k� n
 with d� � �� d� � ��� and k � n��
� Let � � ������ and let t� � � lg lgn� lg� be
the number of iterations� Let t� � dt��e� For t � �� �� � � � � t�� let xt� the block size at iteration t� and
mt� the number of blocks at iteration t� be�

xt � �a�
t��b�t

��c�

mt � n��a�
t��b�t��c� �

where a � ����� b� � ���� b� � ����� c� � ������ and c� � ����� 	these are the same constants
used in the Gil and Matias algorithm
� Then the qrqw hashing algorithm is�

Constructing a hash table�

�� Select a random hash function h from R�� duplicate the parameters of h� and partition the
input set into n buckets according to h�

�� For t �� � to t� do

	a
 Allocation� Allocate mt memory blocks� each of size xt� Let each bucket select a block at
random� and try to claim it by writing the bucket number in a designated memory cell�

	b
 Hashing� Each bucket that successfully claimed an allocated block in the previous step
tries to injectively map its keys into the block using a random linear hash function from
H�

xt� If it succeeds� record the description of the hash function and the address of the
memory block for that bucket� Buckets that fail carry on to the next iteration� For the
last iteration� t � t�� repeat this hashing substep a total of � times�

�� If there are any buckets that have yet to succeed� return to step � and restart the algorithm
from the beginning�

Lookup queries for n distinct keys are performed as follows�

Lookup queries�

�� For each query key x� h	x
 is computed to locate the memory block for this bucket and the
secondary hash function hi� i � h	x
� used within this block�

�� The key x is in the hash table if and only if location hi	x
 of this memory block contains the
key x�

Proof of Theorem ��
� We �rst analyze the hash table construction algorithm� then the lookup
queries algorithm�

By Lemma ��
� step � of the hash table construction algorithm takes O	lgn
 time and linear
work w�h�p� As for step �� Gil and Matias �GM�
a� show that� for their algorithm� the number
of active buckets decreases more rapidly than the number of memory blocks� and hence w�h�p��
all buckets have become inactive after O	lg lgn
 iterations� A straightforward adaptation of their
analysis to our algorithm 	which uses hash functions from R�
� shows that w�h�p�� all buckets have
become inactive after t� iterations� Thus w�h�p�� the algorithm will not be restarted� Step � can be
performed in O	lgn
 time and linear work� using an or computation�

To complete the analysis for the qrqw pram� we determine the contention encountered in
step �� For each active bucket we have a processor standing by that acts in step �	a
 in claiming
a memory block� and in step �	b
 in selecting a random function from H�

xt � As argued above� the
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number of active buckets is� w�h�p�� smaller than the number of memory blocks� In such cases� the
contention to a memory block in step �	a
 is a binomial random variable with an expected value
less than �� It follows by Observation ��� that w�h�p�� the maximum contention to a memory block
is O	lgn� lg lgn
� By Fact ���� all buckets contain O	lgn� lg lgn
 keys w�h�p� Thus� in a constant
number of steps of O	lgn� lg lgn
 contention w�h�p�� keys of each active bucket can learn if their
bucket is allocated with a memory block� read the random linear function selected by their bucket�
and test for injectiveness�

The work for an iteration of step � is bounded by the number of keys in active buckets� Gil
and Matias �GM�
a� show that w�h�p� this number decreases faster than a geometric series� Thus
step � of the algorithm can be described in a qrqw work�time presentation as a geometric decaying
algorithm with O	n
 work� consisting of O	lg lgn
 steps� each with contention O	lgn� lg lgn
 w�h�p�

This implies an O	lgn
 time O	n
 work algorithm that� by using Theorem ��� and Theorem ��
�
can be implemented on a qrqw pram in O	lgn
 time� using n� lgn processors�

We now analyze the lookup queries algorithm� By Lemma ��
� h	x
 can be computed for
each query key in parallel in O	lgn� lg lgn
 time and linear work w�h�p� By Fact ���� at most
O	lgn� lg lgn
 query keys map to any single bucket w�h�p� Thus the contention encountered for
a query key to read its block address� its secondary hash function� and its hash table location is
O	lgn� lg lgn
 w�h�p�

This completes the proof of Theorem ����

� Sorting

In this section� we present results for three classes of sorting algorithms� First� we consider sorting
keys drawn uniformly at random� and present an O	lgn
 time� linear work w�h�p� algorithm� Second�
we consider sorting general keys� and present two simple� work�optimal� comparison�based sorting
algorithms� one running in O	lg� n� lg lgn
 time w�h�p� and the other running in O	lgn
 time w�h�p�
Third� we consider sorting small integer keys� and present an O	lgn
 time� linear work w�h�p� algo�
rithm� We apply this result to obtain an O	lgn
 time� linear work w�h�p� algorithm for emulating
the powerful fetch�add pram� The �rst two results are for the qrqw pram model� the latter
three are for the stronger crqw pram model�

��� Distributive Sorting

The sorting from U 	�� �
 problem is to sort n numbers chosen uniformly at random from the range
	�� �
� As indicated in Table �� the best known linear work erew pram algorithm for this problem
runs in O	n�
 time� for �xed � � �� erew pram algorithms that run in polylog time are work
ine�cient by at least a

p
lgn lg lgn factor� We obtain the following�

Theorem ��� Sorting from U 	�� �
 can be done in O	lgn
 time and linear work w�h�p� on a qrqw

pram�

Proof� First partition the real interval 	�� �
 into n� lgn subintervals� It follows from Fact ��� that
the number of input items in each subinterval is with high probability at most c lgn for some constant
c� We allocate to each subinterval an array of size 
c lgn and employ our multiple compaction
algorithm 	Theorem 
��
 to place each input item in a private cell in the subarray allocated to its
subinterval�

��



To obtain a sorted output it remains to sort within each subinterval� Each subinterval contains
O	lgn
 items w�h�p�� and we assign one processor to the items in each subinterval� Each subin�
terval can be sequentially sorted in O	lgn
 expected time by further dividing the subintervals into
lgn buckets 	sub�subintervals
� having each processor assign its items to the appropriate bucket�
and then having each processor use heapsort to sort within the buckets �MA���� A more precise
analysis �Hag��� shows that each processor fails to complete its sorting in O	lgn
 time with proba�
bility less than �� lgn 	the failure probability is in fact much smaller
� We can achieve O	lgn
 time
w�h�p�� as follows� Each processor applies the sequential sorting algorithm for O	lgn
 steps� We
expect O	n� lgn
 processors to fail to complete their sorting� and by Fact ���� this occurs w�h�p� Use
a parallel pre�x sums algorithm to compact the unsuccessful subintervals and then assign O	lgn

processors to each such subinterval� each processor gets a constant number of unsorted items� In
O	lgn
 time� each processor compares its items against the other items in its assigned subinterval�
computes their ranks within the subinterval� and places the items in the appropriate positions in the
output array� Finally� the output array is compacted to size n using a parallel pre�x sums algorithm�

At this point� w�h�p�� the n numbers drawn from U 	�� �
 are successfully sorted� and the stated
time and work bounds are achieved w�h�p� However� for some inputs� e�g� when the number of
items in a subinterval exceeds 
c lgn� we will have failed to sort the items� To obtain a Las Vegas
algorithm� in such cases� we sort the input using a single processor� this does not a�ect the time and
work bounds for the algorithm�

Theorem ��� matches the bounds obtained for the crcw pram in �Chl��� Hag���� 	There is
also a more involved O	lgn� lg lgn
 time crcw pram algorithm as implied by applying �rst the
O	lg lgn
 padded�sorting algorithm of �MS���� followed by the O	lgn� lg lgn
 pre�x sums algorithm
of �CV����


��� General Sorting

In this section we consider the problem of general sorting� i�e� sorting an arbitrary collection of
n keys from some totally�ordered set� On the erew pram� there are two known O	lgn
 time�
O	n lgn
 work algorithms for general sorting �AKS��� Col���� these deterministic algorithms match
the asymptotic lower bounds for general sorting on the erew and crew pram models� Unfor�
tunately� these two algorithms are not as simple and practical as one would like� Simple parallel
O	n lgn
 work algorithms for sorting include a simple straightforward parallelization of mergesort
that runs in O	lg� n
 time on a crew pram and an O	lg� n
 time randomized quicksort algorithm
on an erew pram 	see� e�g� �J�aJ���
�

Another relatively simple parallel sorting algorithm is a randomized
p
n�sample sort algorithm

for the crew pram that runs in O	lgn
 time� O	n lgn
 work� and O	n���
 space �Rei����
 This
algorithm consists of the following high�level steps� 	�
 randomly sample

p
n keys� 	�
 sort the

sample by comparing all pairs of keys� 	�
 each item determines by binary search its position among
the sorted sample and labels itself accordingly� 	

 sort the items based on their labels using integer
sorting� and 	�
 recursively sort within groups with the same label� When the size of a group is at
most lgn� �nish sorting the group by comparing all pairs of items�

We build on this
p
n�sample sort algorithm and obtain the following two results�

� For the qrqw pram� we obtain an O	lg� n� lg lgn
 time� O	n lgn
 work� O	n
 space random�
ized sorting algorithm� thus improving the time bound by a factor of lg lgn over the erew
pram quicksort algorithm�

�The algorithm in �Rei��� uses �	n
 memory locations of size O	
p
n lgn
 bits� Under the standard assumption for

the pram� adopted as well in this paper� that each memory location is of size O	lgn
 bits� the algorithm in �Rei���
uses �	n���
 space� This has been improved to O	n���
 space� for any constant � � � 	see� e�g� �J�aJ
��
�

��



� For the crqw pram� we improve the space bound 	to O	n
 space
 over the crew pram while
maintaining the O	lgn
 time� O	n lgn
 work bounds�

These algorithms are arguably as simple as the ones cited earlier�

To obtain these improved results� we modify the
p
n�sample sort algorithm given above� In the

last phase of our algorithm� we use a work�ine�cient� but simple deterministic sorting algorithm�
For our qrqw result� we use bitonic sorting �Bat���� this runs in O	lg� n
 time and O	n lg� n
 work
on an erew pram� For our crqw result� we use a parallelization of mergesort that applies Valiant!s
O	lg lgn
 time merging algorithm �Val��� BH��� at each round� this runs in O	lgn lg lgn
 time with
n processors on a crew pram� 	The work can be improved to O	n lgn
� see e�g� �J�aJ����
 Algorithm
A below describes the generic modi�ed algorithm�

Algorithm A�
Let � be any constant such that � � � � ���� Let n � n� be the number of input items� and for
i � �� let

ni � 	�  �� lgn
 � n
�
���
i�� �

W�h�p�� ni is an upper bound on the number of items in each subproblem at the ith recursive call
to A�
For subproblems at the ith level of recursion�

�� Let S be the set of at most ni items in this subproblem� Select in parallel
p
ni items drawn

uniformly at random from S�

�� Sort these sample items by comparing all pairs of items� using summation computations to
compute the ranks of each item� and then storing the items in an array B in sorted order�
Move every 	n�i
th item in B to an array B��

�� For each item v � S� determine the largest item� w� in B� that is smaller than v� using a binary
search on B�� Label v with the index of w in B��


� Place all items with the same label into a subarray of size �	n
�����
i 
 designated for the label�

using heavy multiple compaction� W�h�p�� the number of items with the same label is at most
ni�� and thus the heavy multiple compaction succeeds in placing all items in each such group
into its designated subarray�

�� Recursively sort the items within each group� for all groups in parallel� When ni�� is at most
n�� lg lg n� �nish sorting the group using the crew pram mergesort algorithm� Alternatively�

for our qrqw pram result� when ni�� is at most �
�lgn���� � �nish sorting the group using the

erew pram bitonic sort algorithm� These cut�o� points su�ce for n su�ciently large� for

general n� the cut�o� points are max
�
n�� lg lgn� lgc n

�
and max

n
��lgn�

���
� lgc n

o
� respectively�

for c � ��� a suitable constant�

We use �relaxed� heavy multiple compaction� which reports failure if a set size exceeds its upper
bound count 	recall the discussion at the end of Section 
��
� If failure is reported for any subproblem�
we restart the algorithm from the beginning�

Algorithm A is readily implemented on a crqw pram� as follows�

Theorem ��
 Algorithm A for sorting n arbitrary keys can be implemented on a crqw pram in
O	lgn
 time and O	n lgn
 work w�h�p�� using O	n
 space�

��



Proof� We �rst show that ni � n�� lg lgn after � � �	lg lg lgn
 recursive calls to Algorithm A� We
claim that for all i�

ni � 	�  �� lgn
i � n� �����
i

�

The proof of this claim is by induction on i� The case i � � is straightforward� Assume that the

claim holds for an arbitrary i � �� We have that ni�� � 	�  �� lgn
 � n
�
���
i � which by the inductive

hypothesis is at most 	�  �� lgn
		�  �� lgn
i � n� �����i 
 ����� Since � � ���� we have that ni�� �

	�  �� lgn
i�� � n� �����i��
� and the claim is proved� It follows that there exists a � � �	lg lg lgn


such that n� � n�� lg lgn� Also� for all i � � � we have that 	�  �� lgn
i � 	�  ��� 
� � e�

Algorithm A applies the technique of oversampling as used in �RV��� to obtain a sample B� with
better performance guarantees� Speci�cally� let Xi be the size of the largest group created for a
given subproblem 	of size at most ni
 at the ith level of recursion� Then from Lemma ��� in �RV����
we have

PrfXi � 	�  n
���	
i 
n

�
���
i g � 	n���i �n

���
i 
����� 	�


Since ni � lgc n and c � ����

PrfXi � ni��g � PrfXi � 	�  �� lgn
n
�
���
i g � PrfXi � 	�  lg

�c��	 n
n
�
���
i g

� PrfXi � 	�  n
���	
i 
n

�
���
i g � o	n�c���
 	by �
�

Thus w�h�p�� ni�� will be an upper bound on the number of items with the same label� the subarrays
designated for each label are of su�cient size� and the heavy multiple compaction will succeed �
therefore the algorithm will complete without restarting�

We now analyze the crqw pram complexity of Algorithm A� Consider all O	n�ni
 subproblems
at the ith level of recursion� Step � takes O	�
 time and O	n�

p
ni
 work� Step � takes O	lgni
 time

and O	n
 work� Step � takes O	lgni
 time and O	n lgni
 work� By Lemma 
�� and the analysis
in the previous paragraph� step 
 can be done in O	lg� ni lgn� lg lgn
 time and O	n
 work w�h�p�
Thus the total time spent on all recursive calls is� w�h�p��

P
��i�� O	lgni lg

� ni lgn� lg lgn
� Since
lgni � O		���  �
i lgn
 and lg� ni � lg

� n� the total time is� w�h�p��

O		� lg� n� lg lgn
 lgn
  
X

��i��
O		���  �
i lgn
 � O	lgn
�

The total work is� w�h�p�� X
��i��

O	n lgni
 � O	n lgn
�

The time for mergesort on groups of size at most n�� lg lgn is O	lgn
� while the total work
performed is O	n lgn
 over all groups� Broadcasting whether any failure has occurred is done only
after the mergesort� and takes O	lgn
 time and linear work�

It follows that the entire algorithm runs in O	lgn
 time and O	n lgn
 work w�h�p� Moreover� all
steps can be done in O	n
 space�

To implement Algorithm A on a qrqw pram� we must replace all the high�contention read
steps with techniques that use only low�contention steps� The main obstacle is step �� in which each
item needs to learn its position relative to the sorted sample� A straightforward binary search on
B� would encounter �	n
 contention� Instead� for the qrqw� we employ the following novel data
structure�

Binary search fat�tree� In a binary search fat�tree� there are n copies of the root node� n��
copies of the two children of the root node� and in general� n��j copies of each of the �j distinct
nodes at level j down from the root of the tree� The added fatness over a traditional binary search

��



tree ensures that� if n searches are performed in parallel such that not too many searches result in
the same leaf of the 	non�fat
 tree� then each step of the search will encounter low contention�

The process of fattening a search tree can be done in O	lgn
 time and O	n lgn
 work using
binary broadcasting�

In the case of our sorting algorithm� at the ith level of recursion we make ni copies of the median

splitter� ni�� copies of the ��
 and ��
 splitters� and so forth� down to n
�����
i copies of the n

�����
i

splitters in the leaves of the tree�� Since there are �	n
�����
i 
 items per splitter bucket w�h�p�� it can

be shown that at each step in the binary search� an item selecting a random copy of the splitter
encounters constant expected contention� Thus by Observation ���� the maximum contention over
all items at each step in the search is O	lgn� lg lgn
 w�h�p� Thus each item can determine its bucket
in O	lgni lgn� lg lgn
 time and O	lgni
 work w�h�p�

At the ith level of recursion� there are n�ni fat�trees� each of which uses O	ni lgni
 space� To
reduce the space per fat�tree to O	ni
� we initially make only some of the copies� and then reuse the
space as needed� Speci�cally� we make ni copies of the median splitter stored in an array A�� ni�

copies of the ��
 and ��
 splitters stored in an array A�� and in general ni�


j copies of each splitter
at the jth level of the fat�tree� for a total of ni��j copies of splitters stored in an array Aj � This is
O	ni
 copies in all� The processors begin by probing A�� encountering constant expected contention�
Then for each array Aj � j � �� the contents of Aj are duplicated and stored in array Aj��� in constant
time and O	ni
 work� The processors again probe A�� which contains ni�� copies of the ��
 and
��
 splitters� followed by the duplication of all splitter copies� and so forth� alternating probe steps

and duplication steps� until �nally probing the n
�����
i copies of the n

�����
i splitters placed in A� in

the previous duplication step� In this way� the maximum contention over all items at each step in
the search is O	lgn� lg lgn
 w�h�p� as before� while the space for all the fat�trees is O	n
�

This leads to the following theorem�

Theorem ��� Algorithm A for sorting n arbitrary keys can be implemented on a qrqw pram in
O	lg� n� lg lgn
 time and O	n lgn
 work w�h�p�� using O	n
 space�

Proof� The analysis proceeds as in Theorem ���� Since ni � 	� �� lgn
i �n�������i for all i� there
exists a � � �	lg lgn
 such that n� � �

p
lgn� Moreover� since ni � lgc n� we have that� w�h�p��

ni�� will be an upper bound on the number of items with the same label� the subarrays designated
for each label are of su�cient size� and the heavy multiple compaction will succeed � therefore the
algorithm will complete without restarting�

We now analyze the qrqw pram complexity of AlgorithmA� Consider all O	n�ni
 subproblems
at the ith level of recursion� By Observation ��� and since ni � �

p
lgn� the maximum contention

in step � is O	
p
lgn
 w�h�p� The work is O	n�

p
ni
� Step � can be done in O	lgni
 time and O	n


work by �rst making
p
ni copies of each item in the sample� For step �� we build a binary search

fat�tree of depth lg	n�����i 
� and then label each item using a random search into the fat�tree� as
described above� This takes O	lgni � lgn� lg lgn
 time w�h�p� and O	n lgni
 work� Step 
 can be
done in O	lg� ni lgn� lg lgn
 time and O	n
 work w�h�p� Thus the total time spent on all recursive
calls is� w�h�p�� X

��i��
O	lgni lgn� lg lgn
 � O	lg� n� lg lgn
�

�A similar idea was used implicitly in �RV��� in the context of sorting on the cube�connected cycles network�
In �RV���� multiple copies of the splitters are placed at nodes in the network� These are used to direct the routing of
each item to a subnetwork designated for the splitter bucket in which its key belongs�

��



The total work is� w�h�p�� X
��i��

O	n lgni
 � O	n lgn
�

The time for bitonic sort on groups of size at most �
p

lgn is O	lgn
� while the total work
performed is O	n lgn
 over all groups� Broadcasting whether any failure has occurred is done only
after the bitonic sort� and takes O	lgn
 time and linear work�

It follows that the entire algorithm runs in O	lg� n� lg lgn
 time and O	n lgn
 work w�h�p�� using
O	n
 space�

In �GMR��b�� we consider the qrqw asynchronous pram model� a more asynchronous qrqw
model in which individual processors may proceed at their own pace without waiting for the con�
tention encountered by other processors� We show how to adapt the above qrqw pram sorting
algorithm to obtain a fairly simple randomized sorting algorithm on the qrqw asynchronous

pram that runs in O	lgn
 time with O	n lgn
 work w�h�p�

��� Integer sorting

The �nal class of sorting problems we consider is that of sorting an arbitrary collection of n integers
in the range ����n lgc n�� for a constant c� For this problem� we obtain an O	lgn
 time� linear
work randomized algorithm for the crqw pram� In contrast� no algorithm with O	lgn
 time and
simultaneously o	n lgn
 work is known for the crew pram�

Theorem ��
 Sorting n integers in the range ����n lgc n�� for any constant c� can be done in O	lgn

time and linear work w�h�p� on a crqw pram�

Proof� The integer sorting algorithm follows the steps of the Rajasekaran and Reif algorithm
for the crcw pram �RR���� The main phase of the algorithm sorts the input keys based on their
lg	n� lg� n
 least signi�cant bits� Then Fact 
�� can be applied to stably�sort the resulting sequence
based on the lg	lgc�� n
 most signi�cant bits of the input keys� to obtain the �nal sorted sequence�
In what follows� we list the steps of the main phase of the Rajasekaran�Reif algorithm� and then
discuss how to implement the steps on a crqw pram within the bounds stated in the theorem�

Let D � n� lg� n and for each input item� let its lgD least signi�cant bits be its label�

�� Select in parallel n� lg� n input items drawn uniformly at random�

�� Sort these sample items according to their labels�

�� For each label j � ����D�� compute the number� Nj� of items in the sample with label j� Let
countj � d	lg� n
max	Nj � lgn
� for a constant d� Rajasekaran and Reif show that for a suitable

d� countj is an upper bound on the number of input items with label j and
PD

j�� countj � �dn�
w�h�p�


� Let B be an array of size �dn� Partition array B into subarrays such that the jth subarray is
of size 
countj� Let pointerj be the starting point in B of the jth subarray�

�� Each item with label j reads countj and pointerj �

�� Apply a multiple compaction algorithm to place each item into a private cell in the subarray
for its label�

��



�� Compact the items in B into an array of size n�

By Observation ���� the maximum contention in step � is O	lgn� lg lgn
 w�h�p� For step �� we
can apply Theorem ��� 	or use any other algorithm that sorts n keys in O	lgn
 time and at most
O	n lg� n
 work on a crqw pram
� Steps �� 
� �� and � can be done in O	lgn
 time and linear
work using pre�x sums computations� For step �� we replace the procedure used in �RR��� with
our algorithm for �relaxed� heavy multiple compaction 	Lemma 
��
� Thus w�h�p�� the total time
is O	lgn
 and the total work is O	n
� Processor allocation is straightforward� yielding the desired
result�

We observe that� with the exception of step � above� the entire algorithm can be adapted to
run on the qrqw pram within the same resource bounds� In step �� each item needs to learn the
estimate of the set size for its key� and the pointer to its allocated subarray� we use the concurrent�
read capability to stay within the desired resource bounds�

Theorem ��
 matches the bounds obtained for the crcw pram in �RR���� 	There is also a more
involved� optimal crcw pram algorithm that runs in O	lgn� lg lgn
 time and linear work w�h�p��
see� e�g� �Mat����


We conclude this section with the following application of integer sorting to emulating the pow�
erful fetch�add pram on the crqw pram�

Emulating Fetch�Add PRAM on CRQW PRAM

The fetch�add pram model �GGK���� Vis��� is stronger than the crcw pram� for instance�
the parity and the pre�x sums problems with input size n can be solved in constant time on a
fetch�add using n processors� while requiring �	lgn� lg lgn
 time on a crcw pram when using
nc processors� for any constant c � �� The following lemma gives a reduction from the problem of
emulating one step of a fetch�add pram on an erew pram� to the integer sorting problem�

Lemma ��� ��MV���� Emulating one step of a fetch�add pram with n processors and memory
of arbitrary size m on an erew pram can be reduced to ��� n��integer sorting in O	j lgn
 time

and O	n
 work w�h�p�� using O	n lg�j� n
 space� for any j � �� � � � � lg� n� In particular� it can be
reduced�

�ii� to ��� n��integer sorting� in O	lgn lg� n
 time and O	n
 operations with high probability� using
O	n
 space� and

�iii� to ��� n��integer sorting� in O	lgn
 time and O	n
 operations with high probability� using

O	n lg�j� n
 space� for any constant j � ��

By using the crqw integer sorting algorithm of Theorem ��
 we obtain�

Theorem ��	 One step of an n�processor fetch�add pram can be emulated on an n� lgn�

processor crqw pram in O	j lgn
 time w�h�p�� and O	n lg�j� n
 space� for any j � �� � � � � lg� n�
In particular� the emulation takes linear work and O	lgn lg� n
 time w�h�p�� using O	n
 space� and
furthermore� for any constant j the emulation takes linear work and O	lgn
 time w�h�p�� using

O	n lg�j� n
 space�

�




� Conclusions

In this paper we have presented highly parallel work�optimal algorithms for several fundamental
problems for the qrqw pram� These include linear work� logarithmic time algorithms for multiple
compaction� generating a random permutation� and hashing� a sublogarithmic time� linear work
algorithm for load balancing when the maximum initial load is small� and a sublogarithmic time
linear work algorithm for generating a random cyclic permutation� We have also presented several
simple algorithms for the sorting problem that improve on algorithms known for exclusive memory
access pram models� Complementing these algorithmic results� we have shown an �	lgL
 time lower
bound on the qrqw pram for the load balancing problem with maximum load L� All of the algo�
rithms we have presented in this paper are randomized algorithms with high probability performance
guarantees� and our lower bound applies to randomized as well as deterministic algorithms�

We have also provided experimental results from an implementation� on the MasPar MP��� of
our qrqw pram algorithm for generating a random permutation as well as the best erew pram

algorithm for this problem� our experimental results show that the qrqw pram algorithm does�
indeed� run faster than the erew pram algorithm�

The qrqw pram models the mechanism used by a number of currently available commercial
shared memory machines to handle memory contention� As has been illustrated in the algorithms
presented in this paper� novel techniques may be needed in the design of e�cient algorithms in
the qrqw models� We expect that further research will help obtain a clearer understanding of the
capabilities of this model and its applicability to the design of e�cient and cost e�ective parallel
algorithms that can be implemented on currently available parallel machines�

Among the important open problems remaining are to obtain tight upper and lower bounds
for the running times of 	additional
 fundamental problems on the qrqw pram� and to obtain a
work�optimal� polylog time simulation of the crcw pram on a qrqw pram 	or prove that such a
simulation does not exist
�
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