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Abstract

We consider the question of whether a shared�memory
model can serve as an e�ective bridging model for paral�
lel computation along the lines of a distributed�memory
model such as the bsp� As a candidate for a shared�
memory bridging model� we introduce the Queuing Shared
Memory �qsm� model� which accounts for limited commu�
nication bandwidth while still providing a simple shared�
memory abstraction� We substantiate the ability of the
qsm to serve as a bridging model by providing a simple
work�preserving emulation of the qsm on both the bsp�
and on a related model� the �d�x��bsp� We present evi�
dence that the features of the qsm are essential to its ef�
fectiveness as a bridging model� In addition� we describe
scenarios in which the high�level qsm is more suited for
analyzing algorithms on certain machines than the more
detailed bsp and logp models� Finally� we present algo�
rithmic results for the qsm� as well as general strategies
for mapping algorithms designed for the bsp or pram

models onto the qsm model� Our main conclusion is
that shared�memory models can potentially serve as vi�
able alternatives to existing message�passing� distributed�
memory bridging models�

� Introduction

A fundamental challenge in parallel processing is to de�
velop e�ective models for parallel computation� at suit�
able levels of abstraction� E�ective and widely�used mod�
els would provide standards that could be relied upon by
application programmers� algorithm designers� software
vendors� and hardware vendors� making parallel machines
cheaper to build and easier to use� E�ective models must
balance simplicity� accuracy� and broad applicability� In
particular� a simple� �bridging� model� i�e�� a model that
spans the range from algorithm design to architecture to
hardware� is an especially desirable one�
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A large number of models for parallel computation
have been proposed and studied in the last twenty years
�see the full version of this paper ���� and the references
therein�� These models di�er in what aspects of parallel
machines are exposed� Given this plethora of models� it
is natural to seek to distinguish a few models with the
most promise� and concentrate on these models� Advo�
cates such as Vishkin ����� Kennedy ����� Smith ����� and
Blelloch ��� have long presented arguments in support
of the shared�memory abstraction� On the other hand�
shared�memory models have been criticized for years for
failing to model essential realities of parallel machines� In
particular� the pram model ����� in which processors exe�
cute in lock�step and communicate by unit�time reads and
writes to locations in a shared memory� has been faulted
�among other failings� for completely ignoring the band�
width limitations of parallel machines� Until recently�
there were few attractive alternatives� so shared�memory
models such as the pram remained the most widely used
models for the design and analysis of parallel algorithms
�see� e�g� ���� ��� ����� However� in the last few years�
new alternatives such as the bsp ���� and logp ���� mod�
els have gained considerable popularity� These abstract
network models support point�to�point message�passing�
can directly support a distributed�memory abstraction�
and account for bandwidth limitations using a �gap� pa�
rameter� Given these new� more realistic models� there
is a temptation to declare all shared�memory models too
unrealistic� and not worthy of further study or considera�
tion�

In this paper we challenge this perception and consider
the question of whether a shared�memory model can in
fact serve as an e�ective bridging model for parallel com�
putation� In particular� can a shared�memory model be
as e�ective as� say� the bsp$ As a candidate for a bridging
model� we introduce the Queuing Shared Memory �qsm�
model� which accounts for limited communication band�
width while still providing a simple shared�memory ab�
straction� In a nutshell� the qsm model consists of pro�
cessors with individual private memory as well as a global
shared memory� Access to shared memory is more expen�
sive than access to local memory or a computation step�
re
ecting bandwidth limitations� The choice of the qsm
model is based on the observation that while overheads
due to latency� synchronization� and memory granular�
ity can be e�ectively diminished by using slackness and
pipelining� the bandwidth overhead is inherent and hence
should be accounted for directly� Thus� the qsm is en�
visioned as a �minimal� shared�memory model that can
be competitive with the bsp� Similarly� the memory con�
tention rule of the qsm is the queuing contention rule� as
in the qrqw pram ����� This rule is strong enough to
provide the qsm with an expressive power comparable to
that of the bsp� but it is not too strong to prevent a fast



and e
cient emulation of the qsm on the bsp with the
techniques we use�

As advocated in ���� ��� and elsewhere� one reason�
able goal for a high�level� shared�memory model is that
it allow for e
cient emulation on lower�level� seemingly
more realistic� models� If the overheads in the emulation
are small� then the high�level model becomes an attrac�
tive general�purpose bridging model� We substantiate the
ability of the qsm to serve as a bridging model by pro�
viding a simple work�preserving emulation of the qsm on
both the bsp� and on a related model� the �d�x��bsp ����
and arguing for the practicality of this emulation� Thus
the qsm can be e�ectively realized on machines that can
e�ectively realize the bsp� as well as on machines that
are better modeled by the �d�x��bsp� We also describe
scenarios in which the high�level qsm is more suited for
analyzing algorithms on certain machines than the more
detailed bsp and logp models� due to the fact that the
memory layout is di�erent than the one perceived by the
bsp and logp�

We present several algorithmic results for the qsm�
We note that any erew or qrqw pram algorithm can be
mapped onto the qsm with a factor of g increase in time
and work� We also show that for many linear�work qrqw

pram algorithms� this increase in work in the qsm algo�
rithm is unavoidable� and we present some other lower
bounds for the qsm� We consider the mapping of the bsp
onto the qsm when the bandwidth parameter� g� is the
same for both models� We show that many� though not
all� bsp algorithms map onto the qsm step�by�step� result�
ing in algorithms whose time and work bounds match the
bounds on a bsp whose latency parameter� L� is set to ��
We also present a work�preserving randomized emulation
of the bsp on the qsm with a logarithmic slowdown� This
result implies that any n�processor bsp algorithm that
takes time t�n� �when L is set to �� can be mapped onto
the qsm to run in time O�t�n� lg n� w�h�p� using n� lg n
processors� and more generally on a p�processor qsm to
run in time O�t�n� � �n�p� lg n�� w�h�p�

Our main conclusion is that shared�memory models
can potentially serve as viable alternatives to existing
message�passing or distributed�memory bridging models�
While this paper focuses on a shared�memory model that
would be competitive with the bsp� a similar approach
can be taken with regard to other message�passing bridg�
ing models mentioned above �or others�� that may em�
phasize other features than the ones emphasized by the
bsp�

The rest of the paper is organized as follows� In Sec�
tion �� we describe the Queuing Shared Memory model�
and qualitatively compare it with previous models� and in
particular� with the bsp� In Section �� we present work�
preserving emulations of the qsm on the bsp and on the
�d�x��bsp� and discuss the practicality of these emula�
tions� In Section �� we provide a few scenarios where
the qsm is a more accurate model than the more detailed
bsp and logp� Section � presents algorithmic results and
issues related to algorithm design on the qsm�

Finally� we refer the reader to the position paper �����
which provides a non�technical overview of much of this
work in arguing the importance of shared�memory models
in general and the qsm model in particular�

� The Queuing Shared Memory model

In this section� we describe the Queuing Shared Memory
model� and elaborate on some of its features�

De
nition ��� The Queuing Shared Memory �qsm� model
consists of a number of identical processors� each with its
own private memory� communicating by reading and writ�
ing locations in a shared memory� Processors execute a
sequence of synchronized phases� each consisting of an ar�
bitrary interleaving of the following operations�

�� Shared�memory reads� Each processor i copies the
contents of ri shared�memory locations into its pri�
vate memory� The value returned by a shared�memory
read can only be used in a subsequent phase�

�� Shared�memory writes� Each processor i writes to
wi shared�memory locations�

�� Local computation� Each processor i performs ci
ram operations involving only its private state and
private memory�

Concurrent reads or writes 	but not both
 to the same
shared�memory location are permitted in a phase� In the
case of multiple writers to a location x� an arbitrary write
to x succeeds in writing the value present in x at the end
of the phase�

The restrictions that �i� values returned by shared�
memory reads cannot be used in the same phase and that
�ii� the same shared�memory location cannot be both read
and written in the same phase re
ect the intended emula�
tion of the qsm model on a mimd machine� In this emula�
tion� the shared memory reads and writes at a processor
are issued in a pipelined manner� to amortize against the
delay �latency� on such machines in accessing the shared
memory� and are not guaranteed to complete until the
end of the phase� On the other hand� each of the local
compute operations are assumed to take unit time in the
intended emulation� and hence the values they compute
can be used within the same phase�

Each shared�memory location can be read or written
by any number of processors in a phase� as in a concurrent�
read concurrent�write pram model� however� in the qsm
model� there is a cost for such contention� In particular�
the cost for a phase will depend on the maximum con�
tention to a location in the phase� de�ned as follows�

De
nition ��� The maximum contention of a qsm phase
is the maximum� over all locations x� of the number of
processors reading x or the number of processors writing
x� A phase with no reads or writes is de�ned to have
maximum contention �one
�

One can view the shared memory of the qsm model
as a collection of queues� one per shared�memory loca�
tion� requests to read or write a location queue up and
are serviced one�at�a�time� The maximum contention is
the maximum delay encountered in a queue� The cost for
a phase depends on the maximum contention� the maxi�
mum number of local operations by a processor� and the



maximum number of shared�memory reads or writes by
a processor� To re
ect the limited communication band�
width on most parallel machines� the qsm model provides
a parameter� g � �� that re
ects the gap between the local
instruction rate and the communication rate�

De
nition ��� Consider a qsm phase with maximum con�
tention �� Let mop � maxifcig for the phase� i�e� the
maximum over all processors i of its number of local oper�
ations� and likewise letmrw � maxifri� wig for the phase�
Then the time cost for the phase ismax fmop� g �mrw� �g��
The time of a qsm algorithm is the sum of the time
costs for its phases� The work of a qsm algorithm is its
processor�time product�

Note that although the model charges g per shared�
memory request at a given processor �the g � mrw term
in the cost metric�� it only charges � per shared�memory
request at a given location �the � term in the cost met�
ric�� Note also that our model considers contention only
at individual memory locations� not at memory modules�
Even though both of these features give more power to
the qsm than would appear to be warranted by current
technology� our emulation results in Section � show that
we can obtain a work�preserving emulation of the qsm on
the bsp with only a modest slowdown� Thus� these fea�
tures do capture the computational power achievable by
current technology� The discussion in Section � provides
some intuition for this rather surprising result�

The particular instance of the Queuing Shared Mem�
ory model in which the gap parameter� g� equals � is
essentially the Queue�Read Queue�Write �qrqw� pram

model de�ned by the authors ����� Previous work on the
qrqw pram ���� ��� �� has been focused primarily on
contention issues� unlike this paper� which is primarily
concerned with bridging models and bandwidth issues�

��� Model comparison

Table � compares the qsm model to a number of other
models in the literature� The �rst column of the table
gives the name of the model� The second column indi�
cates the synchrony assumption of the model� Lock�step
indicates that the processors are fully synchronized at
each step� with no cost for the synchronization� Bulk�
synchrony indicates that there is asynchronous execution
between synchronization barriers� Typically the barriers
involve all the processors� although this is not necessarily
required� Models that permit more general asynchrony
are denoted as asynchronous� The third column indicates
the type of interprocessor communication assumed by the
model while fourth column indicates the parameters in the
model�

Unlike the previous models shown in Table �� the qsm
provides bulk�synchrony� a shared�memory abstraction�
and just two parameters� In all� the key features of the
qsm that make it an attractive candidate for a bridging
model are�

�Alternatively� the time cost could be mop � g � mrw � �� this
a�ects the bounds by at most a factor of �� and the results in ���
show that at least for certain machines� taking the maximum is
more accurate than taking their sum�

�� Shared	memory abstraction� The qsm provides
the simplicity of a shared�memory abstraction in which
the shared memory is viewed as a collection of indepen�
dent cells� non�local to the processors� The shared�memory
abstraction is similar to the view of memory in sequen�
tial programming �the familiar read"write semantics�� It
is also the abstraction of choice for the small symmetric
multiprocessors �SMPs� found in current microprocessors�
There are high�performance parallel machines such as the
Cray C��� Cray J��� and Tera MTA that also directly
support a shared�memory abstraction� Thus as a bridg�
ing model� it provides for the smoothest transition from
sequential programming to programming small SMPs to
programming larger parallel machines �MPPs��

�� Bulk	synchrony� The qsm supports bulk�synchronous
operation� in which processors operate asynchronously be�
tween barrier synchronizations� This allows a qsm al�
gorithm to synchronize less frequently than algorithms
designed for a lock�step model� which makes for a more
e
cient mapping of the algorithm to mimd machines�

�� Few parameters� For simplicity� it is desirable for
bridging models to have only a few parameters� As ev�
idenced by ���� ��� ��� and elsewhere� having additional
parameters in a model can make it quite di
cult to obtain
a concise analysis of an algorithm� On the other hand� it
is desirable to have whatever parameters are essential for
a desired level of accuracy in modeling machines realizing
the bridging model� The qsm has only two parameters�
one re
ecting the number of processors and one re
ecting
the limited communication bandwidth� The results in the
next section provide evidence that a parameter re
ecting
limited bandwidth should be in a high�level model� and
that other communication parameters are not necessary�
For this reason� we believe that g is a better choice for a
second parameter than the 	� s� L� or I parameters found
in other models�

�� Queue contention metric� The �queue�read queue�
write� �qrqw� contention rule of the qsm model more ac�
curately re
ects the contention properties of parallel ma�
chines with simple� non�combining interconnection net�
works than either the well�studied exclusive�read exclusive�
write �erew� or concurrent�read concurrent�write �crcw�
rules� As argued in ����� the erew rule is too strict�
and the crcw rule ignores the large performance penalty
of high contention steps� Indeed� for most existing ma�
chines� the contention properties of the machine are well�
approximated by the queue�read� queue�write rule� The
queue�read queue�write contention metric can lead to faster
algorithms� since it does not ignore the aforementioned
penalty for high contention steps and yet it allows for
low�contention algorithms that are not permitted under
the erew rule�

�� Work	preserving emulation on bsp� The bsp is a
distributed memory� message passing model that is gain�
ing acceptance as a bridging model for parallel computa�
tion� Thus a work�preserving emulation of the qsm on the
bsp is a strong validating point for this shared�memory
model� In Section � we present a randomized work pre�
serving emulation of the qsm on the bsp and the related
�d�x��bsp that works with high probability and only a
small slowdown�

�� Work	preserving emulation of bsp� In addition to
the work�preserving emulation of qsm on bsp we observe



Comparison of Models of Parallel Computation

model synchrony communication parameters
PRAM ���� lock�step shared memory p
Module Parallel Computer �mpc� ���� lock�step distributed memory p
LPRAM ��� lock�step shared memory p� 	
Phase LPRAM ���� bulk�synchrony shared memory p� 	� s
XPRAM ���� bulk�synchrony message�passing p� g� L
Bulk�Synchronous Parallel �bsp� ���� bulk�synchrony message�passing p� g� L
Postal model ��� asynchronous message�passing p� 	
LogP model ���� asynchronous message�passing p� g� 	� o
QRQW Asynchronous PRAM ���� asynchronous shared memory p
QRQW PRAM ���� bulk�synchrony shared memory p
Block Distributed Memory �bdm� ���� bulk�synchrony distributed memory p� g� L�B
PRAM�m� model ���� lock�step shared memory p�m
Interval model ���� bulk�synchrony message�passing p� I
Queuing Shared Memory �qsm� bulk�synchrony shared memory p� g

Table �� A comparison of several models of parallel computation� Here p is the number of processors� 	 is the latency�
s is the cost for a barrier synchronization� L is the sum of 	 and s� g is the bandwidth gap� o is the overhead at the
processor to send or receive a message� B is the block size �i�e� the number of consecutive cells sent on a write or retrieved
on a read�� m is the number of shared�memory cells available for both reading and writing� and I is the maximum of 	�
g� and s�

that there is a work�preserving mapping in the reverse
direction as well� Many bsp algorithms map onto the qsm
in a step�by�step manner with performance corresponding
to the case when the periodicity parameter on the bsp

is set to �� While it is possible for bsp algorithms not
to have this property� we also present a work�preserving
emulation of the bsp on the qsm with only a small slow�
down� This emulation holds for all bsp algorithms� This
is discussed in more detail in Section ��

The pram�m� model shares many of the same goals as
the qsm model� As shown in the table� the pram�m� pro�
vides a shared�memory abstraction and just two parame�
ters� one for the number of processors and one that cap�
tures the limited communication bandwidth �g � p�m��
However� the pram�m� model is suitable only for lower
bounds since it does not charge for contention to the m
shared�memory locations or reads on the input values�

� Emulations of qsm on bsp models

The Bulk�Synchronous Parallel �bsp� model ���� ��� con�
sists of p processor"memory components communicating
by sending point�to�point messages� The interconnection
network supporting this communication is characterized
by a bandwidth parameter g and a latency parameter L�
A bsp computation consists of a sequence of �supersteps�
separated by bulk synchronizations� In each superstep
the processors can perform local computations and send
and receive a set of messages� Messages are sent in a
pipelined fashion� and messages sent in one superstep will
arrive prior to the start of the next superstep� The time
charged for a superstep is calculated as follows� Let wi

be the amount of local work performed by processor i in
a given superstep� Let si �ri� be the number of messages
sent �received� by processor i� Let w � maxpi�� wi� and
h � maxpi���max�si� ri��� Then the cost� T � of a superstep
is de�ned to be T � max�w� g � h� L��

The �d�x��bsp ��� is a model similar to the �distributed�

memory view of the� bsp� but it provides a more detailed
modeling of memory bank contention and delay� In ����
it is argued that the �d�x��bsp more accurately models
shared�memory machines with a high�bandwidth commu�
nication network and more memory banks than processors
than the bsp does� Such machines include Cray C��� Cray
J�� and Tera MTA �experimental validation of this accu�
racy claim is provided for Cray C�� and Cray J���� The
�d�x��bsp is parameterized by �ve parameters� p� g� L� d
and x� where p� g and L are as in the original bsp model�
the delay d is the �gap� parameter at the memory banks�
and the expansion x is the ratio of memory banks to pro�
cessors �i�e�� there are x � p memory banks�� Consider a
superstep where w is the maximum local work performed
by a processor� hs is the maximum number of read"write
requests by a processor and hr is the maximum num�
ber of read"write requests to a memory bank� Then the
time� T � charged by the �d�x��bsp for this superstep is
T � max�w� g � hs� d � hr� L�� The original bsp can be
viewed as a �d�x��bsp with d � g and x � ��

In this section we present two emulations of the qsm
on the �d�x��bsp� The �rst emulation is for a so�called
balanced �d�x��bsp� in which x � d�g� and is work opti�
mal� Since the bsp is a balanced �d�x��bsp� this optimal
emulation applies also for the bsp� The second emulation
is for an unbalanced �d�x��bsp� in which x � d�g� This
emulation su�ers from work ine
ciency which is propor�
tional to the �imbalance�factor�� d��gx�� We show by a
lower bound argument that this overhead is unavoidable�

The two emulations are in fact identical� and di�er
only in the slackness parameter� We �rst present the
algorithm� followed by the di�erent analysis for the two
cases mentioned above� and concluding with the lower
bound�

��� The emulation algorithm

A work�preserving emulation of a model A on a model B
provides a formal proof that model A can be realized on



model B with only a constant factor overhead in work�
If model B is considered to be re
ective of an interesting
class of parallel machines� then such an emulation sup�
ports the use of A as a bridging model� as long as the
emulation can be considered �practical�� For the qsm on
the �d�x��bsp �and hence on the bsp�� we present a very
simple emulation algorithm and then discuss its practi�
cality in some detail�

The emulation algorithm of a v�processor qsm on a
p�processor �d�x��bsp� v � p� is quite simple� and it is
similar to emulations that were previously proposed for
the pram� Unlike previous emulations� our analysis needs
to handle the gap parameter in the emulated machine�

� The shared address space of the qsm is randomly
hashed into the xp memory banks of the �d�x��bsp
�or to the p memory modules of the bsp��

� In each phase� each processor of the �d�x��bsp em�
ulates v�p processors of the qsm�

In the work�preserving emulation� each phase i of time
ti on the qsm is emulated on the �d�x��bsp �or simply
the bsp� in time O��v�p� � ti�� regardless of the distri�
bution of shared memory reads and writes� The needed
parallel slackness� v�p� is modest� and does not depend on
the maximum contention in a phase �which may be much
larger than v�p��

Note that if a computer system already hashes the
data using a pseudo�random hash function� then the em�
ulation is nothing but the straightforward implementa�
tion of an algorithm whose parallelism is larger than the
number of processors� Several parallel database systems
already hash their data using pseudo�random hash func�
tions� The Tera MTA provides hardware support for hash
functions to be used for pseudo�random mapping of mem�
ory locations to memory banks� the Fujitsu ��VP on the
Meiko node already has optional hardware hashing� For
other machines� computing a pseudo�random hash in soft�
ware is feasible� For example� it is shown in ��� that
the overhead to compute a certain provably�good �i�e�� ��
universal� pseudo�random hash function on the Cray C��
averages ��� clock cycles� Also as noted in ���� for some
algorithms it is possible to get the same e�ect without
memory hashing� by randomly permuting the input and
some of the intermediate results� In others� the nature
of the algorithm results in random mapping without any
additional steps�

It is well known that hashing destroys spatial locality�
but not temporal locality� Spatial locality enables long
messages to be sent between components� thereby mini�
mizing overheads on many machines� Some models� such
as bdm ����� loggp ���� and bsp

� ��� ��� account for ad�
vantages in long messages� most others� e�g�� qsm� bsp�
�d�x��bsp and logp� do not� Thus the qsm shares with
the bsp� �d�x��bsp and logp models a disregard for spa�
tial locality� Spatial locality can also arise in initial data
placement� Here the input can be assumed to be dis�
tributed among the private memories of the qsm proces�
sors as among the local memories of the bsp� �d�x��bsp
or logp processors�

The emulation of v�p virtual processors by each phys�
ical processor can be done by a variety of techniques� The

primary technique is multithreading� in which each virtual
processor is its own process� and the physical processor
context switches between these processes� The Tera MTA
provides hardware support for this multithreading� min�
imizing the context switching costs� Alternatively� such
multithreading can be performed in software� Note that
in the qsm� as in other bulk�synchronous models� each
virtual processor issues a series of memory requests in a
phase� Instead of context switching at each memory re�
quest� the multithreading can be performed by executing
all the code for the �rst virtual processor in this phase�
then switching to the second virtual processor� and so
forth� so that only v�p context switches are needed for
the entire phase �this description assumes that storing
values returning in response to shared�memory read re�
quests does not require a context switch��

In order to minimize the overheads� it is very im�
portant to minimize the amount of parallel slackness re�
quired� In the worst case� multithreading v�p processes
per machine processor results in v�p times the storage de�
mand at each level of the processor�s memory hierarchy�
possibly resulting in various thrashing e�ects� The emula�
tion of the qsm on the bsp requires only max�g lg p�L�g�
slackness� on the �d�x��bsp� as little as max�d�L�g� slack�
ness may be required� Note that the L�g term matches
the limit on multithreading imposed by the logpmodel �����

Thus� overall� the constants hidden by the big�O no�
tation in the emulation result are small� and hence the
emulation can arguably be considered practical�

��� Work�preserving qsm emulation on �d�x��bsp

The following theorem presents an emulation of the qsm
on a �d�x��bsp for the case when x � d�g� where g is
the gap parameter for both the qsm and the �d�x��bsp�
The emulation is work�preserving for any g �i�e� the work
performed on the �d�x��bsp is within constant factors of
the work performed on the qsm��

Theorem ��� �work	preserving QSM emulation�
Consider a p�processor �d�x��bsp with gap parameter g
and periodicity factor L� such that dg � x � p�c� for some
constant  c � �� where dg � d�g � �� Let

� �



d lg p if dg � x � �dg

d lg p� lg�x�dg� if �dg � x � pdg
d if x � pdg

Then for all p� � max���L�g��p� each step of an algorithm
for the p��processor qsm with gap parameter g with time
cost t can be emulated on the p�processor �d�x��bsp in
O��p��p� � t� time w�h�p�

This result is not implied by previous simulation re�
sults for the qrqw pram ���� ��� since these previous re�
sults considered standard pram models with no gap pa�
rameter and bsp or �d�x��bsp models with a small con�
stant gap parameter �that was hence ignored as part of the
big�O notation�� The question of how the work�e
ciency
and"or slowdown of the emulation depended upon the
gap parameters was not studied� Since we are consider�
ing the same gap parameter� g� for the qsm as for the bsp�
one might conjecture that considering the gap parameter



does not substantially alter the bounds of the simulations
without the gap parameter� However� note that the qsm
model charges � for contention �� regardless of the gap or
delay parameters� and indeed a qsm step with time t can
have t�g memory requests per processor and maximum
contention t� In contrast� in such cases the bsp charges at
least g � t and the �d�x��bsp charges at least d � t� View�
ing the mapping of memory locations to memory banks
as tossing weighted balls into bins �where the weight of
a ball corresponds to the contention of the location�� this
implies a di�erent mix of balls than considered in previous
emulations�

Since in the original bsp� dg � x � �� we obtain�

Corollary ��� �work�preserving QSM emulation� A p��
processor qsm with gap parameter g can be emulated on
a p�processor bsp with gap parameter g and periodicity
parameter L in a work�preserving manner w�h�p� provided
p� � max�g lg p�L�g� � p�

Proof of Theorem ��� �Sketch� We now prove the the�
orem� The proof is similar to that in ���� extended and
adjusted to properly account for the gap parameter in the
qsm and to improve upon the results for large values of
x� even for the case studied previously of g � ��

The shared memory of the qsm is randomly hashed
onto the B � x �p memory banks of the �d�x��bsp� In the
emulation algorithm� each �d�x��bsp processor executes
the operations of p��p qsm processors� We �rst assume
that x � �dg�

Consider the ith step of the qsm algorithm� with time
cost ti� Let c � � be some arbitrary constant� and let
� � max fc�  c� �� eg� We will show that this step can
be emulated on the �d�x��bsp in time at most ��p��p�ti
with probability at least � � p�c� Note that by the qsm
cost metric� the maximum number of local operations at
a processor this step is ti�

If there are no shared memory reads or writes in step
i� then the �d�x��bsp can emulate the step without com�
municating or synchronizing� by each processor emulating
at most �p��p�ti local operations� in time �p��p�ti� So as�
sume that step i performs at least one shared memory
read or write� and hence ti � g�

By the de�nition of the qsm cost metric� we have that
�� the maximum number of requests to the same location�
is at most ti� and hs� the maximum number of requests
by any one processor� is at most ti�g� For the sake of sim�
plicity in the analysis� we add dummy memory requests
to each processor as needed so that it sends exactly ti�g
memory requests this step� The dummy requests for a
processor are to dummy memory locations� with proces�
sor 	 sending all its dummy requests to dummy location 	�
In this way� the maximum number of requests to the same
location� �� remains at most ti� and the total number of
requests is Z � p�ti�g�

Let i�� i�� � � � � im be the di�erent memory locations ac�
cessed in this step �including dummy locations�� and let
�j be the number of accesses to location ij � � � j � m�
Note that

Pm

j�� �j � Z� Consider a memory bank 
�

For j � �� � � � �m� let xj be an indicator binary ran�
dom variable which is � if memory location ij is mapped

onto the memory bank 
� and is � otherwise� Thus�
Prob �xj � �� � ��B� Let aj � �j�ti� aj is the nor�
malized contention to location j� Since � � ti� we have
that aj � ��� ��� Let !� �

Pm

j�� ajxj� !� � the normalized

request load to bank 
� is the weighted sum of Bernoulli
trials� The expected value of !� is

E �!�� �

mX
j��

aj
B

�
�

xp

mX
j��

�j
ti

�
�

xp
� Z
ti

�
p� ti
x p ti g

�
p�

xpg
�

Let h�r be the total number of requests to locations
mapped to bank 
� To show that it is highly unlikely
that h�r greatly exceeds this expected value� we will use a
theorem by Raghavan and Spencer ����� which provides a
tail inequality for the weighted sum of Bernoulli trials� to
show that

Prob

�
!� �

�p�

dp

�
�

p��c���

x
�

�Details are given in ������ Note that h�r �
Pm

j��
xjkj �

!� � ti and therefore Prob
�
h�r � �p� ti

d p

�
� p��c���

x � Let

hr � max� h
�
r � Then Prob

�
hr �

�p� ti
d p

�
� B � p��c���

x �

p�c � The time of the �d�x��bsp step to emulate qsm step
i is Ti � max��p��p�ti� g�p��p��ti�g�� d � hr � L�� Since
ti � g� we have that �p��p�ti � �p��p�g � L and hence it
follows from the above that

Prob
�
Ti � � �p��p� ti

�
� �� p�c �

We next consider the case where dg � x � �dg� and
therefore � � d lg p� In this case we take � � maxfc�  c�
�� �eg� and the proof proceeds as above except that we
make use of the fact that

�
�x

edg

�
�
�p�

dp

� ��
�p�

dp � ��
�
d
max�d lg p�L�g� � p�� �

This completes the proof of Theorem ����

��� Emulating qsm on unbalanced �d�x��bsp

We next consider the case where the bandwidth at the
memory banks is less than the bandwidth at the proces�
sors and network� i�e� x � dg� We present an emulation
whose work bound is within a constant factor of the best
possible�

Theorem ��� �QSM on unbalanced �d�x�	BSP�
Consider a p�processor �d�x��bsp with gap parameter g

and periodicity factor L� such that � � x � min
�
dg� p

�c
	
�

for some constant  c � �� where dg � d�g� Then for
all p� � max�xg lg p� d�L�g� � p� each step of an algo�
rithm for the p��processor qsm with parameter g with time
cost t can be emulated on the p�processor �d�x��bsp in
O��dg�x� � �p��p� � t� time w�h�p�



Proof� �Sketch� As in the proof of Theorem ���� the
shared memory of the qsm is randomly hashed onto the
B � x � p memory banks of the �d�x��bsp� In the em�
ulation algorithm� each �d�x��bsp processor executes the
operations of p��p qsm processors�

Consider the ith step of the qsm algorithm� with time
cost ti� Let c � � be some arbitrary constant� and let � �
max fc�  c� �� �eg� We will show that this step can be
emulated on the �d�x��bsp in time at most maxf�p��p�ti�
��dg�x��p

��p�tig with probability at least �� p�c�

The proof proceeds exactly as in the proof of Theo�
rem ���� we add dummy requests as needed� de�ne indi�
cator binary random variables xj for each memory bank
j� de�ne !� � and show that E �!�� � p���xpg�� We apply
the Raghavan and Spencer theorem to obtain

Prob

�
!� �

�p�

xp

�
�

p��c���

x
�

�Details are given in ������ It follows as in the previous
proof that

Prob

�
hr �

�p� ti
x pg

�
� p�c �

where hr is the maximum number of read"write requests
to a memory bank� The time� Ti� of the �d�x��bsp super�
step to emulate qsm step i is max��p��p�ti� g�p

��p��ti�g�� d�
hr� L�� Since ti � g and p��p � L�g� we have that

Prob

�
Ti � max

�
p�

p
� ti � � � d

x

p�

pg
� ti
��

� �� p�c �

The theorem follows�

��� A lower bound

The following lower bound shows that the work bound in
Theorem ��� is tight� as well as showing the importance
of having a gap parameter on the qsm� In particular� it
implies that a pram has an inherent ine
ciency overhead
of g� when emulated on a bsp or �d�x��bsp with a gap
parameter g� Likewise� it implies that g is the minimum
gap parameter that should be assigned to the qsm in order
to allow for work�e
cient emulation on a bsp and �d�x��
bsp�

Observation ��� Let p� � p� Any emulation of one step
of the p��processor qsm with gap parameter g� with time
cost t on the p�processor �d�x��bsp with gap parameter
g and periodicity factor L requires T � max�t � �g�g�� �
dp��pe� d � dtp���xpg��e� time in the worst case�

Proof� Consider a step in which each of the p� qsm pro�
cessors perform t�g� memory requests� such that all p�t�g�

requests are to distinct locations in the shared memory�
Since there are m � p�t�g� locations distributed among
xp memory banks� then regardless of the mapping of lo�
cations to banks� there exists at least one bank j which
is mapped to by at least dm�xpe locations� Also� each
�d�x��bsp processor sends dp��pe � �t�g�� shared memory
requests� Therefore� the time on the �d�x��bsp is at least
T �

� Improved accuracy through the qsm abstraction

In this section� we draw attention to cases where the ex�
tra abstraction provided by the qsm may actually result
with more accurate modeling� Blelloch et al� ��� demon�
strated pitfalls in applying existing message�passing or
distributed�memory models to machines such as the Cray
C��� Cray J��� SGI Power Challenge and Tera MTA�
In particular� standard message�passing or distributed�
memory models such as the bsp and logp have the prop�
erty that the number of memory components is equal
to the number of processors� On the other hand� sev�
eral parallel machines� such as those listed above� have
many more memory components than processors� creat�
ing a mismatch between such standard models and ma�
chines� The abstraction of memory components to shared
memory� as assumed in the qsm� make it more robust to
changes in the number of memory components�

We elaborate below on how the work�preserving emu�
lation of Section �� together with the experimental results
of ���� indicate general cases for Cray�like machines where
the qsm is a more accurate model than the bsp and logp�
We then illustrate this observation by a concrete simple
instance�

��� Suitability of qsm to Cray�like machines

Processor speeds have been increasing at over ��# a year
while memory speeds have been increasing at less than
��# a year ����� This divergence has motivated several
computer manufacturers to design parallel machines with
many more memory banks than processors� For example�
the ���processor Cray C�� has ���� memory banks� the
���processor Cray J�� has ��� memory banks� the ���
processor SGI Power Challenge has �� memory banks�
and the ����processor Tera MTA will have ��K memory
banks� In order to more accurately model such machines�
Blelloch et al� ��� introduced the �d�x��bsp model and
showed experimentally that it models the Cray C�� and
Cray J�� quite accurately� even though the model ignores
many details about these machines�

As discussed in ���� the Cray C�� and Cray J�� ma�
chines are well suited to the bulk�synchronization pro�
vided by bsp�like models� since each of the processors
can pipeline hundreds of shared�memory requests� thereby
amortizing against the latency� the bank delay �in the ab�
sence of high contention�� and the cost of synchronizing
the processors� It is shown in ��� that accounting for the
memory bank delay is critical in predicting running times
of algorithms with high memory contention� Therefore�
in some situations the bsp and logp models may provide
poor prediction for an algorithm performance� while the
�d�x��bsp may provide a good one� An example is shown
in Figure � for the Cray J��� In this �gure� predicted and
measured performance are shown on a set of memory ac�
cess patterns extracted from a trace of Greiner�s algorithm
for �nding the connected components of a graph �����
Measured times on an � processor Cray J�� for several
patterns are shown with squares� Predicted times are
given for the �d�x��bsp� which models the Cray J�� quite
accurately� and the bsp and the logp� which do not� The
contention is given on a logarithmic scale indicating the
ratio between the maximum contention� k� and the total
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Figure �� Inaccuracies in the bsp and the logp predic�
tions� due to assuming the wrong memory layout and un�
derestimating the cost of memory bank contention� This
�gure is from ����

number of requests� p � S �p is the number of processors
and S is the number of requests sent by each processor��

The qsm is a more high�level model than the bsp or
logp� which in turn are more high�level models than the
�d�x��bsp� Nevertheless� the qsm is a better model for
machines such as the Cray C�� and Cray J�� than the bsp
or the logp� since its shared�memory abstraction does not
assume a particular memory layout� In particular our em�
ulation result of the previous section shows that any algo�
rithm designed for the qsm will map in a work�preserving
manner onto the �d�x��bsp given a reasonable amount of
parallel slackness� and thus onto these machines� This
is because the qsm cost metric accounts for contention
to locations� and hence can be translated to a memory
layout of any granularity� In contrast� message�passing
or distributed�memory models such as the bsp and logp
account only for the aggregated contention per processor�
and hence reveal insu
cient information to enable a work�
preserving emulation unless the slackness is � x� �When
the slackness is � x� then the p�processor distributed�
memory model is emulated on a �d�x��bsp with at most p
memory banks�� We demonstrate below a simple example
where the bsp prediction is entirely inconsistent with the
performance on �d�x��bsp�

��� Illustrative example

We describe here memory access patterns� A and B� that
are indistinguishable on the bsp but have a large di�er�
ence on both the qsm and �d�x��bsp�

Suppose k processors send one message each to a bsp

component C� for arbitrary k� In access pattern A� all
requests are directed to the same memory location� In
access pattern B� each request is directed to a di�erent
memory location within C� In both cases� the cost of
the access patterns on the bsp is g � k� On the qsm� the
cost of access pattern A is max�g� k�� whereas the cost of
access pattern B is g� Consider a �d�x��bsp with x � k�
and suppose that each of the requests in access pattern
B is to a di�erent memory bank� Then the cost of access
patterns A and B on the �d�x��bsp is max�g� d � k� and
max�g� d�� respectively�

The above example demonstrates a situation where
the metric of the bsp is not at all consistent with that
of the �d�x��bsp� whereas the qsm maintains close consis�
tency�

� Algorithmic issues

Since the qsm is a high�level shared�memory model that
e�ectively incorporates bandwidth limitations through the
gap parameter� the most e�ective way of designing good
algorithms on the qsm would be to construct them di�
rectly for the qsm� However� since we would like to lever�
age on the extensive literature on pram algorithms� in
Section ��� we discuss the mapping of qrqw pram and
erew pram algorithms onto the qsm� In Section ��� we
present some lower bounds� and in Section ��� we present
some direct qsm algorithms that are faster than the ones
obtained by the generic pram mapping�

It is also important to consider the mapping of bsp
algorithms onto the qsm� for two reasons� First� a good
mapping result of this type will allow us to leverage on
the results and techniques that were developed for the
bsp model� Second� it will demonstrate that the expres�
sive power of qsm is no less than that of the bsp� We
study this issue in Section ���� In view of a simple lower
bound of ��n �g� that we prove in Section ��� on the time
needed to read n items from global memory into the qsm
processors� for these algorithms we assume that the input
is distributed among the local memories of the processors
in a suitable way� In Section ��� we show that any bsp al�
gorithm that is �well�behaved� �as de�ned in that section�
can be adapted in a simple way to the qsm with no loss
in performance� We also demonstrate a general random�
ized work�preserving emulation of bsp on qsm� Unlike the
simple adaptation for �well�behaved� algorithms� this em�
ulation consists of a fairly involved algorithm and results
in logarithmic slow�down� Overall these results demon�
strate that any algorithm designed for bsp could be also
designed on the qsm� without substantial loss of e
ciency�

Finally� in Section ��� we discuss the importance of the
queuing metric for memory accesses in the qsm model�
and note that it is central to its e�ectiveness as a shared�
memory bridging model�

First� we consider the property of self�simulation for
the qsm� i�e�� the problem of simulating a p�processor qsm
on a p��processor qsm� where p� � p� The availability of
an e
cient self�simulation is an important feature for par�
allel models of computation� since it implies that an algo�
rithm written for a large number of processors is readily
portable into a smaller number of processors� without loss
of e
ciency�

Observation ��� Given a qsm algorithm that runs in
time t using p processors� the same algorithm can be made
to run on a p��processor qsm� where p� � p� in time O�t �
p�p��� i�e�� while performing the same amount of work�

The e
cient self�simulation is achieved by the standard
strategy of mapping the p processors in the original al�
gorithm uniformly among the p� available processors� In
the following� we will state the performance of a qsm algo�
rithm in terms of the fastest time t�n� achievable within a
given work bound w�n�� When we make such a statement
we imply� due to Observation ���� that for any p we have
an explicit qsm algorithm that runs in O�t�n� � w�n��p�
time using p processors�

In the following we assume that the value of the gap



parameter g is less than n� the size of the input� in practice
we expect g to be much smaller than n�

��� Mapping pram algorithms onto the qsm

A naive emulation of a qrqw pram algorithm �or an
erew pram algorithm� which is a special case� on a qsm
with the same number of processors results in an algo�
rithm that is slower by a factor of g� This is stated in the
following observation�

Observation ��� Consider a qsm with gap parameter g�

�� A qrqw pram algorithm that runs in time t with p
processors is a qsm algorithm that runs in time at
most t � g with p processors�

�� A qrqw pram algorithm in the work�time frame�
work that runs in time t while performing work w
immediately implies a qsm algorithm that runs in
time at most t � g with w�t processors�

Thus the linear�work qrqw pram algorithms given
in ���� ��� for leader election� linear compaction� multiple
compaction� load balancing� and hashing� as well as the
extensive collection of linear�work logarithmic�time erew
pram algorithms reported in the literature� all translate
into qsm algorithms with work O�n�g� on inputs of length
n with a slowdown by a factor of at most g� We show in
Section ��� that this increase in work by a factor of g on
the qsm may be unavoidable if the input items are not a
priori distributed across the qsm processors�

��� Lower bounds

If n distinct items need to be read from or written into
shared memory on a p�processor qsm then the work per�
formed by the qsm is ��n � g� regardless of the number
of processors used� To see this we note that the result is
immediate if p � n since the qsm has to execute at least
one step� If p � n then some processor needs to read
or write dn�pe distinct items� and hence that processor
spends time ���n�p� � g�� Since p processors are used� the
work� which is de�ned as the processor�time product� is
��ng�� A similar observation holds for the case when n
distinct memory locations are accessed� We state this in
the following�

Observation ��� Consider a qsm with gap parameter g�

�� Any algorithm in which n distinct items need to be
read from or written into global memory must per�
form work ��n � g��

�� Any algorithm that needs to perform a read or write
on n distinct global memory locations must perform
work ��n � g��

By Observation ��� and Observation ���� the linear�
work qrqw pram algorithms for problems in which the
input of length n resides in global memory translate into

algorithms with asymptotically optimal work on the qsm
that run with a slowdown of g with respect to the corre�
sponding qrqw pram algorithm�

The following lower bounds for the qsm are given in
���� The crcw pram lower bound result of Beame and
Hastad ��� gives a lower bound for the n�element par�
ity� summation� list ranking and sorting problems of ��g �
lg n� lg lg n� time on the qsm for either deterministic or
randomized algorithms when the number of processors
is polynomial in n� the size of the input� Also given in
that paper is a simple lower bound with a matching up�
per bound of ��ng� for the one�to�all problem in which
one processor has n distinct values in its local memory
of which the ith value needs to be read by processor i�
� � i � n�

A lower bound of ��g lg n� lg g� for broadcasting to n
processors is given in ���� in contrast to an earlier lower
bound for this problem on the bsp given in ���� this lower
bound holds even if processors can acquire knowledge
through non�receipt of messages �i�e�� by reading memory
locations that were not updated by a recent write opera�
tion�� We note that the same lower bound on time holds
for the problem of broadcasting to n memory locations
since any algorithm that broadcasts to n memory loca�
tions can broadcast to n processors in additional g units
of time� Further� by Observation ��� ��ng� work is nec�
essary since writes to n distinct global memory locations
are required�

��� Some faster algorithms for the qsm

By pipelining reads and writes to memory from di�er�
ent processors to amortize against the delay due to the
gap parameter g at processors� it is possible to obtain
an algorithm for the qsm that runs faster than g times
the running time for the fastest qrqw pram algorithm�
As an example of an algorithm that is optimized for the
qsm� consider the leader election problem in which the
input is a Boolean n�array� and the output is the �rst
location in the array with value �� if such a location ex�
ists� and is zero otherwise� The fastest qrqw pram al�
gorithm for this problem is just the �binary tree� erew
pram method that halves the number of candidates in
each of lg n rounds with O�n� work �there is a faster al�
gorithm on the crqw pram� but that algorithm is not
known to map onto the qsm with a slowdown of only g��
This qrqw pram algorithm will map on to the qsm as
a O�g lg n� time algorithm with O�gn� work� However�
we can optimize further for the qsm by replacing the nor�
mal �binary tree� method by a �g�ary tree�� This takes
advantage of the fact that requests at the memory are
processed every time step� while at the processors a re�
quest can be sent only every g steps� The time taken by
this algorithm to solve the leader election problem on the
qsm is O�g lg n� lg g� while still performing O�gn� work�
If the input is distributed evenly among n��g lg n� lg g�
processors� then the time is O�g lg n� lg g� and the work
is O�n��

A similar strategy applies to the broadcasting problem
in which the value at one location in memory needs to be
transmitted to n processors or to n memory locations�

We now consider the problem of sorting on the qsm�



Among sorting algorithms that are fairly simple� the fastest
O�n lg n� work algorithm on the erew pram is an O�lg� n�
time randomized quicksort algorithm �see� e�g� ������ and
on the qrqw pram� a randomized

p
n�sample sort algo�

rithm that runs in O�lg� n� lg lg n� time� O�n lg n� work�
and O�n� space �����

On the qsm� the randomized sample sort algorithm
can be mapped onto the qsm to perform O�n lg n� work
provided the computation is very coarse�grained� i�e�� the
number of processors p is polynomially small in n and
g � o�lg n�� this qsm algorithm is essentially the same
as the bsp algorithm based on sample sort ����� If we
look for a highly parallel sorting algorithm that is fairly
simple� an adaptation of the qrqw pram sample sort al�
gorithm appears to be the fastest� A straightforward anal�
ysis of this algorithm on the qsm using Observation ���
results in an algorithm that runs in O�g � lg� n� lg lg n�
time while performing O�g � n lg n� work� However� an
analysis of the algorithm directly for the qsm shows that
it runs in O�lg� n� lg lg n � g lg n� time while performing
O�gn lg n� work� Thus� if g is moderately large� speci��
cally� ��lg n� lg lg n�� the sample sort algorithm will run
within the same time and work bounds �randomized� as
the more involved algorithms obtained by mapping the
asymptotically optimal erew pram algorithms onto the
qsm� The improvement in running time for the qsm

sample sort algorithm in comparison to the qrqw pram

sample sort comes from the fact that the ��lg� n� lg lg n�
term in the time bound is only due to the bound on the
contention at memory locations in a dart�throwing step�
Since the qsm model charges only � time for contention
�� this term is not multiplied by g in the time bound�

��� Mapping bsp algorithms onto the qsm

We now turn to the issue of mapping bsp algorithms onto
the qsm� For this we assume that the input is distributed
across the qsm processors to conform to the input distri�
bution for the bsp algorithm� alternatively one can add
the term ng�p to the time bound for the qsm algorithm to
take into account the time needed to distribute the input
located in global memory across the private memories of
the qsm processors�

Many of the bsp algorithms reported in the literature
can be mapped back on the qsm using the version of the
algorithm that results when L � �� For instance for the n�
element summation� parity and pre�x sums problems� the
bsp algorithm that takes time �gd�L� lgd n� minimized by
choosing d � � appropriately �d � dL�ge if L � g and d �
� if L � g� maps on to the qsm as a simple O�g lg n� time
algorithm that performs O�ng� work� Similarly the bsp
sorting algorithm of ���� and the matrix multiplication
algorithms of ���� ��� map onto the qsm step by step with
a performance corresponding to the case when L � � in
the bsp algorithms�

The qsm algorithms in the above paragraph are ob�
tained by the following simple strategy to map each step
of the bsp algorithm on to the qsm to run in the time
the step would take on the bsp if L � �� A message sent
by processor i to a memory location m of processor j on
the bsp is written into shared memory location �j�m� by
processor i in the qsm and then read by processor j� We
will refer to a bsp algorithm as well�behaved if it can be

mapped onto the qsm in the above manner�

Not all bsp algorithms are well�behaved as seen in the
following example� The elements of an array A����n� are
distributed uniformly over p bsp processors� Each pro�
cessor applies a certain function to its local inputs� and
thereby generates some pairs �i� v�� where v is the new
value for A�i�� The new values generated have the prop�
erty that each processor generates no more than c such
values� and there are no more than c new updates gen�
erated for each block of inputs assigned to a processor�
where c � o�n�p�� other than these two restrictions� the
indices i of the locations in the array A whose values are
changed are arbitrary� These new values are updated on
the bsp by sending a c�relation in cg time units� Then
in additional n�p time each bsp processor determines the
new values of all of its local inputs by reading the corre�
sponding local memory locations� This computation takes
time O�cg � n�p� on the bsp� If we implement this algo�
rithm step�by�step on a qsm� the updated values will be
written into a copy of the array A����n� in shared memory�
and each qsm processor then needs to read these updated
values� Since it is not known ahead of time which val�
ues were updated� each qsm processor would need to read
from global memory� the current value of each of the n�p
elements of A�i� that it has in local memory� This will
take ��gn�p� time� which is larger than the running time
on the bsp since c � o�n�p��

While the above example indicates that the bsp is in
some ways more powerful than the qsm� it is not clear
that we want a general�purpose bridging model to incor�
porate these features� In general� there will be features
such as these arising due to contrasts between message�
passing and shared memory� between coherent and non�
coherent caches� between update and invalidation�based
coherence protocols� etc� Any choice of these features
may not be representative of a wide range of parallel ma�
chines� Moreover� current designers of parallel processors
often hide the memory partitioning information from the
processors since this can be changed dynamically at run�
time� As a result an algorithm that is designed using
this additional power of the bsp over the qsm may not
be that widely applicable� Fortunately� many of the bsp
algorithms reported in the literature have simple commu�
nication patterns that map onto the qsm by the simple
strategy described above� Also� we have a randomized
strategy that can map any bsp algorithm onto the qsm in
a work�preserving manner� provided a logarithmic slow�
down is acceptable� The algorithm is described in �����
We state here a lemma and a theorem that describe the
performance of this algorithm�

Lemma ��� Consider a step of an n�component bsp with
gap g and latency L that involves routing an h�relation�
On a qsm with gap parameter g this step can be emulated
with high probability in n in a work�preserving manner
with a slowdown of O�� � lg n��h� L�g���

The probability that the emulation will fail to per�
form according to the stated bounds is less than ��n��
for some � � �� whose value depends on parameters of
the algorithm� Thus� if a bsp algorithm takes no more
than n� steps� for any �� � � � � �� then the probability
that the emulation of any one of its steps on a qsm fails
is polynomially small in n� This leads to the following
theorem�



Theorem ��� An algorithm that runs in time t�n� on
an n�component bsp with gap parameter g and periodicity
factor L� where t�n� � ��n�� for a suitable � � �� can be
emulated with high probability on a qsm with the same
gap parameter g to run in time O�t�n� � dg lg n�Le� with
n�dg lg n�Le processors when L � g� and otherwise in
time O�t�n� � lg n� with n� lg n processors�

��� On the queuing memory contention rule for the
qsm

We note that a work�preserving emulation of a bsp with
g � � is not known on the erew pram if the slowdown
is to be bounded by polylog�n�� If such an emulation
is discovered� it will give rise to randomized linear work
polylog time algorithms on the erew pram for certain
problems� such as computing a random permutation� for
which such an algorithm is not known currently� There�
fore� even though the erew pram is often referred as
stronger model than the bsp� its expressive power may
actually be inferior� in some cases�

On the other hand� for the more powerful crcw pram

there appears to be a mismatch in the reverse direction
since no work�preserving emulation of a crcw pram on a
bsp with g � � is known if the slowdown is to be bounded
by polylog�n�� Thus� if either the erew pram or the
crcw pram is augmented with the gap parameter� the
resulting model is not known to have as strong a corre�
spondence to the bsp as we have shown for the qsm� In
other words� the queuing memory contention rule for the
qsm� in contrast to the exclusive or concurrent rules� is
crucial in order for it to serve as a bridging shared�memory
model�

� Conclusion

Developing e�ective models for parallel computation� at
suitable levels of abstraction� remains a fundamental chal�
lenge in parallel processing� This paper has provided ev�
idence that a shared�memory model� with its high level
of abstraction� can nevertheless serve as a bridging model
for parallel computation� Models at lower levels of ab�
straction are important in providing increased accuracy
at the cost of increased complexity in the model�

We have described a new model� the Queuing Shared
Memory �qsm� model� and discussed its possible advan�
tages over previous shared�memory models� and over cur�
rent bridging message�passing models� The model has
a simple queuing metric for shared�memory access� and
only two parameters	 p� the number of processors and g�
the bandwidth gap	 yet it can be e
ciently emulated on
both the bsp and �d�x��bsp models� using an arguably
practical emulation� Thus the qsm can be e�ectively re�
alized on machines that can e�ectively realize the bsp� as
well as on machines that are better modeled by the �d�x��
bsp� We have presented evidence that both the queuing
metric and the bandwidth parameter are essential to the
qsm�s e�ectiveness as a bridging model� In addition� we
have described several algorithms for the qsm� as well as
general strategies for mapping erew pram� qrqw pram

and bsp algorithms onto the qsm�

We conclude that a model such as the qsm can serve
the role of a bridging model for parallel computation while
preserving the high�level abstraction of a shared�memory
model�

Future research should consider further algorithmic
techniques that may be useful for this model� as well
as experimental validation of the model� Such valida�
tion may reveal the primary importance of features not
present in either the qsm� bsp or logp� For example�
each of these models de�nes a single bandwidth param�
eter that re
ects a per�processor bandwidth limitation�
other recent work has considered variants of these mod�
els with an aggregate bandwidth limitation ��� or a hier�
archical bandwidth limitation that accounts for network
proximity ���� ��� ��� ��� ���� Per�processor bandwidth
limitations better model machines in which each proces�
sor has access to its �share� of the network bandwidth
and no more� as well as machines for which the primary
network bottleneck� in the absence of hot�spots� is in the
processor�network interface� As a second example� each
of these models ignores the memory hierarchy at a proces�
sor� assuming a unit�time charge for local operations re�
gardless of the local working set size� A possible feature to
consider is to limit the size of the private memories on the
qsm� or to have two levels of memory hierarchy on the bsp
or logp� Finally� as discussed in Section �� each of these
models disregards spatial locality� Variants of the bsp and
logp that account for spatial locality include ���� �� ��� ���
In machines supporting a single address space� the unit
of data transfer between components is typically either a
cache line or a page� and hence opportunities to exploit
spatial locality are restricted to that level of granularity�
A possible enhancement for the qsm would be to have the
shared�memory partitioned into small� �xed�sized blocks
of locations that could be accessed e
ciently� the real�
ization of such a qsm on a distributed�memory machine
would map these blocks pseudo�randomly onto the mem�
ory banks�

Should it become necessary to include additional fea�
tures as part of a bridging model� the qsm may be more
suited for augmentation than the bsp or logp� since it is
simpler� with fewer parameters�
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