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Abstract

This paper studies relations between the parallel random access machine 
pram�

model� and the recon�gurable mesh 
rmesh� model� by providing mutual simulations

between the models� We present an algorithm simulating one step of an 
n lg lgn��

processor crcw pram on an n� n rmesh with delay O
lg lgn� with high probability�

We use our pram simulation to obtain the �rst e�cient self�simulation algorithm of an

rmesh with general switches� An algorithm running on an n�n rmesh is simulated on

a p�p rmesh with delay O

n�p���lg n lg lg p� with high probability� which is optimal

for all p � n�
p
lg n lg lg n� Finally� we consider the simulation of rmesh on the pram�

We show that a 
� n rmesh can be optimally simulated on a crcw pram in $
�
n��

time� where �
�� is the slow�growing inverse Ackermann function� In contrast� a pram

with polynomial number of processors cannot simulate the � � n rmesh in less than

�
lgn� lg lgn� expected time�



� Introduction

The parallel random access machine 
pram� model of computation is the most widely used model

for the design and analysis of parallel algorithms 
see� e�g� �
	� 
�� ����� The pram model consists of

a number of processors operating in lock�step and communicating by reading and writing locations

in a shared memory�

A recon�gurable mesh� or rmesh� is composed of a partitionable bus in the shape of a mesh�

connecting a set of processors which operate synchronously� and a set of memory modules� Thus� an

n by n rmesh� or n�rmesh� consists of n processors� n memory modules� and an interconnection

network consisting of an n by n mesh whose nodes are switches� each switch can recon�gure

dynamically to connect arbitrary subsets of its adjacent edges� As a result of local switching� the

global bus is partitioned into subbuses� In this way a large number of network con�gurations are

possible� each supporting a certain communication pattern� The rmesh may use dynamic switching

between these con�guration patterns in order to accelerate computation�

The rmesh has begun to attract many researchers due to its promising prospects for e�cient

hardware implementation ����� Indeed� the model captures features of many commercial and ex�

perimental machines� which o�er "exible communication patterns� The increasing interest in the

rmesh has resulted in a rapidly expanding volume of algorithmic and theoretical results� see for

example ���� �� �� ��� It has been shown that the rmesh can solve some fundamental problems

very fast� In fact� it can solve some of them faster than what is possible with the crcw pram�

For instance� an n�rmesh can �nd the parity of n� bits in constant time �
��� which is signi�cantly

faster than the $
lgn� lg lg n� time required to solve the problem on a crcw pram when using nc

processors� for any constant c � � �
��

��� Simulating pram on rmesh

We address the following question� can any pram algorithm be adapted to an e�cient algorithm on

rmesh with a small slowdown& A related question is whether one step of a pram can be simulated

e�ectively on an rmesh with a small delay� A simple bi�section bandwidth argument implies that

simulating an n�processor pram on a p�rmesh requires delay T 
n� p� � �
n�p�� Typically� the

delay can be expressed as T 
n� p� � f
n� p� � 
n�p� � d
n� p�� for some functions f � f
n� p� and

d � d
n� p�� We denote f as the 
multiplicative� overhead of the simulation� and d as the additive

delay of the simulation� If f
n� p� � O
�� then the simulation is said to be e�cient � Note that

an e�cient simulation algorithm is optimal for p � O
n�d�� Therefore� our goal is to obtain

an e�cient simulation of an n�processor crcw pram algorithm on a p�rmesh with the smallest

possible additive delay�

A good simulation result has an appeal from the algorithmic point of view� The popularity of

the pram� which is arguably due to its  programming! simplicity� resulted in a reach literature of
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fast and e�cient algorithms� These algorithms make it an attractive target for simulations on more

feasible machines� Indeed� a fast� e�cient simulation would translate any e�cient pram algorithm

into an e�cient rmesh algorithm which is slower than the pram algorithm by a factor of at most

the delay of the simulation�

The problem of simulating a pram on the rmesh was studied by Wang and Chen ���� and by

Ben�Asher et al� ���� However� the simulation algorithms given in these papers are not e�cient�

In ���� and ��� it is shown how to simulate an n�processor pram having M memory cells by the

n �M rmesh� with O
�� delay� For any p � n this implies� at best� a simulation on a p�rmesh

whose delay is O

M�n� � 
n�p���� which is O

M�p� � 
n�p��� implying a multiplicative overhead of

f � O
M�p�� As M may be considerably larger than p� this simulation is far from being e�cient�

The di�culty in simulating shared memory on the rmesh is partly due to the distributed mem�

ory nature of the latter� There are studies that concentrate on models for distributed memory� A

relatively well studied model is the distributed memory machine 
dmm� in which the interconnec�

tion network is abstracted away� and assumed to be a fully connected network� Another related

model� in which the interconnection network is replaced by optical communication� is the optical

communication parallel computer 
ocpc�� The simulations of the pram model on the dmm and

on the ocpc models were considered in a sequence of papers ���� �	� 
�� 
�� �
� �	� ��� 
�� �	� 
���

obtaining e�cient simulations with doubly�logarithmic delay� In this work we extend these simula�

tion results to obtain an e�cient simulation of an 
n lg lgn��processor pram on an n�rmesh with

an additive delay of O
lg lgn� with high probability� This is the �rst e�cient simulation of a pram

on an rmesh�

As a direct application of the simulation we conclude that any algorithm for the n�processor

pram can be implemented on a p�rmesh� for p � n� lg lg n� with O
lg lgn� slowdown with high

probability� The e�ciency of the simulation implies that many pram algorithms 
e�g� �
	� 
�� ����

can be automatically adapted to e�cient rmesh algorithms� The rather small delay implies a

small slowdown� in particular� fast� e�cient pram algorithms 
e�g� ����� imply fast� e�cient rmesh

algorithms� We illustrate the usefulness of this rather general result by deriving a fast� e�cient

implementation for the fundamental problem of building and supporting the parallel dictionary

data structure on the rmesh�

��� Self�simulation on rmesh

One of the most important features of parallel models is the self�simulation property� When a

machine is self�simulating� a smaller machine of size p can simulate a step of a larger one of size

N in O
N�p� steps� This makes the programming task considerably easier� it implies that an

algorithm designer may conveniently assume that the machine at hand is as large as required by

the algorithm� On the other hand� without self�simulation algorithm� an algorithm designer must

speci�cally address the entire range of machine sizes� since an algorithm given for a particular






machine size does not uniformly scale to all range of sizes� in general� Suppose that a program

takes � steps on a large machine of size N � When the program is executed on a smaller machine of

size p� the compiler may use the self�simulation property to produce an e�cient algorithm for the

smaller machine� which works in O
�N�p� steps�

Consider the simulation of an N �rmesh on a p�rmesh� and consider a step in which each switch

of the N �rmesh 
except for the rightmost column� sends some arbitrary message to the right while

reading its left port� and disconnecting its left� up and down ports� There are approximately N�

message transmissions� hence in simulating this 
and other� simple communication pattern on the

p�rmesh the delay must be �

N�p���� Therefore� for a self�simulation algorithm that takes time

T 
N� p� � f
N� p� �
N�p���d
N� p�� we denote f as the 
multiplicative� overhead of the simulation�

and d as the additive delay of the simulation� As for the pram simulation� the self�simulation is said

to be e�cient if f
N� p� � O
��� and we note that an e�cient self�simulation algorithm is optimal

for p � O
N�
p
d�� Therefore� our goal is to obtain an e�cient self�simulation of an N �rmesh on a

p�rmesh with the smallest possible additive delay�

The self�simulation problem of larger two�dimensional arrays by smaller ones was addressed in

���� Optimal self�simulation was obtained for two variants of the rmesh� the one with the simplest

switches assumes a switch may only connect%disconnect the column ports 
the upper port with the

lower port� and the row ports 
the left port with the right port�� The buses are thus either horizontal

or vertical� hence this type is called hv�rmesh� Another variant allows to connect%disconnect only

pairs of ports 
but unlike the hv�rmesh� any pair of nodes�� Thus the buses con�gured are paths

of edges� and this type is called the Linear�rmesh� 
The Linear�rmesh is the model assumed for

the pram simulation�� It was shown in ��� that both the hv�rmesh and the Linear�rmesh exhibit

optimal self�simulation�

The most general and strongest variant of the rmesh which we consider� denoted as the General�

rmesh� allows the switches to connect%disconnect any subset of their ports 
rather than just pairs

of them�� Hence a bus may consist of any connected sub�graph� In ��� ��� it was shown that

the set of problems computable in constant time on a polynomial size Linear�rmesh is exactly

the set of problems computable by a logspace Turing machine� whereas the corresponding set for

the General�rmesh contains exactly all the problems that are computable by a logspace Turing

machine having a symmetric logspace oracle� Thus the General�rmesh is expected to be more

powerful than the Linear�rmesh� We note that there is a fairly simple constant time connected

components algorithm on the General�rmesh ����� while no such equivalent algorithm is known for

the polynomial size Linear�rmesh�

Previous to this work� only a non�e�cient self�simulation was known for the General�rmesh� an

N �rmesh was simulated by a p�rmesh in O

N�p�� lgN lg
N�p�� slowdown ���� ��� which implies

an overhead of f � O
lgN lg
N�p���

By using our pram simulation� we obtain here the �rst e�cient self�simulation algorithm for
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the General�rmesh� The self�simulation is e�cient and has an additive delay of d � O
lgN lg lg p�

w�h�p� for the General�rmesh when the simulating rmesh has the arbitrary bus�con"ict resolu�

tion� For a simulating rmesh with the collision bus�con"ict resolution� the self�simulation has an

overhead of f � O
lg p� and the same additive delay� Furthermore� our simulating algorithm is im�

plemented on the Linear�rmesh� Thus� the self�simulation can also be interpreted as a simulation

of the strong General�rmesh on the weaker Linear�rmesh�

For completeness we mention that some work was previously carried in the direction of simu�

lating general networks using a larger rmesh� It was shown that any constant�degree recon�guring

network may be simulated with no slowdown by an rmesh� paying a quadratic blow�up of the

number of switches ��� ���� This result was improved for the case of a k�dimensional rmesh which

is simulated by the O
nk����rmesh with constant slowdown �����

��� Simulating a �� n rmesh on the pram

In the opposite direction� we consider the simulation of a 
 � n rmesh on the pram� We show

that using such a network� only a slight 
nearly�constant� speedup can be obtained compared to

the crcw pram� Speci�cally� we show that a step of a 
 � n rmesh can be simulated on crcw

pram in O
�
n�� time� using an optimal 
i�e�� n��
n�� number of processors� where �
n� is the

inverse Ackermann function 
this is an extremely slow�growing function and is at most � for all

conceivable n�� We also show that this work�optimal simulation result is best possible� �
�
n��

time is required when simulating a 
� n rmesh� or even a �� n rmesh� on an n�processor crcw

pram� Constant time simulation can also be obtained by using nIi
n� processors� for any constant

i � �� where Ii
n� is the inverse of a function at the i�th level of the primitive recursive hierarchy


e�g�� I�
n� � lg� n��

The tight simulation result implies that any �
�
n�� lower bound for the crcw pram translates

into a non�trivial lower bound for the 
�n rmesh� which is similar to the crcw pram lower bound

up to an �
n� time factor� or up to a constant time factor if slight increase in the number of pram

processors does not a�ect the pram time lower bound� As an immediate corollary� the crcw pram

lower bound of Beame and Hastad �
� implies that the parity problem cannot be solved faster than

�
lgn� lg lg n� time on a 
� nk rmesh� for any constant k� this particular lower bound has been

improved to �
lgn� by the independent work of MacKenzie ���� 
but only for the 
 � n rmesh��

The same lower bound obviously holds also for the more general compaction problem� which is

the problem of moving the contents of m distinguished elements� given in an array of size n� into

an array B of size m� New lower bounds are also derived for a relaxed version of the problem�

the linear compaction problem� in which the output array B may be of size O
m�� �
lg� n��
n��

expected time for a randomized algorithm� and �
lg lg n��
n�� time for a deterministic algorithm�

both for the 
� n rmesh� the �rst is derived by the crcw pram lower bound of MacKenzie ��
��

and the second by the crcw pram lower bound of Chaudhuri ���� Other new lower bounds for the
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 � n rmesh include an �
lg lg n� time lower bound for merging two sequences of length n� both

for deterministic algorithms ���� and for randomized algorithms ����� and an �
lg lg n� time lower

bound for computing the minimum ���� ��� ���

The simulation of a 
�n rmesh by a pram is obtained by showing that this problem is equiv�

alent� up to a constant factor� to the so�called nearest�zeros problem� We then use known results

on the complexity of computing the nearest�zeros problem on the crcw pram� Our technique is

related to those used in the independent works of Condon et al� ���� and Lin et al� ����� These

works present simulations for considerably weaker rmesh model� namely the hv�rmesh� which

only allows a limited subset of the switch con�gurations allowed in our model� only buses that are

either totally horizontal or totally vertical are possible� As noted above� the power of restricted

models such as the hv�rmesh is quite limited� For instance� while there exists a constant time

algorithm for the parity problem on n bits� which runs on a � � n rmesh� no such algorithm is

possible even on the n� n hv�rmesh�

The rest of the paper is organized as follows� The next section provides models de�nitions

and other preliminaries� The simulation of the dmm and pram models on the rmesh are given in

Section �� The self�simulation algorithm for the rmesh is given in Section �� Section � describes

the simulation of the 
� n rmesh on the pram� Conclusions are given in Section ��

The results of Section � were described in in ����� The results of Section � were described in

preliminary form in �����

� Preliminaries

��� Models de�nitions

The pram model� A Parallel Random Access Machine 
pram� consists of synchronous processors

that have constant�time access into a shared memory of arbitrary size� Standard pram models can

be distinguished by their rules regarding concurrent access to shared memory locations� These

rules are generally classi�ed into the exclusive read%write 
ER%EW� rule in which each location

can be read or written by at most one processor in each pram step� and the concurrent read%write


CR%CW� rule in which each location can be read or written by any number of processors in each

pram step� These two rules can be applied independently to reads and writes� the resulting models

are denoted in the literature as the erew� crew� ercw� and crcw pram models� In this paper

we consider the Concurrent Read Concurrent Write 
crcw� pram model in which an arbitrary

number of processors can access the same memory cell at the same time in both read and write

steps� There are several sub�models that di�er in the con"ict resolution rule in case two or more

processors are trying to write at the same time to the same memory cell� including� the priority�

in which the processor with the lowest id succeeds� the arbitrary� in which an arbitrary processor
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succeeds� and the collision� in which a special collision data symbol is written in the memory

cell� The priority crcw pram is stronger than the arbitrary crcw pram in the sense that

one step of an n�processor machine of the second model can be simulated in constant time by an

n�processor machine of the �rst model� Similarly� the arbitrary crcw pram is stronger than

the collision crcw pram� Formal de�nitions and more details can be found in� e�g�� �
	� 
�� ����

Whenever it will be important for the discussion� we will state explicitly which of the sub�models

we assume�

The dmm model� A Distributed Memory Machine 
dmm� consists of n synchronous proces�

sors p�� p�� � � � � pn�� that communicate via a distributed memory consisting of n memory modules

M��M�� � � � �Mn��� Every module has a communication window� and a collection of memory cells�

In each dmm step� a processor may perform some internal computations or request access to a

memory cell in one of the memory modules� Out of the set of requests made by processors trying to

access a certain module� the module answers only one 
arbitrarily�� and displays hRequest� Answeri
in its communication window� Every processor with a request for this module that reads the window

at this step� can get the answer� From the viewpoint of the processors� a communication window

functions like a shared memory cell of a crcw pram� Similarly to the crcw pram� the dmm

may have sub�models that defer according to their con"ict resolution in case of concurrent write�

The sub�models can be identi�ed as for the crcw pram� priority� arbitrary� and collision�

Unless noted otherwise in the text� we will assume as default the arbitrary dmm�

Reconfigurable 

Bus

Switch Processor Memory

Module

Figure �� Left
 All allowable switch con�gurations� Right
 The �� � recon�gurable mesh�

The recon�gurable mesh �rmesh� model� An rmesh consists of an n�m array of switches�


�� �� at the upper left corner and 
n��� m��� at the lower right corner� A ��� rmesh is depicted

in Figure �� The switches may take one of several con�gurations� out of which they select locally
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in each step� This is carried by the following sub�steps� ��� The switch selects a con�guration�

Allowable con�gurations connect subsets of ports 
see Figure ��� where a set of connected ports

acts as if it is hardwired connected� This induces a partition of the mesh edges into a set of

connected components� each of which is called a bus� 
Each node may be part of up to � connected

components�� ��� Several of the switches connected by a bus may use it to transmit a message�

�	� All the switches connected by a bus may read it� a message transmitted on a bus is assumed

to arrive at the same time step to all its switches� �
� A constant time comparison may be taken

by every switch�

All the nodes in the mesh have the switching capability� and each node can compare two elements

in constant time� store a constant number of elements� and broadcast data on the buses and read

data from the buses� There are two distinguished types of nodes� processors and modules� The

processors are the nodes located at the top row of the rmesh 
sometimes referred to as p�� � � � � pn����

In addition to the switching capabilities� they have computational power corresponding to the power

of the pram or the dmm processors� The modules are the nodes located at the rightmost column

of the rmesh 
sometimes referred to as M�� � � � �Mn���� In addition to the switching capabilities�

each module has a collection of memory cells in which it may store data and which it can read in

O
�� time� The input is always assumed to be given to the processors� In the sequel we denote the

n� n rmesh as the n�rmesh�

As for the concurrent write pram models� when several transmitters attempt to transmit con�

currently then some con"ict resolution policy should be applied� We say that the bus has three

possible states� speak � when some message is heard on the bus� idle � when no message is trans�

mitted on the bus� and error � when several messages are concurrently transmitted on the bus and

some  noise! is heard as a result� so that all transmitted information is lost� In this work we are

interested in two main con"ict resolution policies� arbitrary � in which out of several messages

that are concurrently transmitted on the bus one of them is arbitrarily elected and heard by the

receivers� and collision � in which an error bus�state occurs whenever more than a single message

is transmitted on the bus�

Following ��� ��� we consider a hierarchy of rmesh models with respect to the possible connec�

tivity patterns that may be taken by the switches� The model with the simplest switches assumes a

switch may only connect%disconnect the column ports 
the upper port with the lower port� and the

row ports 
the left port with the right port�� The buses are thus either horizontal or vertical� hence

this type is called hv�rmesh� A somewhat stronger model allows to connect%disconnect only pairs

of ports� The buses con�gured are paths of edges� and this type is called the Linear�rmesh� The

most general and strongest variant of the rmesh which we consider� the General�rmesh� allows the

switches to connect%disconnect any subset of their ports 
rather than just pairs of them�� Hence a

bus may consist of any connected sub�graph�

	



Discussion Intuitively� the de�nition of the rmesh given above may be viewed as follows� There

are n processors and n memory modules which are interconnected by an n�n recon�gurable mesh�

The rmesh serves merely as a routing device� whose local switches have a very limited processing

power� We emphasize here that all results in this paper hold for this model� In particular� this

indicates that for the dmm and pram simulation results in Section � the amount of simulating

hardware is linear� except for the routing device� which 
in accordance with AT � lower�bounds�

requires a quadratic blow�up ����� On the other hand it is instructive to note that all results in

the paper also hold for the stronger model� in which each of the nodes of the rmesh consists of a

full�"edged processor and a memory module� In particular� this is the case for the self�simulation

algorithm of Section � and the simulation of a 
� n�rmesh by the pram in Section ��

��� Basic procedures for the rmesh

We make use of the following tools�

Sorting in the rmesh� Sorting n elements located at the top row of an n�rmesh� can be done in

constant time by using the sorting algorithm suggested in ��� 
�� ���� Using self�simulation results

for the Linear�rmesh ��� it is also possible to sort in constant time if the number of elements is

higher than n� say cn for some constant c�

Bus splitting� One of the most basic techniques in computing with the rmesh is called bus

splitting� Consider a single row of the rmesh� and suppose some arbitrary subset of its switches

store input values� a single value at each switch� Then� in a single step� the rightmost switch in

the row can have one of these values� This is done as follows� The switches which do not have

input values connect their edges� while the others disconnect and transmit their values to the

right� Clearly the rightmost input value 
if exists� will be read by the rightmost switch of the row�

Similarly� bus splitting may be carried on a column�

Convention� The following terminology is used to denote the probability of randomized events�

We say that an event occurs with high probability �w�h�p�� when it occurs with probability ��n�c�

for any constant c � ��

� Simulating the DMM and the PRAM models on the RMESH

A pram step is simulated on the rmesh by �rst simulating it on a dmm� and then simulating the

dmm on the rmesh� We start by providing a constant time simulation of dmm on rmesh� Using

known pram simulation on the dmm� we derive a simulation of pram on the rmesh� This simulation

is improved by providing a simple constant time hashing algorithm on the rmesh� replacing a pram

hashing algorithm� Finally� the step�simulation is extended to a full pram program simulation�

�



Unless otherwise explicitly stated� we assume in this section that the con"ict resolution of the

buses is collision and the switching con�gurations are Linear�

��� Basic simulations

We show how a step of an n�processor dmm can be simulated on an n�rmesh in constant time� In

a dmm step each of the processors issues one of the following�

� A read request� read
x�Mi�� where Mi is the module from which the contents of memory

location x� denoted by c
x�� has to be read�

� A write request� write
c
x�� x�Mi�� where c
x� is to be written to memory location x in module

Mi�

The simulation of a dmm step�

�� Each of the processors at the top row transmits its request to all nodes belonging to its

column� Node 
i� j� receiving a request to module Mi� stores the request�


� In row i of the mesh� for all � � i � n � �� Using row broadcasting and bus�splitting� Mi

receives the right�most request addressed to it� If it is a write request� write
c
x�� x�Mi�� Mi

updates the contents of the memory location x in the module to c
x�� and broadcasts x to

all nodes of the row� If it is a read request for key x� then in the next step Mi transmits the

request and the value back to the row�

�� Any node 
i� j� which reads a read request read
x�Mi�� compares x with the key x� of the

request of pj � If the request of pj is for module Mi� and x � x�� then it sends the received

value to pj �

�� Any processor pi� � � i � n � �� makes the internal computations taken by processor pi of

the dmm at this step�

Clearly� every module in the above algorithm responds to the request issued by the processor

with the lowest id� This is a priority con"ict resolution� and in particular� it is stronger than the

arbitrary con"ict resolution� The above algorithm can be summarized by the following lemma�

Lemma 	�� �dmm simulation� One step of an n�processor dmm with priority con�ict resolu�

tion can be simulated in constant time on the collision n�rmesh�

We use the simulation results due to Karp� Luby and Meyer auf der Heide�
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Lemma 	�� ������ An 
n lg lg n lg� n��processor erew pram and an 
n lg lgn��processor arbi�

trary crcw pram can be simulated by an n�processor dmm with delay O
lg lg n lg� n� w�h�p�

Combining Lemma ���� and Lemma ��
 we get�

Corollary 	�	 An 
n lg lgn lg� n��processor erew pram and an 
n lg lg n��processor arbitrary

crcw pram can be simulated on a collision n�rmesh with O
lg lg n lg� n� delay per step w�h�p�

��� Faster	 e
cient simulation of the crcw pram on the rmesh

In this section we improve the simulations of pram on the rmesh� We show�

Theorem 	�
 One step of an 
n lg lgn��processor arbitrary crcw pram can be simulated in

O
lg lg n� time w�h�p� on a collision Linear n�rmesh�

The simulation algorithm is based on the algorithms by Karp et al� �
���

Before proceeding further� we mention a crucial data type for our application� A lookup table

is a data structure that stores a multi�set S of size n in a O
n� memory size and enables n lookup

queries to be executed in constant time� using n processors� A hashing algorithm computes a lookup

table for a given multi�set S�

The following lemma is implicit in �
���

Lemma 	�� One step of an 
n lg lgn��processor arbitrary crcw pram can be simulated on an

n�processor dmm by O
lg lgn� calls to a hashing algorithm�

The algorithm that realizes Lemma ��� is the basis for the algorithm that realizes the crcw pram

simulation of Lemma ��
� the 
lg� n� overhead and the 
lg� n� factor in the delay of the latter

simulation algorithm are due to the application of a crcw pram hashing algorithm �
��� adapted

to the dmm� As a result we have�

Corollary 	�� One step of an 
n lg lg n��processor arbitrary crcw pram can be simulated on

a collision n�rmesh by O
lg lgn� calls to a hashing algorithm�

Proof� By Lemma ��� and Lemma ����

A hashing algorithm takes $
lg� n� steps on the dmm� A hashing algorithm can be executed�

however� in constant time on the n�rmesh� as described next� We will then proceed to describe

the resulting improved simulation algorithms�

��



Hashing in constant time on the rmesh

The pram simulation on the rmesh uses a lookup table data structure� in which hashed elements

are stored�

Lemma 	�� Let c � � be a constant� A lookup table for a multi�set of cn elements can be con�

structed in constant time by a Linear collision n�rmesh� Subsequently� for every constant c� � ��

a batch of c�n queries �lookup� delete or insert� can be executed in constant time� as long as the

number of elements is O
n��

Proof� The lookup table is represented in an array H ����cn�� where c elements of the array are

stored at each memory module Mi� The constant time construction of the lookup table is described

in the following procedure�

Algorithm Static Table�

�� Sorting� Sort the input elements�


� Selecting a representative� For each sequence of equi�valued elements� all but the left�most

element are removed�

�� Building the table� Every processor pi sends its elements 
which were not removed� to module

Mi�

Subsequently� a batch of n lookup queries� one per processor� are executed by letting each switch


k� j� compare the k�th request with the at most c elements in module Mj �

Algorithm Static Lookup�

�� Each processor broadcasts its query element to all the nodes in its column�


� Repeat the following for i � � to c�


a� Each module broadcasts its i�th element to all the nodes in its row�


b� Each node compares the two elements received 
one from the processor and one from

the module�� If they match� the node noti�es the processor in its column�

Both the construction of the table and the execution of n lookup instructions in parallel are

completed in O
�� time�

A lookup operation for c�n elements may be executed in O
�� time� simply by repeating Algo�

rithm Static Lookup c� times� Whenever the number of stored elements is O
n�� a batch of O
n�

insert or delete operations can be executed in constant number of steps�
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We note that the only usage of the sorting algorithms above is for electing a leader out of every

subset of non�distinct elements to be stored in the hashing table�

Theorem ��� follows by Lemma ��	 and Corollary ����

��� Simulating full pram programs

We now show that simulating a single step of a pram implies a simulation of a full pram program

with a slowdown factor being the same as the delay of one step w�h�p� Thus the e�cient simulation

of one pram step translates into the e�cient simulation of full pram algorithm� In fact� this

extension is necessary even for claiming an e�cient simulation of a single pram step� for the

following reason� Note that Theorem ��� deals with simulating a step of an n�processor pram on p�

rmesh� where p � n� lg lg n� Given a p�rmesh� for an arbitrary p � n� lg lg n� the n�processor pram

step is implemented on a 
p lg lg p��processor pram in O
n�p lg lg p� time� using the self�simulation

property of the pram� Each of the O
n�p lg lg p� steps are then simulated on the p�rmesh� using

the step simulation of Theorem ���� Thus� in order to simulate the n�processor pram step� we need

a simulation algorithm that deals with several steps�

Theorem 	�� Let A be an algorithm that runs on an n�processor crcw pram in time T � using

memory of size M � such that T � nk and M � nk for some constant k� Then Algorithm A can be

adapted to run on an p�rmesh in time O
T 
n�p� lg lg p�� w�h�p�

Proof� The simulation which realizes Lemma ���� and hence Theorem ���� is based on mapping

the memory locations into the memory modules� by using several hash functions that are selected

at random from an appropriate class of hash functions� With high probability� the hash functions

satisfy certain properties that are required in order to carry on the simulation algorithm� If the

performance of the algorithm degrades due to an unluckily bad selection of the hash functions�

then a new set of hash functions are selected and the algorithm is started afresh� As shown in �
���

the probability that the simulation takes more than c lg lg p time� for some constant c� due to bad

selection of hash functions� can be made n�� for an arbitrary large constant � 
the constant c may

depend on ���

Let � � � be some constant� and assume �rst that p � n���� The n�processor pram algorithm

of T steps is self�simulated on a 
p lg lg p��processor pram to yield an algorithm running in T � �

Tdn�p lg lg pe � nk��� lg lg p steps� Each of these steps is simulated on the p�rmesh in O
lg lg p�

time w�h�p�� using Theorem ���� The probability that the simulation of any of the T � steps takes

longer than c lg lg p time is at most nk���� � By selecting a su�ciently large � � k � �� the total

running time of the simulated algorithm is T � lg lg p � O
T 
n�p� lg lg p�� w�h�p�

It remains to consider the case p � n���� The simulation algorithm for this case is in fact

simpler� and is based on an algorithm due to Kruskal� Rudolph and Snir �
�� Thm ����� in which

�




the memory locations are mapped into the memory modules using a single polynomial hash function�

For p � n���� and an arbitrary constant �� there is a constant c� 
which is a function of � and ��

such that an n�pram step can be simulated on a p�rmesh in time c�n�p with probability � � n��

The probability that the simulation of any of the T pram steps takes longer than c�n�p is at most

nk��� By selecting a su�ciently large � � k� the total running time of the simulated algorithm is

O
Tn�p� w�h�p�

��� A direct application� a parallel dictionary on the rmesh

As a direct application of Theorem ��� we obtain a construction of a parallel dictionary on the

rmesh� A parallel dictionary is a data structure which supports the instructions insert� delete� and

lookup queries� for elements that are drawn from some �nite universe U � ��� � � � � p � ��� It is a

standard and basic data type 
see� e�g�� ����� Both lookup tables and parallel dictionaries are useful

tools for parallel algorithms that use a large space� Previously� no fast� e�cient implementation of

the dictionary algorithm on the rmesh was known�

A parallel dictionary handles one batch of operations at a time� Each batch consists of an array

of elements and an instruction� insert� delete� or lookup� The parallel dictionary processes a batch

using several processors�

We use the following theorem�

Lemma 	�� ������ There exists a dictionary implementation on an n�processor arbitrary crcw

pram� with the following features� all w�h�p�

�a� At all times� the total space used by the dictionary is linear in the number of elements

currently stored in the dictionary�

�b� Any batch of n lg� n elements is processed in O
lg� n� time�

�c� A lookup instruction for a batch of n elements is processed in constant time�

Now the following theorem is implied directly by the pram simulation algorithms on the n�

rmesh and by the above theorem� When the size of the dictionary is linear in n� then the imple�

mentation may use the constant time hashing procedures directly� The detailed description of how

all this is carried may be found in �����

Theorem 	��� Let S be the set of elements in the dictionary� let � � � be chosen arbitrarily small�

and let b be a su�ciently large constant� A parallel dictionary can be implemented on the n�rmesh

with the following features�


� Any batch of m arbitrary instructions is processed in O
m�n� lg lg n lg� n� time w�h�p�
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�� A lookup instruction for a batch of O
n lg lgn� elements is processed in O
lg lgn� time w�h�p��

�� If jSj � m � bn� �jSj is the number of elements in the dictionary� then any batch of m

instructions is processed in O
�� time�

� Self�Simulation of the RMESH

In this section we give an important application of the pram simulation� Somewhat surprisingly�

we are able to use pram simulation in order to improve previous self�simulation results for the

rmesh�

We consider the simulation of the N � N General�rmesh by the p � p Linear�rmesh� Since

the General�rmesh is stronger than the Linear�rmesh� the simulation immediately implies self�

simulation algorithm with the same complexities for both the General�rmesh and the Linear�

rmesh� For brevity we call them both rmesh in the sequel� it should be understood that the

speci�c model is either the General�rmesh or the Linear�rmesh� depending if it is the simulated

or the simulating model� respectively�

In the sequel we say that the self�simulation algorithm terminates in a certain number of steps

w�h�p� when the probability of non�termination can be made as small as N������

One of the notions we use extensively is that of a window� A submesh of the N �rmesh is called

a window� when it is one of the 
N�p�� p� p submeshes in a partitioned N �rmesh 
assuming� for

simplicity� that N�p is integral�� Fig� 
 below illustrates a partition of the mesh into windows� A

window is always  aligned to a boundary of size p!� where the boundary of a window consists of all

the switches from which edges exit the window 
or from which there is a direction with no edge at

all�� The boundary of a window is composed out of four facets in the intuitive way 
each corner

switch belongs to two facets�� Every window W has a unique label label
W � of size 

lgN � lg p�

bits� On the boundary of each window� every switch has a unique local id of size 
 � lg p bits� For

simplicity we assume these quantities to be integral numbers�

Folding the mesh

The following function is useful for mapping a mesh of size N into a mesh of size p� Let p � x � N �

then

fold
x� �

�
x mod p if x div p is even

p� �� 
x mod p� otherwise

We use 
r� c� �� 
fold
r�� fold
c�� for mapping a switch 
r� c� of an N �rmesh into the p�rmesh�

Informally� this has the same e�ect as that of folding a large page of paper several times into a
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square of size p � p� A point on the p�sized square  simulates! all points of the folded page that

are stabbed when pushing a pin at this point�

The advantage of the folding mapping in self�simulation algorithms for the rmesh was �rst

observed in ���� It is implied by the fact that when the p�rmesh simulates the p�submeshes one

by one� boundary points of p�submeshes which are adjacent in the folded mesh are mapped to the

same switch of the p�rmesh� Hence� the existence of a bus which crosses from one p�submesh to

the other may be observed by this switch�

��� Algorithm outline

The idea of the self�simulation algorithm is to simulate the windows one by one� performing the local

buses communication� while collecting connectivity data for buses which cross window boundaries�

We note that the simulation of these global� inter�window buses is what makes the self�simulation

rather di�cult� The connectivity data is collected and kept through the windows boundaries� The

folding function implies an assignment of processors to boundary nodes which is suitable for the

processing of this data� and its representation as an appropriate graph connectivity problem� An

edge in the graph represents a pair of two adjacent boundary nodes from adjacent windows which

are connected in the con�guration of the simulated rmesh 
e�g�� nodes x and x� in Fig� 
�� A

connected component of the graph corresponds to a global bus in the simulated rmesh�

The connected components of this graph are computed� along with the message that is heard

on each of the corresponding buses� This connected components computation is where we use

our e�cient pram simulation results from the previous section� Speci�cally� the pram simulation�

together with a known pram algorithm for connected component computation� are used to derive

an appropriate connected component algorithm for the simulating rmesh� We note that although

the derived connected component algorithm on the rmesh is not e�cient in general� its usage in

our context enables an e�cient self�simulation algorithm�

Finally� the message computed for each connected component is distributed to the appropriate

boundary nodes at each window� Once again� the computations within windows are simulated

one�by�one� where the information at the boundary nodes is disseminated to the internal nodes by

regular rmesh steps�

��� The self�simulation algorithm

The self�simulation algorithm consists of three main phases and two intermediate ones�
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Phase ���� Sweep

In this phase we scan the windows one�by�one in an arbitrary order� where windows are mapped

to the p�rmesh according to the folding mapping as described above� A window W is simulated

in a single step by the simulating p�rmesh� Any switch which is transmitting in the original mesh

transmits and all switches connected by the bus B store the resulting message message
B�� When

a bus does not exit the window� its simulation is completed in this step� We thus proceed to

consider only boundary�crossing buses� In parallel� for every bus B in W we elect a label label
B�

as follows� We �rst elect a  leader! leader
B� out of the switches on the boundary of W which are

also connected to B� Note there is at least one such switch� If the con"ict resolution of the buses

is arbitrary 
or stronger� then this can be done in a single step� Else� if the con"ict resolution

is collision then electing a leader can be done by standard methods in Sizeof
id� � 
 � lg p� We

next set the label of the bus to be the concatenation of the identity of the elected leader with the

label of the window� i�e�� label
B� � hlabel
W�� id
leader
B��i�
Summarizing� for each window we elect labels in parallel for all the buses� which takes O
��

steps in the arbitrary model and O
lg p� in the collision model� All switches on the boundary

of the bus B store the information �label
B��message
B��� called the identi�er of B� Since there

are 
N�p�� windows� every boundary switch of the simulating p�rmesh collects up to 
N�p�� bus

identi�ers� one per window� More accurately� if a switch is at the point 
r�� c��� then it stores

the identi�ers that occur at each boundary point of a window which represents a point 
r� c� of

the original mesh such that fold
r� c� � 
r�� c��� These identi�ers are then moved to the memory

modules� so that the i�th module stores the i�th identi�er from each facet of the boundary of every

window�

Intermediate�Phase ������ Creating the Connectivity Graph

We de�ne a graph G as follows� The nodes of G are the bus labels� label
B�� i�e�� each node

represents a global bus B at a certain window W � The edges of G are all the pairs of nodes

hlabel
B�� label
B��i such that fold
leader
B�� � fold
leader
B��� and B is connected to B� in the

simulated mesh� Thus� there is an edge for each pair of connected buses B� B� whose identi�ers are

stored in the same switch� For each edge we also assign a message con	ict
message
B��message
B����

that is determined as a function of the messages of the respective buses�

The function con	ict depends on the nature of the messages message
B� and message
B��� and

on the collision rule of the simulated rmesh� For the arbitrary rmesh� con	ict receives the value

of either message
B� or message
B��� with arbitrary choice� unless exactly one of the messages is

non�idle� in which case it is the same as the non�idle message� For the collision rmesh� con	ict

receives the collision symbol #� unless exactly one of the messages is non�idle� in which case it is

the same as the non�idle message�
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Suppose that an edge hlabel
B�� label
B��i is computed by the processor of switch fold
leader
B��


� fold
leader
B���� in a constant number of operations� Since there are 
N�p�� windows� computing

the edges for all pairs of adjacent buses and storing them in the modules of the p�rmesh takes

O

N�p��� steps�

Examples for the process of constructing G are given in Fig� 
�

Window 

BoundariesAn

Internal

Bus

B5

B6

x’

yy’

zz’

B2 B1

B4
 B3

W2

W1

   N

p

x

Figure 
� An example for the construction of the connectivity graph G� Here N�p � � so the simulated
mesh is split into � windows� The upper left window completely contains a somewhat complicated bus
which is simulated in a single step of Phase ���� In contrast� the simulation of the lower concentric
bus requires the collection of connectivity data from all windows� For example� when simulating W�

and W�� x� y and z are simulated by the same switches simulating x�� y� and z� respectively �i�e��
fold
x� � fold
x��� fold
y� � fold
y�� and fold
z� � fold
z���� Thus� during Phase ��� switch fold
x�
�or its corresponding memory module� stores both identi�ers of B� and B�� and during Intermediate�
Phase ����� it �or the corresponding processor� combines them into an edge of the connectivity graph
G� Similarly switches fold
y� and fold
z� create edges in G which represent the connections of B
�B�
and B� �B�� respectively�
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Phase ���� Connected Components

Since each window has at most �p bus labels� and there are 
N�p�� windows� the total number

of bus labels� and hence� the total number of nodes in G� is at most �N��p� Moreover� the total

number of edges in G is at most �N��p� The connectivity of G de�nes the connectivity of the

buses across windows in the simulated rmesh� We therefore determine the bus connectivity of the

N �rmesh by computing connected components on the graph G�

We note that the connected component algorithm from ���� requires the adjacency matrix to

be given at speci�c switches of the rmesh� and that the one from ��� requires the input to be of

approximately the square root of the size of the mesh� Thus the available connected component

algorithms for rmesh are not suitable to our goal� Our approach is to take a pram algorithm

for computing connected components� and simulate it on the p�rmesh using the pram simulation

algorithm from Section ��

We use a crcw pram algorithm by Gazit ���� for computing the connected components of a

given graph G on v nodes and m edges on n � 
v�m�� lg v processors� in T � O
lg v� time w�h�p�

In our case� v � O

N�p��� and m � O
N��p�� Using Theorem ���� Gazit�s algorithm can be

simulated on the p�rmesh in time O
T 
n�p� lg lg p��� which is O
lgN lg lg p� 
N�p��� w�h�p�

Intermediate�Phase �����

Once connected components are determined� the message for each bus is determined by joining

together message
B� as described above for all edges in the connectivity graph G� This is done for

all segments of the same bus by extracting the messages from the input edges formed in Phase 
���

We avoid tiresome details of this procedure by simulating again a pram algorithm for this task


which takes O
�� steps on a crcw pram with N��p processors��

Reversing some previous data movements� we make the edges move back to the modules where

they were formed in Intermediate�Phase 
����� Note that these are point�to�point communication

operations which may be  reversed! by forming the same buses and switching transmitters and

receivers� Finally� by reversing Intermediate�Phase 
���� itself� we attach to each identi�er of a bus

segment the evaluated message of its full bus�

Phase �	�� BackSweep

Note the identi�ers together with the evaluated messages now reside in the same modules where

they were formed� Thus� it is easy to move them to switches of the p�rmesh which simulate

window�boundary switches and which were elected as leaders during Phase 
���

The p�rmesh now 
logically� scans window by window of the simulated N �rmesh while making

the leaders of the buses broadcast the evaluated message on their corresponding bus�segments� The
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readers of the simulated segments read the broadcasted messages� This clearly takes one step per

simulated window�

��� Summary

The whole self�simulation algorithm takes O
lgN lg lg p � 
N�p��� steps w�h�p� on the rmesh

with buses having arbitrary collision resolution� and O
lgN lg lg p � 
N�p�� lg p� steps w�h�p�

on the rmesh with collision resolution� Thus� for the arbitrary model the self�simulation is

e�cient with an additive delay of O
lgN lg lg p�� For the collision model the self�simulation

has an overhead of O
lg p�� Recall that previous 
deterministic� self�simulation algorithms have a

multiplicative overhead of O
lgN lg
N�p�� ����

Theorem 
�� The self�simulation of a General N �rmesh on a Linear p�rmesh can be performed

w�h�p� in

� O
lgN lg lg p� 
N�p��� steps on the arbitrary model� and in

� O
lgN lg lg p� 
N�p�� lg p� steps on the collision model�

� Simulating the �� n General�RMESH on the PRAM

We show in this section that simulating one step of a 
 � n General�rmesh on a crcw pram is

equivalent� up to a constant factor� to computing the nearest�zeros problem on the crcw pram�

We assume here that the pram write con"ict resolution policy is the same as that of the simulated

rmesh� i�e�� it is either arbitrary or collision� For most of our discussion an even weaker sub�

model may be assumed� the common crcw pram� in which all processors trying to write to the

same memory cell are writing the same value� For the rest of this section an rmesh always denotes

a General�rmesh�

We �rst de�ne the nearest�zeros problem� then proceed to show an e�cient reduction to this

problem�

The Nearest�Zeros Problem

Let the function Ii
n� be the inverse of a function at the i�th level of the primitive recursive

hierarchy� and the function �
n� be the inverse Ackermann function� 
Thus� I�
n� � lg n� I�
n� �

lg� n� and I��n�
n� � �
n�� cf� ��
� pp� ����������

Given an array A����n� of ��s and ��s� the nearest�zeros problem is to �nd for each index i �

�� � � � � n the nearest locations on its right and on its left in A which contain a � bit� Berkman and
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Vishkin �	� and Ragde ��
� considered this problem and presented very fast parallel algorithms� and

recently� Chaudhuri and Radhakrishnan ��� provided a matching lower bound�

Lemma ��� ���
 
�
 ��� The parallel time complexity for solving the nearest�zeros problem on the

crcw pram is�

�i� O
�
n��� using n��
n� processors�

�ii� O
i�� for any i � �� � � � � �
n�� using nIi
n� processors� and

�iii� �
�
n��� when using n processors�

��� Reducing the simulation problem to the nearest�zero problem

Lemma ��� The simulation of a step of a 
 � n rmesh on a crcw pram can be reduced in

constant time to the nearest�zeros problem�

Proof� A step of a 
� n rmesh consists of two sub�steps� First� the con�guration is determined

by letting each node select a subset of its neighbors� Then� a subset of the processors 
the  writers!�

write their values which reach all nodes in their respective buses� The simulation algorithm will

implement these two sub�steps on the crcw pram� using an array M for communication� M �i� is

used for the i�th connected component� with the connected components labeled in some arbitrary

manner�

The simulation algorithm is based on the following general steps�

� Compute connected component� let each connected component 
a bus� have a distinct label

from ����O
n�� and let each node know to which connected component it belongs�

� Let each processor that represents a writer of the i�th connected component write its value

into M �i��

� Let each processor belonging to connected component i read M �i��

The only non�trivial part is the computation of connected components� We proceed to show that

this part can be reduced with constant�time overhead to the nearest�zeros problem�

Recall that a con�guration on a 
 � n mesh is a sub�graph G of the 
 � n mesh that consists

of edge�disjoint buses� We show �rst how to reduce the connected components problem into one in

which all buses are vertex�disjoint 
 vertex disjoint con�guration!�� Formally� in the description of

the reduction we use the following terminology� We say that the graph consists of vertex disjoint
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components if each vertex belongs to at most one connected component� Let D � 
V�ED� and

D� � 
V�ED�� be two graphs with the same set of vertices V � Then D�D� � 
V�ED�ED�� denotes

the graph with the same set of vertices V and a set of edges that is the union of the respective

edge�sets� Similarly� D �D� � 
V�ED � ED���

A reduction to vertex�disjoint con�gurations

Let an extreme edge of some bus be an edge which is disconnected by at least one of its adjacent

vertices 
e�g�� a cycle has no extreme edges� a path has two extreme edges�� Recall that the decisions

whether to connect an edge are taken locally by the switch� hence an edge can be extreme for a

bus even when both its adjacent vertices have other edges belonging to that 
or to another� bus�

Consider con�gurations Gv� Ge and Go based on the extreme edges of each bus� Gv is a

con�guration consisting of all extreme edges which are vertical� Ge 
resp� Go� is a con�guration

consisting of all extreme edges which are horizontal� and which connect nodes i and i�� 
of either of

the top or bottom rows� where i is even 
resp� odd�� Let G� be the con�guration GnfGv �Ge � Gog�
so each of G�� Ge� Go and Gv consists of vertex disjoint components� Let S be the set of nodes in

G� � fGv � Ge � Gog� i�e�� the set of nodes which are not at the endpoint of some path in G� and

which belong to extreme edges of G� Figure � gives an example for an input con�guration and its

four subgraphs which consist of vertex disjoint components�

2 3 4 5 7 80 1 6

Ge

G

G’

Go

Gv

Figure �� An input con�guration G and its four subgraphs G�� Go� Ge and Gv� which consist of vertex
disjoint components� Vertices in S are emphasized as black circles�

We now show a simulation of the 
 � n mesh by itself� where all the con�gurations taken
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during the simulation are vertex�disjoint� A step with con�guration G is simulated in seven steps

involving the con�gurations Gv� Ge� Go� G
�� Go� Ge and Gv 
correspondingly�� In each of the �rst

three steps� the writers are the writers of G which are included in the con�guration that is taken�

and the readers are the nodes from S� In the fourth step� the writers are all the writers of G and

those nodes in S which read some message during the �rst three steps� The readers are all nodes

in S and all readers from G� During the �fth� sixth and seventh steps� nodes from S write the

value they read during the fourth step� It is straightforward to verify the correctness of the above

reduction�

The rest of the proof deals with computing connected components in a sub�graph with vertex�

disjoint con�guration�

Let nodes that are connected in the sub�graph with a vertical edge be denoted as a pair� The

main observation which enables our simulation is the following fact which can be easily veri�ed�

Proposition ��	 In G�� if two pairs belong to the same connected component then all pairs in

between belong to the same component�

Proposition ��� implies that between two pairs of the same connected component� there cannot

be a pair which belongs to a di�erent connected component� Thus� any other component between

such pairs must consist of a horizontal path only� denote such component as a straight component�

Denote as right path and left path the parts of a component to the right of its rightmost pair� and to

the left of its leftmost pair� respectively 
the right and left paths may be of length ��� Assume that

straight components as well as right and left paths are deleted from the given sub�graph� Then�

between any two components there is a vertical cut� Our algorithm will therefore consist of the

following steps�

Step �� Identify all the straight components� label each by its rightmost node� and delete them

from the sub�graph�

Step �� Identify all the right 
resp� left� paths� �nd for each a  leader!� its leftmost 
resp� right�

most� node� and delete them from the sub�graph�

Step 	� Compute for each component its rightmost pair� and label it by the index of this pair�

Step 
� Label each right or left path by the label of its leader�

Implementation of Step �� Consider only nodes in the top row� Let R�i� 
resp� L�i�� be � if node

i is connected with node i� � 
resp� i� ��� and � otherwise� A node is in a straight component if

and only if the nodes represented by its nearest�zero indices from its right in R and from its left in L







are both disconnected from their neighbors in the bottom row� Similarly� the straight components

from the bottom row can be identi�ed and labeled�

Implementation of Step �� Consider only nodes in the top row� Let R�i� 
resp� L�i�� be � if

node i is connected with node i� � 
resp� i� ��� and � otherwise� A node is in a right path if and

only if the node represented by its nearest�zero index from its right in R is disconnected from its

neighbor in the bottom row� and the node represented by its nearest�zero index from its left in L is

connected to its neighbor in the bottom row� The left path is found and labeled in a similar way�

and so are the right and left paths in the bottom row�

Implementation of Step 	� Let R�i� be � if either the top or bottom nodes in location i are

connected with their neighbors in location i��� and � otherwise� The right nearest�zero i indicates

the rightmost pair in the connected component for which any of the nodes in location i may belong�

The correctness of this implementation is implied by the fact that the straight components and the

right paths were removed�

Implementation of Step 
� Trivial�

The lemma follows�

Remark� 
�� The simulation algorithm of Lemma ��
 shows that simulating one step of a 
� n

rmesh on a crcw pram is as easy 
up to a constant factor� as computing connected components

of a sub�graph of the 
 � n mesh on the crcw pram� These problems are in fact equivalent� up

to a constant factor� since connected components of such graphs can be easily computed on the


 � n rmesh� 

� All the steps of the algorithm described in the proof of Lemma ��
� except

for the nearest�zeros computations� can be implemented on the Concurrent Read Exclusive Write


crew� pram in constant time� This implies an O
lgn� time simulation of the 
�n rmesh on an


n� lgn��processor crew pram� We note that since the or function can be computed in constant

time on the � � n rmesh� simulating the 
� n rmesh on any number of crew pram processors

takes �
lgn� expected time ���� ����

��� On the optimality of the simulation and its applications

Lemma ��
 shows that simulating one step of 
� n rmesh is as easy as computing nearest�zeros�

both on the crcw pram� The following lemma shows that computing nearest�zeros is as easy as

simulating one step of � � n rmesh� both on the crcw pram as well� Its proof is by an easy

algorithm that is similar to an algorithm used in ���� to compute the or function� and to an

algorithm used in ���� for the more general �neighbor localization� problem�

Lemma ��
 The nearest�zeros problem can be solved in two steps on a �� n rmesh�


�



Proof� We represent the input array for the nearest�zeros problem by a �� n rmesh� as follows�

Node i is connected to node i � � if the i�th bit in the input array is �� and it is disconnected

otherwise� In the �rst step� each node connected to its left neighbor but disconnected from its right

neighbor� writes its index� Each node records the value it reads as the index of the right nearest

zero� In the second step� each node connected to its left neighbor but disconnected from its right

neighbor� writes its index� Each node records the value it reads as the index of the left nearest

zero�

Remark�� A similar representation enables an easy two�step reduction� of simulating a � � n

rmesh step on a crcw pram� into the nearest�zeros problem�

Lemma ��
 implies that any upper bound for the nearest�zeros problem on the crcw pram will

translate into an upper bound for simulating one step of a 
�n rmesh as well� Lemma ��� implies

that any lower bound for the nearest�zeros problem on the crcw pram will hold for the simulation

of one step of a � � n rmesh as well� 
Note that this lower bound only applies to step�by�step

simulations��

By Lemma ��
� Lemma ���� and Lemma ��� we obtain�

Theorem ��� The parallel time complexity for simulating one step of a 
� n General�rmesh on

a crcw pram is�

�i� O
�
n��� using n��
n� processors�

�ii� O
i�� for any i � �� � � � � �
n�� using nIi
n� processors� and

�iii� �
�
n��� when using n processors�

Deriving lower bounds for the 
� n RMESH

As a corollary from Theorem ��� we obtain�

Corollary ��� Consider a problem P of size n and let T 
n� q� be a time lower bound on computing

P on a q�processor crcw pram� Then� T � � �
T 
n� q�� is a time lower bound on computing P on

a 
� 
q�Ii
n�� rmesh� and T ���
n� is a time lower bound on computing P on a 
� q rmesh�

Proof� Let A be an algorithm that computes P in time TA on a 
�q rmesh� Using the simulation

algorithm of Theorem ���� the problem P can be computed on a q�processor crcw pram in time

O
TA�
n��� and on a qIi
n��processor crcw pram in time O
TA��

Corollary ��� immediately implies the new lower bounds that are mentioned in the introduction�


�



� Conclusions

We have presented the �rst e�cient simulations of the pram on the rmesh� We establish the

usefulness of the pram simulation by means of two applications� The �rst application is the

e�cient implementation of the dictionary data structure� which was not previously considered on

the rmesh� It is mostly obtained in a straightforward manner from our simulation result and a

known pram algorithm� The second is a �rst e�cient self�simulation algorithm for the rmesh

with general switches� Indeed� the number of problems whose solution may take advantage of our

simulation is abundant�

It is well known that the rmesh may be used to solve some problems faster than traditional

models of parallel computation such as the pram� This accelerated computation is attributed to the

utilization of network con�gurations as a computational resource� There are exponential number of

con�gurations� each of which induces a di�erent communication pattern� Despite the above� it may

seem that intensive data�manipulation problems are solved on the pram much faster than on the

rmesh due to the pram�s increased memory bandwidth� Our randomized simulation is targeted

at this set of problems� and we believe it will prove useful whenever one of them is considered�

We gave tight bounds for the complexity of simulating one step of the 
�n rmesh on the crcw

pram� The simulation result shows that the power of recon�guration may be signi�cant only for

r� n rmesh� for r � �� More speci�cally� lower bounds for crcw pram translate to similar lower

bounds on the 
 � n rmesh� up to a factor of �
n�� Thus� we obtain as a corollary several new

lower bounds for the 
� n rmesh�

Postscript

Recently� Czumaj� Meyer auf der Heide� and Stemann ���� provided improved simulation algorithms

of the erew pram on the dmm� They showed that an 
n lg lg lgn lg� n��processor erew pram can

be simulated on an n�processor dmm with O
n lg lg lgn lg� n� delay� Combined with Lemma ����

this implies a similar simulation result of the erew pram on an n�rmesh� Speci�cally� we obtain

that an 
n lg lg lg n lg� n��processor erew pram can be simulated on an n�processor collision

rmesh with O
lg lg lgn lg� n� delay�

As a result� the self�simulation of an N �rmesh on a p�rmesh� given in Theorem ���� can be

improved toO
lgN lg lg lg p lg� p�
N�p�� lg p� steps on the collision rmesh� This can be obtained

by using the algorithm presented in Section �� with the exception of replacing Gazit�s crcw pram

connectivity algorithm by the erew pram algorithm of Halperin and Zwick �

��

Very recently� Czumaj et al� ���� improved the results of Section � for the arbitrary rmesh�

showing that an n�processor crcw pram can be simulated on an arbitrary n�rmesh in constant

time w�h�p� 
This� however� does not imply improvement in simulating a crcw pram on the


�



collision rmesh�� As a result� using the algorithm presented in Section �� the self�simulation

of an N �rmesh on a p�rmesh� given in Theorem ���� can be improved to O
lgN � 
N�p��� time

w�h�p� on the arbitrary rmesh� i�e�� with constant overhead and O
lgN� additive delay� An

interesting open problem is to obtain a similar improvement for the collision rmesh�

Finally� since sorting can be computed in constant time on the rmesh� any erew pram sim�

ulation on the rmesh can be adapted to a crcw pram simulation on the rmesh with the same

complexities� up to a constant factor ���� 
cf� ������ By the erew pram simulation mentioned

above� this implies an e�cient simulation of a crcw pram on an n�processor collision rmesh

with O
lg lg lgn lg� n� delay w�h�p� An interesting open problem is to obtain an e�cient� constant

time simulation of the crcw pram on the collision rmesh 
as for the arbitrary rmesh��

The above remarks can be summarized in the following theorems�

Theorem ��� �simulating pram on rmesh�

We have�

� One step of an 
n lg lg lgn lg� n��processor crcw pram can be simulated in O
lg lg lg n lg� n�

time w�h�p� on a collision Linear n�rmesh�

� One step of an n�processor crcw pram can be simulated in O
�� time w�h�p� on a arbitrary

Linear n�rmesh �
���

Theorem ��� �self�simulating rmesh�

The self�simulation of a General N �rmesh on a Linear p�rmesh can be performed w�h�p� in

� O
lgN � 
N�p��� steps on the arbitrary model� and in

� O
lgN lg lg lg p lg� p� 
N�p�� lg p� steps on the collision model�
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