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Abstract

This paper studies relations between the parallel random access machine (PRAM)
model, and the reconfigurable mesh (RMESH) model, by providing mutual simulations
between the models. We present an algorithm simulating one step of an (nlglgn)-
processor CRCW PRAM on an n X n RMESH with delay O(lglgn) with high probability.
We use our PRAM simulation to obtain the first efficient self-simulation algorithm of an
RMESH with general switches: An algorithm running on an n X n RMESH is simulated on
a px p RMESH with delay O((n/p)?+1g nlglg p) with high probability, which is optimal
for all p < n/y/lIgnlglgn. Finally, we consider the simulation of RMESH on the PRAM.
We show that a 2 X n RMESH can be optimally simulated on a CRCw PRAM in O(a(n))
time, where a(-) is the slow-growing inverse Ackermann function. In contrast, a PRAM
with polynomial number of processors cannot simulate the 3 x n RMESH in less than

Qlgn/lglgn) expected time.



1 Introduction

The parallel random access machine (PRAM) model of computation is the most widely used model
for the design and analysis of parallel algorithms (see, e.g. [27, 23, 43]). The PRAM model consists of
a number of processors operating in lock-step and communicating by reading and writing locations

in a shared memory.

A reconfigurable mesh, or RMESH, is composed of a partitionable bus in the shape of a mesh,
connecting a set of processors which operate synchronously, and a set of memory modules. Thus, an
n by n RMESH, or n-RMESH, consists of » processors, n memory modules, and an interconnection
network consisting of an n by n mesh whose nodes are switches; each switch can reconfigure
dynamically to connect arbitrary subsets of its adjacent edges. As a result of local switching, the
global bus is partitioned into subbuses. In this way a large number of network configurations are
possible, each supporting a certain communication pattern. The RMESH may use dynamic switching

between these configuration patterns in order to accelerate computation.

The RMESH has begun to attract many researchers due to its promising prospects for efficient
hardware implementation [30]. Indeed, the model captures features of many commercial and ex-
perimental machines, which offer flexible communication patterns. The increasing interest in the
RMESH has resulted in a rapidly expanding volume of algorithmic and theoretical results; see for
example [40, 4, 3, 5]. It has been shown that the RMESH can solve some fundamental problems
very fast. In fact, it can solve some of them faster than what is possible with the CRCW PRAM.
For instance, an n-RMESH can find the parity of n? bits in constant time [29], which is significantly
faster than the O(lgn/lglgn) time required to solve the problem on a CRCW PRAM when using n°

processors, for any constant ¢ > 0 [2].

1.1 Simulating PRAM on RMESH

We address the following question: can any PRAM algorithm be adapted to an efficient algorithm on
RMESH with a small slowdown? A related question is whether one step of a PRAM can be simulated
effectively on an RMESH with a small delay. A simple bi-section bandwidth argument implies that
simulating an n-processor PRAM on a p-RMESH requires delay T'(n,p) = Q(n/p). Typically, the
delay can be expressed as T'(n,p) = f(n,p)-(n/p)+ d(n,p), for some functions f = f(n,p) and
d = d(n,p). We denote f as the (multiplicative) overhead of the simulation, and d as the additive
delay of the simulation. If f(n,p) = O(1) then the simulation is said to be efficient. Note that
an efficient simulation algorithm is optimal for p = O(n/d). Therefore, our goal is to obtain
an efficient simulation of an n-processor CRCW PRAM algorithm on a p-RMESH with the smallest

possible additive delay.

A good simulation result has an appeal from the algorithmic point of view. The popularity of

the PRAM, which is arguably due to its “programming” simplicity, resulted in a reach literature of



fast and efficient algorithms. These algorithms make it an attractive target for simulations on more
feasible machines. Indeed, a fast, efficient simulation would translate any efficient PRAM algorithm
into an efficient RMESH algorithm which is slower than the PraM algorithm by a factor of at most
the delay of the simulation.

The problem of simulating a PRAM on the RMESH was studied by Wang and Chen [54] and by
Ben-Asher et al. [4]. However, the simulation algorithms given in these papers are not efficient.
In [54] and [4] it is shown how to simulate an n-processor PRAM having M memory cells by the
n X M rRMEsH, with O(1) delay. For any p < n this implies, at best, a simulation on a p-RMESH
whose delay is O((M/n) - (n/p)?), which is O((M/p) - (n/p)), implying a multiplicative overhead of
f=0(M/p). As M may be considerably larger than p, this simulation is far from being efficient.

The difficulty in simulating shared memory on the RMESH is partly due to the distributed mem-
ory nature of the latter. There are studies that concentrate on models for distributed memory. A
relatively well studied model is the distributed memory machine (DMM) in which the interconnec-
tion network is abstracted away, and assumed to be a fully connected network. Another related
model, in which the interconnection network is replaced by optical communication, is the optical
communication parallel computer (ocpc). The simulations of the PRAM model on the pmm and
on the ocpc models were considered in a sequence of papers [48, 37, 28, 25, 52, 47, 16, 26, 17, 21],
obtaining eflicient simulations with doubly-logarithmic delay. In this work we extend these simula-
tion results to obtain an efficient simulation of an (nlglgn)-processor PRAM on an n-RMESH with
an additive delay of O(lglgn) with high probability. This is the first efficient simulation of a PRAM
on an RMESH.

As a direct application of the simulation we conclude that any algorithm for the n-processor
PRAM can be implemented on a p-RMEsH, for p = n/lglgn, with O(lglgn) slowdown with high
probability. The efficiency of the simulation implies that many PrRAM algorithms (e.g. [27, 23, 43])
can be automatically adapted to efficient RMESH algorithms. The rather small delay implies a
small slowdown; in particular, fast, efficient PRAM algorithms (e.g. [34]) imply fast, efficient RMESH
algorithms. We illustrate the usefulness of this rather general result by deriving a fast, efficient
implementation for the fundamental problem of building and supporting the parallel dictionary

data structure on the RMESH.

1.2 Self-simulation on RMESH

One of the most important features of parallel models is the self-simulation property. When a
machine is self-simulating, a smaller machine of size p can simulate a step of a larger one of size
N in O(N/p) steps. This makes the programming task considerably easier: it implies that an
algorithm designer may conveniently assume that the machine at hand is as large as required by
the algorithm. On the other hand, without self-simulation algorithm, an algorithm designer must

specifically address the entire range of machine sizes, since an algorithm given for a particular



machine size does not uniformly scale to all range of sizes, in general. Suppose that a program
takes 7 steps on a large machine of size N. When the program is executed on a smaller machine of
size p, the compiler may use the self-simulation property to produce an efficient algorithm for the

smaller machine, which works in O(7N/p) steps.

Consider the simulation of an N-RMESH on a p-RMESH, and consider a step in which each switch
of the N-RMESH (except for the rightmost column) sends some arbitrary message to the right while
reading its left port, and disconnecting its left, up and down ports. There are approximately N?2
message transmissions, hence in simulating this (and other) simple communication pattern on the
p-RMESH the delay must be Q((N/p)?). Therefore, for a self-simulation algorithm that takes time
T(N,p)= f(N,p)-(N/p)*+d(N,p), we denote f as the (multiplicative) overhead of the simulation,
and d as the additive delay of the simulation. As for the PRAM simulation, the self-simulation is said
to be efficient if f(N,p) = O(1), and we note that an efficient self-simulation algorithm is optimal
for p = O(N/+/d). Therefore, our goal is to obtain an efficient self-simulation of an N-RMESH on a
p-RMESH with the smallest possible additive delay.

The self-simulation problem of larger two-dimensional arrays by smaller ones was addressed in
[3]. Optimal self-simulation was obtained for two variants of the RMESH: the one with the simplest
switches assumes a switch may only connect/disconnect the column ports (the upper port with the
lower port) and the row ports (the left port with the right port). The buses are thus either horizontal
or vertical, hence this type is called HV-RMESH. Another variant allows to connect/disconnect only
pairs of ports (but unlike the HV-RMESH, any pair of nodes). Thus the buses configured are paths
of edges, and this type is called the Linear-RMESH. (The Linear-RMESH is the model assumed for
the PRAM simulation.) It was shown in [3] that both the HV-RMESH and the Linear-RMESH exhibit

optimal self-simulation.

The most general and strongest variant of the RMESH which we consider, denoted as the General-
RMESH, allows the switches to connect/disconnect any subset of their ports (rather than just pairs
of them). Hence a bus may consist of any connected sub-graph. In [5, 45] it was shown that
the set of problems computable in constant time on a polynomial size Linear-RMESH is exactly
the set of problems computable by a logspace Turing machine, whereas the corresponding set for
the General-RMESH contains exactly all the problems that are computable by a logspace Turing
machine having a symmetric logspace oracle. Thus the General-RMESH is expected to be more
powerful than the Linear-RMESH. We note that there is a fairly simple constant time connected
components algorithm on the General-RMESH [53], while no such equivalent algorithm is known for

the polynomial size Linear-RMESH.

Previous to this work, only a non-efficient self-simulation was known for the General-RMESH: an
N-RMESH was simulated by a p-RMESH in O((N/p)?lg N1g(N/p)) slowdown [54, 3], which implies
an overhead of f = O(lg N Ig(N/p)).

By using our PRAM simulation, we obtain here the first efficient self-simulation algorithm for



the General-RMESH. The self-simulation is efficient and has an additive delay of d = O(lg N 1glg p)
w.h.p. for the General-RMESH when the simulating RMESH has the ARBITRARY bus-conflict resolu-
tion. For a simulating RMESH with the COLLISION bus-conflict resolution, the self-simulation has an
overhead of f = O(lg p) and the same additive delay. Furthermore, our simulating algorithm is im-
plemented on the Linear-RMESH. Thus, the self-simulation can also be interpreted as a simulation
of the strong General-RMESH on the weaker Linear-RMESH.

For completeness we mention that some work was previously carried in the direction of simu-
lating general networks using a larger RMESH. It was shown that any constant-degree reconfiguring
network may be simulated with no slowdown by an RMESH, paying a quadratic blow-up of the
number of switches [5, 45]. This result was improved for the case of a k-dimensional RMESH which
is simulated by the O(n*~!)-rMESH with constant slowdown [50].

1.3 Simulating a 2 x n RMESH on the PRAM

In the opposite direction, we consider the simulation of a 2 X n RMESH on the PRAM. We show
that using such a network, only a slight (nearly-constant) speedup can be obtained compared to
the cRecw PRAM. Specifically, we show that a step of a 2 X n RMESH can be simulated on cRCW
PRAM in O(a(n)) time, using an optimal (i.e., n/a(n)) number of processors, where a(n) is the
inverse Ackermann function (this is an extremely slow-growing function and is at most 4 for all
conceivable n). We also show that this work-optimal simulation result is best possible: Q(a(n))
time is required when simulating a 2 X n RMESH, or even a 1 X n RMESH, on an n-processor CRCW
PrRAM. Constant time simulation can also be obtained by using n/;(n) processors, for any constant
i > 0, where [;(n) is the inverse of a function at the i-th level of the primitive recursive hierarchy
(e.g., Is(n) =1g" n).

The tight simulation result implies that any w(a(n)) lower bound for the cRcw PRAM translates
into a non-trivial lower bound for the 2 x n RMESH, which is similar to the cRcw PrRAM lower bound
up to an a(n) time factor, or up to a constant time factor if slight increase in the number of PRAM
processors does not affect the PRAM time lower bound. As an immediate corollary, the CRCW PRAM
lower bound of Beame and Hastad [2] implies that the parity problem cannot be solved faster than
Qlgn/lglgn) time on a 2 x n® RMEsSH, for any constant k; this particular lower bound has been
improved to Q(lgn) by the independent work of MacKenzie [33] (but only for the 2 X n RMESH).
The same lower bound obviously holds also for the more general compaction problem, which is
the problem of moving the contents of m distinguished elements, given in an array of size n, into
an array B of size m. New lower bounds are also derived for a relaxed version of the problem,
the linear compaction problem, in which the output array B may be of size O(m): Q(lg"n/a(n))
expected time for a randomized algorithm, and Q(lglg n/a(n)) time for a deterministic algorithm,
both for the 2 x n RMESH; the first is derived by the cRcw PrRAM lower bound of MacKenzie [32],
and the second by the ckcw PrAM lower bound of Chaudhuri [8]. Other new lower bounds for the



2 X n RMESH include an Q(lglgn) time lower bound for merging two sequences of length n, both
for deterministic algorithms [44] and for randomized algorithms [19], and an Q(lglgn) time lower

bound for computing the minimum [51, 38, 6].

The simulation of a 2 X n RMESH by a PRAM is obtained by showing that this problem is equiv-
alent, up to a constant factor, to the so-called nearest-zeros problem. We then use known results
on the complexity of computing the nearest-zeros problem on the cRCw prAM. Our technique is
related to those used in the independent works of Condon et al. [10] and Lin et al. [31]. These
works present simulations for considerably weaker RMESH model, namely the HV-RMESH, which
only allows a limited subset of the switch configurations allowed in our model: only buses that are
either totally horizontal or totally vertical are possible. As noted above, the power of restricted
models such as the HV-RMESH is quite limited. For instance, while there exists a constant time
algorithm for the parity problem on n bits, which runs on a 3 X n RMESH; no such algorithm is

possible even on the n X n HV-RMESH.

The rest of the paper is organized as follows. The next section provides models definitions
and other preliminaries. The simulation of the DMM and PRAM models on the RMESH are given in
Section 3. The self-simulation algorithm for the RMESH is given in Section 4. Section 5 describes

the simulation of the 2 x n RMESH on the PRAM. Conclusions are given in Section 6.

The results of Section 3 were described in in [46]. The results of Section 5 were described in

preliminary form in [35].

2 Preliminaries

2.1 Models definitions

The PrAM model: A Parallel Random Access Machine (PRAM) consists of synchronous processors
that have constant-time access into a shared memory of arbitrary size. Standard PRAM models can
be distinguished by their rules regarding concurrent access to shared memory locations. These
rules are generally classified into the ezclusive read/write (ER/EW) rule in which each location
can be read or written by at most one processor in each PRAM step, and the concurrent read/write
(CR/CW) rule in which each location can be read or written by any number of processors in each
PRAM step. These two rules can be applied independently to reads and writes; the resulting models
are denoted in the literature as the EREW, CREW, ERCW, and CRCW PRAM models. In this paper
we consider the Concurrent Read Concurrent Write (CRCW) PrRAM model in which an arbitrary
number of processors can access the same memory cell at the same time in both read and write
steps. There are several sub-models that differ in the conflict resolution rule in case two or more
processors are trying to write at the same time to the same memory cell, including: the PRIORITY,

in which the processor with the lowest ¢d succeeds; the ARBITRARY, in which an arbitrary processor



succeeds; and the CcOLLISION, in which a special collision data symbol is written in the memory
cell. The PRIORITY CRCW PRAM is stronger than the ARBITRARY CRCW PRAM in the sense that
one step of an n-processor machine of the second model can be simulated in constant time by an
n-processor machine of the first model. Similarly, the ARBITRARY CRCW PRAM is stronger than
the COLLISION CRCW PRAM. Formal definitions and more details can be found in, e.g., [27, 23, 43].
Whenever it will be important for the discussion, we will state explicitly which of the sub-models

we assume.

The pMM model: A Distributed Memory Machine (DMM) consists of n synchronous proces-
SOTS P, P1,- -+, Pn_1 that communicate via a distributed memory consisting of n memory modules
My, My, ..., M,_1. Every module has a communication window, and a collection of memory cells.
In each DMM step, a processor may perform some internal computations or request access to a
memory cell in one of the memory modules. Out of the set of requests made by processors trying to
access a certain module, the module answers only one (arbitrarily), and displays ( Request, Answer)
in its communication window. Every processor with a request for this module that reads the window
at this step, can get the answer. From the viewpoint of the processors, a communication window
functions like a shared memory cell of a crRcw PRAM. Similarly to the cRCW PRAM, the DMM
may have sub-models that defer according to their conflict resolution in case of concurrent write.
The sub-models can be identified as for the CRCW PRAM: PRIORITY, ARBITRARY, and COLLISION.
Unless noted otherwise in the text, we will assume as default the ARBITRARY DMM.
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Figure 1: Left: All allowable switch configurations. Right: The 5 x 5 reconfigurable mesh.

The reconfigurable mesh (RMESH) model: An RMESH consists of an n x m array of switches,
(0,0) at the upper left corner and (n—1, m—1) at the lower right corner. A 5x5 RMESH is depicted

in Figure 1. The switches may take one of several configurations, out of which they select locally



in each step. This is carried by the following sub-steps. (1) The switch selects a configuration.
Allowable configurations connect subsets of ports (see Figure 1), where a set of connected ports
acts as if it is hardwired connected. This induces a partition of the mesh edges into a set of
connected components, each of which is called a bus. (Each node may be part of up to 4 connected
components.) (2) Several of the switches connected by a bus may use it to transmit a message.
(3) All the switches connected by a bus may read it; a message transmitted on a bus is assumed
to arrive at the same time step to all its switches. (4) A constant time comparison may be taken

by every switch.

All the nodes in the mesh have the switching capability, and each node can compare two elements
in constant time, store a constant number of elements, and broadcast data on the buses and read
data from the buses. There are two distinguished types of nodes: processors and modules. The
processors are the nodes located at the top row of the RMESH (sometimes referred to as po, ..., pn—1).
In addition to the switching capabilities, they have computational power corresponding to the power
of the PRAM or the DMM processors. The modules are the nodes located at the rightmost column
of the RMESH (sometimes referred to as My,..., M,_1). In addition to the switching capabilities,
each module has a collection of memory cells in which it may store data and which it can read in
O(1) time. The input is always assumed to be given to the processors. In the sequel we denote the
n X n RMESH as the n-RMESH.

As for the concurrent write PRAM models, when several transmitters attempt to transmit con-
currently then some conflict resolution policy should be applied. We say that the bus has three
possible states: speak — when some message is heard on the bus, idle — when no message is trans-
mitted on the bus, and error — when several messages are concurrently transmitted on the bus and
some “noise” is heard as a result, so that all transmitted information is lost. In this work we are
interested in two main conflict resolution policies: ARBITRARY — in which out of several messages
that are concurrently transmitted on the bus one of them is arbitrarily elected and heard by the
receivers, and COLLISION — in which an error bus-state occurs whenever more than a single message

is transmitted on the bus.

Following [5, 3], we consider a hierarchy of RMESH models with respect to the possible connec-
tivity patterns that may be taken by the switches. The model with the simplest switches assumes a
switch may only connect/disconnect the column ports (the upper port with the lower port) and the
row ports (the left port with the right port). The buses are thus either horizontal or vertical; hence
this type is called HV-RMESH. A somewhat stronger model allows to connect/disconnect only pairs
of ports. The buses configured are paths of edges, and this type is called the Linear-RMEsH. The
most general and strongest variant of the RMESH which we consider, the General-RMESH, allows the
switches to connect/disconnect any subset of their ports (rather than just pairs of them). Hence a

bus may consist of any connected sub-graph.



Discussion Intuitively, the definition of the RMESH given above may be viewed as follows: There
are n processors and n memory modules which are interconnected by an n X n reconfigurable mesh.
The RMESH serves merely as a routing device, whose local switches have a very limited processing
power. We emphasize here that all results in this paper hold for this model. In particular, this
indicates that for the DMM and PRAM simulation results in Section 3 the amount of simulating
hardware is linear, except for the routing device, which (in accordance with AT? lower-bounds)
requires a quadratic blow-up [46]. On the other hand it is instructive to note that all results in
the paper also hold for the stronger model, in which each of the nodes of the RMESH consists of a
full-fledged processor and a memory module. In particular, this is the case for the self-simulation

algorithm of Section 4 and the simulation of a 2 X n-rmesh by the PRAM in Section 5.

2.2 Basic procedures for the RMESH

We make use of the following tools.

Sorting in the RMESH. Sorting n elements located at the top row of an n-RMESH, can be done in
constant time by using the sorting algorithm suggested in [4, 24, 41]. Using self-simulation results
for the Linear-RMESH [3] it is also possible to sort in constant time if the number of elements is

higher than n, say c¢n for some constant c.

Bus splitting. One of the most basic techniques in computing with the RMESH is called bus
splitting. Consider a single row of the RMESH, and suppose some arbitrary subset of its switches
store input values, a single value at each switch. Then, in a single step, the rightmost switch in
the row can have one of these values. This is done as follows: The switches which do not have
input values connect their edges, while the others disconnect and transmit their values to the
right. Clearly the rightmost input value (if exists) will be read by the rightmost switch of the row.
Similarly, bus splitting may be carried on a column.
Convention. The following terminology is used to denote the probability of randomized events:
c

We say that an event occurs with high probability (w.h.p.) when it occurs with probability 1 —n7¢,

for any constant ¢ > 0.

3 Simulating the DMM and the PRAM models on the RMESH

A PrAM step is simulated on the RMESH by first simulating it on a bMM, and then simulating the
DMM on the RMESH. We start by providing a constant time simulation of DMM on RMESH. Using
known PRAM simulation on the DMM, we derive a simulation of PRAM on the RMESH. This simulation
is improved by providing a simple constant time hashing algorithm on the RMESH, replacing a PRAM

hashing algorithm. Finally, the step-simulation is extended to a full PRAM program simulation.



Unless otherwise explicitly stated, we assume in this section that the conflict resolution of the

buses is COLLISION and the switching configurations are Linear.

3.1

Basic simulations

We show how a step of an n-processor DMM can be simulated on an n-RMESH in constant time. In

a DMM step each of the processors issues one of the following:

The

A read request, read(z, M;), where M; is the module from which the contents of memory

location z, denoted by ¢(x), has to be read.

A write request, write(c(z ), z, M;), where ¢(z) is to be written to memory location z in module
M;.

simulation of a DMM step:

. Each of the processors at the top row transmits its request to all nodes belonging to its

column. Node (4, j) receiving a request to module M;, stores the request.

. In row ¢ of the mesh, for all 0 < ¢ < n — 1: Using row broadcasting and bus-splitting, M;

receives the right-most request addressed to it. If it is a write request, write(c(2), z, M;), M,
updates the contents of the memory location 2 in the module to ¢(x), and broadcasts z to
all nodes of the row. If it is a read request for key z, then in the next step M; transmits the

request and the value back to the row.

. Any node (7, j) which reads a read request read(x, M;), compares x with the key 2’ of the

request of p;. If the request of p; is for module M;, and & = 2/, then it sends the received

value to p;.

. Any processor p;, 0 < ¢ < n — 1, makes the internal computations taken by processor p; of

the DMM at this step.

Clearly, every module in the above algorithm responds to the request issued by the processor

with the lowest ¢d. This is a PRIORITY conflict resolution, and in particular, it is stronger than the

ARBITRARY conflict resolution. The above algorithm can be summarized by the following lemma.

Lemma 3.1 (DMM simulation) One step of an n-processor DMM with PRIORITY conflict resolu-

tion can be simulated in constant time on the COLLISION n-RMESH.

We use the simulation results due to Karp, Luby and Meyer auf der Heide.



Lemma 3.2 ([26]) An (nlglgnlg™ n)-processor EREW PRAM and an (nlglgn)-processor ARBI-
TRARY CRCW PRAM can be simulated by an n-processor DMM with delay O(lglgnlg® n) w.h.p.

Combining Lemma 3.1, and Lemma 3.2 we get:

Corollary 3.3 An (nlglgnlg™ n)-processor EREW PRAM and an (nlglg n)-processor ARBITRARY
CRCW PRAM can be simulated on a COLLISION n-RMESH with O(lglg nlg™ n) delay per step w.h.p.

3.2 Faster, efficient simulation of the CRCW PRAM on the RMESH

In this section we improve the simulations of PRAM on the RMESH. We show:

Theorem 3.4 One step of an (nlglgn)-processor ARBITRARY CRCW PRAM can be simulated in
O(lglg n) time w.h.p. on a COLLISION Linear n-RMESH.

The simulation algorithm is based on the algorithms by Karp et al. [26].

Before proceeding further, we mention a crucial data type for our application. A lookup table
is a data structure that stores a multi-set S of size n in a O(n) memory size and enables n lookup
queries to be executed in constant time, using n processors. A hashing algorithm computes a lookup

table for a given multi-set §.

The following lemma is implicit in [26]:

Lemma 3.5 One step of an (nlglgn)-processor ARBITRARY CRCW PRAM can be simulated on an
n-processor DMM by O(lglgn) calls to a hashing algorithm.

The algorithm that realizes Lemma 3.5 is the basis for the algorithm that realizes the CRCW PRAM
simulation of Lemma 3.2; the (lg*n) overhead and the (lg*n) factor in the delay of the latter
simulation algorithm are due to the application of a crRcw PrRAM hashing algorithm [20], adapted
to the DMM. As a result we have:

Corollary 3.6 One step of an (nlglgn)-processor ARBITRARY CRCW PRAM can be simulated on
a COLLISION n-RMESH by O(lglgn) calls to a hashing algorithm.

Proof. By Lemma 3.5 and Lemma 3.1. .

A hashing algorithm takes ©(lg* n) steps on the pMM. A hashing algorithm can be executed,
however, in constant time on the n-RMESH, as described next. We will then proceed to describe

the resulting improved simulation algorithms.
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Hashing in constant time on the RMESH

The PRAM simulation on the RMESH uses a lookup table data structure, in which hashed elements

are stored.

Lemma 3.7 Let ¢ > 0 be a constant. A lookup table for a multi-set of cn elements can be con-
structed in constant time by a Linear COLLISION n-RMESH. Subsequently, for every constant ¢’ > 0,
a batch of ¢'n queries (lookup, delete or insert) can be executed in constant time, as long as the

number of elements is O(n).

Proof.  The lookup table is represented in an array H[l..cn], where ¢ elements of the array are
stored at each memory module M;. The constant time construction of the lookup table is described

in the following procedure.

Algorithm Static Table:

1. Sorting: Sort the input elements.

2. Selecting a representative: For each sequence of equi-valued elements, all but the left-most

element are removed.

3. Building the table: Every processor p; sends its elements (which were not removed) to module
M;.

Subsequently, a batch of n lookup queries, one per processor, are executed by letting each switch

(k,j) compare the k-th request with the at most ¢ elements in module M;.

Algorithm Static Lookup:

1. Each processor broadcasts its query element to all the nodes in its column.

2. Repeat the following for ¢ = 1 to ¢:

(a) Each module broadcasts its i-th element to all the nodes in its row.

(b) Each node compares the two elements received (one from the processor and one from

the module). If they match, the node notifies the processor in its column.

Both the construction of the table and the execution of n lookup instructions in parallel are

completed in O(1) time.

A lookup operation for ¢'n elements may be executed in O(1) time, simply by repeating Algo-
rithm Static Lookup ¢’ times. Whenever the number of stored elements is O(n), a batch of O(n)

insert or delete operations can be executed in constant number of steps. "

11



We note that the only usage of the sorting algorithms above is for electing a leader out of every

subset of non-distinct elements to be stored in the hashing table.

Theorem 3.4 follows by Lemma 3.7 and Corollary 3.6.

3.3 Simulating full PRAM programs

We now show that simulating a single step of a PRAM implies a simulation of a full PRAM program
with a slowdown factor being the same as the delay of one step w.h.p. Thus the efficient simulation
of one PRAM step translates into the efficient simulation of full PrRAM algorithm. In fact, this
extension is necessary even for claiming an efficient simulation of a single PRAM step, for the
following reason. Note that Theorem 3.4 deals with simulating a step of an n-processor PRAM on p-
RMESH, where p = n/lglg n. Given a p-RMESH, for an arbitrary p < n/lglg n, the n-processor PRAM
step is implemented on a (plglg p)-processor PRAM in O(n/plglg p) time, using the self-simulation
property of the PRaAM. Each of the O(n/plglgp) steps are then simulated on the p-RMESH, using
the step simulation of Theorem 3.4. Thus, in order to simulate the n-processor PRAM step, we need

a simulation algorithm that deals with several steps.

Theorem 3.8 Let A be an algorithm that runs on an n-processor CRCW PRAM in time T, using
memory of size M, such that T < n* and M < n* for some constant k. Then Algorithm A can be
adapted to run on an p-RMESH in time O(T(n/p+ 1glgp)) w.h.p.

Proof.  The simulation which realizes Lemma 3.5, and hence Theorem 3.4, is based on mapping
the memory locations into the memory modules, by using several hash functions that are selected
at random from an appropriate class of hash functions. With high probability, the hash functions
satisfy certain properties that are required in order to carry on the simulation algorithm. If the
performance of the algorithm degrades due to an unluckily bad selection of the hash functions,
then a new set of hash functions are selected and the algorithm is started afresh. As shown in [26],
the probability that the simulation takes more than c¢lglg p time, for some constant ¢, due to bad
selection of hash functions, can be made n~* for an arbitrary large constant ¢ (the constant ¢ may

depend on /).

Let € > 0 be some constant, and assume first that p > n'=¢. The n-processor PRAM algorithm
of T steps is self-simulated on a (plglg p)-processor PRAM to yield an algorithm running in 7" =
T[n/plglgp] < n*t¢/lglgp steps. Each of these steps is simulated on the p-RMEsH in O(Iglg p)
time w.h.p., using Theorem 3.4. The probability that the simulation of any of the T’ steps takes

kte=f By selecting a sufficiently large { > k + ¢, the total

longer than clglgp time is at most n
running time of the simulated algorithm is T'1glgp = O(T(n/p+1glgp)) w.h.p.

1—¢

It remains to consider the case p < n The simulation algorithm for this case is in fact

simpler, and is based on an algorithm due to Kruskal, Rudolph and Snir [28, Thm 4.9], in which
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the memory locations are mapped into the memory modules using a single polynomial hash function.

For p < n'~¢

, and an arbitrary constant {, there is a constant ¢’ (which is a function of ¢ and ¢)
such that an n-PRAM step can be simulated on a p-RMESH in time ¢'n/p with probability 1 — n’.
The probability that the simulation of any of the T PRAM steps takes longer than ¢'n/p is at most
n*=*. By selecting a sufficiently large ¢ > k, the total running time of the simulated algorithm is

O(Tn/p) w.h.p. =

3.4 A direct application: a parallel dictionary on the RMESH

As a direct application of Theorem 3.4 we obtain a construction of a parallel dictionary on the
RMESH. A parallel dictionary is a data structure which supports the instructions insert, delete, and
lookup queries, for elements that are drawn from some finite universe U = [0,....,p— 1]. It is a
standard and basic data type (see, e.g., [1]). Both lookup tables and parallel dictionaries are useful
tools for parallel algorithms that use a large space. Previously, no fast, efficient implementation of

the dictionary algorithm on the RMESH was known.

A parallel dictionary handles one batch of operations at a time. FEach batch consists of an array
of elements and an instruction: insert, delete, or lookup. The parallel dictionary processes a batch

using several processors.

We use the following theorem:

Lemma 3.9 ([20]) There exists a dictionary implementation on an n-processor ARBITRARY CRCW
PRAM, with the following features, all w.h.p.

(a) At all times, the total space used by the dictionary is linear in the number of elements

currently stored in the dictionary.
(b) Any batch of nlg™ n elements is processed in O(1g" n) time.

(c) A lookup instruction for a batch of n elements is processed in constant time.

Now the following theorem is implied directly by the PRAM simulation algorithms on the n-
RMESH and by the above theorem. When the size of the dictionary is linear in n, then the imple-
mentation may use the constant time hashing procedures directly. The detailed description of how

all this is carried may be found in [46].
Theorem 3.10 Let S be the set of elements in the dictionary, let € > 0 be chosen arbitrarily small,
and let b be a sufficiently large constant. A parallel dictionary can be implemented on the n-RMESH

with the following features:

1. Any batch of m arbitrary instructions is processed in O(m/n + lglgnlg® n) time w.h.p.

13



2. A lookup instruction for a batch of O(nlglgn) elements is processed in O(lglgn) time w.h.p..

3. If |S| + m < bn, (|S] is the number of elements in the dictionary) then any batch of m

instructions is processed in O(1) time.

4 Self-Simulation of the RMESH

In this section we give an important application of the PRAM simulation. Somewhat surprisingly,
we are able to use PRAM simulation in order to improve previous self-simulation results for the
RMESH.

We consider the simulation of the N X N General-RMESH by the p X p Linear-RMESH. Since
the General-RMESH is stronger than the Linear-RMESH, the simulation immediately implies self-
simulation algorithm with the same complexities for both the General-RMESH and the Linear-
RMESH. For brevity we call them both RMESH in the sequel; it should be understood that the
specific model is either the General-RMESH or the Linear-RMESH, depending if it is the simulated

or the simulating model, respectively.

In the sequel we say that the self-simulation algorithm terminates in a certain number of steps

w.h.p. when the probability of non-termination can be made as small as N =),

One of the notions we use extensively is that of a window. A submesh of the N-RMESH is called
a window, when it is one of the (N/p)? p X p submeshes in a partitioned N-RMESH (assuming, for
simplicity, that N/p is integral). Fig. 2 below illustrates a partition of the mesh into windows. A
window is always “aligned to a boundary of size p”, where the boundary of a window consists of all
the switches from which edges exit the window (or from which there is a direction with no edge at
all). The boundary of a window is composed out of four facets in the intuitive way (each corner
switch belongs to two facets). Every window W has a unique label label(W) of size 2(lg N —lg p)
bits. On the boundary of each window, every switch has a unique local id of size 2 4 lg p bits. For

simplicity we assume these quantities to be integral numbers.

Folding the mesh

The following function is useful for mapping a mesh of size N into a mesh of size p. Let p < 2 < N;
then

x mod p if  div pis even

p—1— (2 modp) otherwise

fold(z) = {

We use (r,c¢) — (fold(r),fold(¢)) for mapping a switch (r,¢) of an N-RMESH into the p-RMESH.

Informally, this has the same effect as that of folding a large page of paper several times into a
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square of size p X p. A point on the p-sized square “simulates” all points of the folded page that
are stabbed when pushing a pin at this point.

The advantage of the folding mapping in self-simulation algorithms for the RMESH was first
observed in [3]. It is implied by the fact that when the p-RMESH simulates the p-submeshes one
by one, boundary points of p-submeshes which are adjacent in the folded mesh are mapped to the
same switch of the p-rRMESH. Hence, the existence of a bus which crosses from one p-submesh to

the other may be observed by this switch.

4.1 Algorithm outline

The idea of the self-simulation algorithm is to simulate the windows one by one, performing the local
buses communication, while collecting connectivity data for buses which cross window boundaries.
We note that the simulation of these global, inter-window buses is what makes the self-simulation
rather difficult. The connectivity data is collected and kept through the windows boundaries. The
folding function implies an assignment of processors to boundary nodes which is suitable for the
processing of this data, and its representation as an appropriate graph connectivity problem. An
edge in the graph represents a pair of two adjacent boundary nodes from adjacent windows which
are connected in the configuration of the simulated RMESH (e.g., nodes z and 2’ in Fig. 2). A

connected component of the graph corresponds to a global bus in the simulated RMESH.

The connected components of this graph are computed, along with the message that is heard
on each of the corresponding buses. This connected components computation is where we use
our efficient PRAM simulation results from the previous section. Specifically, the PRAM simulation,
together with a known pPrRAM algorithm for connected component computation, are used to derive
an appropriate connected component algorithm for the simulating RMESH. We note that although
the derived connected component algorithm on the RMESH is not efficient in general, its usage in

our context enables an efficient self-simulation algorithm.

Finally, the message computed for each connected component is distributed to the appropriate
boundary nodes at each window. Once again, the computations within windows are simulated
one-by-one, where the information at the boundary nodes is disseminated to the internal nodes by

regular RMESH steps.

4.2 The self-simulation algorithm

The self-simulation algorithm consists of three main phases and two intermediate ones.
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Phase (1): Sweep

In this phase we scan the windows one-by-one in an arbitrary order, where windows are mapped
to the p-RMESH according to the folding mapping as described above. A window W is simulated
in a single step by the simulating p-RMESH. Any switch which is transmitting in the original mesh
transmits and all switches connected by the bus B store the resulting message message( B). When
a bus does not exit the window, its simulation is completed in this step. We thus proceed to
consider only boundary-crossing buses. In parallel, for every bus B in W we elect a label label( B)
as follows: We first elect a “leader” leader( B) out of the switches on the boundary of W which are
also connected to B. Note there is at least one such switch. If the conflict resolution of the buses
is ARBITRARY (or stronger) then this can be done in a single step. Else, if the conflict resolution
is COLLISION then electing a leader can be done by standard methods in  Sizeof(id) = 2 + lg p. We
next set the label of the bus to be the concatenation of the identity of the elected leader with the
label of the window, i.e., label( B) = (label( ), id(leader( B))).

Summarizing, for each window we elect labels in parallel for all the buses, which takes O(1)
steps in the ARBITRARY model and O(lgp) in the coLLisION model. All switches on the boundary
of the bus B store the information [label( B), message( B)], called the identifier of B. Since there
are (N/p)? windows, every boundary switch of the simulating p-RMESH collects up to (N/p)? bus
identifiers, one per window. More accurately, if a switch is at the point (+/,¢’), then it stores
the identifiers that occur at each boundary point of a window which represents a point (r,c) of
the original mesh such that fold(r,¢) = (v/,¢’). These identifiers are then moved to the memory
modules, so that the ¢-th module stores the i-th identifier from each facet of the boundary of every

window.

Intermediate-Phase (1.5): Creating the Connectivity Graph

We define a graph G as follows. The nodes of G are the bus labels, label( B), i.e., each node
represents a global bus B at a certain window W. The edges of G are all the pairs of nodes
(label( B), label( B')) such that fold(leader( B)) = fold(leader( B')) and B is connected to B’ in the
simulated mesh. Thus, there is an edge for each pair of connected buses B, B’ whose identifiers are
stored in the same switch. For each edge we also assign a message conflict(message( B), message( B')),

that is determined as a function of the messages of the respective buses.

The function conflict depends on the nature of the messages message( B) and message( B'), and
on the collision rule of the simulated RMESH: For the ARBITRARY RMESH, conflict receives the value
of either message( B) or message( B'), with arbitrary choice, unless exactly one of the messages is
non-idle, in which case it is the same as the non-idle message. For the COLLISION RMESH, conflict
receives the collision symbol #, unless exactly one of the messages is non-idle, in which case it is

the same as the non-idle message.
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Suppose that an edge (label( B), label( B)) is computed by the processor of switch fold(leader( B))
(= fold(leader( B')), in a constant number of operations. Since there are (N/p)? windows, computing

the edges for all pairs of adjacent buses and storing them in the modules of the p-RMESH takes
O(N/p)?) steps.

Examples for the process of constructing GG are given in Fig. 2.

Window

An Boundaries
Internal p
Bus

Figure 2: An example for the construction of the connectivity graph G. Here N/p = 3 so the simulated
mesh is split into 9 windows. The upper left window completely contains a somewhat complicated bus
which is simulated in a single step of Phase (1). In contrast, the simulation of the lower concentric
bus requires the collection of connectivity data from all windows. For example, when simulating W,
and W3, 2,y and z are simulated by the same switches simulating 2,3’ and z' respectively (i.e.,
fold(z) = fold(z’), fold(y) = fold(y’) and fold(z) = fold(2’)). Thus, during Phase (1) switch fold(x)
(or its corresponding memory module) stores both identifiers of B3 and B4, and during Intermediate-
Phase (1.5) it (or the corresponding processor) combines them into an edge of the connectivity graph
G'. Similarly switches fold(y) and fold(z) create edges in G which represent the connections of B2 — B5
and Bl — B6, respectively.
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Phase (2): Connected Components

Since each window has at most 4p bus labels, and there are (N/p)? windows, the total number
of bus labels, and hence, the total number of nodes in G, is at most 4N?/p. Moreover, the total
number of edges in ( is at most 4N?/p. The connectivity of G defines the connectivity of the
buses across windows in the simulated RMESH. We therefore determine the bus connectivity of the

N-RMESH by computing connected components on the graph G.

We note that the connected component algorithm from [40] requires the adjacency matrix to
be given at specific switches of the RMESH, and that the one from [3] requires the input to be of
approximately the square root of the size of the mesh. Thus the available connected component
algorithms for RMESH are not suitable to our goal. Our approach is to take a PRAM algorithm
for computing connected components, and simulate it on the p-RMESH using the PRAM simulation

algorithm from Section 3.

We use a cRcw PRAM algorithm by Gazit [18] for computing the connected components of a
given graph G on v nodes and m edges on n = (v+ m)/lgv processors, in T'= O(lg v) time w.h.p.
In our case, v = O((N/p)?) and m = O(N?/p). Using Theorem 3.8, Gazit’s algorithm can be
simulated on the p-RMESH in time O(T(n/p+1glgp)), which is O(lg N lglgp + (N/p)?) w.h.p.

Intermediate-Phase (2.5)

Once connected components are determined, the message for each bus is determined by joining
together message( B) as described above for all edges in the connectivity graph . This is done for
all segments of the same bus by extracting the messages from the input edges formed in Phase (1).
We avoid tiresome details of this procedure by simulating again a PRAM algorithm for this task
(which takes O(1) steps on a CRCW PRAM with N?/p processors).

Reversing some previous data movements, we make the edges move back to the modules where
they were formed in Intermediate-Phase (1.5). Note that these are point-to-point communication
operations which may be “reversed” by forming the same buses and switching transmitters and
receivers. Finally, by reversing Intermediate-Phase (1.5) itself, we attach to each identifier of a bus

segment the evaluated message of its full bus.

Phase (3): BackSweep

Note the identifiers together with the evaluated messages now reside in the same modules where
they were formed. Thus, it is easy to move them to switches of the p-RMESH which simulate

window-boundary switches and which were elected as leaders during Phase (1).

The p-rMESH now (logically) scans window by window of the simulated N-rMESH while making

the leaders of the buses broadcast the evaluated message on their corresponding bus-segments. The
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readers of the simulated segments read the broadcasted messages. This clearly takes one step per

simulated window.

4.3 Summary

The whole self-simulation algorithm takes O(lg Nlglgp + (N/p)?) steps w.h.p. on the RMESH
with buses having ARBITRARY collision resolution, and O(lg Nlglgp + (N/p)?lgp) steps w.h.p.
on the RMESH with COLLISION resolution. Thus, for the ARBITRARY model the self-simulation is
efficient with an additive delay of O(lg Nlglgp). For the coLLisiON model the self-simulation
has an overhead of O(lgp). Recall that previous (deterministic) self-simulation algorithms have a
multiplicative overhead of O(lg N 1g(N/p)) [3].

Theorem 4.1 The self-simulation of a General N-RMESH on a Linear p-RMESH can be performed
w.h.p. in

e O(lg Nlglgp+ (N/p)?) steps on the ARBITRARY model, and in

e O(lgNlglgp+ (N/p)*lgp) steps on the COLLISION model.

5 Simulating the 2 x n General-RMESH on the PRAM

We show in this section that simulating one step of a 2 X n General-RMESH on a CRCW PRAM is
equivalent, up to a constant factor, to computing the nearest-zeros problem on the CRCW PRAM.
We assume here that the PrRAM write conflict resolution policy is the same as that of the simulated
RMESH, i.e., it is either ARBITRARY or COLLISION. For most of our discussion an even weaker sub-
model may be assumed, the COMMON CRCW PRAM, in which all processors trying to write to the
same memory cell are writing the same value. For the rest of this section an RMESH always denotes
a General-RMESH.

We first define the nearest-zeros problem, then proceed to show an efficient reduction to this

problem.

The Nearest-Zeros Problem

Let the function [;(n) be the inverse of a function at the ¢-th level of the primitive recursive
hierarchy, and the function a(n) be the inverse Ackermann function. (Thus, Iz(n) =lgn, Is(n) =
lg"n, and I,(,)(n) = a(n), cf. [12, pp. 451-453].)

Given an array A[l..n] of 0’s and 1’s, the nearest-zeros problem is to find for each index i =

1,...,n the nearest locations on its right and on its left in A which contain a 0 bit. Berkman and
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Vishkin [7] and Ragde [42] considered this problem and presented very fast parallel algorithms, and
recently, Chaudhuri and Radhakrishnan [9] provided a matching lower bound:

Lemma 5.1 ([7, 42, 9]) The parallel time complezity for solving the nearest-zeros problem on the

CRCW PRAM 18!

(i) O(a(n)), using n/a(n) processors;
(i1) O(i), for any i = 1,...,a(n), using nl;(n) processors; and

(1ii) Q(a(n)), when using n processors.

5.1 Reducing the simulation problem to the nearest-zero problem

Lemma 5.2 The simulation of a step of @ 2 X n RMESH on a CRCW PRAM can be reduced in

constant time to the nearest-zeros problem.

Proof. A step of a 2 X n RMESH consists of two sub-steps: First, the configuration is determined
by letting each node select a subset of its neighbors. Then, a subset of the processors (the “writers”)
write their values which reach all nodes in their respective buses. The simulation algorithm will
implement these two sub-steps on the CRCW PRAM, using an array M for communication: M][i] is
used for the i-th connected component, with the connected components labeled in some arbitrary

manner.

The simulation algorithm is based on the following general steps:

e Compute connected component: let each connected component (a bus) have a distinct label

from [1..0(n)] and let each node know to which connected component it belongs.

e Let each processor that represents a writer of the ¢-th connected component write its value

into M[i].

e Let each processor belonging to connected component 7 read M[i].

The only non-trivial part is the computation of connected components. We proceed to show that

this part can be reduced with constant-time overhead to the nearest-zeros problem.

Recall that a configuration on a 2 X n mesh is a sub-graph G of the 2 X n mesh that consists
of edge-disjoint buses. We show first how to reduce the connected components problem into one in
which all buses are vertex-disjoint (“vertex disjoint configuration”). Formally, in the description of

the reduction we use the following terminology. We say that the graph consists of vertex disjoint
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components if each vertex belongs to at most one connected component. Let D = (V, Ep) and
D' = (V, Ep/) be two graphs with the same set of vertices V. Then DU D’ = (V, EpU Ep/) denotes
the graph with the same set of vertices V' and a set of edges that is the union of the respective

edge-sets. Similarly, DN D' = (V, Epn Ep).

A reduction to vertex-disjoint configurations

Let an extreme edge of some bus be an edge which is disconnected by at least one of its adjacent
vertices (e.g., a cycle has no extreme edges, a path has two extreme edges). Recall that the decisions
whether to connect an edge are taken locally by the switch, hence an edge can be extreme for a

bus even when both its adjacent vertices have other edges belonging to that (or to another) bus.

Consider configurations G, G, and G, based on the extreme edges of each bus. G, is a
configuration consisting of all extreme edges which are vertical. G, (resp. () is a configuration
consisting of all extreme edges which are horizontal, and which connect nodes 7 and 741 (of either of
the top or bottom rows) where ¢ is even (resp. odd). Let G’ be the configuration G\{G, U G. U G},
so each of G', G, G, and G, consists of vertex disjoint components. Let S be the set of nodes in
G'Nn{G,UG. UG}, ie., the set of nodes which are not at the endpoint of some path in G, and
which belong to extreme edges of G. Figure 3 gives an example for an input configuration and its

four subgraphs which consist of vertex disjoint components.
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Figure 3: An input configuration G and its four subgraphs G', G, G. and G, which consist of vertex
disjoint components. Vertices in S are emphasized as black circles.

We now show a simulation of the 2 X n mesh by itself, where all the configurations taken
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during the simulation are vertex-disjoint. A step with configuration & is simulated in seven steps
involving the configurations G, G., G,, G, G,, G. and G, (correspondingly). In each of the first
three steps, the writers are the writers of G which are included in the configuration that is taken,
and the readers are the nodes from 5. In the fourth step, the writers are all the writers of G and
those nodes in S which read some message during the first three steps. The readers are all nodes
in § and all readers from . During the fifth, sixth and seventh steps, nodes from 5 write the
value they read during the fourth step. It is straightforward to verify the correctness of the above

reduction.

The rest of the proof deals with computing connected components in a sub-graph with vertex-

disjoint configuration.

Let nodes that are connected in the sub-graph with a vertical edge be denoted as a pair. The

main observation which enables our simulation is the following fact which can be easily verified.

Proposition 5.3 In G, if two pairs belong to the same connected component then all pairs in

between belong to the same component.

Proposition 5.3 implies that between two pairs of the same connected component, there cannot
be a pair which belongs to a different connected component. Thus, any other component between
such pairs must consist of a horizontal path only; denote such component as a straight component.
Denote as right path and left path the parts of a component to the right of its rightmost pair, and to
the left of its leftmost pair, respectively (the right and left paths may be of length 0). Assume that
straight components as well as right and left paths are deleted from the given sub-graph. Then,
between any two components there is a vertical cut. Our algorithm will therefore consist of the

following steps:
Step 1. Identify all the straight components, label each by its rightmost node, and delete them
from the sub-graph.

Step 2. Identify all the right (resp. left) paths, find for each a “leader”: its leftmost (resp. right-
most) node, and delete them from the sub-graph.

Step 3. Compute for each component its rightmost pair, and label it by the index of this pair.

Step 4. Label each right or left path by the label of its leader.

Implementation of Step 1. Consider only nodes in the top row. Let R[i] (resp. L[i]) be 1 if node
i is connected with node i 4+ 1 (resp. ¢ — 1), and 0 otherwise. A node is in a straight component if

and only if the nodes represented by its nearest-zero indices from its right in R and from its left in L
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are both disconnected from their neighbors in the bottom row. Similarly, the straight components

from the bottom row can be identified and labeled.

Implementation of Step 2. Consider only nodes in the top row. Let R[i] (resp. L[i]) be 1 if
node 7 is connected with node ¢ + 1 (resp. 7 — 1), and 0 otherwise. A node is in a right path if and
only if the node represented by its nearest-zero index from its right in R is disconnected from its
neighbor in the bottom row, and the node represented by its nearest-zero index from its left in I is
connected to its neighbor in the bottom row. The left path is found and labeled in a similar way,

and so are the right and left paths in the bottom row.

Implementation of Step 3. Let R[i] be 1 if either the top or bottom nodes in location ¢ are
connected with their neighbors in location 741, and 0 otherwise. The right nearest-zero ¢ indicates
the rightmost pair in the connected component for which any of the nodes in location ¢ may belong.
The correctness of this implementation is implied by the fact that the straight components and the

right paths were removed.

Implementation of Step 4. Trivial.

The lemma follows. L]

Remark. (1) The simulation algorithm of Lemma 5.2 shows that simulating one step of a 2 x n
RMESH on a CRCW PRAM is as easy (up to a constant factor) as computing connected components
of a sub-graph of the 2 x n mesh on the cRCcw PrRAM. These problems are in fact equivalent, up
to a constant factor, since connected components of such graphs can be easily computed on the
2 x n RMESH. (2) All the steps of the algorithm described in the proof of Lemma 5.2, except
for the nearest-zeros computations, can be implemented on the Concurrent Read Exclusive Write
(CREW) PRAM in constant time. This implies an O(lgn) time simulation of the 2 X n RMESH on an
(n/lgn)-processor CREW prAM. We note that since the or function can be computed in constant
time on the 1 X n RMESH, simulating the 2 X n RMESH on any number of CREW PRAM processors
takes Q(lgn) expected time [11, 15].

5.2 On the optimality of the simulation and its applications

Lemma 5.2 shows that simulating one step of 2 X n RMESH is as easy as computing nearest-zeros,
both on the crcw prAM. The following lemma shows that computing nearest-zeros is as easy as
simulating one step of 1 X n RMESH, both on the CRCW PRAM as well. Its proof is by an easy
algorithm that is similar to an algorithm used in [39] to compute the or function, and to an

algorithm used in [49] for the more general ‘neighbor localization’ problem.

Lemma 5.4 The nearest-zeros problem can be solved in two steps on a 1 X n RMESH.
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Proof.  We represent the input array for the nearest-zeros problem by a 1 X n RMESH, as follows.
Node 7 is connected to node ¢ + 1 if the ¢-th bit in the input array is 1, and it is disconnected
otherwise. In the first step, each node connected to its left neighbor but disconnected from its right
neighbor, writes its index. Each node records the value it reads as the index of the right nearest
zero. In the second step, each node connected to its left neighbor but disconnected from its right
neighbor, writes its index. Fach node records the value it reads as the index of the left nearest

Zero. u

Remark:. A similar representation enables an easy two-step reduction, of simulating a 1 x n

RMESH step on a CRCW PRAM, into the nearest-zeros problem.

Lemma 5.2 implies that any upper bound for the nearest-zeros problem on the crRCcw PrRAM will
translate into an upper bound for simulating one step of a 2 X n RMESH as well. Lemma 5.4 implies
that any lower bound for the nearest-zeros problem on the cRcw PrRAM will hold for the simulation
of one step of a 1 x n RMESH as well. (Note that this lower bound only applies to step-by-step

simulations. )

By Lemma 5.2, Lemma 5.4, and Lemma 5.1 we obtain:

Theorem 5.5 The parallel time complezity for simulating one step of a 2 x n General-RMESH on
@ CRCW PRAM 1is:

(i) O(a(n)), using n/a(n) processors;
(i1) O(i), for any i = 1,...,a(n), using nl;(n) processors; and

(1ii) Q(a(n)), when using n processors.

Deriving lower bounds for the 2 x n RMESH

As a corollary from Theorem 5.5 we obtain:

Corollary 5.6 Consider a problem P of size n and let T'(n, q) be a time lower bound on computing
P on a q-processor CRCW PRAM. Then, T = Q(T(n,q)) is a time lower bound on computing P on
a2 x (q/Ii(n)) RMESH, and T'/a(n) is a time lower bound on computing P on ¢ 2 X ¢ RMESH.

Proof.  Let A be an algorithm that computes P in time T4 on a 2x ¢ RMESH. Using the simulation
algorithm of Theorem 5.5, the problem P can be computed on a g-processor CRCW PRAM in time
O(T4a(n)), and on a ¢l;(n)-processor CRCW PRAM in time O(T4). .

Corollary 5.6 immediately implies the new lower bounds that are mentioned in the introduction.
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6 Conclusions

We have presented the first efficient simulations of the pPRAM on the RMESH. We establish the
usefulness of the prRAM simulation by means of two applications. The first application is the
efficient implementation of the dictionary data structure, which was not previously considered on
the RMESH. It is mostly obtained in a straightforward manner from our simulation result and a
known prAM algorithm. The second is a first efficient self-simulation algorithm for the RMESH
with general switches. Indeed, the number of problems whose solution may take advantage of our

simulation is abundant.

It is well known that the RMESH may be used to solve some problems faster than traditional
models of parallel computation such as the pRAM. This accelerated computation is attributed to the
utilization of network configurations as a computational resource: There are exponential number of
configurations, each of which induces a different communication pattern. Despite the above, it may
seem that intensive data-manipulation problems are solved on the PRAM much faster than on the
RMESH due to the PRAM’s increased memory bandwidth. Our randomized simulation is targeted

at this set of problems, and we believe it will prove useful whenever one of them is considered.

We gave tight bounds for the complexity of simulating one step of the 2 Xn RMESH on the CRCW
PRAM. The simulation result shows that the power of reconfiguration may be significant only for
r X n RMESH, for r > 3. More specifically, lower bounds for CRCW PRAM translate to similar lower
bounds on the 2 x n RMESH, up to a factor of a(n). Thus, we obtain as a corollary several new
lower bounds for the 2 X n RMESH.

Postscript

Recently, Czumaj, Meyer auf der Heide, and Stemann [13] provided improved simulation algorithms
of the EREW PRAM on the bMM. They showed that an (nlglglgnlg® n)-processor EREW PRAM can
be simulated on an n-processor pMM with O(nlglglgnlg®n) delay. Combined with Lemma 3.1,
this implies a similar simulation result of the EREW PRAM on an n-RMESH. Specifically, we obtain
that an (nlglglgnlg” n)-processor EREW PRAM can be simulated on an n-processor COLLISION
rMEsH with O(lglglgnlg* n) delay.

As a result, the self-simulation of an N-RMESH on a p-RMESH, given in Theorem 4.1, can be
improved to O(lg N lglglg plg* p+(N/p)?1g p) steps on the COLLISION RMESH. This can be obtained
by using the algorithm presented in Section 4, with the exception of replacing Gazit’s CRCW PRAM
connectivity algorithm by the EREW PRAM algorithm of Halperin and Zwick [22].

Very recently, Czumaj et al. [14] improved the results of Section 3 for the ARBITRARY RMESH,
showing that an n-processor CRCW PRAM can be simulated on an ARBITRARY n-RMESH in constant

time w.h.p. (This, however, does not imply improvement in simulating a CRCW PRAM on the
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COLLISION RMESH.) As a result, using the algorithm presented in Section 4, the self-simulation
of an N-RMESH on a p-RMESH, given in Theorem 4.1, can be improved to O(lg N + (N/p)?) time
w.h.p. on the ARBITRARY RMESH; i.e., with constant overhead and O(lg N) additive delay. An

interesting open problem is to obtain a similar improvement for the COLLISION RMESH.

Finally, since sorting can be computed in constant time on the RMESH, any EREW PRAM sim-
ulation on the RMESH can be adapted to a CRCW PRAM simulation on the RMESH with the same
complexities, up to a constant factor [14] (cf. [36]). By the EREW PRAM simulation mentioned
above, this implies an efficient simulation of a CRCW PRAM on an m-processor COLLISION RMESH
with O(lglglgnlg™ n) delay w.h.p. An interesting open problem is to obtain an efficient, constant
time simulation of the CRCW PRAM on the COLLISION RMESH (as for the ARBITRARY RMESH).

The above remarks can be summarized in the following theorems:

Theorem 6.1 (simulating PRAM on RMESH)
We have,

o One step of an (nlglglgnlg™ n)-processor CRCW PRAM can be simulated in O(lglglg nlg™ n)
time w.h.p. on a COLLISION Linear n-RMESH.

o One step of an n-processor CRCW PRAM can be simulated in O(1) time w.h.p. on @ ARBITRARY
Linear n-RMESH [13].

Theorem 6.2 (self-simulating RMESH)
The self-simulation of a General N-RMESH on a Linear p-RMESH can be performed w.h.p. in

e O(lg N + (N/p)?) steps on the ARBITRARY model; and in

e O(lg Nlglglg plg™p+ (N/p)*lgp) steps on the COLLISION model.
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