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Abstract

A Bloom Filter is a space-efficient randomized data structure allowing mem-
bership queries over sets with certain allowable errors. It is widely used in
many applications which take advantage of its ability to compactly repre-
sent a set, and filter out effectively any element that does not belong to
the set, with small error probability. This thesis introduces the Spectral
Bloom Filter (SBF), an extension of the original Bloom Filter to multi-sets,
allowing the filtering of elements whose multiplicities are below a thresh-
old given at query time. Using memory only slightly larger than that of
the original Bloom Filter, the SBF supports queries on the multiplicities of
individual keys with a guaranteed, small error probability. The SBF also
supports insertions and deletions over the data set. We present novel meth-
ods for reducing the probability and magnitude of errors. We also present
an efficient data structure (the String-array index ), and algorithms to build
it incrementally and maintain it over streaming data, as well as over ma-
terialized data with arbitrary insertions and deletions. The SBF does not
assume any a priori filtering threshold and effectively and efficiently main-
tains information over the entire data-set, allowing for ad-hoc queries with
arbitrary parameters and enabling a range of new applications.

The SBF, and the String-array index data structure are both efficient
and fairly easy to implement, which make them a very practical solution to
situation in which filtering of a given spectrum are necessary. The methods
proposed and the data structure were fully implemented and tested under
various conditions, testing their accuracy, memory requirements and speed
of execution. Those experiments are reported within this thesis, as well as
analysis of the expected behavior for several common scenarios.
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Chapter 1

Introduction

Bloom Filters are space efficient data structures which allow for membership
queries over a given set [Blo70]. The Bloom Filter uses k hash functions,
h1, h2, . . . , hk to hash elements from a set S into an array of size m. For
each element s ∈ S, the bits at positions h1(s), h2(s), . . . , hk(s) in the array
are set to 1. Given an item q, we check its membership in S by examining
the bits at positions h1(q), h2(q), . . . , hk(q). The item q is reported to be
in S if (and only if) all the bits are set to 1. This method allows a small
probability of a false positive error (it may return a positive result for an
item which actually is not contained in S), but no false-negative error, while
gaining substantial space savings. Bloom Filters are widely used in many
applications.

This thesis introduces the Spectral Bloom Filter (SBF), an extension of
the original Bloom Filter to multi-sets, allowing estimates of the multiplic-
ities of individual keys with a small error probability. This expansion of
the Bloom Filter is spectral in the sense that it allows filtering of elements
whose multiplicities are within a requested spectrum. The SBF extends the
functionality of the Bloom Filter and thus makes it usable in a variety of new
applications, while requiring only a slight increase in memory compared to
the original Bloom Filter. We present efficient algorithms to build an SBF,
and maintain it for streaming data, as well as arbitrary insertions and dele-
tions. The SBF can be considered as a high-granularity histogram. It is
considerably larger than regular histograms, but unlike such histograms it
supports queries at high granularity, and in fact at the single item level, and
it is substantially smaller than the original data set.

Unlike the standard Bloom Filter, which uses a straight-forward ap-
proach to storage (a bit vector), the SBF is by nature more complex. Since
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counters have to be stored in an economical fashion, a major consideration
is the ability to hold, update and access the information in an efficient and
compact manner. To do so, this thesis presents the String-Array Index data
structure, fulfilling these requirements. We also propose and analyze meth-
ods for querying the SBF, improving over the standard lookup scheme and
reducing the error probability and size.

1.1 Previous work

As the size of data sets encountered in databases, in communication, and
in other applications keeps on growing, it becomes increasingly important
to handle massive data sets using compact data structures. Indeed, there
is extensive research in recent years on data synopses [GM99] and data
streams [AMS99, BBD+02].

The applicability of Bloom Filters as an effective, compact data rep-
resentation is well recognized. In this section, we briefly survey several
major applications of Bloom Filters. These uses include peer-to-peer sys-
tems, distributed calculations and distributed database queries and other
applications. Several modifications have also been published over the basic
Bloom Filter structure, optimizing the performance and storage for different
scenarios.

1.1.1 Distributed processing

Bloom Filters are often used in distributed environments to store an inven-
tory of items stored at every node. In [FCAB98], Bloom Filters are proposed
to be used within a hierarchy of proxy servers to maintain a summary of the
data stored in the cache of each proxy. This allows for a scalable caching
scheme utilizing several servers. The Summary Cache algorithm proposed
in the same paper was implemented in the Squid web proxy cache software
[FCA, Squ], with a variation of this algorithm called Cache Digest imple-
mented in a later version of Squid. In this scenario, the Bloom Filters are
exchanged between nodes, creating an efficient method of representing the
full picture of the items stored in every proxy among all proxies.

In peer-to-peer systems, an efficient algorithm is needed to establish the
nearest node holding a copy of a requested file, and the route to reach it.
In [RK02], a structure called “Attenuated Bloom Filter” is described. This
structure is basically an array of simple Bloom Filters in which component
filters are labeled with their level in the array. Each filter summarizes the
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items that can be reached by performing a number of hops from the orig-
inating node that is equal to the level of that filter. The paper proposes
an algorithm for efficient location of information using this structure. The
main difference between this method and the Summary Cache algorithm is
that in this article, the notion of distance and route between nodes is taken
into consideration, while in [FCAB98], every remote node reachable (and
whose data is maintained) in every node is considered to be within the same
distance from the originating node.

A different aspect of distributed processing is distributed database sys-
tems. In such system, the data is partitioned and stored in several locations.
Usually, the scenario in question involves several relations which reside on
different locations, and a query that requires a join between those relations.
The use of Bloom Filters was proposed in handling such joins. Bloomjoin is
a scheme for performing distributed joins [ML86], in which a join between
relations R and S over the attribute X is handled by building a Bloom Filter
over R.X and transmitting it to S. This Bloom Filter is used to filter tuples
in S which will not contribute to the join result, and the remaining tuples
are sent back to R for completion of the join. The compactness of the Bloom
Filter together with the ability to perform strong filtering of the results dur-
ing the execution of the query saves significant transmission size while not
sacrificing accuracy (as the results can be verified by checking them against
the real data).

1.1.2 Filtering and validation

Bloom Filters were proposed in order to improve performance of working
with Differential Files [Gre82]. A differential file stores changes in a database
until they are executed as a batch, thud reducing overheads caused by spo-
radic updates and deletions to large tables. However, when using a differ-
ential file, its contents must be taken into account when performing queries
over the database, with as little overhead as possible. A Bloom Filter is
used to identify data items which have entries within the differential file,
thus saving unnecessary access to the differential file itself. Since every
query and update must consider the contents of the differential file, having
an efficient method to prevent unnecessary file probes improves performance
dramatically.

Another area in which Bloom Filters can be used is checking validity of
proposed passwords [MW94] against previous passwords used and a dictio-
nary. This method can quickly and efficiently prevent users from reusing old
passwords or using dictionary words. Recently, Broder et al [Bro02] used
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Bloom Filters in conjunction with hot list techniques presented in [GM98]
to efficiently identify popular search queries in the Alta-Vista search engine.

1.1.3 Extensions and improvements

Several improvements have been proposed over the original Bloom Filter.
Note that in many distributed applications (such as in Summary Cache
[FCAB98]), the Bloom Filters are used rather as a message within the sys-
tem, sent from one node to the other when exchanging information. In
[Mit01] the data structure was optimized with respect to its compressed
size, rather than its normal size, to allow for efficient transmission of the
Bloom Filter between servers. It is easily shown that a Bloom Filter that
is space-optimized is characterized by its bit vector being completely ran-
dom (see Section 2.1), which makes compression inefficient and at times
useless. The article shows that by maintaining a locally larger Bloom Filter,
it is possible to achieve a compressed version of the bit array which is more
efficient.

A modification proposed in [MW94] is imposing a locality restriction
on the hash functions, to allow for faster performance when using external
storage. This improvement tends to localize queries to consecutive blocks of
storage, allowing less disk accesses and faster performance when using slow
secondary storage. In [FCAB98] a counter has been attached to each bit
in the array to count the number of items mapped to that location. This
provides the means to allow deletions in a set, but still does not support
multi-sets. To maintain the compactness of the structure, these counters
were limited to 4 bits, which is shown statistically to be enough to encode
the number of items mapped to the same location, based on the maximum
occupancy in a probabilistic urn model, even for very large sets. However
this approach is not adequate when trying to encode the frequencies of items
within multi-sets, in which items may easily appear hundreds and thousands
of times.

1.1.4 Iceberg queries and streaming data

The concept of multiple hashing (while not precisely in the form of Bloom
Filters) was used in several recent works, such as supporting iceberg queries
[FSGM+98] and tracking large flows in network traffic [EV02]. Both han-
dle queries which correspond to a very small subset of the data (the “tip
of the iceberg”) defined by a threshold, while having to efficiently explore
the entire data. These implementations assume a prior knowledge of the
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threshold and avoid maintaining a synopsis over the full data set. One of
the major differences between the articles is that the former assumes the
data is available for queries and scanning, while the latter assume a situa-
tion of streaming data, in which the information is available only once, as
it arrives, and cannot be queried afterwards. This situation is very common
in network applications, where huge amounts of data flow rapidly and need
to be handled as it passes. Usually it is not possible to store the entire data
as it flows, and therefore it is not possible to perform retroactive queries
over it. A recent survey describes several applications and extensions of the
Bloom Filter, with emphasis on network applications [BM02].

Current implementations of Bloom Filters do not address the issue of
deletions over multi-sets. An insert-only approach is not enough when using
widely used data warehouse techniques, such as maintaining a sliding win-
dow over the data. In this method, while new data is inserted into the data
structure, the oldest data is constantly removed. When tracking streaming
data, often we would be interested in the data that arrived in the last hour
or day, for example. In this thesis we show that the SBF provides this func-
tionality as a built-in ability, under the assumption that the data leaving the
sliding window is available for deletion, while allowing (approximate) mem-
bership and multiplicity queries for individual items. An earlier version of
this work appears in [Mat].

1.1.5 Succinct data structures

The Bloom Filter is an instance of a succinct data structure that addresses
membership queries over a data set, while being as compact and efficient as
possible. In this sense, the Bloom Filter is a synopsis data structure, which
aims to solve a given problem while emphasizing on compactness. The
literature contains a broad selection of such data structures which address
common problems. Within this work, we define and address the variable
length access problem which can be easily reduced to the select problem.
The select problem deals with building a data structure over a bit vector V
such that for an index i, it returns the index within V of the ith 1 bit.

Known solutions to the select problem allow O(1) time lookups using
o(N) bits of space [Jac89, Mun96]. However, these solutions handle the static
case, in which the underlying bit vector does not change during the lifespan
of the data structure. In the general case, this is an adequate solution to the
access problem we are facing, but it fails to meet the demands for updates,
which are mandatory for our implementation of the SBF. Solutions which
support updates use the same amount of space, and given a parameter b ≥
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log N/ log log N , support select in O(logb N) time, and update in amortized
O(b) time [RRR00]. Specifically, select can be supported in constant time
if update is allowed to take O(N ε) amortized time, for ε > 0.

It should be noted that the solutions given to the select problem are
rather complicated and are difficult to implement, as pointed out in [Jac89].
In Section 4 we present our solution for the variable length access problem,
consisting of a novel data structure - the String-Array Index. This structure
is a fairly simple structure and arguably practical, as demonstrated in our
implementation and the experiments conducted during this work. We also
present a method to support updates, which appears to be practical in the
context of current methods as well.

1.2 Contributions

This thesis presents the Spectral Bloom Filter (SBF), a synopsis which rep-
resents multisets that may change dynamically in a compact and efficient
manner. Queries regarding the multiplicities of individual items can be
answered with high accuracy and confidence, allowing a range of new appli-
cations. The main contributions of this thesis are:

• The Spectral Bloom Filter synopsis, which provides a compact repre-
sentation of data sets while supporting queries on the multiplicities of
individual items. For a multiset S consisting of n distinct elements
from U with multiplicities {fx : x ∈ S}, an SBF of N + o(N) + O(n)
bits can be built in O(N) time, where N = k

∑
x∈S dlog fxe. For any

given q ∈ U , the SBF provides in O(1) time an estimate f̂q, so that
f̂q ≥ fq, and an estimate error (f̂q 6= fq) occurs with low probability
(exponentially small in k). This allows effective filtering of elements
whose multiplicities in the data set are below a threshold given at
query time, with a small fraction of false positives, and no false neg-
atives. The SBF can be maintained in O(1) expected amortized time
for inserts, updates and deletions, and can be effectively built incre-
mentally for streaming data. We present experiments testing various
aspects of the SBF structure.

• We show how the SBF can be used to enable new applications and
extend and improve existing applications. Performing ad-hoc iceberg
queries is an example where one performs a query expected to re-
turn only a small fraction of the data, depending on a threshold given
only at query time. Another application is spectral Bloomjoins, where
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the SBF reduces the number of communication rounds among remote
database sites when performing joins, decreasing complexity and net-
work usage. It can also be used to provide a fast aggregative index
over an attribute, which can be used in algorithms such as bifocal
sampling.

The following novel approaches and algorithms are used within the SBF
structure:

• We show two algorithms for SBF maintenance and lookup, which re-
sult with substantially improved lookup accuracy. The first, Minimal
Increase, is simple, efficient and has very low error rates. However,
it is only suitable for handling inserts. This technique was indepen-
dently proposed in [EV02] for handling streaming data. The second
method, Recurring Minimum, also improves error rates dramatically
while supporting the full insert, delete and update capabilities. Exper-
iments show favorable accuracy for both algorithms. For a sequence of
insertions only, both Recurring Minimum and Minimal Increase signif-
icantly improve over the basic algorithm, with advantage for Minimal
Increase. For sequences that include deletions, Recurring Minimum is
significantly better than the other algorithms.

• One of the challenges in having a compact representation of the SBF
is to allow effective lookup into the i’th string in an array of variable
length strings (representing counters in the SBF). We address this
challenge by presenting the string-array index data structure which is
of independent interest. For a string-array of m strings with an overall
length of N bits, a string-array index of o(N)+O(m) bits can be built
in O(m) time, and support access to any requested string in O(1) time.

1.3 Thesis outline

The rest of this thesis is structured as follows. In Section 2 we describe the
basic ideas of the Spectral Bloom Filter as an extension of the Bloom Filter.
In Section 3, we describe two heuristics which improve the performance
of the SBF with regards to error ratio and size. Section 4 deals with the
problem of efficiently encoding the data in the SBF, and presents the string-
array index data structure which provides fast access while maintaining the
compactness of the data structure. Section 5 presents several applications
which use the SBF. Experimental results are presented in Section 6, followed
by our conclusions.
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Chapter 2

Spectral Bloom Filters

This section reviews the Bloom Filter structure, as proposed by Bloom in
[Blo70]. We present the basic implementation of the Spectral Bloom Filter
which relies on this structure, and present the Minimum Selection method
for querying the SBF. We briefly discuss the way the SBF deals with inser-
tions, deletions, updates and sliding window scenarios.

2.1 The Bloom Filter

A Bloom Filter is a method for representing a set S = {s1, s2, . . . , sn} of
keys from a universe U , by using a bit-vector V of m = O(n) bits. It was
invented by Burton Bloom in 1970 [Blo70].

All the bits in the vector V are initially set to 0. The Bloom Filter uses k
hash functions, h1, h2, . . . , hk mapping keys from U to the range {1 . . .m}.
For each element in s ∈ S, the bits at positions h1(s), h2(s), . . . , hk(s) in
V are set to 1. Given an item q ∈ U , we check its membership in S by
examining the bits at positions h1(q), h2(q), . . . , hk(q). If one (or more) of
the bits is equal to 0, then q is certainly not in S. Otherwise, we report
that q is in S, but there may be false positive error: the bits hi(q) may be
all equal to one even though q 6∈ S, if other keys from S were mapped into
these positions. We denote such an occurrence bloom error, and denote its
probability Eb.

The probability for a false positive error is dependent on the selection of
the parameters m, k. After the insertion of n keys at random to the array
of size m, the probability that a particular bit is 0 is exactly (1 − 1/m)kn.
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Hence the probability for a bloom error in this situation is

Eb =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
.

The right-hand expression is minimized for k = ln(2) · (m
n ), in which case

the error rate is (1/2)k = (0.6185)m/n. Thus, the Bloom Filter is highly
effective even for m = cn using a small constant c. For c = 8, for example,
the false positive error rate is slightly larger than 2%. Let γ = nk/m; i.e,
γ is the ratio between the number of items hashed into the filter and the
number of bits. Note that in the optimal case, γ = ln(2) ≈ 0.7.

2.2 The Spectral Bloom Filter

The Spectral Bloom Filter (SBF) replaces the bit vector V with a vector of
m counters, C. The counters in C roughly represent multiplicities of items,
all the counters in C are initially set to 0. In the basic implementation, when
inserting an item s, we increase the counters Ch1(s), Ch2(s), . . . , Chk(s) by 1.
The SBF stores the frequency of each item, and it also allows for deletions,
by decreasing the same counters. Consequently, updates are also allowed
(by performing a delete and then an insert).

SBF basic construction and maintenance

Let S be a multi-set of keys taken from a universe U . For x ∈ U let fx be
the frequency of x in S. Let

vx = {Ch1(x), Ch2(x) . . . , Chk(x)}

be the sequence of values stored in the k counters representing x’s value,
and v̂x = {v̂1

x, v̂2
x . . . , v̂k

x} be a sequence consisting of the same items of vx,
sorted in non-decreasing order; i.e. mx = v̂1

x is the minimal value observed
in those k counters.

To add a new item x ∈ U to the SBF, the counters {Ch1(x), Ch2(x) . . . ,-
Chk(x)} are increased by 1. The Spectral Bloom Filter for a multi-set S can
be computed by repeatedly inserting all the items from S. The same logic
is applied when dealing with streaming data. While the data flows, it is
hashed into the SBF by a series of insertions.
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Querying the SBF

A basic query to the SBF on an item x ∈ U returns an estimate on fx.
We define the SBF error, denoted ESBF , to be the probability that for an
arbitrary element z (not necessarily a member of S), f̂z 6= fz. The basic
estimator, denoted as the Minimum Selection (MS) estimator is f̂x = mx.

Claim 1. For all x ∈ U , fx ≤ mx. Furthermore, fx 6= mx with probability
ESBF = Eb ≈

(
1− e−kn/m

)k
.

Proof. Since for each insertion of x, all its counters are increased, then it
is clear that mx ≥ fx. The case of inequality is exactly the situation of a
Bloom Error as defined for the simple Bloom Filter, where all counters are
stepped over by other items hashing to the same positions in the array, and
therefore has the same probability Eb.

The above claim shows that the error of the estimator is one-sided, and
that the probability of error is the bloom error. Hence, when testing whether
fx > 0 for an item x ∈ U , we obtain identical functionality to that of a simple
Bloom Filter. However, an SBF enables more general tests of fx > T for an
arbitrary threshold T ≥ 0, for which possible errors are only false-positives.
For any such query the error probability is ESBF .

Deletions and sliding window maintenance

Deleting an item x ∈ U from the SBF is achieved simply by reversing
the actions taken for inserting x, namely decreasing by 1 the counters
{Ch1(x), Ch2(x) . . . , Chk(x)}. In sliding windows scenarios, in cases data within
the current window is available (as is the case in data warehouse applica-
tions), the sliding window can be maintained simply by preforming deletions
of the out-of-date data.

Distributed processing

The SBF is easily extended to distributed environment. It allows simple and
fast union of multi-sets, for example when a query is required over several
sets. This happens frequently in distributed data base systems, where a
single relation is partitioned to several sites, each containing a fraction of
the entire data-set. A query directed at this relation will require processing
of the data stored within each site, and then merging the results into a
final answer. When such a query is required upon the entire collection of
sets, SBFs can be united simply by addition of their counter vectors. This
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property can be useful for partitioning a relation into several tables covering
parts of the relation. Other features of the SBF relevant to distributed
execution of joins are presented in Section 5.3.

Queries over joins of sets

Applications which allow for joins of sets, such as Bloomjoins (see Section
5.3), can be implemented efficiently by multiplying SBF. The multiplication
requires the SBF to be identical in their parameters and hash functions. The
counter vectors are linearly multiplied to generate an SBF representing the
join of the two relations. The number of distinct items in a join is bounded
by the maximal number of distinct items in the relations, resulting in an
SBF with fewer values, and hence better accuracy.

External memory SBF

While Bloom Filters are relatively compact, they may still be too large to fit
in main memory. However, their random nature prevents them from being
readily adapted to external memory usage because of the multiple (up to
k) external memory accesses required for a single lookup. In [MW94], a
multi-level hashing scheme was proposed for Bloom filters, in which a first
hash function hashes each value to a specific block, and the hash functions
of the Bloom Filter hash within that block. The analysis in [MW94] showed
that the accuracy of the Bloom Filter is affected by the segmentation of
the available hashing domain, but for large enough segments, the difference
is negligible. The same analysis applies in the SBF case, since the basic
mechanism remains the same.

SBF implementation

There are several issues which are particular to the SBF and need to be
resolved for this data structure. The first issue is maintaining the array of
counters, where we must consider the total size of the array, along with the
computational complexity of random access, inserts and deletions from the
array. The other is query performance, with respect to two error metrics:
the error rate (similar to the original Bloom Filter), and the size of the error.
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2.3 Minimum Selection error analysis for Zipfian
Distribution

Using the MS algorithm yields an error with probability of Eb ≈ (1− e−γ)k.
For membership queries, this provides a full description of the error, since
its size is fixed. However, when answering count-estimate queries, we need
to address the issue of the size of the error in the estimate, and provide an
estimate to this quantity. We cannot provide such an estimate for arbitrary
data set, since the size of the error is directly dependent on the distribution of
the data inserted into the SBF. An item with a very small frequency (or even
frequency of 0) might get its counters stepped over by the k most frequent
items in the dataset, causing an error whose size is unknown without further
knowledge of the distribution.

It is common for real-life data sets to demonstrate a Zipfian distribu-
tion [Zip49]. We provide analytical results regarding the size of the errors
by analyzing data which is distributed according to Zipf’s law. This is based
on the fact that most data-sets can be described by such distribution, using
the correct parameters. In a Zipfian distribution, the probability of the ith
most frequent item in the data-set to appear is equal to pi = c/iz, with c
being some normalization constant, and z is the Zipf parameter, or skew of
the data. For data with a total of N items, the expected frequency of item
i is therefore fi = Nc/iz. From now on, we assume that the frequencies
are sorted in descending order, such that fi is the frequency of the ith most
frequent item, and for every i < j we have fi ≥ fj .

The calculations in this section all assume that a situation of Bloom error
has occurred. We only deal with figuring out the size of the error stemming
from that situation. We also assume that for the ith item, which is subject
to error, each of its k counters is shared with no more than one other item.
This implies that there is no situation where the size of the error is the accu-
mulating frequency of two or more items. This assumption is required only
for the counter which is subject to the smallest error, since other counters
do not participate in the calculation of the estimated frequency of i.

The probability for a single counter to be subject to at least two items
stepping over it is E′ = 1 − (1 − 1/m)Nk − Nk(1/m)(1 − 1/m)Nk−1, with
(1− 1/m)Nk representing the probability that no item stepped over it, and
the second term is the probability that exactly one item steps over it. Some
algebraic manipulations transform this probability to E′ ≈ 1−e−γ(1+ γm

m−1).
The probability that an item is subject to a Bloom error with one counter
having two items stepping over it is therefore E′ · (1 − e−γ)k−1, which for
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γ = 0.7 and k = 5 yields a probability of less than 1%. This is a bound on
the actual probability of interest, since in most cases the counter subject to
a double error will not be the minimal counter, because of the accumulating
error. Thus, the expected probability of that event is significantly smaller
than the probability for a Bloom error, and therefore we ignore it in the
remainder of this discussion.

We state the following lemma, concerning the distribution of the relative
error in Zipfian distribution:

Lemma 2. Let S be a multi-set with n distinct items taken at random from
a Zipfian distribution of skew z, hashed into a SBF. Let T be a threshold
T > 0, and let REz

i be the relative error for the ith most frequent item in
S, REz

i = (mi − fi)/fi. Given that REi > 0, the probability of this relative
error exceeding T is

P (REz
i > T ) ≤ k

(
i

(n− k)T 1/z

)k

Proof. We begin our proof by calculating the expected relative error for the
ith most frequent item in the data. First, we note that the error for an item
is the frequency of the least-frequent item which shares its counters. If that
item is the jth most frequent item, for a skew of z, the relative error is

REz
ij = fj/fi = iz/jz

This calculation can be used to bound the relative error. For data with n
distinct items, the maximal relative error is REnk = (n/k)z. For example,
for data with 1000 distinct items, skew of 1 and 5 hash functions, this
amounts to 200, which is 20000%. Luckily the probability of such an event
is very small.

In order to calculate the distribution of errors, we need to calculate the
probability P (j) that for any item i, the least frequent item that shares
its counters is j. For that purpose, we note that there are

(
n−1

k

)
ways to

choose k items which step over i. Out of which, only combinations in which
k − 1 items are in the range (1 . . . j − 1), and the kth item is j will produce
the probability we are looking for. The number of these combinations is
N(j) =

(
j−1
k−1

)
So the probability P (j) is

P (j) =

(
j−1
k−1

)
(
n−1

k

) =
(j − 1)!

(k − 1)!(j − k)!
k!(n− k − 1)!

(n− 1)!
=

= k
(n− k − 1)!

(n− 1)!
(j − 1)!
(j − k)!
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Figure 2.1: Estimate on the expected relative errors E′(REz
i ) for data set

items ordered by decreasing item frequencies. Shown for data sets with
Zipfian distribution of several skews (z = 0.2, 0.6, 1, 1.4, 1.8, 2).

The expected relative error for the ith most frequent item is

E(REz
i ) =

∑

j 6=i

REz
ijP (j)

= izk
(n− k − 1)!

(n− 1)!

∑

j 6=i

1
jz

(j − 1)!
(j − k)!

< iz
k

(n− k)k

∑

j 6=i

jk−z−1 (2.1)

Let Sz =
∑

j jk−z−1. The above calculation shows that we can bound
E(REz

i ) by E′(REz
i ) = iz k

(n−k)k Sz. Within E′(REz
i ) there are two quanti-

ties that depend on z: the first is Sz, which is constant per skew; the other
is iz which determines the shape of the function when testing it for various
items over a given skew. Figure 2.1 shows this function for several skews
over data with 10,000 distinct items.

The graphs shown have several distinctive properties. The first one is
that this function is rising monotonically as items are less frequent in the
data set. This property is intuitive, since as the frequency of the item
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decreases, the ratio between the frequency of item and the frequency of
the items causing the error diminishes. Another observation is that as the
skew increases, the expected error for the frequent items becomes smaller.
However, the graphs show that there is a crossover point, where for less
frequent items, the expected error for high skews rises above the error of
lower skewed data sets. This crossover point stems from the tradeoff between
two factors: as the skew increases, there are less items with high frequency
in the data set, however, the ratio between the frequency of those items and
the frequency of the least frequent items increases too as the skew increases.

In order to get a simple expression for Sz we can use the fact that all the
indices are positive. For k − z − 1 > 0 we can use the following calculation:

∫ x

x−1
yidy < xi <

∫ x+1

x
yidy

∫ n

0
yidy <

∑n
x=1 xi <

∫ n+1

1
yidy

ni+1

i + 1
<

∑n
x=1 xi <

(n + 1)i+1 − 1
i + 1

nk−z

k − z
< Sz <

(n + 1)k−z − 1
k − z

Hence, we have

E(REz
i ) < iz

k

(n− k)k
· (n + 1)k−z − 1

k − z
< iz

k

k − z
· (n + 1)k−z

(n− k)k

And finally, we can calculate the expected relative error over all items
distributed with a given skew z:

E(REz) <
1
n

n∑

i=1

iz · k

k − z
· (n + 1)k−z

(n− k)k

<
1
n
· k

k − z
· (n + 1)k−z

(n− k)k
· (n + 1)z+1

z + 1

=
k · (n + 1)k+1

n(k − z)(z + 1)(n− k)k
(2.2)

This last result is a nonlinear function which has a minimal value with
respect to z. Simple derivative shows that the minimum is achieved when
zmin = (k + 1)/2, and that the minimal value is

E(REzmin) <
4k · (n + 1)k+1

n(n− k)k(k − 1)(k + 3)
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For the item whose rank is i, we can calculate the probability that the
relative error for that item will be below a given threshold, REz

i ≤ T . That
is, iz/jz ≤ T or j ≥ i/T 1/z. The probability of a relative error which is
higher than T is

P (REz
i > T ) =

i/T 1/z∑

j=k

P (j)

=
i/T 1/z∑

j=k

k
(n− k − 1)!

(n− 1)!
(j − 1)!
(j − k)!

≈
i/T 1/z∑

j=k

k

(
j

n− k

)k

≤ k

(
i

(n− k)T 1/z

)k

.

To summarize, this analysis yields three interesting results:

• The expected relative error for the ith most frequent item, E(REz
i ),

shown in Equation (2.1) and Figure 2.1.

• The expected relative error for all items distributed with a skew z,
shown in Equation (2.2). This result has a minimum for zmin = (k +
1)/2, and therefore can lead to selection of SBF parameters when
expecting a certain skew.

• The final result, expressing the probability for relative errors passing
any threshold.

To demonstrate the properties of the last result, we calculate it for pos-
sible real-life parameters. For instance, by setting values of n = 1000, k =
5, z = 1 and T = 0.5 (errors of less than 50% of the real value), we get
P (REi > 0.5) ≤ 5

(
i

497.5

)5, which has values bigger than 1 for i > 360.
Again, the basic fact that has to be remembered is that in these calcu-

lations we assumed that a Bloom Error has occurred. Remember that the
probability for a Bloom Error is Eb ≈ (1− e−γ)k, which in the optimal case,
for those values yield Eb ≈ 0.03.
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Chapter 3

Estimation Optimizations

In this section we present methods to improve the accuracy of queries per-
formed over the SBF. The first method is statistically interesting, since it
provides an unbiased estimator for the frequency of an item. In practice, it
fails to produce good results for individual queries, but may produce good
results for aggregative queries, due to its unbiased nature. Then we present
two methods that significantly improve the query performance that is pro-
vided by the SBF when the threshold is greater than 1; both in terms of
reducing the probability of error ESBF , as well as reducing the magnitude
of error, in case there is one. These methods are the Recurring Minimum
method (or RM), and the Minimal Increase method (MI). For membership
queries (i.e., threshold equals 1), the error remains unchanged.

3.1 Probabilistic Estimator

In many cases, an unbiased estimator to a given probabilistic value is a
valuable tool. This is especially true when measuring aggregate values such
as sum, avg etc. since the expected error size is zero, we get better aggregate
results as the number of queries increase. However, unbiased estimators do
not ensure a small variance, and may produce results that average well, but
are individually inaccurate.

In the case of the SBF, an unbiased estimator may be important for a
specific type of queries, mainly aggregate ones. For individual queries, such
an estimator is problematic, since the errors produced by the SBF are by
nature one-sided. When using such an estimator, it reduces the estimate
error for items which are subject to Bloom Error. On the other hand, it
introduces an unneeded fix for items which are initially accurate. Therefore,
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the estimator produces false negative errors for those items, which is highly
undesirable in most cases.

In order to produce an unbiased estimator, we find the average error
imposed on the counters by the other items being mapped to the same
locations. Assuming that the hash functions are uniformly random, we
perform an analysis of this effect. The resulting estimator is described in
the following Lemma:

Lemma 3. For any x ∈ U , the estimate f̄x = v̄x− kN
m

1−k/m is an unbiased esti-
mator for fx.

Proof. Let x be an item in the set that is mapped into the SBF. For 1 ≤
j ≤ k, we can determine the error of the jth bit with regards to x, denoted
ej
x by ej

x = vj
x − fx. When hashing another item y into the SBF, it can

be considered as hashing k “bundles” into the array, each of size fy. The
contribution of one such bundle to any given counter is fy with probability
1/m, and 0 otherwise. The total contribution of the k “bundles” to the jth
counter in the array is therefore Sj

y = fy · B(k, 1/m). Summing over all
the items (other than x) in the set, we get the expected error for a given
counter, which is equal to the total contribution to its count, expressed by

ej
x = E(

∑

y 6=x

Sj
y) = (N − fx)k/m

Using this result, we can estimate the actual frequency of x by calculating
f̄x = vj

x− (N − fx)k/m. Substituting fx with f̄x in this calculation, we get:

f̄x = vj
x −

k

m
(N − f̄x)

f̄x(1− k

m
) = vj

x −
kN

m

f̄x =
vj
x − kN

m

1− k/m

And by averaging over the k bits of x, we get that

f̄x =
v̄x − kN

m

1− k/m

To prove that this is indeed an unbiased estimator, we show that ∀x, E(f̄x) =
fx. To prove that, we note that the expected value of each of x’s k counters
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is fx plus the average error per counter, i.e. v̄x = fx + kN−kfx

m :

E(f̄x) =
fx + kN−kfx

m − kN
m

1− k/m
=

mfx + kN − kfx − kN

m− k
=

fx(m− k)
m− k

= fx

3.1.1 Boosting the variance

As mentioned, this estimate is problematic because of its rather high vari-
ance. Since the total error for a given counter is Binomial, the variance
of that error is V ar(ej

x) = (N − fx)k/m(1 − 1/m) ≈ (N − fx)k/m, so the
variance almost equals the expected size of the error. We can use the fact
that we have k counters to try and reduce the variance by dividing the k
counters into k2 groups of k1 variables, calculating the average over each of
the k2 groups and then taking the median of these results [AMS99]. When
averaging over k1 variables, the variance is divided by k1. By Chebyshev:

P (|ej
x − E(ej

x)| ≥ t) ≤ V ar(ej
x)

t2
=

N−fx

m (1− 1/m) k
k1

t2
≤ N

mt2
k

k1

Now, we assume that this value equals 1/4. Given the lth counter within a
group of k2 counters, we define Il to be an indicator that the error over that
counter exceeds the distance of t from its expectancy. We define I to be the
sum of those indicators:

∀l, 1 ≤ l ≤ k2 : Il =
{

1 p = 3/4
0 p = 1/4

I =
∑

l

Il

I is a binomial variable I = B(k2, 3/4), with an average of 3k2
4 . We want

to calculate the probability of I being lower than k2/2, since this will mean
that the median is within t from the expectancy. By Chernoff:

P (I < (1− δ)µ) < e
−µδ2

2

(1− δ)
3k2

4
= k2/2 ⇒ δ = 1/3

P (I <
k2

2
) < e

−3k2
4

1
9·2 = e

−k2
24

This analysis shows that indeed the variance can be controlled by increasing
the number of counters. However, when confronted with real-life parameters,
it can be seen that this approach is not practical in all cases. The calculation
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implies that when allowing an error rate of ε (an error meaning that the
estimate is not within t of the expected value) we need to have k2 = 24 ln 1/ε.
For error of 0.1, this gives a k2 of 55 which is not very practical. On top
of this, we still need to ensure that N

mt2
k
k1

= 1/4, meaning that k1 = 4Nk
mt2

.
Since we require that k1 < k, we require that 4N/mt2 < 1, so as N increases
we can only support larger values of t. If, for example, we allow t = 4, N
cannot exceed 4m.

The scenario in which it may be useful is when aggregating over a large
number of results, where the increased number of variables is translated into
a decrease in the expected variance of the calculation. The actual size of
the groups that need to be aggregated for an accurate estimate depends on
the distribution of the data. According to this analysis, is it impractical to
effectively reduce the variance of the unbiased estimator per query. However,
this analysis only shows a bound on the probabilities in question. Thus, in
real-life situations this method might yet produce good results.

Discussion The estimator is based on reducing a fixed amount from every
count recorded in the SBF. This approach has two major drawbacks:

• The majority of counters within the SBF are in fact accurate (depend-
ing on the parameters on the SBF). These counters need no fix, and
in fact will be harmed by introducing the correction.

• The errors of the SBF are one-sided. By introducing the fixed correc-
tion, we cannot guarantee this property anymore. All counters whose
error rate is below the average error will turn into false-negatives.

Since it addresses the average case, the estimator applies a constant fix
to the average of the counters. This becomes a major problem when dealing
with highly skewed data. Since the estimator is averaging by nature, the
higher the skew (and the deviation from the average), the higher the error
will be. Because the fix applied does not take into account the actual value
of the counters, a few frequent items can create an error that will be reflected
in the estimation of all of the small values (which will be the majority of
the data in a very skewed data). The main problem of this estimator is that
it ignores completely the nature of the Bloom Filter, namely the fact that
the counters are not correct with the same probability. Since the minimum
of the counters is an upper bound on fx, it is only natural to give more
attention to the smaller counters and ignore the larger counters.

To improve this estimator, it may be combined with the recurring mini-
mum heuristic (described in section 3.3), which serves as an indication for a
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possible error. The Recurring Minimum method allows us to recognize po-
tential problematic cases (i.e. counters that are erroneous), in which cases
we might activate the unbiased estimator to produce an estimate. In all
other cases we do not use the estimator, and thus refrain from generating
false-negative errors.

An unbiased estimator may still be of use for aggregate queries. In these
queries we do not worry about the high variance of the estimator or its
tendency to produce false-negatives, since the only important factor is the
average result over the set of queries performed. For all other scenarios, the
unbiased estimator has poor performance, and in fact is a good example of
a case in which unbiased does not imply successful.

3.2 Minimal Increase

The Minimal Increase (MI) algorithm is based on a simple observation: since
we know for sure that the minimal counter is the most accurate one, if other
counters are larger it is clear that they have some extra data because of
other items hashed to them. Knowing that, we don’t increase them on
insertion until the minimal counter catches up with them. This way we
minimize redundant insertions and in fact, we perform the minimal number
of increases needed to maintain the property of ∀x ∈ U, mx ≥ fx, hence its
name.

Minimal Increase When performing an insert of an item x, increase only
the counters that equal mx (its minimal counter). When performing
lookup query, return mx. For insertion of r occurrences of x this
method can be executed iteratively, or instead increase the smallest
counter(s) by r, and update every other counter to the maximum of
its old value and mx + r.

A similar method was devised independently in [EV02], referred to as
Conservative Update. We develop this method further and set some claims
as to its performance and abilities. The performance of the Minimal Increase
algorithm is quite powerful:

Claim 4 (Minimal Increase Performance). For every item x ∈ U , the
error probability in estimating fx using the MI algorithm, ESBF , is at most
Eb, and the error size is at most that of the MS algorithm.

Proof. First, it is clear that the MI method generates no new errors, com-
pared to the Minimum Selection method, as to facilitate an error, an item
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must have all counters shared with other items. Now we examine the case
where the MS algorithm fails, which is the usual bloom error, i.e. an
item x has items Y = {y1, y2 . . . , yk} each sharing one of its counters, all
with frequency larger than 0 in the set. It is possible for a counter to be
“stepped over” by more than one item, in which case we replace those items
with a virtual item whose frequency is the sum of their original frequen-
cies in the data-set. The size of the error for x in the MS algorithm is
EMS

x = min (fy1 , fy2 , . . . , fyk
). In the MI algorithm, the ith counter cannot

be larger than fyi + fx, due to its method of operation. Therefore, the min-
imal counter will have a count of EMS

x + fx, and EMI
x = EMS

x . It is thus
clear that the MI algorithm is at least as good as the MS algorithm in terms
of confidence and error size.

Note that the Minimal Increase heuristic produces the minimal number
of insertions into the SBF, still maintaining the property that for each item
x, mx ≥ fx. It generates no unneeded insertions, and therefore creates a
compact and efficient, while accurate, data structure.

The Minimal Increase algorithm is rather complex to analyze, as it is
dependent upon the distribution of the data and the order of its introduction.
For the simple uniform case we can quantify the error rate reduction:

Claim 5. When the items are drawn at random from a uniform distribution
over U , the MI algorithm decreases the error ESBF by a factor of k.

Proof. In the uniform case, an error occurs when all items in Y appear
at least once before x appears. Assuming that the data is uniform and
fx = fy1 = . . . = fyk

= F , using the MS algorithm, the error on x will
be exactly F . Using the MI method, with random positioning of items,
we assume here for simplicity that the entire sequence is made out of F
subsequences, each containing all item in {Y ∪ x} once in random order.
For each such sequence, it will contribute to the error on x only if x appears
last in the sequence. The probability for x to appear last is 1/k, and the
total error expectancy is thus F/k.

Thus, the MI algorithm is strictly better than the MS algorithm for any
given item, and can result with significantly better performance. This is
indeed demonstrated in the experimental studies. Note that no increase in
space is required here.

Minimal Increase and deletions. Along with the obvious strength of
this method, it is important to note that even though this approach pro-
vides very good results while using a very simple operation scheme, it does
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not allow deletions. In fact, when allowing deletions the Minimal Increase
algorithm introduces a new kind of errors - false-negative errors. This result
is salient in the experiments dealing with deletions and sliding-window ap-
proaches, where the Minimal Increase method becomes unattractive because
of its poor performance, mostly because of false negative errors.

3.3 Recurring Minimum

The main idea of the next heuristics is to identify the events in which bloom
errors occur, and handle them separately. We observe that for multi-sets, an
item which is subject to Bloom Error is typically less likely to have recurring
minimum among its counters. For item x with recurring minimum, we
report mx as an estimate for fx, with error probability typically considerably
smaller than Eb. For the set consisting of all items with a single minimum, we
use a secondary SBF. Since the number of items kept in the secondary SBF is
only a small fraction of the original number of items, we have improved SBF
parameters (compared to the primary SBF), resulting with overall effective
error that can be considerably smaller than Eb.

let Ex be the event of an estimation error for item x: mx 6= fx (i.e.,
mx > fx). Let Sx be the event where x has a single minimum, and Rx be
the event in which x has a recurring minimum (over two or more counters).

Table 3.1 shows experimental results when using a filter with k = 5, n =
1000, secondary SBF size of ms = m/2, various γ values and Zipfian data
with skew 0.5. Values shown are γ, usual Bloom Error Eb, fraction of cases
with recurring minimum (P (Rx)), fraction of estimation errors in those cases
(P (Ex|Rx)), the γ parameter for the secondary SBF γs = n(1−P (Rx))k/ms,
Es

b - the calculated Bloom Error for the secondary SBF. The next column
shows the expected error ratio which is calculated by

ERM = P (Rx)P (Ex|Rx) + (1− P (Rx))Es
b

The last column is the ratio between the original error ratio and the new
error ratio. Note that for the (recommended) case of γ = 0.7, the SBF error
(ERM ) is over 18 times smaller than the Bloom Error.

Note that the Recurring Minimum method requires additional space for
the secondary SBF. This space could be used, instead, to reduce the Bloom
Error within the basic, Minimum Selection method. Table 3.2 compares
the error obtained by using additional memory, presented as a fraction of
the original memory m, to increase the size of the primary SBF within the
Minimum Selection method, vs. using it as a secondary SBF within the
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γ Eb P (Rx) P (Ex|Rx) γs Es
b ERM Eb/ERM

1 0.101 0.657 0.0045 0.686 0.03 0.0132 7.59
0.83 0.057 0.697 0.0028 0.502 0.0096 0.0048 11.7
0.7 0.032 0.812 0.002 0.263 0.0006 0.0017 18.48

0.625 0.021 0.799 0.0012 0.251 0.00054 0.001 20.3
0.5 0.009 0.969 0 0.031 2.65 · 10−8 8.21 · 10−10 11480352

Table 3.1: Error rates with recurring minimum and without it. Eb is the
usual Bloom Error, P (Rx) is the ratio of recurring minimum, P (Ex|Rx) is
the ratio of errors given recurring minimum, γs, E

s
b are the secondary BF

parameters (with size m/2), ERM is ESBF for recurring minimum, and the
last column is the gain.

memory increase 1 0.5 0.33 0.25 0.2 0.1
Error Ratio 0.641 3.341 4.546 3.628 2.496 0.562
Modified k 10 7 6 6 6 5

Table 3.2: Effect of increased memory for primary SBF and secondary SBF,
with original k = 5.

Recurring Minimum method. The error ratio row shows the ratio between
the error of Minimum Selection and the error of the Recurring Minimum
methods. In the Minimum Selection method, when we increased the primary
SBF, we increased k from its original value k = 5, maintaining γ at about
0.7 (so as to have maximum impact of the additional space). The new
value for k is shown in the table. A ratio over 1 shows advantage to the
Recurring Minimum method. For instance, when having additional 50% in
space, Recurring Minimum performs about 3.3 times better than Minimum
Selection (note that as per Table 3.1 the total improvement is by a factor of
about 18).

The algorithm The algorithm works by identifying potential errors dur-
ing insertions and trying to neutralize them. It has no impact over “classic”
Bloom Error (false-positive errors) since it can only address items which ap-
pear in the data; it reduces the size of error for items which appear in the
data and are “stepped over” by other items. The algorithm is as follows:

When adding an item x, increase the counters of x in the primary SBF.
Then check if x has a recurring minimum. If so, continue normally. Other-
wise (if x has a single minimum), look for x in the secondary SBF. If found,
increase its counters, otherwise add x to the secondary SBF, with an initial
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value that equals its minimal value from the primary SBF.
When performing lookup for x, check if x has a recurring minimum in

the primary SBF. If so return the minimum. Otherwise, perform lookup for
x in secondary SBF. If returned value is greater than 0, return it. Otherwise,
return minimum from primary SBF.

A refinement of this algorithm which improves its accuracy but requires
more storage uses a Bloom Filter Bf of size m to mark items which were
moved to secondary SBF. When an item x is moved to the secondary SBF,
x is inserted into Bf as well, and this marks that x should be handled in the
secondary SBF from now on. When inserting an item and it exists in Bf it
is handled in the secondary SBF, otherwise it is handled as in the original
algorithm. When performing lookup for x, Bf is checked to determine which
SBF should be examined for x’s frequency.

The additional Bloom Filter might have errors in it, but since only about
20% of the items have a single minimum (as seen in the tables), the actual
γ of Bf is about a fifth of the original γ. For γ = 0.7, k = 5, this implies
a Bloom Error ratio of (1− e−0.7/5)5 = 3.8 · 10−5, which is negligible when
compared with other errors of the algorithm.

Deletions and sliding window maintenance

Deleting x when using Recurring Minimum is essentially reversing the in-
crease operation: First decrease its counters in the primary SBF, then if
it has a single minimum (or if it exists in Bf ) decrease its counters in the
secondary SBF, unless at least one of them is 0. Since we perform insertions
both to the primary and secondary SBF, there can be no false negative situ-
ations when deleting items. Sliding window is easily implemented as a series
of deletions, assuming that the out-of-scope data is available.

Analysis Since the primary SBF is always updated, in case the estimate is
taken from the primary SBF, the error is at most that of the MS algorithm.
In many cases it will be considerably better, as potential bloom error are
expected to be identified in most cases. When the secondary SBF provides
the estimate, errors can happen because of Bloom errors in the secondary
SBF (which is less probable than Bloom errors in the primary SBF), or due
to late detection of single minimum events (in which case the magnitude of
error is expected to be much smaller than in the MS algorithm).
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3.3.1 The Trapping Recurring minimum algorithm

A common type of error when using the Recurring Minimum algorithm is the
scenario of late detection. In this event, the item x is recognized as having a
single minimum only after all its counters were contaminated. This scenario
can be handled by using slightly more storage. In this refinement, each bit
has a “trap” attached to it, namely one bit that flags a possibly “stepped
over” bit. A lookup table L maps each trap to its associated item. The idea
the algorithm uses is that once an item is transferred to the secondary SBF,
its minimal counter’s trap is set. The trap is associated with that item. If
later on another item steps on that trap, its frequency is reduced from the
value transferred to the secondary SBF, to compensate for errors which were
not detected earlier. The algorithm is shown in Figure 3.1.

This more complex algorithm might compensate for errors by recognizing
which item steps over x’s bits and fixing the minimum values accordingly.
However, it still does not cover all possible cases. Notice that for the value
to be fixed, the item y, which stepped over x must appear again in the data
after x being transferred to the secondary SBF.

The following condition will cause errors when using this algorithm:

• y not appearing after x was transferred to the secondary SBF. Consider
this palindrome:

v1, v2, v3 . . . vn/2, vn/2, vn/2−1 . . . v1

In this sequence, for each i, after the first appearance of vi, all of the
items vi+1 . . . vn/2 appear twice. Then vi appears again and is possibly
sent to the secondary SBF, and activates the trap. However, this trap
will never be triggered and the error will never be recovered.

• Two bits are stepped over with the same counters, such that the min-
imum is not correct but is repeated twice.

Notice that these errors are very rare. The Palindrome case is a specific
pathological case. Usually we can expect that either y is frequent, meaning
that the error potential is large, but since y is frequent it will most likely
appear again and trigger the trap; or y can be rare, not triggering the trap,
but causing a small error. In either case the average error imposed due to
this event is very small.
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TrapIncrease(X, i)

{ Increase value of X by i}
mx ← minimal value of X’s counters in main SBF
if X has more that a single minimum

then





if X triggers any traps

then





Ci is bit whose trap was triggered
X = L(i)
Decrease X by mx in secondary SBF
Increase X by mx in main SBF

else Increase X normally by i in main SBF

else





Look for X in secondary SBF
if Found
then Increase X in secondary SBF by i

else





Set trap on primary SBF single minimal bit Ci

L(i) ← X
Insert X to secondary SBF, with count mx

Decrease mx from X’s bits in main SBF

TrapLookup(X)

if X has a single minimum
then return (Value of X from secondary SBF)
else return (Value of single minimum)

Figure 3.1: The Trapping Recurring Minimum algorithm
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3.4 Methods comparison

We compare the Minimum Selection algorithm with the Recurring Minimum
and Minimal Increase methods.
Error rates. The MS algorithm provides the same error rates as the orig-
inal Bloom Filter. Both RM and MI methods perform better over various
configurations, with MI being the most accurate of them. These results are
consistent in the experimental results, taken over data with various skews
and using several γ values. For example, with optimal γ and various skews,
MI performs about 5 times better in terms of error ratio than the MS al-
gorithm. The RM algorithm is not as good, but is consistently better than
the MS algorithm.

• Memory overhead. The RM algorithm requires an additional mem-
ory for storing the secondary SBF, so it is not always cost-effective
to use this method. The MI algorithm is the most economical, since
it needs the minimal number of insertions. Note that, as seen in the
experiments, when using the same overall amount of memory for each
method, the RM algorithm still performed better than the MS algo-
rithm (but MI outperforms it).

• Complexity. The RM algorithm is the most complex method, be-
cause of the hashing into two SBFs, but this happens only for items
with non-recurring minimum. As shown above, this happens for about
20% of the cases, which accounts for 20% increase in the average com-
plexity of the algorithm. When using the flags array in the RM al-
gorithm, the complexity naturally increases.The MS method is the
simplest.

• Updates/Deletions. Both the MS and RM methods support these
actions. The MI algorithm does not, and may produce false-negative
errors if used. Experiments show that in these cases, the MI algorithm
becomes practically unusable. For example, using sliding window, the
additive error of the MI algorithm is 1 to 2 orders of magnitude larger
than that of the RM algorithms, for various skews.

32



Chapter 4

Data structures

While the data structure implementation of the (original) Bloom Filter is a
simple bit-vector, the implementation of the SBF presents a different chal-
lenge. The SBF of a multiset of M items, consists of a sequence of counters
C1, C2, . . . , Cm, where Ci is the number of items hashed into i, so that∑m

i=1 Ci = k ·M . Let N =
∑m

i=1 dlog Cie; then, k(n − 1 + log M) ≤ N ≤
kn log(M/n), where n is the number of distinct items in the set. The goal
is to have a compact encoding of the SBF which is as close to N as possi-
ble. Clearly, a straight-forward implementation of allocating log M bits per
counter is excluded. In this section we show:

Theorem 6. An SBF of size N + o(N) + O(m) bits can be constructed in
O(N) time, supporting lookup in O(1) time. Furthermore, the SBF can be
maintained so that insertions, deletions and updates take each O(1) expected
amortized time.

The basic representation of the SBF consists of embedding the counters
Ci in their dlog Cie-bit binary representation, consecutively in a base array
of size N bits. (For simplicity of exposition, we will omit below the ceiling
operator.) In the static case the counters are placed without any gap be-
tween them, totaling N bits, whereas to support dynamic changes we add
ε′m slack bits between counters, where ε′ > 0 is a small constant. This rep-
resentation introduces a challenge in executing the lookup operations, since
locations of various strings are not known due to their variable sizes.

In Section 4.3 we address this challenge, presenting a data structure
that enables effective “random access” to the i’th substring, for any i, in
a sequence consisting of arbitrary variable length substrings. Section 4.4
shows how to handle the dynamic problem, supporting inserts and deletes
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over the data set represented by the SBF. The proposed SBF implementation
is general, with no assumption made on the distribution of the data. Finally,
in Section 4.5, we show an alternative method which requires only O(m) bits
in addition to the base array (rather than o(N) + O(m)), but which is less
efficient when performing lookups. Finally, in section 4.7, we discuss several
possible improvements and issues regarding the implementation of this data
structure.

4.1 The variable length access problem

We first define a general access problem related to the one encountered in
the context of the SBF.

The variable length access problem Let {s1, s2, . . . , sm} be binary
strings of arbitrary lengths. Let S = s1s2 . . . sm be the concatenation of
those substrings, with length |S| = N . Given an arbitrary i, 1 ≤ i ≤ m,
return the position of si in S, and optionally, si itself.

4.2 Current known solutions

The variable length access problem is closely related to the select problem,
which deals with finding the index of the ith 1 bit within an arbitrary bit
stream. It can be reduced into a select problem as follows: Create a bit
vector V of the same size N , in which all bits are zero except those that are
positioned at the beginning of substrings in S, which will contain the value
1. When looking for the beginning of the ith substring in S, we simply have
to perform select(V, i).

Known solutions to the select problem allow O(1) time lookups using
o(N) bits of space [Jac89, Mun96], which is an adequate solution to the ac-
cess problem we are facing. However, these solutions handle the static case,
in which the underlying bit vector does not change during the lifespan of the
data structure. Thus it fails to meet the demands for updates, which are
essential for our implementation of the SBF. The best known solutions for
select with updates use the same amount of space, and given a parameter
b ≥ log N/ log log N , support select in O(logb N) time, and update in amor-
tized O(b) time [RRR00]. Specifically, select can be supported in constant
time if update is allowed to take O(N ε) amortized time, for ε > 0.

It should be noted that the solutions given to the select problem are
rather complicated and are difficult to implement. The solution which we
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present, namely the string-array index, is a relatively simple structure, which
was implemented during this work. In the following sections we describe
the structure itself, and then expand the presentation and present several
optimizations that make it highly competitive with the current solutions.
Our solution also implies a method to perform select where items are inserted
at random to the bit vector.

4.3 The String-Array Index

The lookup problem for the SBF compact base-array representation is the
variable length access problem with two additional constraints: (i) ∀i, |si| ≤
log M ; and (ii) the strings roughly represent the frequencies of items in the
given data set, and the order between them is determined at random using
the hash functions of the SBF. We describe a data structure, the string-
array index , that addresses the general, unconstrained variable length access
problem.

The string-array index uses a combination of various instances of three
types of simple data structures, which hold offset data for given sequences
of some σ items, totaling some T bits:

1. Coarse Vector - this is the backbone of the string-array index, and
its role is to effectively reduce a given problem into a set of smaller
sub-problems. It partitions the given sequence into σ/σ′ subsequences
of σ′ items each, and provides offset information for the beginning of
each subsequence, using an array of fixed-sized offsets. The coarse
vector requires (σ/σ′) log T bits, and reduces the access problem (for
a given i) into a problem with σ′ items and some T ′ < T length.

2. Offset Vector - provides a straightforward representation of the σ off-
sets in an array, requiring σ log T bits, and supports O(1) lookup time.
It is used when σ is small relative to T ; in particular when σ log T ¿ T ,
and it can therefore be stored for such subsequences within the re-
quired space bounds. If T À σ log N then the offsets are with respect
to the base array.

3. Lookup Table - a global array, whose indices represent all possible se-
quences and queries over those sequences, for a sufficiently small T .
It requires 2O(T ) bits, which is o(N) for T = o(log N). A problem
with a sufficiently small T can use it for O(1) lookup time, by stor-
ing additional appropriate encoding information that maps it into its
appropriate array index.
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For a given variable length access problem consisting of m strings totaling
N bits, a string-array index can be constructed as follows.

Lemma 7 (String-Array Index). The string-array index data structure
of size o(N)+O(m) bits can be built in O(m) time, and subsequently support
access to any requested item si in O(1) time.

The string-array index is depicted in Figure 4.1; it consists of two levels
of arrays of pointers to sub-sequences of S. The first level consists of a coarse
offset array C1, which holds m/ log N offsets of the positions of log N -size
groups of items in the SBF base array. Since offsets are at most N , they can
be represented using log N bits, for a total size of m bits. The offset in C1

j

points to the (j log N)’th item in S, i.e., to sr where r = (j log N). Thus,
for any i, one access to C1 can provide us with the pointer to a subsequence
S′ of log N items in S, that includes si.

The second level enables effective access within such subsequences S′. If
a subsequence is of size larger than log3 N bits, then it is supported by a
simple offset vector, consisting of the log N offsets of the individual items of
the subsequence, in the SBF base array; each offset is of log N bits, totaling
log2 N bits for the entire offset vector. The total size of all such offset vectors
is at most N/ log N bits.

Each subsequence S′ whose size is at most log3 N bits is supported by
a level-2 coarse offset array C2

j , which partitions S′ to chunks of log log N
items. It holds log N/ log log N offsets of the log log N -size chunks S′′ inside
S′. Since offsets are at most log3 N , each can be represented using 3 log log N
bits, totaling 3 log N bits per a subarray C2

j . The total size of all such
subarrays is hence at most 3m.

A lookup using the string-array index requires 2 lookups through the
coarse offset arrays, which provides with either the exact position of the
requested item in the SBF base array, or a pointer to the beginning of
a subsequence S′′ of log log N items, which includes the requested item.
The items within each subsequence S′′ are accessed either through an offset
vector built for S′′, or using a global lookup table shared by all subsequences,
depending on the size of S′′. We use a threshold T0 = (log log N)3, to
determine which method is used. Let S′′ be of size T = T (S′′) bits.

If T > T0, we keep for S′′ an offset vector; since T ≤ log3 N , each offset
can be represented using 3 log log N bits, and the offset vector for S′′ will
consist of such log log N offsets, totaling size 3(log log N)2 ¿ T (S′′). Hence,
the total size of all such offset vectors is o(N).

It remains to deal with S′′ such that T ≤ T0. We keep a single global
lookup table, that will serve all such sub-problems. An entry to the lookup
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Figure 4.1: The String-Array Index data structure.

table consists of a string representing a subsequence S′′ and an index i,
1 ≤ i ≤ log log N . For each such entry, the lookup table will return the
offset from the beginning of S′′ in the SBF base array, of the i’th item in
S′′.

The lookup table consists of a simple array LT , whose indices represent
all binary combinations representing the entries 〈L(S′′), i〉, where L(S′′) is a
bit sequence which provides a unique representation of the lengths of items
in S′′. Note that since we are only interested in obtaining an offset within
S′′, we need not take into consideration the bit sequence of S′′ itself, thus we
need to precompute only the possible combinations of counter lengths such
that the total length of S′′ is ≤ T . This reduces the number of keys within
the lookup table dramatically. The subarray L(S′′) consists of an encoding
of the lengths of the items in S′′, so as to allow unique interpretation of the
T -bit subarray representing S′′. The encoding in L(S′′) has the property
that the size of each code word is proportional to the encoding length of
the value it represents. This is obtained using, e.g., Elias Encoding (see
Section 4.5). The length of L(S′′) is either O(log log N) or o(T ). In addition
to the representation L(S′′), the entry includes the index i (consisting of
log log log N bits).

It is easy to see that since T ≤ T0, the total size of LT is o(N) bits,
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and that all its entries can be computed in o(N) time. The subarray L(S′′)
is stored for each S′′ whose size T is less than T0 as part of the SBF. The
offset of the ith item in such S′′ is obtained by looking up at LT the value
corresponding to the entry consisting of the 〈L(S′′), i〉, as determined using
L(S′′).

In summary, the string-array index consists of the following components:
the coarse offset array C1, an array C2 consisting of all level-2 coarse offset
arrays C2

j , the offset vectors of first level and second level sequences, the
global lookup table LT , and the length arrays L(S′′). The total size of the
string-array index is o(N) + O(m), its construction takes O(m) time, and it
can be used as discussed to solve the variable length access problem in O(1)
time. The lemma follows.

Note that when actually implementing a string-array index, several of the
structures could be eliminated or altered due to practical considerations. In
particular, even for relatively large values of N , one should not be concerned
with paying O(log log N) factor overhead for a fraction of the data structure.

The SBF can now be constructed as stated in Theorem 6: the base-array
is built in O(N) time by updating the counters Ci as the input data set items
are hashed one by one. Subsequently, building the string-array index over
the base array. This requires using during construction time a temporary
array of O(m log M) bits. The next subsection shows how to construct the
SBF incrementally, as well as how to support update operations, without
using any temporary array, and within the storage bounds of N + o(N) +
O(m) bits.

4.4 Handling updates

We show how to extend the string-array index data structure described
above, to allow dynamic changes in the data-set, for a base array of an SBF.
When one of the counters increases its bit-size in the base array, additional
space needs to be allocated within the base array to accommodate the en-
larged substring. It is also necessary to update the string-array index struc-
ture to reflect the changes made in the base-array. Delete operations only
affect individual counters, and do not affect their positions, and hence the
string-array index. To remain within storage bounds, after a long sequence
of deletions the entire data structure is rebuilt, with amortized constant
time per deletion.

To support inserts, we allocate a slack of extra bits in the base array.
In particular, we add εm slack bits, one every 1/ε items, for some ε > 0.
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A counter which needs to expand “pushes” the item next to it, which in
turn pushes the next item, until a slack is encountered. For each item, the
nearest slack is initially allocated within a distance of at most 1/ε items.
However, upon expansion, the nearest slack may not be available, in case at
least one of the items between the expanded item and the slack was already
expanded. In such case, farther slack will need to be used. The cost of
expansion is linear in the number of items that need to be pushed, assuming
that each item fits into machine word.

The next lemma bounds the expected distance from an expanded item to
the nearest available slack, using the fact that items location is determined
at random by the hash functions of the SBF. For purpose of simplicity, we
assume full randomness. It is assumed that the number of inserts is at most
ε′m, for some ε′ > 0. After ε′m inserts, the base array is refreshed by moving
counters so that slacks are again placed in 1/ε intervals, and the string-array
index is updated accordingly.

Lemma 8. Suppose that the size of some counter Cj increases, and that
the total number of insertions is at most ε′m, for ε′ = ε/2e. Then, the
number of items between Cj and the first available slack, denoted `j, satisfies
E(`j) = O(1/ε).

Proof. Suppose first that Cj increases for the first time. A slack is available
within the sub-array of i/ε items following Cj , if the number di of expansions
of items within this sub-array is less than i. Since items are hashed into the
base array at random, then for any sequence of ε′m insertions, di is bounded
by a binomial with parameters (ε′m, i/(εm)). Hence, E(di) ≤ iε′m/(εm) =
iε′/ε. The probability that items within i chunks will need to move upon an
insertion is bounded by Pi = Pr(di ≥ i) = Pr(di ≥ ε

ε′E(di)) ≤ (e ε′
ε )i, with

the last inequality due to Chernoff bounds. Hence, E(`j) ≤
∑∞

i=1 i/ε · Pi ≤∑∞
i=1(i/ε) · (e ε′

ε )i = 1/ε
∑∞

i=1 i(1
2)i ≤ 2/ε.

It remains to account for repeated expansions of particular counters.
Suppose that a counter Cj has a sequence of x expansions. For the last
expansion, it is guaranteed that the nearest x−1 slack bits are not available.
Further, items within the nearest x − 1 chunks of size 1/ε might also have
been expanded resulting with additional slack unavailability. On the other
hand, the additional expected cost can be amortized against the 2x updates
to Cj which are required to facilitate x expansions. The expected amortized
cost per repeated expansion remains O(1).

The string-array index is updated when items are moved. The update of
the structure has the same computational complexity as that of updating the
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base array itself, since essentially only offset information about items that
are pushed needs to be changed in the string-array index. The expected
amortized cost per update therefore remains O(1). Since refreshing the
entire base array and updating the string-array index takes O(m) time, the
amortized cost of such refresh and update is O(1/ε′) per update.

4.5 An alternative approach

The data structure can be made more compact, while sacrificing lookup
performance, by using the C1 and C2 indexes and not building any further
structures. Once the problem is reduced to log log N items, we allow a serial
scan of the sub-group in order to access the requested item. To allow that,
we need a compact prefix-free encoding that can be read sequentially. For
this purpose we use a combination of Elias encoding and a method which is
more compact for small counters.

In this scenario, a sub-group consists of log log N items. Using the en-
codings presented in this section, each counter with value c can be encoded
with close to log c bits. Therefore, this approach requires N bits to en-
code the actual counters in the original vector, with additional o(m) bits for
the structures of C1 and C2, while on average a lookup costs log log N . The
same approach that is described in Section 4.4 can be used to allow dynamic
maintenance of the structure.

Elias encoding

The Elias encoding [Eli75] consists of the following method: Let B(n) be
the binary representation of the integer, with length L(n). A binary prefix
code B1(n) is created by adding a prefix of L(n)− 1 zeroes to the beginning
of B(n). Now we create the sequence representing n by encoding B1(L(n))
followed by B(n) with its leading 1 removed1. The total length of this
representation is

L2(n) = blog2 nc+ 2blog2 (blog2 nc+ 1)c+ 1

The steps method

Elias encoding is a strong and simple method to create an encoding which
is prefix-free while being compact. However, for very small numbers the

1The Elias encoding does not encode the number 0. Therefore, when encoding n, we
actually encode n + 1, this does not effectively change the size expectations
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overhead of log log n bits and the constants that are involved is substantial
and should be avoided. For example, to encode the number 1 (actually
encoding the number 2) we need 4 bits. In many data-sets, most counters
will be 1, so for an optimal hit ratio of 0.5, the average is 2.5 bits per counter.

To solve that problem, we use a Huffman-like compact encoding for small
numbers. For example, using 0 to represent 0, 10 to represent 1 and 11
means the number is bigger than 1, with the Elias encoding of this number
following the prefix. This reduces the cost to 1.5 bits per counter, for data-
sets as described above. It is further reduced if we encode longer sequences,
reducing the overhead to an ε as small as we choose. Full details are omitted
due to space limitations).

4.6 Storage requirements improvement

The storage bounds presented in Theorem 6 should be competitive with
current known solution to the variable length access problem, presented in
Section 4.2. In this section we will propose an improvement to the string-
array index structure which reduces its storage requirements and makes it
competitive with those methods.

4.6.1 String-array index memory reduction

The key notion that enables the reduction in the memory requirements is
that the number of offsets in each offset vector can actually be reduced to
create a smaller offset vector. Our goal is to produce a string-array index
which, for a bit-array of N bits, requires additional O(N/ log log N) bits of
storage. To reach this goal, we will reduce each and every substructure of
the string-array index to within the required space. The following theorem
states this formally, and the modifications needed in the string-array index
are described in its proof.

Theorem 9. The string-array index structure for a bit array of N bits,
supporting lookups in O(1) time and insertions,deletions and updates in
O(1) expected amortized time, can be implemented using o(N/(log log N)c)+
O(m/(log log N)c) bits, for any given c ≥ 0.

Proof. The following description does not change the structure of the string-
array index. The basic building-stones and the structure of the layers are
the same, with changes only in the constants and thresholds used in the
construction of the data structure. The remainder of this proof describes
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the changes made in each of the layers of the string-array index, starting
with the first level of coarse offset vectors (C1), and ending with the lookup
table.

In C1, each offset is of log N bits. Instead of holding m/ log N such
offsets, allocate only m/(log N)1+c such offsets, resulting in a total storage of
m/(log N)c bits for C1. As a result, C1 divides the bit-array into subgroups
of size (log N)1+c items.

The size of a complete offset vector for such subgroup S′ of size T bits is
(log N)1+c log T bits. Therefore, S′ will have a complete offset vector in C2

if it satisfies T/(log log N)c > (log N)1+c log T . This is necessary to ensure
that the string-array index is smaller by a factor of (log log N)c than the
original vector. From this we can derive the constrain on T :

T/ log T > (log N)1+c(log log N)c

To find a minimal value for T from this, we use the following claim (all usage
of log x in this claim refers to log2 x):

Claim 10. The inequality T/ log T > β is satisfied for T > 3β log β and
β > 3

Proof. Let T ′ = 3β log β ⇒ log T ′ = log 3 + log β + log log β.

β log T ′ = β(log 3 + log β + log log β) < 3β log β = T ′

The last inequality is correct for β > 3. Since the claim is true for T ′, and the
expression T/ log T is increasing with T , the claim follows for T > T ′.

To satisfy the above inequality, we require that T satisfies the looser
bound:

T/ log T > (log N)1+c(log N)c = (log N)1+2c

From Claim 10, this is satisfied when

T > T ′0 = 3(1 + 2c)(log N)1+2c log log N

and therefore satisfied when T ′0 = (3+6c)(log N)2+2c. Notice, however, that
this inequality actually allows for the offset vector to be smaller than the
original vector by a factor of (log N)c. When calculating the bound with
the original value of β = (log N)1+c(log log N)c, this bound can be reduced
to T > T ′0 = (3 + 6c)(log N)1+c(log log N)1+c.
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Subsequences which are smaller than (3+6c)(log N)2+2c bits are treated
with a coarse offset vector in C2. The size of each offset is

log ((3 + 6c)(log N)2+2c) = log (3 + 6c) + (2 + 2c) log log N

In the second level, each subgroup will be divided into subgroups of (log log N)1+c

items, generating coarse offset vectors of total size O(m/(log log N)c) bits.
The last part of the structure is the third level, consisting of offset vectors

and lookup table. Each subgroup in this level consists of (log log N)1+c

items. Similarly to the calculation shown above, we set a constraint at

T/(log log N)c > (log log N)1+c log T ⇒ T/ log T > (log log N)1+2c

By Claim 10 it produces the limit T ′′0 = (3+6c)(log log N)2+2c. Subsequences
larger than this limit will use an offset vector, and smaller than it will use
the lookup table, which needs to support bit sequences of maximal size T ′′0 .
The table consists of (log log N)1+c ·2T ′′0 entries, each of size log T ′′0 bits. This
calculation is asymptotically smaller than N/(log log N)c for large enough
values of N , meaning we can store the lookup table in o(N/(log log N)c)
bits, as required.

This completes the modifications needed to reduce the storage require-
ments of the string-array index. Given the reduced storage, it is competitive
with the various solutions given to the variable length index problem, sup-
porting lookup in O(1) time and update in amortized O(1) time.

4.7 Implementation issues

During the implementation of the string-array index, the emphasis was on
providing the fastest and most efficient implementation available. The im-
plementation also needed to address several issues, and several optimization
schemes were thought of during that phase. In this section we give a survey
of those issues.

4.7.1 Memory management

Within the string-array index, there is usage of blocks of allocated memory,
for the original counter vector, the various offset vectors and the lookup
table. A simple implementation allocates space for each and every such
memory block individually, using the memory allocation scheme of the given
compiler. This method often creates fragmented memory area, in which the
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memory is not allocated as one continuous block, but is spread across the
available memory.

One of the popular uses of Bloom Filters is in distributed systems, where
the filter is often sent from one node to another as a message. By creating
fragmented memory area, it is impossible to send the string-array index as-is
without preparing it to be sent and packing it as a message. This action
is possible, but incurs computation overhead when preparing to send the
string-array index, and also when receiving it. The goal is to create the data
structure as one continuous block and when it is needed to be sent, simply
transmit the contents of the memory block that includes all the information
needed to fully reproduce the string-array index. In the remainder of this
section we present the methods needed to facilitate such an implementation,
and present the challenges and their algorithmic solutions.

The following description explains the implementation details for each
layer of the string-array index structure, and the overheads involved (if any).
It starts with the top levels, namely the counters array and the first level
coarse offset vectors, and continues to drill through the structure, ending
with the third level of offset vectors, and the lookup table.

Raw counters array and coarse offsets level 1 The first levels of the
structure are rather easy to implement in a continuous fashion. The raw
counter array itself is inherently a sequence of bits, and needs no further
adjusting. The first level coarse offset vector can be places immediately
after the raw vector, which requires that we record the size (in bits) of the
raw vector - an overhead of log log N bits which we can allow.

In order to fully represent an offset vector (coarse or complete), we need
to know two details about it: first, we must know if it is coarse or not. We
need not know the actual number of offsets within it, since this number is
implied from the string-array index structure. Second, we need to know the
size of the offsets, in order to allow a direct access to any offset within the
offset vector. In the case of the first level coarse offset vector (C1), we know
for sure that it is coarse, and that it contains m/ log N fixed-size offsets of
log N bits each. Since we know N (we kept it previously, to allow access
to the beginning of C1), we can store C1 as a continuous bit-array which
contains the information of all the offsets in their binary form, where each
offset inhabits log N bits. To access C1

i , we need to access the (i log N)th
bit from the beginning of C1, and read the next log N bits, which contain
the actual offset.
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Level 2 offset vectors Second level offset vectors (C2) are a far more
complex challenge. These offset vectors differ in their size, since they point
at subsequences of varying lengths, which translated to different sizes of
offsets. Furthermore, some of these offset vectors are coarse (pointing at
short subsequences) and others are complete offset vectors. The required
information for an offset vector C2

j can be gathered from C1: by sequentially
reading the offsets of the jth and the (j + 1)st group, we can calculate the
size of the subsequence and decide if the offset vector is coarse or not, and
what is the size of each offset. Assuming that we store all the C2 vectors in
a continuous bit array, we still need to know exactly where in this bit-array
the jth offset vector begins.

This problem is in fact another instance of the variable length access
problem. It is an appealing idea to solve it by using a string-array in-
dex in a recursive fashion. However, this problem can be solved with an
acceptable overhead by simply holding an offset vector which points to
the bit-array representing C2. The total size of C2, as shown above, is
bounded by N/ log N + 3m bits. It is divided into m/ log N offset vec-
tors, so an offset vector for C2 will hold m/ log N offsets, each of size
log (N/ log N + 3m) ≈ log N bits. This accumulates to an additional size
size of approximately m bits. Accessing the correct offset vector is simple:
the information regarding its size and coarseness can be obtained from C1 as
described. Its starting point within C2 is read from the offset vector, where
a single lookup (and reading of N/ log N + 3m bits) provide the offset. For
additional space savings, the size of the C2 bit-array can be kept (requiring
approximately log N bits), and all offsets that point at C2 will be limited in
size to |C2|.

Level 3 offset vectors and lookup table Level 3 of the string-array
index is similar to the second level, with the additional complexity of the
lookup table. The lookup table itself can be omitted when transmitting the
string-array index, because it is dependant only on the parameters of the
string-array index and can be generated in the receiving node. Otherwise
it can be easily kept as a bit-array with simple lookup into it. The level 3
offset vectors are kept in a bit-array, where each offset vector accommodates
a constant size. The size needed for such an offset-vector is 3(log log N)2 bits.
However, to remain within the stated storage bounds, we cannot allocate this
amount of storage to each and every subgroup. We must skip the subgroups
handled by the lookup table when encoding this bit-array.

To solve this problem, we encode in the bit-array only those offset vectors
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which actually are in use. In this case, when looking for the jth offset vector,
we need to translate it to rj ≤ j, which is actually the index of the same
subgroup in the collection that includes only those subgroups handled by
offset vectors. We create a bit-vector F of size m/ log log N bits, with the
ith bit being a flag marking whether the ith subgroup is handled by an offset
vector. Given this bit-array, we can calculate rj by using the rank operator,
rj = rank(F, j)2. Calculation of the rank operator for a bit-vector of N bits
is possible using o(N) bits in O(1) time [Jac89, Mun96], so using additional
m/ log log N bits of storage we can perform the needed translation.

Summary This section outlined the method for storing the entire string-
array index in a continuous fragment of memory, while still allowing ran-
dom access to any given element. To facilitate this improvement, additional
log log N + m + m/ log log N bits of storage are needed.

4.7.2 Offset vectors division

The offset vectors of C1 and C2 are divided by their size to coarse offset
vectors and complete offset vectors. The division is necessary for space
limitations, when holding a complete offset vector requires too much space,
we are forced to use a coarse offset vector. However, there may be situations
in which a single subgroup is so large that it can compensate for the small
size of other smaller groups, such that groups that individually would not
merit a complete offset vector may be handled by one.

The advantages of this approach are clear: when using a complete offset
vector instead of a coarse one, we reduce the number of internal lookups
needed for a single item lookup. Also, a subgroup that is handled by a
complete offset vector does not need further processing in the following levels
of the string-array index and therefore is more space efficient.

The algorithm for producing this optimization is rather simple: let I
be the number of items within each subgroup, and T i be the total size in
bits of subgroup i. The condition for keeping a complete offset vector is
I log T i < T i, meaning that the size of the complete offset vector is still
smaller than the size of the original group (we might, of course, be using
a tighter threshold, requiring that the offset vector is substantially smaller
than the original size of the group). The algorithm will collect a group
of subgroups G, according to a given selection criterion, and keep building
complete offset vectors as long as

∑
i∈G I log T i <

∑
i∈G T i. The selection

2rank(V, j) returns the number of 1 bits occurring before and including the jth bit in
the bit vector V.
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criterion might be as simple as adding the following groups in consecutive
order, or more complex, such as attempting to create an optimal packing of
the groups, such that as little groups as possible are left without a complete
offset vector.

This optimization is very useful in situations where the data is highly
skewed. In these cases, the data is usually dominated by a small number of
frequent items, with a large number of relatively rare items. This will result
in a small number of subgroups whose binary encoding is rather large, and
those groups can encompass within them a large number of smaller groups.
As the data tends to be more uniform (with skew ≈ 0), this strategy loses
some of its strength, but still provides an improvement.
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Chapter 5

Applications

In this section we explore a range of applications that may take advantage
of the SBF. The first category of such applications consists of extensions to
methods or abilities of the regular Bloom Filter. For example the Bloomjoins
method, which allows for efficient joins within a distributed database, is im-
proved be the usage of SBF within it, transforming it to Spectral Bloomjoins.
New queries can be answered while still maintaining efficiency and accuracy.

The second category has new applications which use the SBF to effi-
ciently perform tasks which weren’t possible with a simple Bloom filter.
One example of such task is ad-hoc iceberg queries, in which one is inter-
ested in a small subset of the most frequent items within a data-set. These
items can be thought of as the “tip of the iceberg”, where we ignore the
majority of the items in the data-set which lie beneath the surface. The
SBF allows us to perform ad-hoc iceberg queries, in which the threshold
determining the size of the result-set is set only at query time, improving on
current methods which require a given threshold to perform preprocessing
of the data.

5.1 Aggregate queries over specified items

Spectral Bloom Filters hold mostly accurate information over each and every
item of the data set. Therefore it can approximately answer any (aggregate)
query regarding a given subset of the items, so that the error ratio is ex-
pected to be ESBF , and the size of the error is expected to be smaller than
the average frequency of items in the set, f̄ . An example for such query is:

SELECT count(a1) FROM R WHERE a1 = v
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In performing this query, the SBF acts as an aggregate index built upon
the attribute a1 and providing the (mostly) accurate frequency of v in the
relation. Other aggregates, such as average, sum, max etc. can be easily
implemented using this basic ability. The SBF behaves very much like a
histogram where each item has its own bucket. Since the SBF keeps the full
information, it is very versatile in its uses, while requiring storage propor-
tional to the size of the set.

5.2 Ad-hoc iceberg queries

In many situations, a data-set is tracked regularly in the lookout for items
which are more frequent than a certain threshold. It is desirable to set trig-
gers that will alert us once an item with a high count is encountered. For
example, a company which tracks customer calls can create a calculation
that reports their likeliness to churn. Once a customer with a high churn-
ing probability contacts the company, the company representative should
be alerted, so he can offer him special deals. The threshold for such spe-
cial treatment is dynamic, and depends on many factors, so the calculation
cannot be executed a priori. Queries of this kind are often referred to as
“iceberg queries”, since they deal with a small fraction of the data, while
the main body of the data-set remains hidden underneath the surface.

The example described above presents an ad-hoc iceberg query, in which
the threshold against which items are tested upon insertion is dynamic
and possibly changes between queries. Methods to handle iceberg queries,
proposed in [FSGM+98, MM02] require a certain preprocessing the data
given a static threshold. When the threshold changes, the methods of
[FSGM+98, MM02] require rescanning of the data using the new thresh-
old (or in the case of streaming data [MM02], it cannot be done), while the
SBF does not require any additional scan of the data, other than one that
examines the data against the counts stored in the SBF.

Traditional methods for iceberg queries

Iceberg Queries [FSGM+98] are queries of the form

SELECT t1,t2, . . . ,tk,count(rest) FROM R
GROUP BY t1,t2, . . . ,tk HAVING count(rest) >= T
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Usual database execution methods are not efficient for such queries, since
they usually require sorting of the entire relation and then performing the
reduction. If the threshold T is such that only a small part of the relation is
returned by the query, then the execution plan is far from efficient. Another
version of iceberg queries is dealt with in [EV02], where iceberg techniques
are required to perform over streaming data. The solutions presented in
[FSGM+98, EV02] are both constrained in the sense that they require a prior
knowledge of T to function, and they do not maintain complete knowledge of
the data set. This optimization allows for very compact memory structures,
but prevents the usage of the algorithms in ad-hoc situations, where the
threshold might change during inspection.

Suppose, for example, that a query is executed with a threshold of 1%,
which turns out to be too high and the query returns with no results. To
lower the threshold and execute the query again, the data must be fully
scanned again and the data structure needs to be built again. Since the
data structures are very compact and assume that many items hash to every
bucket, the information stored has a very high error ratio, so it can hardly
be used for exact queries, trying to figure out the items which comply to
the new threshold. To prevent this from happening, an initial low threshold
must be selected, but this neutralizes many of the the advantages of the
proposed algorithms, requiring them to use a lot of memory (or forcing a
high error ratio on the results).

In this section we present two ways to utilize SBFs in ad-hoc iceberg
queries: a straight forward implementation, using a regular SBF to answer
the queries, and a method similar to the MULTISCAN-SHARED method
of [FSGM+98], performing progressive filtering of the data.

Algorithm & Error Analysis for Iceberg Queries

The SBF can be used as-is for purposes of iceberg queries answering. For
streaming data, the SBF can be built while the data flows, and any item
whose frequency passes the given threshold is reported. For non-streaming
data hashed into an SBF, a single scan of the data is performed. Each item
inserted is checked within the SBF for its frequency, if it exceeds the thresh-
old, the item is reported. The threshold can be dynamic and determined at
query time, and not while hashing the data.

Using an SBF to handle iceberg queries might generate errors due to its
probabilistic nature. These errors can be eliminated by performing a scan
of the potentially heavy itemset to retrieve the actual counts of each item
from the range of items R, as in [FSGM+98]. This is not possible under
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the assumption of streaming data unless some additional data structures
are built to support the extra queries. In the remainder of this section, no
such scan is assumed.

The SBF may produce false-positives. That is, all items that should be
reported are indeed reported, along with several items which do not pass the
threshold. If we denote by Q the set of all items returned by our algorithm,
and for an item t, we denote by ft its true frequency in R, it is guaranteed
that ∀t ∈ R s.t. ft ≥ T, t ∈ Q. However, Q might include some items for
which ft < T . Notice that for iceberg queries purposes, the error is only a
subset of the usual Bloom Error, because the errors have to be big enough
to pass the threshold.

Assume that the distribution of item frequencies in R behaves according
to some function d(f), such that for a frequency f ′, d(f ′) represents the
ratio of items in R with that frequency. For example, for uniform data d(f)
will be a constant. We denote by n the number of distinct items in R.

Note that since we are answering a boolean query (is the item over
the threshold or not), for items with frequency greater than T , we care not
whether there was a bloom error or not, since it does not affect the outcome.
We consider items whose frequency is f ′ < T . There are nd(f ′) items with
frequency f ′. For an item in that group to belong to the output set Q it
must be stepped over by k items of frequency larger than T − f ′. This
is approximately equal to the Bloom Error generated by hashing only the
items with big enough frequencies (we ignore secondary errors generated
by two items mapped to the same bit and so on). We denote by Df ′ =
n

∑∞
i=T−f ′ d(i) the number of items with such frequencies, so for each f ′,

the actual error rate in this scheme is Ef ′ ≈
(
1− e−kDf ′/m

)k
, using the

same calculation given in Section 2.1. Thus, the total error rate across all
items is

E =
T−1∑

f=0

d(f)Ef ≈
T−1∑

f=0

d(f)
(
1− e−kn/m

P∞
i=T−f d(i)

)k

This function represents a tradeoff: for the same parameters, as T increases
there are more items below the threshold, but there are less items big enough
to make them pass the threshold. In figure 5.1 we present the error rates
for Zipfian distribution with several skews and several T s in question, in
which the tradeoff is obvious. For all except uniform distribution (skew 0),
the error rate increases for very small T , and then it reaches a maximum
and drop as T continues to increase, the maximum moves to lower T as the
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Figure 5.1: Error rates for data with Zipfian distribution of several skews
with different thresholds.

skew increases. The parameters used were k = 5, γ = 1, which represent
a smaller Bloom Filter than the optimal. The theoretical Bloom Error for
these parameters is Eb = 0.1, while in the iceberg scenario, the expected
error never exceeds 0.025, while at most relevant thresholds it drops below
0.01.

Multiscan SBF method

Another method of performing iceberg queries is using SBFs in a way similar
to the MULTISCAN-SHARED method, as described in [FSGM+98], using
several scans of the data. The idea is to perform several stages of filtering,
an item passes the combined filter only if it hashes to heavy buckets in all
the stages. By building this filter incrementally, we assume that the first
filter will filter out a fraction of the items. Therefore, the second filter will
have to deal with less items and thus can be smaller. We propose using SBFs
for the various stages, and using the parameters of the SBF (namely m and
k) to control the strength of the filter. In this implementation, knowledge of
the threshold is required while building the SBF, and it limits the options
for ad-hoc queries.

To be competitive with the methods proposed in [FSGM+98], the SBFs
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need to be of very small sizes, around 1% of n. This transforms the im-
plementation to Lossy Bloom Filter, since we assume in advance that each
bucket will have many items hashing to it, with the Bloom Error reaching
probability of 100%. Notice that if the first filter fails to filter out items,
the next filters (which are smaller) have a very small probability to filter
items out. We can determine the properties of the next filter on the fly,
relying on the performance of the current filter. For example, we can calcu-
late the average count over the buckets of the current SBF, and if it exceeds
the threshold we know that the filtering will be very weak, and therefore we
might want to enlarge the next filter (or reduce the number of hash queries),
to allow the next filter to be more effective.

Advantages Using SBF for iceberg queries allows a degree of freedom
with threshold selection and query parameters. It transforms the problem
from a threshold-bound algorithm, in which the threshold must be provided
while the data flows, to an ad-hoc process, in which the data is processed
with no connection to the querying process. When using very small SBFs
and progressive filtering, the memory requirements are competitive with
those in [FSGM+98], and the SBF allows for more possibilities of using the
space, and for less scans of the data.

5.3 Spectral Bloomjoins

Bloomjoins [ML86] are a method for performing a fast distributed join be-
tween relations R1 and R2 residing on different database servers - R1 in site
1 and R2 in site 2, based on attribute a. Both relations have a BF built
on attribute a. The Bloomjoin method is executed as follows: R1 sends its
Bloom filter (denoted BF1) to R2, R2 is scanned and tuples with a match in
BF1 are sent back to site 1 as R′

2. At site 1, R1 is joined with R′
2 to produce

final results. This method is economical in network usage, since in the first
transmission, only a synopsis is sent, and the second transmission usually
contains a small fraction of the tuples, since a filtering stage was executed.

A Spectral Bloomjoin is an extension of the Bloomjoin scheme using
SBFs. This method can be used to perform distributed aggregative queries.
Consider the following query, which filter the results using a given threshold
T :

SELECT R.a,count(*) FROM R,S
WHERE R.a = S.a GROUP BY R.a
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HAVING count(*) [>,=] T

Since in most schemas the join between the relations will be a one-
to-many join, the detail table S can send its SBF to R’s site. The Bloom
Filters are multiplied and R is scanned, testing each tuple in SBFRS against
the threshold T . Results can be reported immediately since no value is
repeated more than once in R. When using “>” (or “≥”) as the filter
operator, there is only a small fraction ρ of false positive errors, E(ρ) =
ESBF , and no false negatives. Since the errors are one-sided, they can be
eliminated by retrieving the accurate frequencies for the items in the result
set, resulting in a fraction of ρ extra accesses to the data. The effectiveness
of this method increases as the size of the result set decreases. When using
the “=” operator, two-sided errors are possible, with recall of 1−ESBF , and
possibly additional false-alarms.

The SBF’s capability to represent multiplicities can also be used in
queries which perform no filtering, such as the following:

SELECT R.a,count(*) FROM R,S
WHERE R.a = S.a GROUP BY R.a

To perform this query using a Bloomjoin, the full scheme described in
[ML86] must be executed, with Bloom Filters and tuple stream sent back
and forth between the sites. However, using SBF multiplication, a shorter
scheme can be executed, assuming that both S and R have a SBF represent-
ing the attribute a present, and R being the primary query site: S sends its
SBF (SBFS) to R’s site, where SBFS and SBFR are multiplied to create
SBFSR. Next, R is scanned, and each tuple is checked against SBFSR for
existence. If it exists, the item and its frequency are reported.

This scheme does not guarantee exact results. Items which appear in R
and not in S may be reported because of errors in SBFS . The error ratio
expected is the standard Bloom error, as described in Section 2.1. Also, the
frequencies reported are subject to Bloom Error and may be higher than
their actual value. The size of these errors can be estimated using the calcu-
lation described in Section 2.3, or improved by using the Minimal Increase
method (when no deletions are necessary). To ensure the uniqueness of
items in the results, we suggest the use of a validating SBF for that pur-
pose. This method saves the transmission of data back to the main site. If
the main site has to be the one reporting the results, the final answer may
be sent back to it, with minuscule network usage.
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Advantages Using SBF for Bloomjoins simplifies and shortens the algo-
rithm for performing distributed joins, by allowing the query to be answered
after transmitting one synopsis from site to site, eliminating the need for a
feedback. While the SBF itself is slightly larger than a Bloom Filter of the
same parameters, this is balanced by the shorter operation scheme, requiring
less SBFs to be sent between sites, and therefore saving bandwidth.

5.4 Bifocal sampling

A Spectral Bloom Filter can be plugged into various schemes that require
an index on a relation for count queries. One such application is Bifocal
Sampling [GGMS96], where using an SBF one can get similar join estima-
tions without using an expensive index. The paper deals with joining two
relations with unknown properties by dividing each relation to two distinct
groups: dense and sparse tuples. The join size is estimated by combining
the groups in all ways possible, creating a dense-dense join and sparse-any
joins. In the sparse-any case, a join of type t-index [HNSS93] is used, mean-
ing for each tuple in a sample of one relation, a query on the other relation
is performed to determine the frequency of the join attribute in the second
relation. We sketch the modifications made in the bifocal sampling, with
reference to the algorithm described in [GGMS96]. By replacing the t-index
with an SBF, the multiplicities used for estimation are replaced by their
approximations, resulting with only a small additional error to the overall
estimate.

When using SBF in this procedure, each error will be multiplied by
n/m2. We might also label items as dense when in fact they are sparse. For
this to happen, multR(v) needs to be smaller than n/m2 and the error rate
needs to be big enough to make multR(v) ≥ n/m2. In fact, this kind of
errors might balance the first type of errors.

By following the logic of Lemma 3.3 in the original paper, we substitute
multR(v) by mult′R(v), which is the result of querying the SBF for the
item v. For tuples that are dense in R, we are certain that E(τ) = 0.
For tuples that are not dense, if mult′R(v) < n/m2 (no Bloom Error or a
small one), we have E(E(τ)) = mult′R(v) ≤ multR(v) + γ. From this we
need to subtract the tuples which are sparse but considered dense due to
Bloom Error. These tuples are rare, since they must be subject to Bloom
Error and also be sparse, but with sufficiently high multiplicity so that when
adding the error, they pass the threshold and become dense. It follows that
As ≤ E(Âs) ≤ As(1 + γ), as required.
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This deviation in the estimated total will usually be much smaller, and
can be very small if using the MI method. However, the error can be in-
corporated into the calculations in the procedure and the estimation can be
adjusted according to the expected average error.

Advantages The SBF provides an efficient approximation to the t-index
scheme, and enables a more space-efficient implementation of Bifocal Sam-
pling.

5.5 Range queries

Range queries are queries concerning a subset of the relation in which cer-
tain attribute is within a (open or closed) range (L, U), for example the
following query

SELECT count(a) FROM R
WHERE a>L AND a<U

The SBF can provide (mostly) exact information per specific item, but
due to its structure has no support for range queries. When answering such
a query, an exhaustive search over the entire range is not always possible,
and is dependent on the size of the range, which can be very expensive when
the data is sparse in that range or when the range is very large.

Range Tree Hashing In order to accomplish range queries capabilities,
we hash both the specific items in the relation and new items that each
represent a range. The ranges are kept in a hierarchy, each range is the
union of the ranges represented by its descendants.

Theorem 11. For an attribute in the range R = (L,U) with |R| = r , range
queries can be supported with insertion and deletion complexity of log r and
constant lookup complexity for distinct queries. For lookup queries over a
range Q ⊆ R, the query requires O(log |Q|) SBF queries.

Proof. We construct a binary tree T , in which every node corresponds to
a subrange within R. For each node n ∈ T , we denote its corresponding
subrange with Rn, and its sons n1, n2 . . . , nk correspond to non overlapping
subranges of Rn such that Rn1 ∪ Rn2 ∪ . . . ∪ Rnk

= Rn. Each node is
associated with a value vn ∈ V, V ∩ R = ∅. The hash functions of the SBF
hash the extended range R ∪ {v1, v2 . . . , v|T |}.
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Figure 5.2: A Part of the tree created in order to handle range queries.

When inserting an item v into the SBF, every node n in T with v ∈ Rn

(these correspond to a single branch), inserts its value vn into the SBF
as well. Since the depth of a tree is log r, every insert into the SBF is
transformed into log r inserts. The same holds for deletions.

When performing lookup of a single value, there is no need to traverse
the tree. A direct query is performed against the SBF and thus a single
lookup is required, with the implied SBF complexity.

For this proof we assume the usage of a binary tree, though other trees
may be used as well. For ease of reading, we denote log2 n by log n. To
query the tree for the range, we perform a BFS over the tree. Once a node
n contains a range fully enclosed in Q, we query the SBF for vn, add the
result to our grand total and do not continue to its descendants. If the
range of the node does not intersect with Q, we do not continue to query its
descendants.

We denote by lmin the highest level of the tree in which we performed
a query in the SBF. In this level, we can perform as many as 2 queries,
because if Q includes 3 adjacent nodes in it, at least two of them belong to
the same parent node, and therefore the parent node is fully enclosed in Q,
and lmin would not be the minimal level in which a query is performed.

The queries in level lmin remove from Q the middle part, which leaves
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(in the worst case) two smaller ranges Ql and Qr for the next level. Both
ranges begin precisely in a node boundary, and cannot spread over two
or more nodes in this level (otherwise the parent node would have been
covered). This means that in the worst case, both Ql and Qr generate one
additional SBF query in this level. The remainder is directed to the next
level, in which the same logic holds, until (in the worst case) we reach the
final level of the tree and have to perform one final distinct query for each
boundary of the range.

To sum up, each level of the tree (starting with lmin) requires up to 2
SBF queries. We consider the subtree T ′ which encloses the entire range
Q. Its height is log |Q|, therefore the entire process requires up to 2 log |Q|
queries.

Note that when using trees with degree of p (rather than binary trees),
the lookup complexity changes to p logp |Q|, and similarly insertion and dele-
tion complexity are reduced to logp r. These observations are directly related
to the depth of the tree.

Size considerations The SBF now must contain additional items corre-
sponding to items in the range tree. In the worst case, there are |R| new
items (for example, a binary tree whose leaves are ranges of size 2, will
contain |R|/2 leaves and a total of |R| nodes, each associated with an item
in the tree). We denote by S ⊆ R the subset of values appearing in the
relation, |S| = n, the number of distinct items inserted into the SBF. We
denote by Va the set of values in the range tree that actually are inserted
into the SBF during the hashing of S. We can state the following claim:

Claim 12. |Va| ≤ n log r

Proof. When inserting any item x for the first time, we insert into the SBF
all tree items that lie within the corresponding tree branch that ends with
x. The length of a full tree branch is log r, therefore for n different items we
need at most n log r tree items.

By this claim, we require an expanded SBF in order to support the larger
domain. This increases the memory demands of the SBF to O(N log N)
bits. However, this data structure supports a very wide range of queries,
both range queries and accurate specific queries in the same data structure.
Note also that the structure of the range tree was predefined, while a more
elaborate building of this tree can provide much better results using a smaller
tree.
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Discussion Usually, range queries are handled using histograms, which
are significantly more space-economical than the SBF. However, histograms
can not guarantee a certain precision for a single query, since extrapolation
is needed for ranges which cover parts of buckets, in which the distribution
of data is normally not known. The SBF guarantees one-sided errors, which
is an important property when using the results for decision making. Also, it
gives a certain error guarantee per query, something that histograms cannot
produce.

To summarize this section, it may be desirable to use SBF where pre-
cision of each and every single query and the predictability of errors (both
in nature, namely false-positive errors, and size) are the main issues. When
memory is the main constraint, the usage of SBF is not the recommended
decision.
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Chapter 6

Experiments

We have tested the accuracy of the various SBF lookup algorithms described
in Sections 2 and 3, as well as the space efficiency of the encoding methods
described in Section 4.5. Another set of tests examined the string-array
index structure, testing both its storage requirements and its performance
for lookups, updates and initialization.

6.1 Algorithms comparisons

We have tested and compared the three lookup schemes from Sections 2
and 3: Minimum Selection (MS), Recurring Minimum (RM), and Minimal
Increase (MI). The SBF was implemented using hash functions of mod-
ulo/multiply type: given a value v, its hash value H(v), 0 ≤ H(v) < m is
computed by H(v) = dm(αv mod 1)e, where α is taken uniformly at ran-
dom from [0, 1]. We measured two parameters; the first is the mean squared
additive error, which is calculated by

Eadd =

√√√√
∑

i∈v

(
f̂i − fi

)2

n

The second is the error ratio Eratio, computed as the fraction of the queries
that return erroneous results. Thus, E(Eratio) = ESBF , and for MS, it is Eb.
Each reported result is the average over 5 independent experiments with the
same parameters.

In the first two sets of tests, reported in Figures 6.1 and 6.3, we used
synthetic data produces by a Zipfian distribution. We used integers as data
values, and the data set was constructed of 1000 distinct values, with M =
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100, 000. We have also conducted experiments in which M , and hence the
average item frequency, was changed, generating smaller (and larger) data
sets. The observed behavior was consistent with the experiments reported
here.

In the first set of tests, the skew of the data was changed, from θ = 0
(uniform data) to θ = 2 (very skewed data). The results are shown in
Figure 6.3a,b (solid lines). As can be seen, the MI algorithm has the best
performance both in terms of additive error and error ratio, and is very
stable with regard to changes in the skew. The RM algorithm outperforms
the MS algorithm in both parameters, but in most cases is no match to the
MI algorithm.

In the second set of tests, the storage size m was changed, to result with
γ = nk/m ranging from about 0.12 to about 2. The results are shown in
Figure 6.1a,b. For a fair comparison between the algorithms, in this and in
all other experiments the RM algorithm used m as an overall storage size;
that is the sizes of the primary and the secondary SBFs together being m.
This causes the actual γ of the RM algorithm in its primary SBF to be
larger than that of the MS and MI algorithms. These experiments show
that all three algorithms behave similarly, with RM and MI being almost
identical in their error ratios. The MI algorithm performs best in terms of
additive error when m is small (and γ increases). This is due to the fact
that it performs a minimal number of actual insertions into the base array,
which becomes critical as the error ratio increases.

The third experiment tested the behavior of the various schemes when
the number of hash functions (k) changes. The data used was again Zipfian
with a skew of 0.5, in all configurations γ was fixed at 0.7 by increasing m
along with k. The results are shown in Figure 6.1c. In the k = 1 case, all
the methods perform the same (as they should). The MI method improves
dramatically when k increases, while the RM method needs k of at least 3 to
become effective, with major improvement when k increases to 4 and more.

The above experiments show clearly the significant precision and stability
of the Minimal Increase method, and also the substantial improvement that
the Recurring Minimum method shows over the Minimum Selection.

In the third set of tests we used real data: the Forest Cover Type
database, obtained from the UCI KDD Archive [Arc]. We used the ele-
vation measure as the property indexed by the SBF. The database has a
total of 581012 records, with 1978 distinct values for the elevation measure,
distributed as shown in Figure 6.2a. We have tested the performance of the
three methods over this database while changing the value of γ, by changing
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Figure 6.1: Accuracy of MS, MI and RM algorithms for various values of γ,
with k = 5, with additive error (a), and log of error ratio (b), dotted line
represent optimal γ. Additive errors in the three algorithms for various k
values, with γ = 0.7 (c). In all experiments, MI and RM are better than
MS, with some advantage to MI.

62



the size of the SBF. The results, shown in Figure 6.2b and c, are consistent
with the results over synthetic data-sets and display an advantage to the
Minimal Increase and Recurring Minimum methods over the basic Mini-
mum Selection heuristic. The Minimal Increase and Recurring Minimum
methods behave similarly throughout this test, with a slight advantage to
the Minimal Increase method.

6.2 Deletions and sliding window

Next, we tested the SBFs when faced with deletions. The setup consisted
of a series of insertions, followed by a series of deletions and so on. In every
deletion phase, 5% of the items were randomly chosen and were entirely
deleted from the SBF. The results, shown in Figure 6.3, compare the er-
ror ratio and the additive error of the SBFs when subject to deletions to
their performance without deletions. It is evident that the MI algorithm
deteriorates dramatically when deletions are performed. The third graph
shows the main reason for that - false-negative errors. Note that almost all
of the errors of the MI algorithm are false negatives (MS and RM have no
false-negatives). This makes it a poor choice when deletions are considered,
since the one-sided nature of the errors is no longer valid.

The second test shown in Figure 6.4, used a sliding window scenario.
In this experiment, a total of M items were inserted, but the SBFs only
kept track of the M/5 most recent items as items were inserted, with data
leaving the window explicitly deleted. The MS and the RM algorithm are
much better that the MI algorithm for this scenario, with advantage to the
RM.

6.3 Encoding methods

We tested the storage needed by the encoding methods described in Sec-
tion 4.5, comparing the Elias method, and several configurations of “steps”
for data with varying average frequency of items. The results, shown at Fig-
ure 6.5, were compared to the “Log Counters”, which is simply

∑m
i=1 log Ci.

For data sets with average frequency close to 1 (“almost set”) the steps
methods are more economical, due to their low overhead for small counters.
However, the Elias encoding improves as the average frequency increases,
and beats the performance of the steps methods.
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Figure 6.2: Results of tests using the elevation property of the Forest Cover
Type database. Graphs display the distribution of the elevation property
(a), the additive error (b) and error ratio (c) of the MS, MI and RM algo-
rithms for various values of γ (dotted line represents optimal γ), with k = 5.
In all experiments, MI and RM are better than MS, with some advantage
to MI.
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Figure 6.3: Performance of MS, RM and MI algorithms for Zipfian dis-
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Figure 6.4: Accuracy of MS, RM and MI algorithms for Zipfian distribution
of varying skew (θ), in a sliding window scenario. Both log of additive error
and log of error ratio are shown, in all experiments γ = 0.7, k = 5.
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6.4 String-array index performance

The string-array index, as described in Section 4.3, needs to be efficient both
in its storage requirements and in the complexity of performing the basic
actions needed for the SBF. These actions are the initial building of the
string-array index, increasing a counter, and performing a lookup for a given
item. The string-array index was fully implemented in C++, except for the
continuous memory improvement discussed in Section 4.7. We performed
several experiments that check the various aspects of its usage. Most of these
experiments were conducted regardless of our specific usage of the string-
array index as a supporting structure for the SBF, but as a stand-alone
module.

Performance The performance of the string-array index was tested by
populating the structure with a varying number of items stored in it. For
each array size n, we have performed three actions: (i) the structure was
initialized with all items being 0, (ii) we performed 10n random insertions of
items, such that the average frequency at the end of the stage was 10. (iii)
Finally we performed lookups for each and every item, totalling at n lookups.
We measured the time each of these stages required, dividing the time of
stage (ii) by 10, to find the time n insertions needed, in order to create a
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comparable amount of time. Those tests were executed on a Pentium III
(500MHz) machine, with 512MB of RAM.

The results we show are the total times measured, and also the time per
action, being simply the total time divided by n. The time measured for
insertions include the time required for rebuilding the array, when slacks are
exhausted. For each array size we have performed 5 runs of the test, and
the results shown are the average over those runs. Figure 6.6 shows those
two measurements over array sizes ranging from 1000 to 1 million items.
The first set of results show that, as expected, the complexities of those
actions are linear with n. These results are in accord with the analytical
results given in Theorem 6. This is also demonstrated in the second chart,
where it is clear that the time per-action is indeed constant for those actions,
even though the time required for insertions has a large variance. This last
observation can be explained by the highly random nature of the insertions,
also note that the average time actually decreases when n increases.

Finally, we compared the performance of the string-array index to a hash
table. In order to perform this test, we used the hash table implementation
found in LEDA [LED], which uses chaining for collision resolving. This test
compared the full SBF implementation to the hash table, with the SBF
using k = 5, and having m equal to the number of buckets allocated in
the hash table, and the straight-forward method for lookup and increase.
We also plugged in the same hash functions used in the SBF to the hash
table, to create maximum match between the two schemes. We executed
the same performance check described above for this setup, comparing the
performance of the two methods.

The results of this test are shown in Figure 6.7. It is important to
remember that every lookup in the SBF translates to k lookups, and the
same is true for updates, giving the hash table an inherent advantage in
this comparison. However, as items are hashed into the table and collisions
accumulate, the complexity of the actions performed by the hash table in-
crease. The SBF suffers no such penalties and perform the same number
of lookups and updates with no regards to the hit-ratio within its counters
vector. Note that the results for lookups are measured after the insertions,
where collisions might affect them.

It is evident from the results that the SBF is, as expected, somewhat
slower than the hash table. However, for larger table sizes, the hash table is
only about twice as fast as the SBF, where we would expect a ratio closer
to k. In fact, there is a degradation in the performance of the hash table
as the size increases, which can only be explained by the fact that the hash
functions are not perfectly random, and have some effect of clustering of
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results. When the size of the table increases, this results in several buckets
hashing a large number of items, thus affecting the average complexity of a
lookup into the table. This effect exists in the SBF as well, but it does not
manifest itself in the performance (since collisions do not cause additional
actions), but might result in higher error ratios.

Storage The second important aspect that was tested is the storage re-
quired by the string-array index. We used the same setting described above,
and checked the size (in bits) required for every part of the structure. The
results shown in Figure 6.8 compare the size of the string-array index to the
raw size of the bit vector that holds the counters. This comparison is per-
formed for the empty array (average frequency = 0) and for the array after
the insertions (average frequency = 10). The size of the bit array includes
the slacks, with slack ratio of 0.5, meaning that 0.5 bits are added to the
size of the bit array per item. The sizes of the bit array before and after
the insertions are almost identical, thanks to the usage of the slacks, which
(mostly) prevent the need to reallocate the array and increase its size.

The comparison shows that for a bit vector size of N , the string-array
index requires about 1.5N bits in the initial state, and about 2N bits in the
final state. This difference is explained in the graphs shown in Figure 6.9,
which divide the total storage into its various components. A comparison
between the two graphs clearly shows that for the empty array there is
almost no need for 3rd level offset vectors, since all subgroups are small
enough to use the lookup table. However, in the filled array, there is a
considerable number of groups that are too large to be handled by the lookup
table, requiring that offset vectors be built for them. This is the major
difference between the results in the two scenarios, and explain the rise
in the size of the string-array index. This size increase is unique to the
initial stage, though, and does not continue further when more insertions
are introduced into the string-array index, so the storage stabilizes at about
2− 2.5N bits.

Next we compare the storage needed for the string-array index with the
storage a regular hash table would require. Both structures require storing
of the counter values themselves, with each structure relying on additional
storage: the string-array index needs the entire offset storage, while the
hash table needs to store the keys themselves, in order to resolve collisions
in lookups. The storage needed by the hash table for m distinct keys can
be described as m log m, assuming that the keys are integers of the domain
[1..m], or for a tighter estimate, the total size is

∑m
i=1 log i. We compare
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those numbers to the additional storage required by the string-array index.
Those results are shown at Figure 6.10, and display a clear advantage to the
string-array index.

Another option for hash tables usage involves using perfect hashing.
This scheme prevents the need for storage of the keys themselves, because no
collisions are possible. However, perfect hashing has several disadvantages in
our case: those functions do not perform well in the dynamic case. Usually,
to create a perfect hashing function, the set of keys has to be known in
advance. Another limitation is the size and complexity of the function itself
(and its generation). A perfect hashing function requires a considerable
space - O(m log m), making it as expensive as a standard hash table, storage-
wise.

73



Chapter 7

Conclusions

This thesis presented Spectral Bloom Filters, extending Bloom Filters by
storing counters instead of bit flags. The structure supports updates and
deletions, while preserving storage size of N + o(N) + O(m) bits. We pre-
sented several heuristics for insertions and lookups in a SBF. Minimum
Selection uses the same logic as the original Bloom Filter. Minimal Increase
is a simple yet powerful heuristic with very low error rates, but no support
for updates and deletions. Recurring Minimum uses a secondary storage to
take care of “problematic” cases, and it supports deletions and updates with
no accuracy loss. We also present the string-array index, a data structure
which provide fast access to variable-length encoded data while being com-
pact enough to be used in the Spectral Bloom Filter. We show its structure
and maintenance for static data and during dynamic changes in the data-set.

Several experiments show the error rates the Spectral Bloom Filter pro-
vides for several configurations. The SBF was tested using synthetic data
with Zipfian distribution, and using real-life data. The error rates of us-
ing the Recurring Minimum or Minimal Increase heuristics proved to be
significantly better than those of the Minimum Selection algorithm. We
also compared these methods when facing deletions and updates, in which
case the Minimal Increase method reveals its main weakness and becomes
the least successful of the three. We have experimented with the string-
array index structure, testing its storage requirements and performance.
The structure proved to be efficient in its storage needs, while performing
fast lookup queries and updates.

There are several extensions to the basic functionality of the SBF. One
property is the ability to union sets effectively, provided that the same pa-
rameters are used (hash functions and array size). For such Bloom Filters,
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a union of two data sets only requires an addition of the counter vectors
representing them. The SBF can support both streaming data and sliding
window data sets, given that old data is available for deletion.

The SBF enables new applications, and enables more effective execution
of existing applications. SBFs can be used for maintaining demographics of
a multiset or set, and allow data profiling and filtering using an arbitrary
threshold. It can be used for ad-hoc iceberg-queries, where the threshold
defining the query is not known in construction time, or changes as the data
is queried. Bifocal Sampling can use SBF as an index data structure in the
sparse-any procedure (in fact, SBF can be used in any join of type t-index ).
The SBF can also be plugged into many applications currently using Bloom
Filters. For example, Bloomjoins can be extended using SBF, with better
efficiency for many types of queries.
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