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Abstract

Recent work on scheduling algorithms has resulted in prov�
able bounds on the space taken by parallel computations
in relation to the space taken by sequential computations�
The results for online versions of these algorithms� however�
have been limited to computations in which threads can only
synchronize with ancestor or sibling threads� Such computa�
tions do not include languages with futures or user�speci�ed
synchronization constraints� Here we extend the results to
languages with synchronization variables� Such languages
include languages with futures� such as Multilisp and Cool�
as well as other languages such as id�

The main result is an online scheduling algorithm which�
given a computation with w work �total operations�� � syn�
chronizations� d depth �critical path� and s� sequential space�
will run in O�w�p � � log�pd��p� d log�pd�� time and s� �
O�pd log�pd�� space� on a p�processor crcw pram with a
fetch�and�add primitive� This includes all time and space
costs for both the computation and the scheduler� The
scheduler is non�preemptive in the sense that it will only
move a thread if the thread suspends on a synchronization�
forks a new thread� or exceeds a threshold when allocat�
ing space� For the special case where the computation is
a planar graph with left�to�right synchronization edges� the
scheduling algorithm can be implemented in O�w�p�d log p�
time and s� � O�pd log p� space� These are the �rst non�
trivial space bounds described for such languages�

� Introduction

Many parallel languages allow for dynamic �ne�grained par�
allelism and leave the task of mapping the parallelism onto
processors to the implementation� Such languages include
both data�parallel languages such as hpf �	
� and nesl ����
and control�parallel languages such as Multilisp �	��� id �
��
sisal �
�� and Proteus �	��� Since there is often signi�cantly
more parallelism expressed in these languages than there are
processors� the implementation must not only decide onto
which processors to schedule computations� but in what or�
der to schedule them� Furthermore� since the parallelism is
often dynamic and data�dependent� these decisions must be
made online while the computation is in progress� The order

of a schedule can have important consequences on both the
running time and the space used by an application�

There has been a large body of work on how to sched�
ule computations so as to minimize running time� This
work dates back at least to the results by Graham �	
��
More recently� in addition to time� there has been signi��
cant concern about space� This concern has been motivated
in part by the high memory usage of many implementations
of languages with dynamic parallelism� and by the fact that
parallel computations are often memory limited� A poor
schedule can require exponentially more space than a good
schedule �

�� Early solutions to the space problem con�
sidered various heuristics to reduce the number of active
threads �
�� 	�� �
� 
�� 	���

More recent work has considered provable bounds on
space usage� The idea is to relate the space required by the
parallel execution to the space s� required by the sequential
execution� Burton �

� �rst showed that for a certain class
of computations the space required by a parallel implemen�
tation on p processors can be bound by p � s� �s� space per
processor�� Blumofe and Leiserson ��� �� then showed that
this space bound can be maintained while also achieving
good time bounds� They showed that a fully strict compu�
tation that executes a total of w operations �work� and has
a critical path length �depth� of d can be implemented to
run in O�w�p � d� time� which is within a constant factor
of optimal� These results were used to bound the time and
space used by the Cilk programming language ���� Blelloch�
Gibbons and Matias �
� showed that for nested computa�
tions� the time bounds can be maintained while bounding
the space by s� � O�pd�� which for su�cient parallelism
is just an additive factor over the sequential space� This
was used to bound the space of the nesl programming lan�
guage ���� Narlikar and Blelloch ���� showed that this same
bound can be achieved in a non�preemptive manner �threads
are only moved from a processor when synchronizing� fork�
ing or allocating memory� and gave experimental results
showing the e�ectiveness of the technique� All this work�
however� has been limited to computations in which threads
can only synchronize with their sibling or ancestor threads�
Although this is a reasonably general class� it does not in�
clude languages based on futures �	�� 	�� 
	� 

� 
��� lan�
guages based on lenient or speculative evaluation �
� �	�� or
languages with general user�speci�ed synchronization con�
straints �����

In this paper we show how to extend the results to sup�
port synchronization based on write�once synchronization
variables� A write�once synchronization variable is a vari�
able �memory location� that can be written by one thread
and read by any number of other threads� If it is read before



it is written� then the reading thread is suspended until the
variable is written� Pointers to such synchronization vari�
ables can be passed around among threads and synchroniza�
tion can take place between two threads that have pointers
to the variable� Such synchronization variables can be used
to implement futures in such languages as Multilisp �	���
Mul�T �	��� Cool �

� and olden �
��� I�structures in ID �
��
events in PCF ����� streams in sisal �
��� and are likely to be
helpful in implementing the user�speci�ed synchronization
constraints in Jade ����� We model computations that use
synchronization variables as directed acyclic graphs �dags�
in which each node is a unit time action and each edge rep�
resents either a control or data dependence between actions�
The work of a computation is then measured as the number
of nodes in the dag and the depth as the longest path�

The main result of this paper is a scheduling algorithm
which� given a parallel program with synchronization vari�
ables such that the computation has w work� � synchroniza�
tions� d depth and s� sequential space� executes the compu�
tation in s��O�pd log�pd�� space and O�w�p�� log�pd��p�
d log�pd�� time on a p�processor crcw pram with a fetch�
and�add primitive �	��� This includes all time and space
costs for both the computation and the scheduler� This al�
gorithm is work�e�cient for computations in which there
are ��log�pd�� units of work per synchronization �on aver�
age�� In addition� we show that if the dag is planar� or
close to it� then the algorithm executes the computation in
s� � O�pd log p� space and O�w�p � d log p� time� indepen�
dent of the number of synchronizations� Planar dags are a
more general class of dags than the computation dags con�
sidered in ��� �� 
�� Previously� no space bounds were known
for computations with synchronization variables� even in the
case where the dags are planar�

As with previous work �
� 	��� the idea behind the imple�
mentation is to schedule the threads in an order that is as
close as possible to the sequential order �while still obtain�
ing good load balance across the processors�� This allows
us to limit the number of threads that are executed pre�
maturely relative to the sequential order� and thus limit the
space� An important contribution of this paper is an e�cient
technique for maintaining the threads prioritized by their se�
quential execution order in the presence of synchronization
variables� This is more involved than for either the nested
parallel or fully strict computations considered previously�
because synchronization edges are no longer �localized� �a
thread may synchronize with another thread that is not its
sibling or ancestor � see Figure 
�� To maintain the prior�
ities we introduce a black�white priority�queue data struc�
ture� in which each element �thread� is colored either black
�ready� or white �suspended�� and describe an e�cient im�
plementation of the data structure based on 	�� trees� In ad�
dition� we use previous ideas �		� for e�ciently maintaining
the queues of suspended threads which need to be associated
with each synchronization variable� As with �	��� our sched�
uler is asynchronous �its execution overlaps asynchronously
with the computation� and non�preemptive �threads execute
uninterrupted until they suspend� fork� allocate memory or
terminate��

For planar dags� we prove that a writer to a synchro�
nization variable will only wake up a reader of the variable
that has the same priority as itself� relative to the set of
ready threads� This enables a more e�cient implementa�
tion for planar dags� Planar dags appear� for example� in
producer�consumer computations in which one thread pro�
duces a set of values which another thread consumes�

Figure 
� An example �non�planar� dag for a computation
with synchronization variables� Threads are shown as a ver�
tical sequence of actions �nodes�� each right�to�left edge rep�
resents a fork of a new thread� while each left�to�right edge
represents a synchronization between two threads�

� Programming model

As with the work of Blumofe and Leiserson ���� we model
a computation as a set of threads� each comprised of a se�
quence of instructions� Threads can fork new threads and
can synchronize through the use of write�once synchroniza�
tion variables �henceforth just called synchronization vari�
ables�� All threads share a single address space� We assume
each thread executes a standard ram instruction set aug�
mented with the following instructions� The fork instruction
creates a new thread� and the current thread continues� The
allocate�n� instructions allocates n consecutive memory lo�
cations and returns a pointer to the start of the block� The
sv�allocate instruction allocates a synchronization variable
and returns a pointer to it� The free instruction frees the
space allocated by one of the allocate instructions �given
the pointer to it�� The standard read and write instructions
can be used to read from and write to a synchronization
variable as well as regular locations� Each synchronization
variable� however� can only be written to once� A thread
that performs a read on an unwritten synchronization vari�
able suspends itself� it is awakened when another thread
performs a write on that variable� We assume there is an
end instruction to end execution of a thread�

In this model a future can be implemented by allocating
a synchronization variable� forking a thread to evaluate the
future value� and having the forked thread write its result
to the synchronization variable� I�structures in id �
� can
similarly be implemented with an array of pointers to syn�
chronization variables and a fork for evaluating each value�
Streams in sisal �
�� can be implemented by associating a
synchronization variable with each element �or block of ele�
ments� of the stream�

We associate a directed acyclic graph �dag� called a
computation graph with every computation in the model�
The computation graphs are generated dynamically as the
computation proceeds and can be thought of as a trace of the
computation� Each node in the computation graph repre�
sents the execution of a single instruction� called an action��
and the edges represent dependences among the actions�
There are three kinds of dependence edges in a computa�
tion graph� thread edges� fork edges and data edges� A
thread is modeled as a sequence of its actions connected by
thread edges � When an action a� within a thread �� forks a

�We assume that every action requires a single time step to be
executed�



new thread ��� a fork edge is placed from a� to the �rst ac�
tion in ��� When an action a� reads from a synchronization
variable� a data edge is placed from the action a� that writes
to that variable to a�� For example� in Figure 
� the vertical
edges are thread edges� the right�to�left edges are fork edges�
and the left�to�right edges are data edges� The time costs of
a computation are then measured in terms of the number of
nodes in the computation graph� called the work � the sum
of the number of fork and data edges� called the number of
synchronizations � and the longest path length in the graph�
called the depth �

We say that a thread is live from when it is created by
a fork until when it executes its end instruction� and a live
thread is suspended if it is waiting on a synchronization vari�
able� We also assume that computations are deterministic�
that is� the structure of the computation graph is indepen�
dent of the implementation�

Serial space� To de�ne the notion of serial space s� we
need to de�ne it relative to a particular serial schedule� We
de�ne this schedule by introducing a serial priority order on
the live threads�a total order where �a � �b means that
�a has a higher priority than �b� To derive this ordering
we say that whenever a thread �� forks a thread ��� the
forked thread will have a higher priority than the forking
thread ��� � ��� but the same priority relative to all other
live threads� The serial schedule we consider is the schedule
based on always executing the next action of the highest�
priority non�suspended thread� This order will execute a
depth��rst topological sort of the computation graph� We
call such a serial schedule a �df�schedule� Serial implemen�
tations of the languages we are concerned with� such as PCF�
ID� and languages with futures� execute such a schedule� For
example� with futures� the �df�schedule corresponds to al�
ways fully evaluating the future thread before returning to
the body� Figure 	 shows an example computation graph�
in which each action �node� is labeled in the order in which
it is executed in a �df�schedule� In the rest of the paper� we
refer to this depth��rst order as the serial execution order�

Let �a�� a�� � � � � aT � be the actions of a T node compu�
tation graph� in the order in which they are executed in a
�df�schedule� To de�ne the serial space s�� we associate a
weight w�a� with each action �node� a of the computation
graph� For every action ai that corresponds to a sv�allocate

we set w�ai� � 
 on the node representing ai� for every
action ai that corresponds to an allocate�n� instruction we
set w�ai� � n� for every free we place the negative of the
amount of space that is deallocated by the free� and for ev�
ery other action we set the weight to zero� Then the serial
space requirement s� for an input of size N is de�ned as

s� � N �maxi�������T

�Pi

j��
w�aj�

�
�

� Outline of the Paper

In the remainder of the paper we are concerned with the e��
cient implementation of the programmer�s model� discussed
in the previous section� We �rst introduce the notion of a
task graph in Section 
� A task is a sequence of actions
within a single thread that gets executed without preemp�
tion� The main purpose of the task graph is to model non�
preemption in the scheduler so that we can formally specify
under what conditions the scheduler will preempt threads�
The task graph also serves to help prove our time and space
bounds� Section � then describes the scheduler� including
how it breaks threads into tasks and how it maintains the
threads in the appropriate priority order using a balanced
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Figure 	� An example computation graph in which actions
are labeled with their serial execution order� Left�to�right
edges represent the synchronizations between threads� while
right�to�left edges are the fork edges� Threads are shown as
solid rectangles around the nodes� while consecutive nodes
of a thread are grouped into tasks �de�ned in Section 
��
which are shown as dashed ovals� Thread �� forks thread ��
and then forks thread ��� therefore� �� � �� � ���

tree� Section � proves the space and time bounds for the
resulting schedules� Section � describes a more e�cient al�
gorithm that works for planar or near�planar graphs�

� Task Graphs

Schedules of computation graphs represent executions in
which the unit of scheduling is a single action� Therefore� an
algorithm that generates such schedules may map consecu�
tive actions of a thread onto di�erent processors� This can
result in high scheduling overheads and poor locality� To
overcome these problems� we increase the granularity of the
scheduled unit by grouping sequences of actions of a thread
into larger tasks � each task is executed non�preemptively on
one processor� We call the dag of tasks a task graph � Task
graphs are created dynamically by the implementation de�
scribed in this paper� the programmer need not be aware
of how the actions are grouped into tasks� The example in
Figure 	 shows the grouping of actions into tasks�

De�nitions� A task graph GT � �V� E� is a dag with
weights on the nodes and edges� Each node of GT is a task �
and represents a series of consecutive actions that can be
executed without stopping� Each task v � V is labeled with
a nonnegative integer weight t�v�� which is the duration of
task v �the time required to execute v� or the number of ac�
tions represented by v�� For every edge �u� v� � E� we call u
the parent of v� and v the child of u� Each edge �u� v� � E
has a weight l�u� v�� which represents the minimum latency
between the completion of task u and the start of task v� �In
this paper� we will consider latencies due to the scheduling
process��

Once a task v is scheduled on a processor� it executes
to completion in t�v� timesteps� The work w of a task
graph GT is de�ned as w �

P
v�V

t�v�� The length of a
path in GT is the sum of the durations of the tasks along
the path� Similarly� the latency�weighted length is the sum
of the durations of the tasks plus the sum of the latencies
on the edges along the path� The depth d of GT is the
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Figure �� An example task graph and a p�schedule for it
�with p � ��� Each oval represents a variable�length task�
For each task v� t�v� denotes the duration of the task� that
is� the number of consecutive timesteps for which v must
execute� Each edge is labeled �in bold� with its latency�
For i � 
� � � � � �� Vi is the set of tasks being executed during
timestep i of the p�schedule�

maximum over the lengths of all the paths in GT � and the
latency�weighted depth dl is the maximum over the latency�
weighted lengths of all the paths in GT �

As with computation graphs� the parallel execution of
a computation on p processors can be represented by a
p�schedule Sp of its task graph� A p�schedule of a task graph
GT � �V�E� is a sequence �V�� V�� � � � � VT � which satis�es
the following conditions�


� V �
S

i�f����� �Tg
Vi

	� We say v is scheduled in timestep i if v �� Vi��
and v � Vi� If v is scheduled at timestep i� then
v � Vj �� i � j � i� t�v��

�� �i � 
� � � � � T � jVij � p�


� A task v is completed in timestep i if v � Vi and
v �� Vi�� � ��u� v� � E� if u is completed in timestep i�
and v is scheduled in timestep j� then j � i� l�u� v��

A task v is ready when all its parent tasks have been com�
pleted and the latencies on all edges into v have been satis�
�ed� but v is yet to be scheduled� We say that a p�schedule
is greedy ��� if �i � 
� � � � � T � jVij � p implies all ready tasks
are scheduled on that step� Figure � shows an example task
graph and a greedy p�schedule for it� The proof of the fol�
lowing theorem can be found in �	���

Theorem ��� Given a task graph GT with w work and
latency�weighted depth dl� any greedy p�schedule of GT will
require at most w�p� dl timesteps�

This is within a factor of two of the trivial lower bound of
max�w�p� dl��

The scheduling algorithm must decide which of the ready
tasks to schedule in each step of a schedule� If tasks are
assigned priorities� and at every step� the tasks scheduled
are the ready tasks with the highest priorities� we call the
resulting schedule a prioritized schedule � This de�nition is
similar to the class of list schedules described in �
��� Let
S� be any 
�schedule for a task graph with n tasks� and let

v�� v�� � � � � vn be the tasks in the order they appear in S��
As de�ned in �
�� we say a prioritized p�schedule is based on
S� if the relative priorities of tasks are based on their serial
execution order� �i� j � f
� � � � � ng� i � j � priority�vi� �
priority�vj��

Modeling space with task graphs� As with computa�
tion graphs� we associate weights with each task to model
space allocations in a task graph� However� since each task
may contain multiple allocations and deallocations� we intro�
duce two integer weights for each task v in a task graph GT �
the net memory allocation� n�v�� and the memory require�
ment� h�v�� The weight n�v� is the di�erence between the
total memory allocated and the total memory deallocated
in v� and may be negative if the deallocations exceed the
allocations� The weight h�v� is the non�negative high�water
mark of memory allocation in v� that is� the maximum
memory allocated throughout the execution of task v� The
task v can be executed on a processor given a pool of at
least h�v� units of memory� If Ci is the set of tasks that
have been completed at or before timestep i of S� that is�
Ci � fv � Vj j �j � i� and �v �� Vi���g� then the space
requirement of S for an input of size N is de�ned as

space�S� � N � max
i�������T

�X
v�Ci

n�v� �
X

v�Vi�Ci

h�v�

�
�
�

Note that this is an upper bound on the space required by
the actual execution� since there may be tasks v executing
during a timestep that are not presently at their respective
high�water marks h�v� of memory allocation� However� if S
is a serial schedule� then the above expression for space�S�
is an exact value for the space requirement of the execution
it represents�

� The scheduling algorithm

In this section� we �rst describe how multithreaded compu�
tations are broken into task graphs� Next� we present an on�
line and asynchronous scheduling algorithm that generates
such task graphs and space�e�cient schedules for them� and
�nally describe an e�cient implementation of the scheduler�
For now we assume that every action in a parallel computa�
tion with synchronization variables allocates at most a con�
stant K �K � 
� units of space� In Section � we will �rst
prove the space and time bounds of the generated sched�
ule for such computations� and then show how to relax this
assumption without a�ecting our space bounds�

Creating task graphs for computations� Let G be the
computation graph representing the computation and GT

be the task graph representing the same computation� As
with G� the task graph GT is created dynamically as the
computation proceeds and contains data� fork� and thread
edges� A thread is broken into a new task when it performs
one of the following actions� �
� a read on a synchronization
variable when the variable is not ready �i�e�� there has been
no previous write to it�� �	� a write on a synchronization
variable with waiting threads �i�e�� there has been at least
one previous read on the variable�� ��� a fork� and �
� an
allocation that causes the memory requirement of the cur�
rent task to exceed some threshold M � de�ned later� These
interruptions in a thread are denoted breakpoints � A fork
edge between two actions in G becomes a fork edge between
the corresponding tasks in GT � GT has a data edge from a
task� u� with a write to a synchronization variable to every
task� v� with a corresponding read such that the read takes



place before the write� The latencies on the edges of GT are
determined by the time overhead incurred by the scheduling
algorithm for maintaining ready tasks in the system �their
values are explained in Section ���

��� Algorithm Async�Q

The job of the scheduling algorithm is to e�ciently sched�
ule the tasks generated as described above onto the proces�
sors� The algorithm is online in the sense that it has to run
while the computation is proceeding since neither the task
graph nor the serial schedule are known� The algorithm we
present uses a set of worker processors to run the tasks and
a separate set of processors to execute the scheduler � In the
conclusion we mention how the processors might be shared�
The worker processors run asynchronously with each other
and with the scheduler� They only synchronize with the
scheduler through two FIFO queues� called Qin and Qout �
and only when reaching a breakpoint� The processors exe�
cuting the scheduler run synchronously with each other and
are responsible for maintaining the set of all live threads L
prioritized by their serial execution order� and for communi�
cating with the workers through the FIFO queues� During a
computation each live thread can either be active �currently
in Qin� Qout or being executed by a worker processor�� ready
if it is ready to execute but not active� or suspended if it is
waiting on a synchronization variable� Let R � L be the set
of ready threads in L�

Figure 
 speci�es the algorithm Async�Q for both the
workers and the scheduler� and Figure � shows the migra�
tion of threads between Qin� Qout� the worker processors
and the set of live threads maintained by the scheduler� It
is important to realize that the scheduler is executed by
the set of scheduler processors while the worker is executed
by each individual worker processor� We call each itera�
tion of the scheduler loop a scheduling iteration � In the last
timestep of each scheduling iteration� the scheduler inserts
tasks into Qout� which are available to the workers at the
next timestep� Initially L contains only the root thread�
which is in the ready state�

To implement the scheduling algorithm on p processors
we assign a constant fraction �p of the processors �� � � �

� to the scheduler computation� and the remaining �
	��p
processors as workers�

��� Implementation of the scheduler

The main job of the scheduler is to maintain the threads in
L prioritized by their serial execution order� so that it can
e�ciently pick the ready threads with the highest priorities
in every scheduling iteration� For computations with syn�
chronization variables this is more involved than in previous
work �	�� which handled computations with nested paral�
lelism� With nested parallelism the threads L could be kept
in priority order using a simple array in which the sched�
uler only needed to access one end of the array� This is not
in general possible with synchronization variables since a
computation can have many suspended threads with higher
priorities than a ready thread� requiring the scheduler to
search through a large number of threads to �nd the set of
highest�priority ready threads� In this section we present an
implementation of L as a black�white priority queue which
allows e�cient access� In the queue each element is either
black �representing ready threads� or white �representing
active or suspended threads�� Since the absolute serial ex�
ecution order of the threads is not known for online com�

begin worker
while �there exist threads in the system�

� �� remove�thread�Qout��
execute � until it reaches a breakpoint or terminates�
insert�thread�� � Qin��

end worker

begin scheduler
while �there exist threads in the system�
T �� remove�all�threads�Qin ��
for each thread � in T
if � has written to a synchronization variable ��

mark all threads suspended on � as ready in L�
else if � has terminated� delete � from L�
else if � has forked� add the new thread to L�
else if � has suspended on a synchronization variable�

mark as suspended in L�
else retain � as ready in L�

mark min�jRj� qmax 	 jQoutj� ready threads with highest
priorities in L as active and insert them into Qout�

end scheduler

Figure 
� Algorithm Async�Q� The worker and scheduler
computations execute asynchronously in parallel� qmax is
the maximum size of Qout� and jQoutj is the number of tasks
in Qout� The function remove�thread�Qout� busy�waits until
a thread becomes available and is removed from Qout�

Qout

Q in

R
L

highest priority threads

from R

max size = q max
worker live threads

processors

Figure �� The movement of threads between the processors
and the scheduling queues� The dashed lines indicate the
movement of threads by the scheduler� whereas the solid
lines indicate the movement of threads by the worker pro�
cessors �the processors that execute the threads��

putations� the queue maintains threads according to their
relative ordering� Figure � lists the operations supported by
the priority queue�

We implement the black�white priority queue using a 	��
tree in which the elements �threads� are kept at the leaves
and are ordered by their relative priorities from left to right
�the leftmost leaf has the highest priority�� � As with stan�
dard 	�� trees� all leaves are kept at the same level and
all internal nodes have 	 or � children� Instead of keeping
keys at each internal node� however� we keep a count� The
count represents the number of black elements in the sub�
tree rooted at the node� Keys are not used since we will not
need to search the tree�in fact� since the absolute serial
ordering is not known� there are no key values to use� For
this data structure� we can prove the following bound on the
time required to execute operations on its elements�

Lemma ��� Using a black�white priority queue of size n�
each of the four operations from Figure � on m elements can

�Other balanced tree implementations that support fast parallel
inserts� deletes and lookups might be used instead of ��� trees



Queue operation Function in scheduler

Recolor white element to black Awaken suspended thread or convert thread
from active to ready

Split element into two adjacent elements Fork new threads
Delete element Remove terminated thread
Select m black elements with highest priority and re�
color to white

Move highest�priority ready threads to Qout

Figure �� Operations supported by the priority queue and their corresponding functions in the scheduler�

be implemented to run in O�m
p
log n� time on an p�processor

erew pram�

Proof� For all the operations� we assume that we have direct
pointers to the m elements in the 	�� tree� Consider each of
the four operations� �
� For recoloring m white elements to
black we start with the m elements at the leaves and work
our way up the tree incrementing the counters appropriately�
This is executed in parallel level by level� When paths from
two �or three� recolored elements to the root meet at an in�
ternal node� the two �three� increments are combined� and
only one proceeds to the next level� �	� For splitting m ele�
ments we can use a procedure similar to Paul� Vishkin and
Wagener�s ��
� procedure for inserting into 	�� trees� Since
each leaf can only split into two leaves� the splitting may
convert a node just above the leaf level into a 
� � or � node
which then needs to be split� This in turn may split nodes at
the next level� and the splitting can go up the tree level by
level to the root� The counts are updated along the way as
before� ��� For deleting elements we can again use a proce�
dure similar to the one used by Paul� Vishkin and Wagener�
Since a set of contiguous elements may need to be deleted�
the pipelined version of their algorithm is used� �
� For se�
lecting the m highest�priority black elements we can start at
the root and proceed downwards� using the counts to locate
the leftmostm elements� and searching the required subtrees
in parallel� Operations �
� and �	� can be implemented in
O�m

p
log n� time on an erew pram by simply having each of

the m elements walk its way up the tree in parallel� Opera�
tion ��� will run within the same bounds since the pipeline
will only create a delay of O�m

p
log n�� Operation �
� can

be implemented on a erew pram by starting with one job
at the root and then forking one� two or three jobs at each
node depending on which nodes need to be searched to �nd
the desired black elements� Since we know how many black
elements are within each subtree we can assign a propor�
tional number of processors to search that subtree and only
one needs to look at the root� Since the depth of the tree
is bound by log n and the total number of forked jobs at
completion is bound by m the time is bound by O�m

p
log n��

The other operation the scheduler needs to perform is
to handle the queues of threads waiting on synchronization
variables� We use an array for each queue� which we will
call a synchronization queue �		��

Aiming for an e�cient implementation of the scheduler�
we set qmax to be p and the maximum task space M to be
log�pd�� We can show that no more than P � �	�
	��p �
�p threads can be active at any time� and all the P active
threads can end up in Qin before the start of a scheduling
iteration� Therefore� a step of the scheduler will need to
split� delete� and select at most �p elements� However it
could recolor a larger number since awakening threads can

potentially recolor all the white nodes to black�

Lemma ��� The sum of the time taken by anym scheduling
iterations is bound by O����p � m� log jLj� time on a �p
processor crcw pram with fetch�and�add�

Proof� The time taken by a single scheduling iteration that
awakens n suspended threads is O��n�p� 
� log jLj� not in�
cluding the time for suspending threads �adding them to
synchronization queues�� This is based on Lemma ��
 and
previous bounds that state that n threads can be reawak�
ened from a set of synchronization queues �		� in O�n�p�
time on a crcw pram with fetch�and�add� Since at most
� threads will be awakened during a computation� the sum
of the above time over m scheduling iterations is bound by
O����p �m� log jLj�� Again based on previous results �		�
the cost of suspending threads �placing them in the syn�
chronization queues� can be amortized against the cost of
reawakening them� Since we are including the cost of reawak�
ening in the above bounds� the total cost of m schedul�
ing iterations including the suspension cost is bound by
O����p �m� log jLj��

� Space and time bounds

In this section� we �rst de�ne a class of space�e�cient sched�
ules called Q�prioritized schedules� by presenting a high�level
description of scheduling algorithms that generate them�
Such schedules are based on serial schedules but are not
completely prioritized� this deviation from priorities allows
the schedules to be generated in a simple and e�cient man�
ner� We then prove the space and time bounds for schedules
generated by algorithm Async�Q by showing that they are
Q�prioritized schedules�

Q�prioritized schedules� Q�prioritized schedules are the
class of schedules that are generated by any scheduling al�
gorithm that conforms to the following rules�


� The scheduling algorithm maintains a FIFO work queue
that contains a subset of the ready tasks� Let qmax be
the maximum size of the work queue� and let Qt be the
tasks in it at timestep t� Idle processors take tasks from
the head of the work queue and execute them�

	� Let Rt be the set of all ready tasks at timestep t of the
execution� and let R�

t � Rt 	 Qt be the subset of Rt

not in the work queue� Let Tt be the set of tasks moved
from R�

t to the work queue at timestep t� Then� jTtj �
min�qmax 	 jQtj� jR

�
tj�� and Tt is the subset of R�

t with
the highest priorities� No tasks are moved back from Qt

to R�
t�



As with prioritized schedules� priorities are based on the
serial execution order of the tasks� Tasks inserted into the
work queue at timestep t are available to the processors at
timestep t� 
� If jTtj � � we call t a queuing step �

We call u the last parent of v in a schedule� if it is the last
of v�s parents to be completed in the schedule� Due to laten�
cies on edges into v� it may not become ready until several
timesteps after u is completed� For any task v � V � let q�v�
be the number of queuing steps that take place after the last
parent of v has been completed and before task v is ready�
We de�ne the queuing delay 	 of a Q�prioritized schedule as
	 � maxv�V fq�v�g� This metric re�ects the asynchronous
overlap between the execution of the scheduling algorithm
that inserts tasks into the work queue� and the parallel com�
putation� and depends on how often the scheduling algo�
rithm executes queuing steps�

Space bounds for Q�prioritized schedules� Let the
maximum task space M of a task graph GT � �V� E� be the
maximum over the memory requirements of all tasks in GT �
that is� M � maxv�V fh�v�g�

Theorem ��� Let GT be a task graph with depth d and
maximum task space M � Let Sp be any Q�prioritized p�
schedule for GT based on any 
�schedule S� of GT � If Sp
is generated using a work queue of size qmax� and 	 is the
queuing delay of Sp� then space�Sp� � space�S�� � ��	�
� �
qmax � p 	 
� �M � d�

Proof� The proof can be found in �	���� It is based on show�
ing that no more than ��	 � 
� � qmax � p 	 
�d tasks are
scheduled out�of�order with respect to the serial schedule�
These tasks� each of which has a memory requirement of
at most M � result in the parallel execution requiring more
space than the serial execution�

We can now bound the space requirements of the sched�
ules generated by algorithm Async�Q� by showing that they
are Q�prioritized schedules�

Lemma ��� For a parallel computation with w work� � syn�
chronizations� and d depth� in which every action allocates
at most a constant K units of space� the Async�Q algorithm
on p processors� with qmax � p� creates a task graph GT

with work O�w�� at most � synchronizations� depth O�d��
latency�weighted depth dl � O����p � d� log lm�� and maxi�
mum task space log�pd�� where lm is the maximum number
of live threads in L� For a constant �� � � � � 
� the algo�
rithm generates a Q�prioritized ��
	 ��p��schedule for GT

based on the serial depth��rst schedule� with a queuing delay
of at most ��

Proof� As described in Section �� algorithm Async�Q splits
each thread into a series of tasks at runtime� Since each
thread is executed non�preemptively as long as it does not
synchronize� terminate� fork� or allocate more than a maxi�
mum of M � log�pd� units of memory� each resulting task v
has a memory requirement h�v� � log�pd�� For each task v
in GT � a processor performs two unit�time accesses to the
queues Qout and Qin� Thus the total work performed by
the processor for task v is t�v� � 	� where t�v� � 
 andP

t�v� � w� Therefore the total work of GT is O�w�� and
similarly� the depth is O�d�� GT has at most � synchro�
nizations� since besides forks� only the pairs of reads and
writes that result in the suspension of the reading thread
contribute to synchronizations in GT �

�We use �queuing frequency� instead of �queuing delay� in ���	�

Next� we show that the algorithm Async�Q generates Q�
prioritized schedules with a queuing delay 	 � 
� If r is the
number of ready threads in R� the scheduler puts min�r� p	
jQoutj� tasks into Qout� Moreover� these tasks are the tasks
with the highest priorities in R� where the priorities are
based on the serial� depth��rst execution order� Therefore�
using Qout as the fifo work queue of maximum size qmax �
p� and the ordered set R to represent the set of ready tasks
that are not in the work queue� Async�Q generates a Q�
prioritized schedule� With �
	��p processors executing the
worker computation� the resulting schedule is aQ�prioritized
��
 	 ��p��schedule� The last timestep of every scheduling
iteration is a queuing step� since all the tasks moved to Qout

at the end of that iteration are available after this timestep�
Consider any task v in GT � Let t be the timestep in which
the last parent u of v is completed� u is placed in Qin at
timestep t�
 �assuming the insertion uses a unit�time fetch�
and�add�� In the worst case� a scheduling iteration may end
in timestep t�
� making t�
 a queuing step� However� the
next scheduling iteration must �nd u in Qin� Since u was
the last parent of v� v becomes ready during this scheduling
iteration �we consider it to become ready just before the last
timestep of the iteration�� Therefore� the next queuing step�
which is the last timestep of this scheduling iteration� takes
place after v becomes ready� Thus� for any v� at most one
queuing step can take place after its last parent is completed
and before v becomes ready� that is� 	 � 
�

Finally� we bound the latency�weighted depth dl of GT �
Consider any path in GT � Let l be its length� For any
edge �u� v� along the path� if u is the last parent of v� then v
becomes ready at the end of at most two scheduling itera�
tions after u is computed� Therefore the latency l�u� v� is at
most the durations of two scheduling iterations� � Since any
path in GT has at most �d	 
� edges� the latency�weighted
depth of the path is at most the sum of the times required
for 	�d	 
� scheduling iterations plus the depth d� which is�
using Lemma ��	� O����p � d� log lm��

Next� we bound the size of L�

Lemma ��� The maximum number of live threads in L is
lm � O��qmax � p�d�� which is O�pd� when qmax � p�

Proof� The maximum number of live threads during the ex�
ecution of a Q�prioritized p�schedule Sp �with queuing delay
	� based on S� exceeds the maximum number of live threads
during the execution of S� by at most ��	�
� �qmax�p	
� �
O�d� � O��qmax � p�d� �using Lemma ��	 and Lemma 
�

in �	���� plus the number of threads in Qout�which may have
been created but have not started execution yet�� Since S�
is a depth��rst schedule� at most d threads can exist during
its execution� Further� Qout can have at most qmax threads�
Therefore� L� which contains all the live threads� can have
at most O��qmax � p�d� threads�

We can now bound the number of timesteps required to
execute the resulting schedules�

Lemma ��� Let GT be the task graph created by algorithm
Async�Q for a parallel computation with w work� � syn�
chronizations� and d depth� and let Sp be the �
 	 ��p�
schedule generated for GT � where � is a constant �� � � �

�� If qmax � p� then the length of Sp is jSpj � O��w �
� log�pd���p� d log�pd���

�If u is not the last parent of v� we can use l
u� v� � 
 since it
does not a�ect the schedule or its analysis�



Proof� We will show that Sp is a greedy schedule� with
O��w�� log�pd���p� additional timesteps in which the work�
ers may be idle� Consider any scheduling iteration� Let ti
be the timestep at which the ith scheduling iteration ends�
After tasks are inserted into Qout by the ith scheduling it�
eration� there are two possibilities�


� jQoutj � p� This implies that all the ready tasks are in
Qout� and no new tasks become ready until the end of the
next scheduling iteration� Therefore� at every timestep j
such that ti � j � ti��� if mj processors become idle
and rj tasks are ready� min�mj� rj� tasks are scheduled�

	� jQoutj � p� Since �
 	 ��p worker processors will re�
quire at least 
��
	�� timesteps to execute p tasks� none
of the processors will be idle for the �rst 
��
 	 �� �
O�
� steps after ti� However� if the �i � 
�th schedul�
ing iteration� which is currently executing� has to awaken
ni�� suspended threads� it may execute for O��ni���p �

� log�pd�� timesteps �using Lemmas ��	 and ����� There�
fore� some or all of the worker processors may remain
idle for O��ni���p�
� log�pd�� timesteps before the next
scheduling step� we call such steps idling timesteps � We
split the idling timesteps of each scheduling iteration into
the �rst I� � ��log�pd�� idling timesteps� and the re�
maining I� idling timesteps� A task with a fork or data
edge out of it may execute for less than I� timesteps� we
call such tasks synchronization tasks � However� all other
tasks� called thread tasks � must execute for at least I�
timesteps� since they execute until their space require�
ment reaches log�pd�� and every action may allocate at
most a constant amount of memory� Therefore� if out
of the p tasks on Qout� p� are synchronization tasks�
then during the �rst I� steps of the iteration� at most
p� processors will be idle� while the rest are busy� This
is equivalent to keeping these p� processors �busy� ex�
ecuting no�ops �dummy work� during the �rst I� idling
timesteps� Since there are at most � synchronization
tasks� this is equivalent to adding � log�pd� no�ops� in�
creasing the work in GT to w� � O�w�� log�pd��� and in�
creasing its latency�weighted depth dl by an additive fac�
tor of at most ��log�pd��� There can be at mostO�w��p� �
O�w�� log�pd���p such steps in which all worker proces�
sors are �busy�� Therefore� the I� idling timesteps in
each scheduling iteration can add up to at most O��w �
� log�pd���p�� Further� since a total of O��� suspended
threads may be awakened� if the �i�
�th scheduling itera�
tion results in an additional I� � O�ni�� log�pd��p� idling
timesteps� they can add up to at most O�� log�pd��p��
Therefore� a total of O��w�� log�pd���p� idling timesteps
can result due the scheduler�

All timesteps besides the idling timesteps caused by the
scheduler obey the conditions required to make it a greedy
schedule� and therefore add up to O�w���p � dl � O��w �
� log�pd���p�d log�pd�� �using Lemmas 
�
 and ��	�� Along
with the idling timesteps� the schedule requires a total of
O��w� � log�pd���p� d log�pd�� timesteps�

Note that since qmax � p� the maximum number of
threads in both Qin and Qout is O�p�� and each thread
can be represented using constant space�� Therefore� us�
ing Theorem ��
 and Lemmas ��	� ���� and ��
 we obtain
the following theorem which includes scheduler overheads�

�This is the memory required to store its state such as registers�
not including the stack and heap data�

. . .
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Figure �� A transformation of the parallel computation to
handle a large allocation of space within an action without
violating the space bound� Consecutive actions of a thread
are grouped into tasks� shown as outlines around the actions
�nodes�� Each action is labeled with the amount of memory
its action allocates�

Theorem ��� For a parallel computation with w work� �
synchronizations� d depth� and s� sequential space� in which
at most a constant amount of memory is allocated in each
action� the Async�Q algorithm �with qmax � p� generates a
schedule for the parallel computation and executes it on p
processors in O��w � � log�pd���p � d log�pd�� time steps�
requiring a total of s� � O�dp log�pd�� units of memory�

Handling arbitrarily big allocations� Actions that al�
locate more that a constant K units of memory are handled
in the following manner� similar to the technique suggested
in �
� and �	��� The key idea is to delay the big allocations�
so that if tasks with higher priorities become ready� they
will be executed instead� Consider an action in a thread
that allocates m units of space �m � K�� in a parallel com�
putation with work w and depth d� We transform the com�
putation by inserting a fork of m� log�pd� parallel threads
before the memory allocation �see Figure ��� These new
child threads do not allocate any space� but each of them
perform a dummy task of log�pd� units of work �no�ops��
By the time the last of these new threads gets executed�
and the execution of the original parent thread is resumed�
we have scheduled m� log�pd� tasks� These m� log�pd� tasks
are allowed to allocate a total of m space� since we set the
maximum task space M � log�pd�� However� since they do
not actually allocate any space� the original parent thread
may now proceed with the allocation of m space without
exceeding our space bound�

This transformation requires the scheduler to implement
a fork that creates an arbitrary number of child threads� To
prevent L from growing too large� the child threads are cre�
ated lazily by the scheduler and a synchronization counter is
required to synchronize them �see �	�� for details�� Let SK
be the excess allocation in the parallel computation� de�ned
as the sum of all memory allocations greater than K units�
Then the work in the transformed task graph is O�w�SK��
and the number of synchronizations is � � 	SK� log�pd��
As a result� the above time bound becomes O��w � SK �
� log�pd���p�d log�pd��� while the space bound remains un�
changed� When SK � O�w�� the time bound also remains
unchanged�

Theorem ��� can now be generalized to allow arbitrar�
ily big allocations of space� Note that the space and time
bounds include the overheads of the scheduler�

Theorem ��� Let S� be the serial depth��rst schedule for a
parallel computation with w work� � synchronizations� and d
depth� For any constant K � 
� let SK be the excess



allocation in the parallel computation� The Async�Q algo�
rithm� with qmax � p log p� generates a schedule for the par�
allel computation and executes it on p processors in O��w�
SK � � log�pd���p � d log�pd�� time steps� requiring a total
of space�S�� � O�dp log�pd�� units of memory�

Remark� If the depth d of the parallel computation is
not known at runtime� suspending the current thread just
before the memory requirement exceeds log�pd� units is not
possible� Instead� if L contains l threads when a thread is
put into Qout� setting its maximum memory to O�log�l�p��
units results in the same space and time bounds as above�

� Optimal scheduling of planar computa�

tion graphs

In this section� we provide a work� and space�e�cient schedul�
ing algorithm� denoted Planar Asynch�Q� for planar com�
putation dags� The main result used by the algorithm is
a theorem showing that� for planar dags� the children of
any node v have the same relative priority order as v� this
greatly simpli�es the task of maintaining the ready nodes in
priority order at each scheduling iteration� We conclude this
section by sketching an algorithm that is a hybrid of Planar
Asynch�Q and Asynch�Q� suitable for general dags�

Maintaining priority order for planar graphs� For
a computation graph G� the following general scheduling
algorithm maintains the set� R�� of its ready nodes �actions�
in priority order according to the �df�schedule S��

Algorithm Planar	
R� is an ordered set of ready nodes initialized to the root of
G� Repeat at every timestep until R� is empty�


� Schedule any subset of the nodes from R��

	� Replace each newly scheduled node with its zero or more
ready children� in priority order� in place in the ordered
set R�� If a ready child has more than one newly sched�
uled parent� consider it to be a child of its lowest priority
parent in R��

Note that Algorithm Planar does not require the subset
scheduled in step 
 to be the highest�priority nodes in R��
Moreover� it does not maintain in R� place�holders for sus�
pended nodes in order to remember their priorities� Instead�
each newly�reactivated suspended node will be inserted into
R� �in step 	� in the place where the node activating it was�
since it is a child of its activating node� We show below
that for planar computation graphs� priority order is main�
tained� In �
�� we showed that a similar stack�based schedul�
ing algorithm� where we restrict step 
 to schedule only the
highest�priority nodes� can be used to maintain priority or�
der for any series�parallel computation graph� The proof
was fairly straight�forward due to the highly�structured na�
ture of series�parallel graphs� it relied on properties of series�
parallel graphs not true for planar graphs in general� Thus
for the following theorem� we have developed an entirely
new proof �the precise de�nitions and the proof are given in
Appendix A��

Theorem 
�� For any single root s� single leaf t� �s� t��
planar computation graph G with counterclockwise edge pri�
orities� the online Algorithm Planar above maintains the
set R�� of ready nodes in priority order according to the
�df�schedule S��

Left�to�right synchronization edges� In the remain�
der of this section� we consider an important class of dags
such that the write of any synchronization variable pre�
cedes any read of the variable when the computation is ex�
ecuted according to a serial depth��rst schedule� In lan�
guages with futures� for example� this implies that in the
serial schedule� the part of the computation that computes
the futures value precedes the part of the computation that
uses the futures value� We refer to such dags as having
left�to�right synchronization edges � and example is given in
Figure 
�

Implementing the scheduler for planar computation
graphs� We next show how Algorithm Planar can be used
as the basis for an asynchronous� non�preemptive scheduler
that uses tasks as the unit of scheduling� for planar dags
with left�to�right synchronization edges� We modify the
scheduler for algorithm Async�Q as follows� Instead of main�
taining the prioritized set of all live threads L� the scheduler
maintains the prioritized set R�� which contains the ready
and active threads� Suspended threads are queued up in the
synchronization queue for their respective synchronization
variable� but are not kept in R�� Since there are no sus�
pended threads in R�� techniques developed previously �	��
for programs without synchronization variables can be used
to obtain our desired bounds� speci�cally� an array imple�
mentation that uses lazy forking and deleting with suitable
pre�x�sums operations�

When a thread writes to a synchronization variable� it
checks the synchronization queue for the variable� and awak�
ens any thread in the queue� In an �s� t��planar dag with
left�to�right synchronization edges� there can be at most one
suspended reader awaiting the writer of a synchronization
variable� �Any such reader must have at least two parents�
the writer w and some node that is not a descendant of w
or any other reader� A simple argument shows that for the
dag to be planar� there can be at most one such reader to
the �right� of w�� Thus fetch�and�add is not needed for the
synchronization queues� and in fact an erew pram su�ces
to implement the scheduler processors� Following Algorithm
Planar� we insert the suspended thread just after the writer
thread in R�� thereby maintaining the priority order�

At each scheduling iteration� the scheduler processors
append to Qout the min�jRj� qmax 	 jQoutj� ready threads
with highest priority in R�� The worker processors will se�
lect threads from the head of Qout using a fetch�and�add
primitive� Denoting the modi�ed Async�Q algorithm as
Planar Async�Q � we have the following theorem�

Theorem 
�� Let S� be the �df�schedule for a parallel com�
putation with synchronization variables that has w work� d
depth� at most a constant amount of memory allocated in
each action� and whose computation graph is �s� t��planar
with counterclockwise edge priorities and left�to�right syn�
chronization edges� The Planar Async�Q algorithm� with
qmax � p log p� generates a schedule for the parallel computa�
tion and executes it on p processors in O�w�p�d log p� time
steps� requiring a total of space�S�� � O�dp log p� units of
memory� The scheduler processors run on an erew pram�
the worker processors employ a constant�time fetch�and�add
primitive�

A hybrid algorithm� In general� it is not known a priori if
the computation graph is planar� Thus in the full paper� we
develop a hybrid of Async�Q and Planar Async�Q that works
for any parallel program with synchronization variables� and
runs within the time and space bounds for the planar algo�
rithm if the computation graph is planar or near planar� and



otherwise runs within the bounds for the general algorithm�
The hybrid algorithm starts by running a slightly modi�ed
Planar Async�Q algorithm which maintains� for each node v
in R�� a linked list of the suspended nodes priority ordered
after v and before the next node in R�� By Lemma ����
we know that the number of suspended nodes is O�pd log p��
and we allocate list items from a block of memory of that
size� As long as any node that writes a synchronization vari�
able reactivates the �rst suspended node in its list� as will
be the case for planar computation graphs with left�to�right
synchronization edges and possibly others� the hybrid algo�
rithm continues with this approach� When this is not the
case� then we switch to the �general� Async�Q algorithm�
The set L needed for algorithm Async�Q is simply the set of
threads corresponding to nodes in R� and in the suspended
nodes lists� From R� and the suspended nodes lists� we link
up one long list of all threads in L in priority order� Since all
linked list items have been allocated from a contiguous block
of memory of size O�dp log p�� we can perform list ranking
to number the entire list in order and then create a black�
white priority queue as a balanced binary tree� We can then
proceed with the Async�Q algorithm�

	 Discussion

Here we mention some issues concerning the practicality of
the technique� First we note that although the implementa�
tion uses fetch�and�add� the only places where it is used are
for the processors to access the work queues �in which case
we can get away with a small constant number of variables��
and to handle the queues of suspended jobs� Other work ���
has shown that for certain types of code the number of reads
to any synchronization variable can be limited to one� mak�
ing the fetch�and�add unnecessary for handling the queues
of suspended jobs�

If the parallel computation is very �ne grained� the num�
ber of synchronizations � can be as large as the work w�
resulting in a running time of O�log�pd� � �w�p� d��� which
is not work e�cient� However� since synchronizations are
expensive in any implementation� there has been consider�
able work in reducing the number of synchronizations using
compile�time analysis �
�� 
�� ��� ��� 	��� We plan to explore
the use of such methods to improve the running time of our
implementation�

The implementation described for the scheduling algo�
rithm assumes that a constant fraction of the processors
are assigned to the scheduler computation� eliminating them
from the work�force of the computational tasks� An alterna�
tive approach is to have all processors serve as workers� and
assign to the scheduler computation only processors that are
idle� between putting their thread in Qin� and taking their
new threads from Qout� �Details will be given in the full
paper��

We �nally remark that the various queues used in the
scheduling algorithm can be implemented using asynchronous
low�contention data structures such as counting networks �	�
and di�racting trees �����
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A Further details on planar graphs

De�nitions� We begin by reviewing planar graph ter�
minology� A graph G is planar if it can be drawn in the
plane so that its edges intersect only at their ends� Such
a drawing is called a planar embedding of G� A graph
G � �V� E� with distinguished nodes s and t is �s� t��planar
if G� � �V� E 
 f�t� s�g� has a planar embedding� To de�ne
a 
�schedule for G it is necessary to specify priorities on the
outgoing edges of the nodes� Given a planar embedding of
a dag G� we will assume that the outgoing edges of each
node are prioritized according to a counterclockwise order�
as follows�

Lemma A�� Let G be a dag with a single root node� s�
and a single leaf node� t� such that G is �s� t��planar� and
consider a planar embedding of G� � �V� E 
 f�t� s�g�� For
each node v in G�� v �� t� let e�� e�� � � � � ek� k � 	� be the
edges counterclockwise around v such that e� is an incoming
edge and ek is an outgoing edge� Then for some 
 � j � k�
e�� � � � � ej are incoming edges and ej��� � � � � ek are outgoing
edges�

Proof� Suppose there exists an outgoing edge ex and an
incoming edge ey such that x � y� Consider any �directed�
path P� from the root node s to node v whose last edge is
e�� and any �directed� path Py from s to v whose last edge
is ey� Let u be the highest level node that is on both P�



and Py but is not v� Let C be the union of the nodes and
edges in P� from u to v� inclusive� and in Py from u to v�
inclusive� Then C partitions G into three sets� the nodes
and edges inside C in the planar embedding� the nodes and
edges outside C in the planar embedding� and the nodes and
edges of C�

Note that one of ex or ek is inside C and the other is
outside C� Since v �� t� t must be either inside or outside
C� Suppose t is outside C� and consider any path P from v
to t that begins with whichever edge ex or ek is inside C� P
cannot contain a node in C other than v �since G is acyclic�
and cannot cross C �since we have a planar embedding�� so
other than v� P contains only nodes and edges inside C�
and hence cannot contain t� a contradiction� Likewise� if t
is inside C� then a contradiction is obtained by considering
any path from v to t that begins with whichever edge ex or
ek is outside C�

Thus no such pair� ex and ey� exist and the lemma is
proved�

Let G be an �s� t��planar dag with a single root node
s and a single leaf node t� We say that G has counter�
clockwise edge priorities if there is a planar embedding of
G� � �V�E 
 f�t� s�g� such that for each node v � V � the
priority on the outgoing edges of v �used for S�� is according
to a counterclockwise order from any of the incoming edges
of v in the embedding �i�e�� the priority order for node v
in the statement of Lemma A�
 is ej��� � � � � ek�� Thus the
dag is not only planar� but the edge priorities at each node
�which can be determined online� correspond to a planar
embedding� Such dags account for a large class of parallel
languages including all nested�parallel languages� as well as
other languages such as Cilk� If actions of a dag are num�
bered in the order in which they appear in a �df�schedule�
we call the resulting numbers the �df�numbers of the ac�
tions�

Theorem 
�� For any single root s� single leaf t� �s� t��
planar computation graph G with counterclockwise edge pri�
orities� the online Algorithm Planar above maintains the
set R�� of ready nodes in priority�order according to the
�df�schedule S��

Proof� We �rst prove properties about the �df�numbering
of G� and then use these properties to argue Algorithm Pla�
nar maintains the ready nodes in relative order of their �df�
numbers�

Let G � �V�E�� and consider the planar embedding
of G� � �V� E 
 f�t� s�g� used to de�ne the counterclock�
wise edge priorities� We de�ne the last parent tree for the
�df�schedule of G to be the set of all nodes in G and� for ev�
ery node v �� s� we have an edge �u� v� where u is the parent
of v with highest �df�number� Note that a �df�schedule on
the last parent tree would schedule nodes in the same order
as the �df�schedule on G�

Consider any node u that is neither s nor t� De�ne the
�rightmost� path Pr�u� from s to u to be the path from s to
u in the last parent tree� De�ne the �leftmost� path Pl�u�
from u to t to be the path taken by always following the
highest�priority child in G� De�ne the splitting path Ps�u�
to be the path obtained by appending Pr�u� with Pl�u��

In the embedding� the nodes and edges of the cycle Ps�u�

f�t� s�g partition the nodes not in Ps�u� into two regions
� inside the cycle and outside the cycle � with no edges
between nodes in di�erent regions� Consider the counter�
clockwise sweep that determines edge priorities� starting at
any node in the cycle� If the cycle is itself directed coun�
terclockwise �clockwise�� this sweep will give priority �rst to

any edges in the outside �inside� respectively� region� then
to edges in the cycle� and then to any edges in the inside
�outside� respectively� region� A node w not in Ps�u� is left
of Ps�u� if it is in the region given �rst priority� otherwise
it is right of Ps�u��

We claim that all nodes left �right� of Ps�u� have �df�
numbers less than �greater than� respectively� u� The proof
is by induction on the level in G of the node� The base case�

 � 
� is trivial since s is the only node at level 
� Assume
the claim is true for all nodes at levels less than 
� for 
 � 	�
We will show the claim holds for all nodes at level 
�

Consider a node w at level 
� and let x be its parent in
the last parent tree� x is at a level less than 
� Suppose w
is left of Ps�u�� Since there are no edges between left and
right nodes� x is either in Ps�u� or left of Ps�u�� If x is in
Ps�u� then �x�w� has higher priority than the edge in Ps�u�
out of x� Thus by the de�nition of Pl�u�� x cannot be in
Pl�u�� If x is in Pr�u�� then a �df�schedule on the last par�
ent tree would schedule x and w before scheduling any more
nodes in Ps�u� �including u�� If x is left of Ps�u�� then u
is not a descendant x in the last parent tree �since other�
wise x would be in Pr�u��� By the inductive assumption� a
�df�schedule on the last parent tree would schedule x before
u� and hence schedule any descendant of x in the last parent
tree �including w� before u� Thus w has a �df�number less
than u�

Now suppose w is right of Ps�u�� Its parent x is either
right of Ps�u� or in Ps�u�� If x is right of Ps�u�� then by
the inductive assumption� x and hence w has a �df�number
greater than u� If w is a descendant of u� then w has a
�df�number greater than u� So consider x �� u in Pr�u�� A
�df�schedule on the last parent tree will schedule the child�
y� of x in Pr�u� and its descendants in the tree �including
u� before scheduling w� since �x� y� has higher priority than
�x�w�� Thus w has a �df�number greater than u�

The claim follows by induction�
Now consider a step of Algorithm Planar and assume

that its ready nodes R� are ordered by their �df�numbering
�lowest �rst�� We want to show that a step of the algorithm
will maintain the ordering� Consider two nodes u and v
from R� such that u has a higher priority �i�e� a lower �df�
number� than v� Assume we are scheduling u �and possibly
v�� Since both u and v are ready� u cannot be in the split�
ting path Ps�v�� Since u has a lower �df�number than v� it
follows from the claim above that u is left of Ps�v�� Since
there are no edges between nodes left and right of a splitting
path� the children of u are either in Ps�v� or left of Ps�v�� If
a child is in Ps�v� then it is a descendant of v and the child
would not become ready without v also being scheduled�
But if v were scheduled� u would not be the lowest priority
parent of the child� and hence the algorithm would not as�
sign the child to u� If a child is to the left of Ps�v�� then
by the claim above� it will have a lower �df�number than v�
When placed in the position of u� the child will maintain the
�df�number ordering relative to v �and any children of v�
in R�� Likewise� for any node w in R� with higher priority
than u� w and the children of w �if w is scheduled� will have
lower �df�numbers than u and its children�

Since Algorithm Planar schedules a subset of R� and
puts ready children back in place it maintains R� ordered
relative to the �df�numbering�

Note that the previous theorem held for any planar com�
putation graph� with arbitrary fan�in and fan�out� and did
not use properties of computations with synchronization
variables�


