Modeling and optimizing [/O throughput
of multiple disks on a bus
(summary)

Rakesh Barve* Elizabeth Shrivert

Phillip B. Gibbons'

Bruce K. Hillyert Yossi Matiast

Jeffrey Scott Vitter*

Abstract For a wide variety of computational tasks, disk
I/O continues to be a serious obstacle to high performance.
The focus of the present paper is on systems that use mul-
tiple disks per SCSI bus. We measured the performance of
concurrent random I/Os, and observed bus-related phenom-
ena that impair performance. We describe these phenom-
ena, and present a new I/O performance model that accu-
rately predicts the average bandwidth achieved by a heavy
workload of random reads from disks on a SCSI bus. This
model, although relatively simple, predicts performance on
several platforms to within 12% for I/O sizes in the range
16-128 KB. We describe a technique to improve the I/O
bandwidth by 10-20% for random-access workloads that
have large I/Os and high concurrency. This technique in-
creases the percentage of disk head positioning time that is
overlapped with data transfers, and increases the percent-
age of transfers that occur at bus bandwidth, rather than at
disk-head bandwidth.

Introduction We study the performance of workloads con-
sisting of read requests directed to disks that share a SCSI
bus. These workloads are relevant to certain multimedia,
database, and scientific computing applications that use ex-
ternal memory and out-of-core algorithmic techniques (e.g.,
[6, 1]). For our experiments, the requests are generated by
one process per disk. Each process iterates the following
steps: (1) generate a random block address, (2) record a
timestamp, (3) issue a seek and a read to the raw disk, (4)
record a timestamp when the read request completes, (5) re-
turn immediately to step 1. We measured requests ranging
from 16 KB to 128 KB, on four hardware configurations.
(1) 1-4 Seagate Cheetah disks, Sun Ultra-1, Solaris 2.5.1.
(2) 1-4 Seagate Cheetah disks, Sun Sparc-20, Solaris 2.5.
(3) 1-4 Seagate Barracuda disks, DEC AlphaStation 600
5/266, Digital UNIX 4.0. (4) 1-7 Seagate Wren-7 disks,
Sun Sparc 20, Solaris 2.5.

A number of performance models exist for disks. The an-
alytic disk model of [4] captures bus effects only in the single-
disk case. The Pantheon disk simulator [3] incorporates bus
contention and other bus effects, but no results have been
published that describe the idle periods and head-limited

*Duke University, visiting Bell Labs.

fInformation Sciences Research Center at Bell Labs, contact
shriver@bell-labs.com.

¥Tel-Aviv University. Work performed at Bell Labs.

bus transfers that we observe. The method for approximat-
ing the throughput of multiple disks on a SCSI bus in [2]
sums the seek time, rotational latency, and transfer time,
and derates the performance by a contention factor derived
from a general queuing model.

Rounds In our experiments, we typically observe that all
disks receive a request, then all disks transmit data back
to the host before any disk receives another request. We
use the term rounds for this periodic convoy behavior. We
observed rounds for workloads of random accesses as well
as when the accesses on each disk have spatial locality. We
were surprised to see rounds. Since the host has the high-
est SCSI priority, one would expect that soon after a disk
completes one request, the host would seize the bus to send
another request to that disk, thereby keeping the bus and all
the disks busy. Rounds could arise if the operating system
kernel implements a fairness policy that forcibly balances
the number of requests sent to each disk during periods of
heavy I/O, rather than sending requests to disks as soon
as possible. The current literature does not discuss rounds
as we observed them. In fact, [5] states that even in cases
when the load is symmetrically distributed and balanced,
one process can monopolize the disks while others starve.

Previous models (e.g., [2]) gave prediction errors greater
than 100% for our workloads. We develop a model below
that gains accuracy from three factors: It accounts for idle
times and overlaps caused by rounds, it distinguishes be-
tween the transfer rate from a disk platter through the disk
head and the (much higher) rate from a disk’s cache to the
host, and it considers the effect of a relatively obscure disk
control parameter called the fence or buffer full ratio. The
fence determines the time at which the disk will begin to
contend for the SCSI bus. A minimum fence (i.e., 0) causes
the disk to contend after reading the first sector of data
into the disk’s internal cache. A maximum fence (i.e., 255)
causes the disk to wait until almost all of the requested data
has accumulated in the disk cache. When the bus is idle, a
low fence value starts sending data sooner, but more of the
transfer occurs at the head-limited bandwidth.

Model We developed a model that predicts the read re-
sponse time for a single disk and for multiple disks on a bus.
Because of space limitations, we present only the more in-
teresting multiple disk equations here. In each round, one
request for B bytes is served from each of D disks. When
the fence is 0, the idle time at the beginning of the round
is the expected minimum positioning time over all disks,
denoted MPT (D), plus the overhead time for a SCSI com-
mand, denoted Os. The first disk to respond transmits one
sector at bandwidth BW;,s, and continues at BW,.,; for an
amount of data denoted L(B). Then the disk disconnects,



either because it has transferred the entire request, or be-
cause it has reached a track or cylinder boundary. When
the request size B is small, the entire request usually resides
on a single track, whereas for large requests the expected
size of the leading portion is one half the track size. Thus
if B < AverageTrackSize/2, we approximate L(B) = B, oth-
erwise L(B) = AverageTrackSize/2. When the first disk dis-
connects, other disks generally have enough data in their
caches that all the remaining data can be sent at BWp,,—
whenever one disk disconnects, another immediately seizes
the bus.

We make two simplifications. Although the first disk
sends the first sector at BW,, s, we say that the entire leading
portion from the first disk is sent at BW,,:. Second, the
overhead of the disconnect/reconnect is absorbed into the
overhead term. Thus the average time per round is given by

L(B) , DB-L(B)

Os+ MPT(D) + BW.., BW,..

If the fence is not zero, the bus is idle during the shortest
positioning time, then the bus continues to remain idle while
that disk reads B. = B - (FenceValue/256) bytes of the B
bytes into its cache. Next the bus transmits all the data to
the host. Thus the average time per round is given by

B, DB
BWrot BWbus '

Os + MPT(D) +

To extend the model to multiple request sizes, let Ehe
the mean request size, and compute the leading portion L(B)
as a weighted average of the leading portions for each request
size. To model a workload that confines requests to a subset
of the cylinders, adjust the expected seek time in the obvious
way. MPT (D) is straightforward to estimate experimentally,
but we recently obtained an analytic expression.

Validation For uniform random requests of fixed size from
16-128 KB on Wren disks, the mazimum relative error that
we measured is 5.2% for the single disk model and 8.5% for
the multiple disks model. On Barracuda disks, the corre-
sponding figures are 8.7% and 10.8%. On Cheetah disks,
the figures are 7.0% and 9.2%. The Cheetah model error
increases to 14% with 8 KB blocks: the Cheetahs are so fast
that the transfer of the first small block sometimes com-
pletes before any other disks are ready to use the bus, so
the model underestimates the amount of bus idle time.

Pipelining The equations show two opportunities to im-
prove performance: decrease the minimum positioning time,
and convert slow BW,,; transfers to the faster BWy,s. As-
suming that during round j —1 we know the blocks that will
be requested during round j, we propose a pipelining tech-
nique to overlap the positioning time for one round with the
transfer time of the previous round. Furthermore, this tech-
nique stages data in the on-disk caches, so that all transfers
are at BWy,,. Let b;,; denote the block to be retrieved from
disk ¢ in round j. Then the pipelining technique is:

for0<i<D—1
Request LoadIntoDiskBuffer(b; o) on disk i.
for 0 < j < NumRequests
for0<i<D-1
Read(b; ;) from disk i. //b;; is in buffer
Request LoadIntoDiskBuffer(b; ;4+1) on disk s.

The SCSI Prefetch command would implement Load-
IntoDiskBuffer, but it is an optional command, not sup-
ported by the Wren, Barracuda, or Cheetah. We implement
LoadIntoDiskBuffer(b) by an aioread() of the disk sector
just before b, which triggers the disk readahead mechanism
to load b into the disk cache.

We evaluate this technique using I/Os ranging from 8-
128 KB. For small block sizes, the overhead of the aioread ()
harms performance by several percent. For too many disks
(e.g., 7 Wrens on the Sparc-20), the SCSI bus is so saturated
that there is little room for improvement. With 2 or 4 disks
and moderate or large block sizes, the overlaps gained by
pipelining more than compensate for the increased overhead,
improving the sustained bandwidth by 10-20%. We have
similar results for the DEC Alpha with Barracuda disks, and
for Cheetahs on the Sun Ultra-1 (see Table 1). Pipelining
does not pay on a Sun Sparc-20 with fast Cheetah disks,
because of excessive overhead for an aioread() (2.1-2.3 ms;
about the time to read 16-32 KB from disk cache to host).

Table 1: Percent improvement pipelining, Cheetah/Ultra-1.
(KB) | D=2 D=3 D=4

8 -8 -12 -13
16 -6 -9 -11
32 -4 -4 -3
64 0 7 16
96 8 18 17

128 12 20 11

Conclusions In measurements of I/O-intensive workloads
on several UNIX systems with multiple disks per SCSI bus,
we observe a convoy behavior that we call “rounds”. We
have developed a model that predicts the I/O bandwidth
of such systems. Measurements of synthetic workloads (re-
ported in the full paper) indicate that the model is accurate
for single or multiple request sizes, under uniform random
access or spatial locality. We presented a pipelining tech-
nique to coordinate the accesses across a collection of disks
that share a SCSI bus. It can improve performance by 10—
20% by increasing the overlap between disk seeks and data
transfers, and by increasing the fraction of transfers that
occur at the disk cache transfer rate rather than the slower
disk-head rate. Experimental results show the performance
regions where pipelining improves overall performance de-
spite the associated overhead.

References

[1] CorMEN, T. H., AND HirscHL, M. Early experiences in eval-
uating the parallel disk model with the ViC* implementation.
Parallel Computing 23, 4 (June 1997), 571-600.

[2] HENNESSY, J. L., AND PATTERSON, D. A. Computer architec-
ture: a quantitative approach. Morgan Kaufmann Publishers,
Incorporated, San Francisco, CA, 1996. 2nd edition.

[3] RUEMMLER, C., AND WILKES, J. An introduction to disk drive
modeling. IEEE Computer 27, 3 (March 1994), 17-28.

[4] SHRIVER, E. Performance modeling for realistic storage de-
vices. PhD thesis, New York University, May 1997. Available
at http://www.bell-labs.com/~shriver/.

[5] SINCLAIR, J. B., TANG, J., AND VARMAN, P. J. Placement-
related problems in shared disk I/O, In Jain, R., Werth, J.,
and Browne, J. C., (eds.), Input/Output in Parallel and Dis-
tributed Computer Systems. Kluwer Academic Publishers,
1996, ch. 12, pp. 271-289.

[6] VITTER, J. S., AND SHRIVER, E. A. M. Algorithms for parallel

memory [: two-level memories. Algorithmica 12, 2/3 (August
and September 1994), 110-47.



