
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Synopsis Data Structures for Massive Data Sets

Phillip B� Gibbons and Yossi Matias

Abstract� Massive data sets with terabytes of data are becoming common�
place� There is an increasing demand for algorithms and data structures that
provide fast response times to queries on such data sets� In this paper� we
describe a context for algorithmic work relevant to massive data sets and a
framework for evaluating such work� We consider the use of �synopsis� data
structures� which use very little space and provide fast �typically approxi�
mated� answers to queries� The design and analysis of e�ective synopsis data
structures o�er many algorithmic challenges� We discuss a number of concrete
examples of synopsis data structures� and describe fast algorithms for keeping
them up�to�date in the presence of online updates to the data sets�

�� Introduction

A growing number of applications demand algorithms and data structures that
enable the e�cient processing of data sets with gigabytes to terabytes to petabytes
of data� Such massive data sets necessarily reside on disks or tapes� making even a
few accesses of the base data set comparably slow �e�g�� a single disk access is often
��� ��� times slower than a single memory access�� For fast processing of queries to
such data sets� disk accesses should be minimized�

This paper focuses on data structures for supporting queries to massive data
sets� while minimizing or avoiding disk accesses� In particular� we advocate and
study the use of small space data structures� We denote as synopsis data structures
any data structures that are substantively smaller than their base data sets� Synop�
sis data structures have the following advantages over non�synopsis data structures�

� Fast processing� A synopsis data structure may reside in main memory�
providing for fast processing of queries and of data structure updates� by
avoiding disk accesses altogether�

� Fast swap�transfer� A synopsis data structure that resides on the disks
can be swapped in and out of memory with minimal disk accesses� for the
purposes of processing queries or updates� A synopsis data structure can

�		� Mathematics Subject Classi�cation� Primary
�P�
�
�P��� Secondary
�Q�
�
�Q���

�����
�Q�
�

Research of the second author was supported in part by an Alon Fellowship� by the Israel
Science Foundation founded by The Academy of Sciences and Humanities� and by the Israeli
Ministry of Science�

c����� �copyright holder�

�

� PHILLIP B� GIBBONS AND YOSSI MATIAS

be pushed or pulled remotely �e�g�� over the internet� at minimal cost� since
the amount of data to be transferred is small�

� Lower cost� A synopsis data structure has a minimal impact on the overall
space requirements of the data set and its supporting data structures� and
hence on the overall cost of the system�

� Better system performance� A synopsis data structure leaves space in the
memory for other data structures� More importantly� it leaves space for other
processing� since most processing that involves the disks uses the memory
as a cache for the disks� In a data warehousing environment� for exam�
ple� the main memory is needed for query�processing working space �e�g��
building hash tables for hash joins� and for caching disk blocks� The impor�
tance of available main memory for algorithms can be seen from the external
memory algorithms literature� where the upper and lower time bounds for
many fundamental problems are inversely proportional to the logarithm of
the available memory size 	Vit��
� �See Section ��� for examples�� Thus
although machines with large main memories are becoming increasingly com�
monplace� memory available for synopsis data structures remains a precious
resource�

� Small surrogate� A synopsis data structure can serve as a small surrogate
for the data set when the data set is currently expensive or impossible to
access�

In contrast� linear space data structures for massive data sets can not reside in
memory� have very slow swap and transfer times� can increase the space require�
ments and hence the overall cost of the system by constant factors� can hog the
memory when they are in use� and can not serve as a small surrogate� Hence a tra�
ditional viewpoint in the algorithms literature
 that a linear space data structure
is a good one
 is not appropriate for massive data sets� as such data structures
often fail to provide satisfactory application performance�

On the other hand� since synopsis data structures are too small to maintain
a full characterization of their base data sets� they must summarize the data set�
and the responses they provide to queries will typically be approximate ones� The
challenges are to determine ��� what synopsis of the full data set to keep in the
limited space in order to maximize the accuracy and con�dence of its approximate
responses� and ��� how to e�ciently compute the synopsis and maintain it in the
presence of updates to the data set�

Due to their importance in applications� there are a number of synopsis data
structures in the literature and in existing systems� Examples include uniform and
biased random samples� various types of histograms� statistical summary informa�
tion such as frequency moments� data structures resulting from lossy compression
of the data set� etc� Often� synopsis data structures are used in a heuristic way� with
no formal properties proved on their performance or accuracy� especially under the
presence of updates to the data set� Our ongoing work since ���� seeks to provide
a systematic study of synopsis data structures� including the design and analysis
of synopsis data structures with performance and accuracy guarantees� even in the
presence of data updates�

In this paper� we describe a context for algorithmic work relevant to massive
data sets and a framework for evaluating such work� In brief� we combine the PDM
external memory model 	VS��
 with input�output conventions more typical for the

SYNOPSIS DATA STRUCTURES �

study of �online� data structure problems� Two general scenarios are considered�
one where the input resides on the disks of the PDM and one where the input
arrives online in the PDM memory� We describe some of our work on synopsis
data structures� and highlight results on three problem domains from the database
literature� frequency moments� hot list queries� and histograms and quantiles�

Outline� Section � describes our framework in detail� Results on frequency
moments� hot list queries and histograms are described in Sections �� �� and ��
respectively� Related work and further results are discussed in Section ��

�� Framework

In this section� we �rst describe a context for data structure problems for
massive data sets� We then introduce synopsis data structures and present a cost
model for their analysis� Finally� we discuss two example application domains�

���� Problem set�up� In the data structure questions we consider� there are
a number of data sets� S�� S�� � � � � S�� and a set of query classes� Q�� � � � � Qk� on
these data sets� The query classes are given a priori� and may apply to individual
data sets or to multiple data sets� Data structure performance is analyzed on a
model of computation that distinguishes between two types of storage� fast and
slow� where the fast storage is of limited size� We equate the fast storage with
the computer system�s main memory and the slow storage with its disks� and use a
relevant model of computation �details are in Section ����� However� the framework
and results in this paper are also relevant to scenarios where ��� the fast storage is
the disks and the slow storage is the tapes� or ��� the fast storage is the processor
cache memory and the slow storage is the main memory�

In the static or o�ine scenario� the data sets are given as input residing on
the disks� Given a class of queries Q� the goal is to design a data structure for
the class Q that minimizes the response time to answer queries from Q� maximizes
the accuracy and con�dence of the answers� and minimizes the preprocessing time
needed to build the data structure�

In the dynamic or online scenario� which models the ongoing loading of new
data into the data set� the data sets arrive online in the memory� and are stored on
the disks� Speci�cally� the input consists of a sequence of operations that arrive on�
line to be processed by the data structure� where an operation is either an insertion
of a new data item� a deletion of an existing data item� or a query� Given a class of
queries Q� the goal is to design a data structure for the class Q that minimizes the
response time to answer queries from Q� maximizes the accuracy and con�dence of
the answers� and minimizes the update time needed to maintain the data structure�
As we are interested in the additional overheads for maintaining the data structure�
there is no charge for updating the data sets�

This set�up re�ects many environments for processing massive data sets� For
example� it re�ects most data warehousing environments� such as Walmart�s multi�
terabyte warehouse of its sales transactions� For most data sets� there are far more
insertions than deletions� An important exception is a �sliding�window� data set�
comprised of the most recent data from a data source �such as the last �� months of
sales transactions�� In such data sets� batches of old data are periodically deleted
to make room for new data� making the number of insertions comparable to the
number of deletions�

� PHILLIP B� GIBBONS AND YOSSI MATIAS

To handle many data sets and many query classes� a large number of synopsis
data structures may be needed� Thus we will assume that when considering any
one data structure problem in isolation� the amount of memory available to the
data structure is a small fraction of the total amount of memory� We evaluate the
e�ectiveness of a data structure as a function of its space usage or footprint � For
example� it is common practice to evaluate the e�ectiveness of a histogram in range
selectivity queries as a function of its footprint �see� e�g�� 	PIHS��
��

Finally� note that in some online environments� the data set is not stored along�
side with the data structure� but instead resides in a remote computer system that
may be currently unavailable 	FJS��
� In such cases� the online view of the data
is e�ectively the only view of the data used to maintain the data structure and
answer queries� We denote this scenario the purely online scenario�

���� Synopsis data structures� The above set�up motivates the need for
data structures with small footprints� We denote as synopsis data structures any
data structures that are substantively smaller than their base data sets� Since such
data structures are often too small to maintain a full characterization of their base
data sets with regards to a class of queries� the responses they provide to queries
will typically be approximate ones� Synopsis data structures seek to characterize
the data using succinct representations�

A natural synopsis data structure is a uniform random sample� and indeed� it
is well known that a random sample of a data set can be quite useful to support a
variety of queries on the set� However� for many classes of queries� uniform sampling
is not the best choice� A trivial example is the class of �number of items in the set�
queries� for which a single counter is much better� More interesting examples can
be found in the rest of this paper�

We de�ne an f�n��synopsis data structure as follows�

Definition ���� An f�n��synopsis data structure for a class Q of queries is a
data structure for providing �exact or approximate� answers to queries from Q that
uses O�f�n�� space for a data set of size n� where f�n� � o�n�� for some constant
� � ��

While any sublinear space data structure may be an important improvement
over a linear space data structure� the above de�nition demands at least a poly�
nomial savings in space� since only with such savings can most of the bene�ts of
synopsis data structures outlined in Section � be realized� For example� massive
data sets typically exceed the available memory size by a polynomial factor� so a
data structure residing in memory must have a o�n�� footprint�

As with traditional data structures� a synopsis data structure can be evaluated
according to �ve metrics�

� Coverage� the range and importance of the queries in Q�
� Answer quality� the accuracy and con�dence of its �approximate� answers
to queries in Q�

� Footprint� its space bound �smaller f�n� is better��
� Query time�
� Computation�Update time� its preprocessing time in the static scenario� or
its update time in the dynamic scenario�

Ideally� f�n� is log� n or better� queries and updates require a constant number of
memory operations and no disks operations� and the answers are exact�

SYNOPSIS DATA STRUCTURES �

��	� Cost model� Query times and computation�update times can be ana�
lyzed on any of a number of models of computation� depending on the target com�
puter system� including parallel or distributed models� For concreteness in this pa�
per� we will use the parallel disk model �PDM� of Vitter and Shriver 	VS��
 Vit��
�
adapted to the scenarios discussed above�

In the PDM� there are P processors� D disks� and an �internal� memory of size
M �i�e�� M�P per processor�� Each disk is partitioned into blocks of size B� and is
of unbounded size� The input of size N is partitioned �striped� evenly among the
disks� D�� D�� � � � � DD��� such that for i � �� �� � � � � N�B� �� the ith block of input
data is the bi�Dcth block of data on the �i mod D�th disk� The output is required
to be similarly striped� The size parameters N � M � and B are in units of the input
data items� M is less than N � and � � DB � M��� Thus the internal memory is
too small to hold the input but su�ciently large to hold two blocks from each of
the disks�

Algorithms are analyzed based on three metrics� the number of I�O operations�
the processing time� and the amount of disk space used� In a single I�O read �I�O
write�� each of the D disks can simultaneously transfer a block to �from� respec�
tively� the internal memory� The processing time is analyzed assuming that each
processor is a unit�cost RAM for its in�memory computation times� and that the
processors are connected by an interconnection network whose properties depend
on the setting� Most of the algorithmic work on the PDM has focused on reducing
the number of I�O operations and proving matching lower bounds� As mentioned in
the introduction� the I�O bounds are often inversely proportional to the logarithm
of the available memory� speci�cally� they are inversely proportional to log�M�B��
Examples discussed in 	Vit��
 include sorting� permuting� matrix transpose� com�
puting the Fast Fourier Transform� and various batched problems in computational
geometry� For other problems� such as matrix multiplication and LU factorization�
the I�O bounds are inversely proportional to

p
M �

Our main deviation from the PDM is in the input and output requirements�
Query times and computation�update times are analyzed on a PDM with input and
output requirements adapted to the set�up described in Section ���� Our �rst devi�
ation is to supplement the PDM with a write�only �output� memory� of unbounded
size�

In our static scenario� the input resides on the disks as in the PDM� but we are
allowed to preprocess the data and store the resulting data structures in the internal
memory� In response to a query� the output is written to the output memory� in
contrast to the PDM� Thus processing the query may incur no I�O operations�

In our dynamic scenario� the input arrives online in the internal memory in
the form of insertions to the data set� deletions from the data set� or queries�
Data structures are maintained for answering queries� As in the static scenario�
data structures may be stored in the internal memory and responses to queries
are written to the output memory� and hence queries may be answered without
incurring any I�O operations�

Reducing the number of I�O operations is important since� as pointed out in
Section �� an I�O operation can take as much time as ��� ��� in�memory operations
on modern computer systems�

Note that any insertions and deletions in the dynamic scenario are applied to
the base data set� at no charge� so that the current state of the data set resides
on the disks at all times� However� the cost of reading this data depends on the

� PHILLIP B� GIBBONS AND YOSSI MATIAS

setting� and needs to be speci�ed for algorithms that perform such reads� One can
consider a variety of settings� such as cases where the base data is striped across the
disks or cases where there are various indices such as B�trees that can be exploited�
For the purely online scenario� the base data is unavailable�

With massive data sets� it will often be the case that the input size N is
not just larger than the memory size M � as assumed by the PDM� but is in fact
polynomially larger� N � M c� for a constant c � �� Also� note that any algorithm
for the dynamic scenario in which updates incur �amortized� processing time t per
update and no I�O operations yields an algorithm for computing the same synopsis
data structure in the static scenario in one pass over the data set� i�e�� N

DB I�O
operations and Nt processing time�

For simplicity� in the remainder of this paper� we will assume that the PDM
has only a single processor �i�e�� P � ���

���� Applications� Approximate query answering and cost estima�

tion� An important application domain for synopsis data structures is approxi�
mate query answering for ad hoc queries of large data warehouses 	GM��
� In
large data recording and warehousing environments� it is often advantageous to
provide fast� approximated answers to complex decision�support queries �see the
TPC�D benchmark 	TPC
 for examples of such queries�� The goal is to provide an
estimated response in orders of magnitude less time than the time to compute an
exact answer� by avoiding or minimizing the number of accesses to the base data�

In the Approximate query answering �Aqua� project 	GMP��a
 GPA���
 at
Bell Labs� we seek to provide fast� approximate answers to queries using synopsis
data structures� Unlike the traditional data warehouse set�up depicted in Figure ��
in which each query is answered exactly using the data warehouse� Aqua considers
the set�up depicted in Figure �� In this set�up� new data being loaded into the
data warehouse is also observed by the approximate answer engine� This engine
maintains various synopsis data structures� for use in answering queries�

Data

Warehouse

 New Data

Queries

Responses

Data

Warehouse

 New Data

Queries

Responses

 Approx.
 Answer
 Engine

Figure �� Traditional
data warehouse

Figure �� Data warehouse set�up for
providing approximate query answers

Queries are sent to the approximate answer engine� Whenever possible� the
engine promptly returns a response consisting of an approximated answer and a
con�dence measure �e�g�� a ��� con�dence interval�� The user can then decide
whether or not to have an exact answer computed from the base data� based on
the user�s desire for the exact answer and the estimated time for computing an
exact answer as determined by the query optimizer and�or the approximate answer
engine� There are a number of scenarios for which a user may prefer an approxi�
mate answer in a few seconds over an exact answer that requires tens of minutes or
more to compute� e�g�� during a drill down query sequence in data mining 	SKS��
�

SYNOPSIS DATA STRUCTURES 	

Moreover� as discussed in Section ���� sometimes the base data is remote and cur�
rently unavailable� so that an exact answer is not an option� until the data again
becomes available�

Another important application domain for synopsis data structures is cost esti�
mation within a query optimizer� In commercial database systems� limited storage
is set aside for synopsis data structures such as histograms� these are used by the
query optimizer to estimate the cost of the primitive operations comprising a com�
plex SQL query �i�e�� estimates of the number of items that satisfy a given predicate�
estimates of the size of a join operation 	GGMS��
� etc��� The query optimizer
uses these cost estimates to decide between alternative query plans and to make
more informed scheduling �allocation� load balancing� etc�� decisions in multi�query
and�or multiprocessor database environments� in order to minimize query response
times and maximize query throughput�

These two application domains highlight the fact that good synopsis data struc�
tures are useful either for providing fast approximate answers to user queries� or
for speeding up the time to compute an exact answer� or for both�

The next three sections of this paper highlight in detail our work on synopsis
data structures for three problem domains� These sections are not meant to be
comprehensive� but instead provide a �avor of the di�culties and the techniques�
Much of the details� including most of the proofs and the experimental results�
are omitted� the reader is referred to the cited papers for these details� The �rst
problem domain is that of estimating the frequency moments of a data set� such
as the number of distinct values or the maximum frequency of any one value� The
second problem domain is that of estimating themmost frequently occurring values
in a data set� The third problem domain is that of approximating the quantiles and
other types of histograms of a data set� Note that the emphasis in these sections
will be on what synopses to keep within the limited space� how to maintain these
synopses� and what can be proved about the quality of the answers they provide�
these are the challenges particular to synopsis data structures� Traditional data
structure issues concerning the representation used to store the synopsis and its
impact on query time and update time are important� but somewhat secondary to
the main emphasis� As can be seen by the techniques presented in these sections�
randomization and approximation seem to be essential features in the study of
synopsis data structures for many problems� and have been proven to be essential
for several problems�

	� Frequency moments

In this section� we highlight our results on synopsis data structures for estimat�
ing the frequency moments of a data set�

Let A � �a�� a�� � � � � an� be a sequence of elements� where each ai is a member
of U � f�� �� � � � � ug� For simplicity of exposition� we assume that u � n�� Let
mi � jfj � aj � igj denote the number of occurrences of i in the sequence A�
or the frequency of i in A� The demographic information of the frequencies in
the data set A can be described by maintaining the full histogram over U � H �
�m��m�� � � � �mu�� However� when the desired footprint is substantially smaller
than u� then a more succinct representation of the frequencies is required�

�A more detailed analysis would show that for the f�n��synopsis data structures reported in

this section� it su�ces that u � �n
�
for some constant � � ��

 PHILLIP B� GIBBONS AND YOSSI MATIAS

De�ne� for each k � �� Fk �
Pu

i��m
k
i � In particular� F� is the number of

distinct elements appearing in the sequence� F� � � n� is the length of the se�
quence� and F� is the repeat rate or Gini�s index of homogeneity needed in order
to compute the surprise index of the sequence �see� e�g�� 	Goo��
�� Also de�ne
F �� � max��i�umi� �Since the moment Fk is de�ned as the sum of k�powers of
the numbers mi and not as the k�th root of this sum the last quantity is denoted
by F �� and not by F��� The numbers Fk are called the frequency moments of A�

The frequency moments of a data set represent useful demographic informa�
tion about the data� for instance in the context of database applications� They
indicate the degree of skew in the data� which is of major consideration in many
parallel database applications� Thus� for example� the degree of the skew may de�
termine the selection of algorithms for data partitioning� as discussed by DeWitt
et al 	DNSS��
 �see also the references therein��

We discuss the estimation of frequency moments when the available memory is
smaller than u �i�e�� when the full histogram H is not available�� We �rst consider
the problem of estimating F�� which demonstrates the advantages of viewing the
input online versus ad hoc sampling from the data set� In particular� we present
results showing that F� can be e�ectively estimated using a synopsis data structure
with footprint only O�log u�� but it cannot be e�ectively estimated based solely on
a random sample of the data set unless ��u� memory is employed� We then discuss
space�e�cient algorithms for estimating Fk for all k � �� using �n����k logn��
synopsis data structures� and an improved �logn��synopsis data structure for esti�
mating F�� Finally� lower bounds on the estimation of Fk and F �� are mentioned�
as well as results showing that that both randomization and approximation are
essential for evaluating Fk � k �� ��

	��� Estimating the number of distinct values� Estimating the number
of distinct values in a data set is a problem that frequently occurs in database
applications� and in particular as a subproblem in query optimization� Indeed� Haas
et al 	HNSS��
 claim that virtually all query optimization methods in relational
and object�relational database systems require a means for assessing the number of
distinct values of an attribute in a relation� i�e�� the function F� for the sequence
consisting of the attribute values for each item in the relation�

When no synopsis data structure is maintained� then the best methods for
estimating F� are based on sampling� Haas et al 	HNSS��
 consider sampling�
based algorithms for estimating F�� They propose a hybrid approach in which the
algorithm is selected based on the degree of skew of the data� measured essentially
by the function F�� However� they observe that fairly poor performance is obtained
when using the standard statistical estimators� and remark that estimating F� via
sampling is a hard and relatively unsolved problem� This is consistent with Olken�s
assertion 	Olk�	
 that all known estimators give large errors on at least some
data sets� In a recent paper� Chaudhuri et al 	CMN��
 show that �large error is
unavoidable even for relatively large samples regardless of the estimator used� That
is� there does not exist an estimator which can guarantee reasonable error with any
reasonable probability unless the sample size is very close to the size of the database
itself�� Formally� they show the following�

Theorem ���� 	CMN��
 Consider any estimator �d for the number of distinct
values d based on a random sample of size r from a relation with n tuples� Let the

error of the estimator �d be de�ned as error� �d� � maxf �d�d� d� �dg� Then for any

SYNOPSIS DATA STRUCTURES �

� � e�r� there exists a choice of the relation such that with probability at least ��

error� �d� �
q

n ln ���
r �

In contrast� the algorithm given below demonstrates a �logn��synopsis data
structure which enables estimation of F� within an arbitrary �xed error bound
with high probability� for any given data set� Note that the synopsis data structure
is maintained while observing the entire data set� In practice� this can be realized
while the data set is loaded into the disks� and the synopsis data structure is
maintained in main memory with very small overhead�

Flajolet and Martin 	FM�	
 FM��
 described a randomized algorithm for esti�
mating F� using only O�log u� memory bits� and analyzed its performance assuming
one may use in the algorithm an explicit family of hash functions which exhibits
some ideal random properties� The �logn��synopsis data structure consists of a bit
vector V initialized to all �� The main idea of the algorithm is to let each item
in the data set select at random a bit in V and set it to �� with �quasi��geometric
distribution� i�e�� V 	i
 is selected with probability ��� ���i� The selection is made
using a random hash function� so that all items of the same value will make the
same selection� As a result� the expected number of items selecting V 	i
 is � F���

i�

and therefore �i
�

� where i� is the largest i such that V 	i
 � �� is a good estimate for
F�� Alon et al 	AMS��
 adapted the algorithm so that linear hash functions could
be used instead� obtaining the following�

Theorem ���� 	FM�	
 AMS��
 For every c � � there exists an algorithm
that� given a sequence A of n members of U � f�� �� � � � � ug� computes a number Y
using O�log u� memory bits� such that the probability that the ratio between Y and
F� is not between ��c and c is at most ��c�

Proof� Let d be the smallest integer so that �d � u� and consider the members
of U as elements of the �nite �eld F � GF ��d�� which are represented by binary
vectors of length d� Let a and b be two random members of F � chosen uniformly and
independently� When a member ai of the sequence A appears� compute zi � a�ai�b
� where the product and addition are computed in the �eld F � Thus zi is represented
by a binary vector of length d� For any binary vector z� let ��z� denote the largest r
so that the r rightmost bits of z are all � and let ri � ��zi�� Let R be the maximum
value of ri� where the maximum is taken over all elements ai of the sequence A�
The output of the algorithm is Y � �R� Note that in order to implement the
algorithm we only have to keep �besides the d � O�log u� bits representing an
irreducible polynomial needed in order to perform operations in F � the O�log u�
bits representing a and b and maintain the O�log logu� bits representing the current
maximum ri value�

Suppose� now� that F� is the correct number of distinct elements that appear
in the sequence A� and let us estimate the probability that Y deviates considerably
from F�� The only two properties of the random mapping f�x� � ax� b that maps
each ai to zi we need is that for every �xed ai� zi is uniformly distributed over F
�and hence the probability that ��zi� � r is precisely ���r�� and that this mapping
is pairwise independent� Thus� for every �xed distinct ai and aj � the probability
that ��zi� � r and ��zj� � r is precisely ����r�

Fix an r� For each element x � U that appears at least once in the sequence A�
letWx be the indicator random variable whose value is � if and only if ��ax�b� � r�
Let Z � Zr �

P
Wx� where x ranges over all the F� elements x that appear in the

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

sequence A� By linearity of expectation and since the expectation of each Wx is
���r� the expectation E�Z� of Z is F���

r� By pairwise independence� the variance
of Z is F�

�
�r �� � �

�r � � F���
r� Therefore� by Markov�s Inequality� if �r � cF�

then Prob�Zr � �� � ��c� since E�Zr� � F���
r � ��c� Similarly� by Chebyshev�s

Inequality� if c�r � F� then Prob�Zr � �� � ��c� since Var�Zr� � F���
r � E�Zr�

and hence Prob�Zr � �� � Var�Zr���E�Zr�
�� � ��E�Zr� � �r�F�� Since our

algorithm outputs Y � �R� where R is the maximum r for which Zr � �� the two
inequalities above show that the probability that the ratio between Y and F� is not
between ��c and c is smaller than ��c� as needed�

Thus we have a �logn��synopsis data structure for the class of F� queries�
designed for the dynamic scenario of both insertions and queries� Analyzed on the
cost model of Section �� both the query and update times are only O��� processing
time per query�update and no I�O operations�

	��� Estimating Fk for k � �� Alon et al 	AMS��
 developed an algorithm
which� for every sequence A and a parameter k� can estimate Fk within a small con�
stant factor with high probability� using an �n����k logn��synopsis data structure�
The description below is taken from 	AGMS��
� which considered implementation
issues of the algorithm and showed how the algorithm� coined sample�count� could
be adapted to support deletions from the data set�

The idea in the sample�count algorithm is rather simple� A random sample of
locations is selected in the sequence of data items that are inserted into the data
set� This random selection can be easily done as the items are being inserted� Once
we reach an item that was chosen to be in the sample� we will count from now on
the number of incoming items that have its value� It turns out that the count r for
each sample point is a random variable which satis�es E�nkrk��� � Fk� and that
the variance is reasonably small� for small k� The desired accuracy and con�dence
of the �nal estimate are obtained by applying averaging techniques over the counts
of sample items�

More speci�cally� the number of memory words used by the algorithm is s �
s� � s�� where s� is a parameter that determines the accuracy of the result� and s�
determines the con�dence� e�g�� for any input set� the relative error of the estimate Y
for F� exceeds �u

����
p
s� with probability at most ��s���� The algorithm computes

s� random variables Y�� Y�� � � � � Ys� and outputs their median Y � Each Yi is the
average of s� random variables Xij � � � j � s�� where the Xij are independent�
identically distributed random variables� Averaging is used to reduce the variance�
and hence the error �Chebyshev�s inequality�� and the median is used to boost the
con�dence �Cherno� bounds�� Each of the variables X � Xij is computed from the
sequence in the same way as follows�

� Choose a random member ap of the sequence A� where the index p is chosen
randomly and uniformly among the numbers �� �� � � � � n� suppose that ap �
l � � U � f�� �� � � � � ug��

� Let r � jfq � q � p� aq � lgj be the number of occurrences of l among the
members of the sequence A following ap �inclusive��

� De�ne X � n�rk � �r � ��k�� e�g�� for k � � let X � n��r � ���

For k � �� it is shown in 	AMS��
 that the estimate Y computed by the above
algorithm satis�es E�Y � � F�� and Prob

�jY � F�j � �u����
p
s�
� � � � ��s��� �

An accurate estimate for F� can therefore be guaranteed with high probability by

SYNOPSIS DATA STRUCTURES ��

selecting s� � ��
p
u� and s� � ��logn�� More generally� by selecting s� �

ku����k

��

and s� � � log������ one can obtain the following�

Theorem ���� 	AMS��
 For every k � �� every � � � and every � � � there
exists a randomized algorithm that computes� given a sequence A � �a�� � � � � an� of
members of U � f�� �� � � � � ug� in one pass and using

O

�
k log �����

��
u����k�log u� logn�

�
memory bits� a number Y so that the probability that Y deviates from Fk by more
than �Fk is at most ��

Thus for �xed k� �� and �� we have an �n����k logn��synopsis data structure
for the class of Fk queries� designed for the dynamic scenario� Waiting until query
time to compute the averages Yi would result in O�s�� � O�n����k� query time on
our cost model� However� these averages can be maintained as running averages as
updates arrive� resulting in O��� processing time per query� and no I�O operations�
Moreover� by representing the samples ap as a concise sample �de�ned in Section ��
and using a dynamic dictionary data structure� the update time can likewise be
reduced to O��� processing time per update and no I�O operations�

	�	� Improved estimation for F�� An improved estimation algorithm for
F� was also presented in 	AMS��
� For every sequence A� F� can be estimated
within a small constant factor with high probability� using a �logn��synopsis data
structure� Again� the description below is taken from 	AGMS��
� which considers
implementation issues of the algorithm and shows how the algorithm� coined tug�

of�war� can be adapted to support deletions from the data set�
The tug�of�war algorithm can be illustrated as follows� Suppose that a crowd

consists of several groups of varying numbers of people� and that our goal is to
estimate the skew in the distribution of people to groups� That is� we would like
to estimate F� for the set faigni��� where ai is the group to which the i�th person
belongs� We arrange a tug�of�war� forming two teams by having each group as�
signed at random to one of the teams� Equating the displacement of the rope from
its original location with the di�erence in the sizes of the two teams� it is shown
in 	AMS��
 that the expected square of the rope displacement is exactly F�� and
that the variance is reasonably small� This approach can be implemented in small
memory� using the observation that we can have the persons in the crowd come one
by one� and contribute their displacement in an incremental fashion� In addition
to the updated displacements� the only thing that requires recording in the pro�
cess is the assignment of groups to teams� which can be done succinctly using an
appropriate pseudo�random hash function�

As with sample�count� the number of memory words used by tug�of�war is s �
s� � s�� where s� is a parameter that determines the accuracy of the result� and s�
determines the con�dence� As before� the output Y is the median of s� random
variables Y�� Y�� � � � � Ys� � each being the average of s� random variables Xij � � �
j � s�� where the Xij are independent� identically distributed random variables�
Each X � Xij is computed from the sequence in the same way� as follows�

� Select at random a ��wise independent mapping i �	 �i� where i � U �
f�� �� � � � � ug and �i � f��� �g�

� Let Z �
Pu

i�� �imi�

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

� Let X � Z��

For accurate estimates for F� of �xed error with guaranteed �xed probability�
constant values su�ce for s� and s�� Speci�cally� by selecting s� � ��

�� and s� �
� log������ the following is obtained�

Theorem ���� 	AMS��
 For every � � � and � � � there exists a randomized
algorithm that computes� given a sequence A � �a�� � � � � an� of members of U � in

one pass and using O
�
log
����

�� �log u� logn�
�
memory bits� a number Y so that

the probability that Y deviates from F� by more than �F� is at most �� For �xed
� and �� the algorithm can be implemented by performing� for each member of the
sequence� a constant number of arithmetic and �nite �eld operations on elements
of O�log u� logn� bits�

Thus for �xed � and �� we have a �logn��synopsis data structure for the class
of F� queries� designed for the dynamic scenario� Both the query and update times
are only O��� processing time per query�update and no I�O operations�

	��� Lower bounds� We mention lower bounds given in 	AMS��
 for the
space complexity of randomized algorithms that approximate the frequency mo�
ments Fk� The lower bounds are obtained by reducing the problem to an appro�
priate communication complexity problem 	Yao�	
 BFS��
 KS��
 Raz��
� a set
disjointness problem� obtaining the following�

Theorem ���� 	AMS��
 For any �xed k � � and � � ���� any randomized
algorithm that outputs� given one pass through an input sequence A of at most n
elements of U � f�� �� � � � � ng� a number Zk such that Prob�jZk�Fkj � ���Fk� � ��
requires ��n����k� memory bits�

Theorem ���� 	AMS��
 Any randomized algorithm that outputs� given one
pass through an input sequence A of at most �n elements of U � f�� �� � � � � ng� a
number Y such that Prob�jY �F ��j � F ����� � �� for some �xed � � ���� requires
��n� memory bits�

The �rst theorem above places a lower bound on the footprint of a synopsis
data structure that can estimate Fk to within constant factors in the purely online
scenario� over all distributions� The second theorem shows that no synopsis data
structure exists for estimating F �� to within constant factors in the purely online
scenario� over all distributions� As will be discussed in the next section� good
synopsis data structures exist for skewed distributions� which may be of practical
interest�

The number of elements F� can be computed deterministically and exactly using
a �log n��synopsis data structure �a simple counter�� The following two theorems
show that for all k �� �� both randomization and approximation are essential in
evaluating Fk�

Theorem �� � 	AMS��
 For any nonnegative integer k �� �� any randomized
algorithm that outputs� given one pass through an input sequence A of at most �n
elements of U � f�� �� � � � � ng a number Y such that Y � Fk with probability at least
�� �� for some �xed � � ���� requires ��n� memory bits�

Theorem ��!� 	AMS��
 For any nonnegative integer k �� �� any deterministic
algorithm that outputs� given one pass through an input sequence A of n�� elements

SYNOPSIS DATA STRUCTURES ��

of U � f�� �� � � � � ng� a number Y such that jY �Fkj � ���Fk requires ��n� memory
bits�

Proof� Let G be a family of t � ��
n� subsets of U � each of cardinality n��
so that any two distinct members of G have at most n�! elements in common�
�The existence of such a G follows from standard results in coding theory� and
can be proved by a simple counting argument�� Fix a deterministic algorithm that
approximates Fk for some �xed nonnegative k �� �� For every two members G� and
G� of G let A�G�� G�� be the sequence of length n�� starting with the n�� members
of G� �in a sorted order� and ending with the set of n�� members of G� �in a sorted
order�� When the algorithm runs� given a sequence of the form A�G�� G��� the
memory con�guration after it reads the �rst n�� elements of the sequence depends
only on G�� By the pigeonhole principle� if the memory has less than log t bits�
then there are two distinct sets G� and G� in G� so that the content of the memory
after reading the elements of G� is equal to that content after reading the elements
of G�� This means that the algorithm must give the same �nal output to the two
sequences A�G�� G�� and A�G�� G��� This� however� contradicts the assumption�
since for every k �� �� the values of Fk for the two sequences above di�er from
each other considerably� for A�G�� G��� F� � n�� and Fk � �kn�� for k � ��
whereas for A�G�� G��� F� � �n�! and Fk � n�� � �kn�!� Therefore� the answer
of the algorithm makes a relative error that exceeds ��� for at least one of these
two sequences� It follows that the space used by the algorithm must be at least
log t � ��n�� completing the proof�

�� Hot list queries

In this section� we highlight our results on synopsis data structures for answer�
ing hot list and related queries�

A hot list is an ordered set of m hvalue� counti pairs for the m most frequently
occurring �values� in a data set� for a prespeci�ed m� In various contexts� hot lists
are denoted as high�biased histograms 	IC�	
 of m � � buckets� the �rst m mode
statistics� or the m largest itemsets 	AS��
� Hot lists are used in a variety of data
analysis contexts� including�

� Best sellers lists ��top ten� lists�� An example is the top selling items in a
database of sales transactions�

� Selectivity estimation in query optimization� Hot lists capture the most
skewed �i�e�� popular� values in a relation� and hence have been shown to be
quite useful for estimating predicate selectivities and join sizes �see 	Ioa�	

IC�	
 IP��
��

� Load balancing� In a mapping of values to parallel processors or disks� the
most skewed values limit the number of processors or disks for which good
load balance can be obtained�

� Market basket analysis� Given a sequence of sets of values� the goal is to
determine the most popular k�itemsets � i�e�� k�tuples of values that occur to�
gether in the most sets� Hot lists can be maintained on k�tuples of values for
any speci�ed k� and indicate a positive correlation among values in itemsets
in the hot list� These can be used to produce association rules� specifying
a �seemingly� causal relation among certain values 	AS��
 BMUT��
� An
example is a grocery store� where for a sequence of customers� a set of the

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

items purchased by each customer is given� and an association rule might
be that customers who buy bread typically also buy butter�

� �Caching� policies based on most�frequently used� The goal is to retain in
the cache the most�frequently�used items and evict the least�frequently�used
whenever the cache is full� An example is the most�frequently�called coun�
tries list in caller pro�les for real�time telephone fraud detection 	Pre��
�
and in fact an early version of the hot list algorithm described below has
been in use in such contexts for several years�

As these examples suggest� the input need not be simply a sequence of individ�
ual values� but can be tuples with various �elds such that for the purposes of the
hot list� both the value associated with a tuple and the contribution by that tuple to
that value�s count are functions on its �elds� However� for simplicity of exposition�
we will discuss hot lists in terms of a sequence of values� each contributing one to
its value�s count�

Hot lists are trivial to compute and maintain given su�cient space to hold
the full histogram of the data set� However� for many data sets� such histograms
require space linear in the size of the data set� Thus for synopsis data structures
for hot list queries� a more succinct representation is required� and in particular�
counts cannot be maintained for each value� Note that the di�culty in maintaining
hot lists in the dynamic scenario is in detecting when values that were infrequent
become frequent due to shifts in the distribution of arriving data� With only a
small footprint� such detection is di�cult since there is insu�cient space to keep
track of all the infrequent values� and it is expensive �or impossible� in the purely
online scenario� to access the base data once it is on the disks�

A related� and seemingly simpler problem to hot list queries is that of �popular
items� queries� A popular items query returns a set of hvalue� counti pairs for
all values whose frequency in the data set exceeds a prespeci�ed threshold� such
as �� of the data set� Whereas hot list queries prespecify the number of pairs
to be output but not a frequency lower bound� popular items queries prespecify a
frequency lower bound but not the number of pairs� An approximate answer for
a popular items query can be readily obtained by sampling� since the sample size
needed to obtain a desired answer quality can be predetermined from the frequency
threshold� For example� if p � � is the prespeci�ed threshold percentage� then by
Cherno� bounds� any value whose frequency exceeds this threshold will occur at
least c�� times in a sample of size c�p with probability � � e�c�
� A recent paper
by Fang et al 	FSGM���
 presented techniques for improving the accuracy and
con�dence for popular items queries� They considered the generalization to tuples
and functions on its �elds mentioned above for hot list queries� and denoted this
class of queries as iceberg queries� They presented algorithms combining sampling
with the use of multiple hash functions to perform coarse�grained counting� in order
to signi�cantly improve the answer quality over the naive sampling approach given
above�

In the remainder of this section� we describe results in 	GM��
 presenting and
studying two synopsis data structures� concise samples and counting samples � As
mentioned in Section ���� there are no synopsis data structures for estimating the
count of the most frequently occurring value� F ��� to within constant factors in the
purely online scenario� over all distributions� Hence� no synopsis data structure
exists for the more di�cult problem of approximating the hot list in the purely

SYNOPSIS DATA STRUCTURES ��

online scenario� over all distributions� On the other hand� concise samples and
counting samples are shown in 	GM��
 both analytically and experimentally to
produce more accurate approximate hot lists than previous methods� and perform
quite well for the skewed distributions that are of interest in practice�

���� Concise samples� Consider a hot list query on a data set of size n� One
possible synopsis data structure is the set of values in a uniform random sample
of the data set� as was proposed above for popular items queries� The m most
frequently occurring values in the sample are returned in response to the query�
with their counts scaled by n�m� However� note that any value occurring frequently
in the sample is a wasteful use of the available space� We can represent k copies of
the same value v as the pair hv� ki� and �assuming that values and counts use the
same amount of space�� we have freed up space for k � � additional sample points�
This simple observation leads to the following synopsis data structure�

Definition ���� In a concise representation of a multiset� values appearing
more than once in the multiset are represented as a value and a count� A con�
cise sample of size m is a uniform random sample of the data set whose concise
representation has footprint m�

We can quantify the advantage of concise samples over traditional samples
in terms of the number of additional sample points for the same footprint� Let
S � fhv�� c�i� � � � � hvj � cji� vj��� � � � � v�g be a concise sample of a data set of n values�

We de�ne sample�size�S� to be 	�j�Pj
i�� ci� Note that the footprint of S depends

on the number of bits used per value and per count� For example� variable�length
encoding could be used for the counts� so that only dlogxe bits are needed to store
x as a count� this reduces the footprint but complicates the memory management�
Approximate counts 	Mor��
 could be used as well� so that only dlog logxe bits
are needed to store x to within a power of two� For simplicity of exposition� we will
consider only �xed�length encoding of logn bits per count and per value� including
any bits needed to distinguish values from counts� so that the footprint of S is
�	� j� logn� For a traditional sample with m sample points� the sample�size is m
and the footprint is m logn�

Concise samples are never worse than traditional samples �given the encoding
assumptions above�� and can be exponentially or more better depending on the
data distribution� For example� if there are at most m��� logn� distinct values in
the data set� then a concise sample of size m would have sample�size n �i�e�� in this
case� the concise sample is the full histogram�� Thus� the sample�size of a concise
sample may be arbitrarily larger than its footprint�

Lemma ���� 	GM��
 For any footprint m � � logn� there exists data sets for
which the sample�size of a concise sample is n�m times larger than its footprint�
where n is the size of the data set�

For exponential distributions� the advantage is exponential�

Lemma ���� 	GM��
 Consider the family of exponential distributions	 for i �
�� �� � � �� Pr�v � i� �
�i�
���� for
 � �� For any m � �� the expected sample�size
of a concise sample with footprint m logn is at least
m���

Proof� Let x � m��� Note that we can �t at least x values and their counts
within the given footprint� The expected sample�size can be lower bounded by the

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

expected number of randomly selected tuples before the �rst tuple whose attribute
value v is greater than x� The probability of selecting a value greater than x isP�

i�x��

�i�
 � �� �
�x� so the expected number of tuples selected before such

an event occurs is
x�

The expected gain in using a concise sample over a traditional sample for
arbitrary data sets is a function of the frequency moments Fk� for k � �� of the
data set� Recall from Section � that Fk �

P
j m

k
j � where j is taken over the values

represented in the set and mj is the number of set elements of value j�

Theorem ���� 	GM��
 For any data set� when using a concise sample S with
sample�size m� the expected gain is

E	m� number of distinct values in S
 �

mX
k��

����k
�
m

k

�
Fk
nk

�

Proof� Let pj � mj�n be the probability that an item selected at random
from the set is of value j� Let Xi be an indicator random variable so that Xi � �
if the ith item selected to be in the traditional sample has a value not represented
as yet in the sample� and Xi � � otherwise� Then� Pr�Xi � �� �

P
j pj��� pj�

i���
where j is taken over the values represented in the set �since Xi � � if some value
j is selected so that it has not been selected in any of the �rst i� � steps�� Clearly�
X �

Pm
i��Xi is the number of distinct values in the traditional sample� We can

now evaluate E	number of distinct values
 as

E	X
 �

mX
i��

E	Xi
 �

mX
i��

X
j

pj��� pj�
i�� �

X
j

mX
i��

pj��� pj�
i��

�
X
j

pj
�� ��� pj�

m

�� ��� pj�
�
X
j

��� ��� pj�
m�

�
X
j

�
��

mX
k��

����k
�
m

k

�
pkj

�
�
X
j

��
mX
k��

����k
�
m

k

�X
j

pkj

�

mX
k��

����k��
�
m

k

�
Fk
nk

�

Note that the footprint for a concise sample is at most � logn times the number of
distinct values� whereas the footprint for a traditional sample of sample�size m is
m logn�

Maintaining concise samples� We describe next the algorithm given in 	GM��

for maintaining a concise sample within a given footprint bound as new data is
inserted into the data set� Since the number of sample points provided by a concise
sample depends on the data distribution� the problem of maintaining a concise
sample as new data arrives is more di�cult than with traditional samples� For
traditional samples� the reservoir sampling algorithm of Vitter 	Vit��
 can be used
to maintain a sample in the presence of insertions of new data �see Section ���
for details�� However� this algorithm relies heavily on a priori knowledge of the
target sample�size �which� for traditional samples� equals the footprint divided by
logn�� With concise samples� the sample�size depends on the data distribution to

SYNOPSIS DATA STRUCTURES �	

date� and any changes in the data distribution must be re�ected in the sampling
frequency�

Our maintenance algorithm is as follows� Let � be an entry threshold �ini�
tially �� for new data to be selected for the sample� Let S be the current concise
sample and consider an insertion of a data item with value v� With probability
��� � add v to S� preserving the concise representation� If the footprint for S now
exceeds the prespeci�ed footprint bound� raise the threshold to some � � and then
subject each sample point in S to this higher threshold� Speci�cally� each of the
sample�size�S� sample points is evicted with probability ��� �� It is expected that
sample�size�S� � �� � ��� �� sample points will be evicted� Note that the footprint
is only decreased when a hvalue� counti pair reverts to a singleton or when a value
is removed altogether� If the footprint has not decreased� repeat with a higher
threshold�

There is complete �exibility in this algorithm in selecting the sequence of in�
creasing thresholds� and 	GM��
 discussed a variety of approaches and their trade�
o�s� as well as ways to improve the constant factors�

Theorem ���� 	GM��
 The above algorithm maintains a concise sample with�
in a prespeci�ed size bound in constant amortized expected update time per insert�
and no I�O operations�

Proof� The algorithm maintains a uniform random sample since� whenever
the threshold is raised� it preserves the invariant that each item in the data set has
been treated �probabilistically� as if the threshold were always the new threshold�
The look�ups can be done in constant expected time using a dynamic dictionary
data structure such as a hash table� Raising a threshold costs O�m�� processing
time� where m� is the sample�size of the concise sample before the threshold was
raised� For the case where the threshold is raised by a constant factor each time�
we expect there to be a constant number of coin tosses resulting in sample points
being retained for each sample point evicted� Thus we can amortize the retained
against the evicted� and we can amortize the evicted against their insertion into
the sample �each sample point is evicted only once��

���� Counting samples� Counting samples are a variation on concise samples
in which the counts are used to keep track of all occurrences of a value inserted
into the data set after the value was selected for the sample� Their de�nition is
motivated by a sampling"counting process of this type from a static data set�

Definition ���� A counting sample for a data set A with threshold � is any
subset of A stored in a concise representation �as de�ned in De�nition ���� that is
obtained by a process that is probabilistically equivalent to the following process�
For each value v occurring c � � times in A� we �ip a coin with probability ��� of
heads until the �rst heads� up to at most c coin tosses in all� if the ith coin toss is
heads� then v occurs c� i� � times in the subset� else v is not in the subset�

A counting sample di�ers from the approach used in Section ��� in not allowing
multiple counts for the same value and in its use of a threshold �that will adapt to
a data distribution� versus a prespeci�ed sample size� Although counting samples
are not uniform random samples of the data set� a concise sample can be obtained
from a counting sample by considering each pair hv� ci in the counting sample in
turn� and �ipping a coin with probability ��� of heads c�� times and reducing the
count by the number of tails�

�
 PHILLIP B� GIBBONS AND YOSSI MATIAS

Maintaining counting samples� The following algorithm is given in 	GM��

for maintaining a counting sample within a given footprint bound for the dynamic
scenario� Let � be an entry threshold �initially �� for new data to be selected for
the sample� Let S be the current counting sample and consider an insertion of a
data item with value v� If v is represented by a hvalue� counti pair in S� increment
its count� If v is a singleton in S� create a pair with count set to �� Otherwise�
add v to S with probability ��� � If the footprint for S now exceeds the prespeci�ed
footprint bound� raise the threshold to some � � and then subject each value in S
to this higher threshold� Speci�cally� for each value in the counting sample� �ip a
biased coin� decrementing its observed count on each �ip of tails until either the
count reaches zero or a heads is �ipped� The �rst coin toss has probability of
heads ��� �� and each subsequent coin toss has probability of heads ��� �� Values
with count zero are removed from the counting sample� other values remain in the
counting sample with their �typically reduced� counts�

An advantage of counting samples over concise samples is that one can maintain
counting samples in the presence of deletions to the data set� Maintaining concise
samples in the presence of such deletions is di�cult� If we fail to delete a sample
point in response to the delete operation� then we risk having the sample fail to be
a subset of the data set� On the other hand� if we always delete a sample point�
then the sample may no longer be a random sample of the data set�� With counting
samples� we do not have this di�culty� For a delete of a value v� it su�ces to reverse
the increment procedure by decrementing a count� converting a pair to a singleton�
or removing a singleton� as appropriate�

As with concise samples� there is complete �exibility in this algorithm in se�
lecting the sequence of increasing thresholds� and 	GM��
 discussed a variety of
approaches and their tradeo�s� as well as ways to improve the constant factors�

Theorem �� � 	GM��
 For any sequence of insertions and deletions in the
dynamic scenario� the above algorithm maintains a counting sample within a pre�
speci�ed footprint in constant amortized expected update time and no I�O opera�
tions�

Proof� We must show that the requirement in the de�nition of a counting
sample is preserved when an insert occurs� a delete occurs� or the threshold is
raised� Let A be the data set and S be the counting sample�

An insert of a value v increases by one its count in A� If v is in S� then one of its
coin �ips to date was heads� and we increment the count in S� Otherwise� none of
its coin �ips to date were heads� and the algorithm �ips a coin with the appropriate
probability� All other values are untouched� so the requirement is preserved�

A delete of a value v decreases by one its count in A� If v is in S� then the
algorithm decrements the count �which may drop the count to ��� Otherwise� c
coin �ips occurred to date and were tails� so the �rst c� � were also tails� and the
value remains omitted from S� All other values are untouched� so the requirement
is preserved�

Consider raising the threshold from � to � �� and let v be a value occurring c � �
times in A� If v is not in S� there were the equivalent of c coin �ips with heads
probability ��� that came up tails� Thus the same c probabilistic events would fail
to come up heads with the new� stricter coin �with heads probability only ��� ��� If

�For some applications of random samples� an e�ective alternative approach is to collect and
make use of two uniform samples� one for the inserted data and one for the deleted data�

SYNOPSIS DATA STRUCTURES ��

v is in S with count c�� then there were the equivalent of c� c� coin �ips with heads
probability ��� that came up tails� and these same probabilistic events would come
up tails with the stricter coin� This was followed by the equivalent of a coin �ip
with heads probability ��� that came up heads� and the algorithm �ips a coin with
heads probability ��� �� so that the result is equivalent to a coin �ip with probability
����� � ���� �� � ���� ��� If this coin comes up tails� then subsequent coin �ips for
this value have heads probability ��� �� In this way� the requirement is preserved
for all values�

The update time bounds are argued as in the proof of Theorem ����

Note that although both concise samples and counting samples have O��� amor�
tized update times� counting samples are slower to update than concise samples�
since� unlike concise sample� they perform a look�up �into the counting sample� at
each update to the data set� On the other hand� with counting samples� the guar�
antees on the counts are stronger� since exact counting is used on values already in
the sample�

��	� Application to hot list queries� Consider a hot list query requesting
k pairs� Given a concise sample S of footprint m logn� m � �k� an approximate
hot list can be reported by computing the k�th largest count ck �using a linear time
selection algorithm�� and then reporting all pairs with counts at least max�ck� ���
scaling the counts by n�m�� where � � � is a con�dence threshold and m� � sample�
size�S�� Note that when � � �� k pairs will be reported� but with larger �� fewer
than k may be reported� The response time for reporting is O�m� processing time
and no I�O operations� Alternatively� we can trade�o� update time versus query
time by keeping the concise sample sorted by counts� This allows for reporting in
��k� time�

Given a counting sample S of footprint m logn with threshold � � an approx�
imate hot list can be reported by computing the k�th largest count ck� and then
reporting all pairs with counts at least max�ck� � � �c�� where �c is a compensation
added to each reported count that serves to compensate for inserts of a value into
the data set prior to the successful coin toss that placed it in the counting sample�

An analysis in 	GM��
 argued for �c � �
�
e��
e��

�
� � � ���! � � � �� Given the

conversion of counting samples into concise samples discussed in Section ���� this
can be seen to be similar to taking � � �� �c��

� � ���!��
Analytical bounds and experimental results are presented in 	GM��
 quanti�

fying the accuracy of the approximate hot lists reported using concise samples or
counting samples� An example plot from that paper is given in Figure �� where
the data is drawn from a Zipf distribution with parameter ��� and the footprint is
measured in memory words�

�� Histograms and quantiles

Histograms approximate a data set by grouping values into �buckets� �subsets�
and approximating the distribution of values in the data set based on summary
statistics maintained in each bucket �see� e�g�� 	PIHS��
�� Histograms are com�
monly used in practice in various databases �e�g�� in DB�� Informix� Ingres� Oracle�
Microsoft SQL Server� Sybase� and Teradata�� They are used for selectivity estima�
tion purposes within a query optimizer and in query execution� and there is work
in progress on using them for approximate query answering�

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

0

50K

100K

150K

200K

5 10 15 20

** Data: 500000 values in [1,500]
Zipf parameter 1.5
** Footprint: 100

most frequent values |

Using full histogram
Using concise samples

Using counting samples
Using traditional samples

Figure �� Comparison of algorithms for a hot list query� depicting
the frequency of the most frequent values as reported using a full
histogram� using a concise sample� using a counting sample� and
using a traditional sample

Two histogram classes used extensively in database systems are equi�depth
histograms and compressed histograms� In an equi�depth or equi�height histogram�
contiguous ranges of values are grouped into buckets such that the number of data
items falling into each bucket is the same� The endpoints of the value ranges are
denoted the bucket boundaries or quantiles � In a compressed histogram 	PIHS��
�
the highest frequency values are stored separately in single�valued buckets� the rest
are partitioned as in an equi�depth histogram� Compressed histograms typically
provide more accurate estimates than equi�depth histograms�

A common problem with histograms is their dynamic maintenance� As a data
set is updated� its distribution of values might change and the histogram �which is
supposed to re�ect the distribution� should change as well� since otherwise estimates
based on the histogram will be increasingly inaccurate� In this section� we describe
our work in 	GMP��b
 on algorithms for maintaining approximate equi�depth and
compressed histograms as synopsis data structures in the dynamic scenario� We also
discuss recent related work by Manku et al 	MRL��
 on computing approximate
quantiles�

Another concern for histograms is their construction costs in the static scenario�
Sampling can be used to improve the construction times �see� e�g�� 	PIHS��
�� and
we discuss recent work by Chaudhuri et al 	CMN��
 on using sampling to construct
approximate equi�depth histograms in the static scenario�

An important feature of our algorithms for maintaining approximate histograms
is the use of a �backing sample�� Backing samples are interesting for two reasons�

SYNOPSIS DATA STRUCTURES ��

they can be used to convert sampling�based algorithms for the static scenario into
algorithms for the dynamic scenario� and their use is an example of a hierarchical
approach to synopsis data structures�

���� Backing samples� A backing sample for a data set� A� is a uniform ran�
dom sample of A that is kept up�to�date in the presence of updates toA 	GMP��b
�
In most sampling�based estimation techniques� whenever a sample of size m is
needed� either the entire relation is scanned to extract the sample� or several ran�
dom disk blocks are read� In the latter case� the values in a disk block may be
highly correlated� and hence to obtain a truly random sample� m disk blocks may
need to be read� with only a single value used from each block� In contrast� a
backing sample is a synopsis data structure that may reside in main memory� and
hence be accessed with no I�O operations� Moreover� if� as is typically the case in
databases� each data item is a record ��tuple�� comprised of �elds ��attributes���
then only the �elds desired for the sampling need be retained in the synopsis� In
the case of using samples for histograms� for example� only the �eld�s� needed for
the histogram need be retained� If the backing sample is stored on the disks� it can
be packed densely into disk blocks� allowing it to be more quickly swapped in and
out of memory� Finally� an indexing structure for the sample can be maintained�
which would enable fast access of the sample values within a certain range�

Clearly� a backing sample ofm sample points can be used to convert a sampling�
based algorithm requiring m

D I�O operations for its sampling into an algorithm that
potentially requires no I�O operations�

Maintaining backing samples� A uniform random sample of a target size m can
be maintained under insertions to the data set using Vitter�s reservoir sampling
technique 	Vit��
� The algorithm proceeds by inserting the �rst m items into a
�reservoir�� Then a random number of new items are skipped� and the next item
replaces a randomly selected item in the reservoir� Another random number of
items are then skipped� and so forth� The distribution function of the length of
each random skip depends explicitly on the number of items so far� and is chosen
such that at any point each item in the data set is equally likely to be in the
reservoir� Speci�cally� when the size of the data set is n� the probability for an
item to be selected for the backing sample of size m is m�n� Random skipping is
employed in order to reduce constant factors in the update times compared with
the approach of �ipping a coin for each new item� Reservoir sampling maintains a
traditional random sample as a backing sample� an alternative is to use a concise
sample or a counting sample as a backing sample� and maintain them as discussed
in Section ��

As discussed in Section ���� there are di�culties in maintaining uniform random
samples under deletions to the data set� with two possible solutions being counting
samples and deletion samples� In 	GMP��b
� we assumed that each data item has
a unique id �namely� its row id in the database table in which it resides�� so that
a deletion removes a unique item from the data set� We retained the row id with
the sample point �which precludes the use of concise samples or counting samples��
With row ids� deletions can be handled by removing the item from the sample� if it
is in the sample� However� such deletions decrease the size of the sample from the
target size m� and moreover� it is not apparent how to use subsequent insertions to
obtain a provably random sample of size m once the sample has dropped below m�
Instead� we maintained a sample whose size is initially a prespeci�ed upper bound

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

U � and allowed for it to decrease as a result of deletions of sample items down to
a prespeci�ed lower bound L� If the sample size dropped below L� the data set is
read from the disks in order to re�populate the random sample� either by rereading
all the data or by reading U � L � � random disk blocks� Since the sampling is
independent of the deletions� the deletion of a fraction of the sample is expected to
occur only after the deletion of the same fraction of the data set�

We presented in 	GMP��b
 several techniques for reducing constant factors
in the update times� For example� since the algorithm maintains a random sample
independent of the order of the updates to the data set� we postponed the processing
of deletes until the next insert selected for the backing sample� This reduced the
maintenance to the insert�only case� for which random skipping can be employed
�having deletions intermixed with insertions foils random skipping��

Note that since a backing sample is a �xed sample of a prespeci�ed size� it may
be desirable to augment the sample and�or refresh the sample� as appropriate for
a particular application�

Backing samples in a synopsis hierarchy� In 	GMP��b
� we used a backing
sample in support of dynamically maintaining histograms� In the scenario we con�
sidered� the histogram resided in main memory whereas the backing sample� being
somewhat larger than the histogram� resided on the disks� The goal was to main�
tain the histogram under the dynamic scenario� while minimizing the accesses and
updates to the backing sample� in order to minimize the number of I�O operations�
The backing sample was a traditional random sample maintained using reservoir
sampling� When the size of the data set is n� the probability for an item to be
selected for the backing sample of size m is m�n� and hence in maintaining the
backing sample an I�O operation is expected only once every ��n�m� insertions�
Therefore� over the process of maintaining the backing sample� while the data set
grows from m to n� an I�O operation is expected �on the average� only once every
��n��m log�n�m��� insertions� Thus� since this overhead is small for large n and
small m� the goal became to design an algorithm for maintaining histograms that
minimized the number of accesses to a given backing sample�

���� Equi�depth histograms� An equi�depth histogram partitions the range
of possible values into
 buckets such that the number of data items whose value
falls into a given bucket is the same for all buckets� An approximate equi�depth
histogram approximates the exact histogram by relaxing the requirement on the
number of data items falling in a bucket and�or the accuracy of the counts associ�
ated with the buckets� Let N be the number of items in the data set� let B�count
be the count associated with a bucket B� and let fB be the number of items falling
in a bucket B�� In 	GMP��b
� we de�ned two error metrics for evaluating approx�
imate equi�depth histograms� Our �rst metric� �ed� was de�ned to be the standard
deviation of the bucket sizes from the mean bucket size� normalized with respect
to the mean bucket size�

�ed �

N

vuut �

�X
i��

�
fBi �

N

��
�

�For simplicity in this paper� we ignore issues of how to attribute items to buckets for
items whose data value is equal to one or more bucket boundaries� such issues are addressed
in �GMP��b��

SYNOPSIS DATA STRUCTURES ��

Our second error metric� �count� was de�ned to be the standard deviation of the
bucket counts from the actual number of items in each bucket� normalized with
respect to the mean bucket count�

�count �

N

vuut �

�X
i��

�fBi �Bi�count�
�
�

In 	GMP��b
� we presented the �rst low overhead algorithms for maintaining
highly�accurate approximate equi�depth histograms� Each algorithm relied on using
a backing sample� S� of a �xed size dependent on
�

Our simplest algorithm� denoted Equi�depth Simple� worked as follows� At
the start of each phase� compute an approximate equi�depth histogram from S by
sorting S and then taking every �jSj�
��th item as a bucket boundary� Set the
bucket counts to be N ��
� where N � is the number of items in the data set at
the beginning of the phase� Let T � d�� � ��N ��
e� where � � �� is a tunable
performance parameter� Larger values for � allow for greater imbalance among
the buckets in order to have fewer phases� As each new item is inserted into the
data set� increment the count of the appropriate bucket� When a count exceeds the
threshold T � start a new phase�

Theorem ���� 	GMP��b
 Let
 � �� Let m � �c ln�
�
� for some c � ��
Consider Equi�depth Simple applied to a sequence of N � m� inserts of items into
an initially empty data set� Let S be a random sample of size m of tuples drawn uni�
formly from the relation� either with or without replacement� Let
 � �c ln�
������
Then Equi�depth Simple computes an approximate equi�depth histogram such that
with probability at least � �
�

p
c��� � �N��� � �������� �ed �
 � �� � �� and

�count �
�

Proof� LetH be an approximate equi�depth histogram computed by the Equi�
depth Simple algorithm after N items have been inserted into the data set� Let
be the current phase of the algorithm� and let N � � N be the number of items
in the data set at the beginning of phase #� Let ��count and ��ed be the errors
�count and �ed� respectively� resulting after extracting an approximate histogram
from S at the beginning of phase #� Finally� let �� � � �
�

p
c��� � �N �������

and let � � � �
�

p
c��� � �N��� � �������� Since during phase #� we have that

N � N ������� it follows that � � ��� We show in 	GMP��b
 that ��ed � ��count �

with probability at least ��� and hence at least ��

During phase #� a value inserted into bucket Bi increments both fBi and
Bi�count� Therefore� by the de�nition of �count� its value does not change dur�
ing phase #� and hence at any time during the phase� �count � ��count �
 with
probability �� It remains to bound �ed for H �

Let f �Bi
and Bi�count

� be the values of fBi and Bi�count� respectively� at the
beginning of phase #� Let $�

i � f �Bi
�N ��
� and let $i � fBi �N�
� We claim

that j$i�$�
ij � ��� ��N ��
� Note that j$i�$�

ij � max�fBi � f �Bi
� N�
�N ��
��

The claim follows since fBi � f �Bi
� Bi�count � Bi�count

� � T � Bi�count
� �

�� � ��N ��
 �N ��
� and N �N � �
�Bi�count�Bi�count
���

By the claim�

$i
� � �$�

i � �� � ��N ��
�� � $�
i
�
� �$�

i�� � ��N ��
 � ��� � ��N ��
�� �

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

Note that
P�

i��$
�
i �

P�
i���fBi � N ��
� � �� Hence� substituting for $�

i in the
de�nition of �ed we obtain

�ed �

N

vuut �

�
�X
i

$�
i
� �

�X
i��

��� � ��N ��
��
�

� ��ed �

N
�� � ��N ��
� � ��ed � �� � �� �

The theorem follows�

A second algorithm from 	GMP��b
 reduced the number of recomputations
from S by trying to balance the buckets using a local� less expensive procedure�
The algorithm� denoted Equi�depth SplitMerge� worked in phases� As in Equi�
depth Simple� at each phase there is a threshold T � d�� � ��N ��
e� As each new
item is inserted into the data set� increment the count of the appropriate bucket�
When a count exceeds the threshold T � split the bucket in half� In order to maintain
the number of buckets
 �xed� merge two adjacent buckets whose total count is less
than T � if such a pair of buckets can be found� When such a merge is not possible�
recompute the approximate equi�depth histogram from S�

To merge two buckets� sum the counts of the two buckets and dispose of the
boundary between them� To split a bucket B� select an approximate median in
B to serve as the bucket boundary between the two new buckets� by selecting the
median among the items in S that fall into B� The split and merge operation is
illustrated in Figure �� Note that split and merge can occur only for � � ��

F
R
E
Q
U
E
N
C
Y

ATTRIBUTE VALUES MEDIAN

Buckets

INSERT THRESHOLD

2.Merge

1.Split

Figure �� Split and merge operation during equi�depth histogram maintenance

The number of splits and the number of phases can be bounded as follows�

Theorem ���� 	GMP��b
 Consider Equi�depth SplitMerge with
 buckets and
performance parameter �� � � � � applied to a sequence of N inserts� Then the
total number of phases is at most log�N � and the total number of splits is at most

 log�N � where
 � � � ��� if � � �� and otherwise
 � � � �� � ���
�

To handle deletions to the data set� let T� � bN ���
�� � ����c be a lower
threshold on the bucket counts� where �� � �� is a tunable performance parameter�
When an item is deleted from the data set� decrement the count of the appropriate
bucket� If a bucket�s count drops to the threshold T�� merge the bucket with one of

SYNOPSIS DATA STRUCTURES ��

its adjacent buckets and then split the bucket B� with the largest count� as long as
its count is at least ��T� � ��� �Note that B� may be the newly merged bucket�� If
no such B� exists� recompute the approximate equi�depth histogram from S� The
merge and split operation is illustrated in Figure ��

F
R
E
Q
U
E
N
C
Y

ATTRIBUTE VALUES MEDIAN

Buckets

INSERT THRESHOLD

DELETE
THRESHOLD

1. Merge

2. Split

Figure �� Merge and split operation during equi�depth histogram maintenance

Related work� A recent paper by Manku et al 	MRL��
 presented new algo�
rithms for computing approximate quantiles of large data sets in a single pass over
the data and with limited main memory� Whereas in an equi�depth histogram�
the desired ranks for the quantiles are at regular intervals� their paper considered
arbitrary prespeci�ed ranks� Compared to an earlier algorithm of Munro and Pa�
terson 	MP�

� their deterministic algorithm restricts attention to a single pass
and improves the constants in the memory requirements� Speci�cally� let an item
be an ��approximate ��quantile in a data set of N items if its rank in the sorted
data set is between d��� ��Ne and d��� ��Ne� Manku et al presented a determin�
istic algorithm that� given ��� � � � � �k � 	�� �
� computes ��approximate �i�quantiles

for i � �� � � � � k in a single pass using only O� �� log
���N�� memory� Note that this

algorithm performs N
DB I�O operations in the static scenario� for a class of queries

where the ranks of the desired quantiles are prespeci�ed�
Manku et al also analyzed the approach of �rst taking a random sample and

then running their deterministic algorithm on the sample� in order to reduce the
memory requirements for massive data sets� They did not explicitly consider dy�
namic maintenance of quantiles� and indeed they have not attempted to minimize
the query time to output their approximate quantiles� since their output operation
occurs only once� after the pass over the data� However� by using a backing sample
residing in memory� their algorithm can be used in the dynamic scenario with no
I�O operations at update time or query time�

A recent paper by Chaudhuri et al 	CMN��
 studied the problem of how much
sampling is needed to guarantee an approximate equi�depth histogram of a certain
accuracy� The error metric they used to evaluate accuracy is the maximum over
all buckets B of jfB � N

� j� where N is the number of data items�
 is the number

of buckets� and fB is the number of items falling into B� As argued in the paper�
this error metric seems more appropriate than the �ed metric considered above�
for providing guarantees on the accuracy of approximate answers to range queries�
�See also 	JKM���
 for another approach to providing improved quality guarantees
when using histograms to answer range queries�� Chaudhuri et al provided a tighter

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

analysis than in 	GMP��b
 for analyzing the accuracy of equi�depth histograms
computed from a sample� The paper studied only the static scenario of constructing
an equi�depth histogram� including a discussion of techniques for extracting multiple
sample points from a sampled disk block� However� by using a backing sample�
such issues are no longer a concern� and their analysis can be used to improve the
guarantees of the algorithms in 	GMP��b
 for maintaining equi�depth histograms
in the dynamic scenario�

��	� Compressed histograms� In an equi�depth histogram� values with high
frequencies can span a number of buckets� this is a waste of buckets since the se�
quence of spanned buckets for a value can be replaced by a single bucket with a
single count� resulting in the same information within a smaller footprint� A com�
pressed histogram has a set of such singleton buckets and an equi�depth histogram
over values not in singleton buckets 	PIHS��
� Our target compressed histogram
with
 buckets has
� equi�depth buckets and
 �
� singleton buckets� where
� �
� �
� such that the following requirements hold� �i� each equi�depth bucket
has N ��
� tuples� where N � is the total number of data items in equi�depth buckets�
�ii� no single value �spans� an equi�depth bucket� i�e�� the set of bucket boundaries
are distinct� and conversely� �iii� the value in each singleton bucket has frequency
� N ��
�� An approximate compressed histogram approximates the exact histogram
by relaxing one or more of the three requirements above and�or the accuracy of the
counts associated with the buckets�

In 	GMP��b
� we presented the �rst low overhead algorithm for maintaining
highly�accurate approximate compressed histograms� As in the equi�depth case�
the algorithm relied on using a backing sample S� An approximate compressed
histogram can be computed from S as follows� Let m� initially jSj� be the num�
ber of items tentatively in equi�depth buckets� Consider the
 � � most frequent
values occurring in S� in order of maximum frequency� For each such value� if the
frequency f of the value is at least m divided by the number of equi�depth buckets�
create a singleton bucket for the value with count fN�jSj� and decrease m by f �
Otherwise� stop creating singleton buckets and produce an equi�depth histogram
on the remaining values� using the approach of the previous subsection� but set�
ting the bucket counts to �N�jSj� � �m�
��� Our algorithm reduced the number of
such recomputations from S by employing a local procedure for adjusting bucket
boundaries�

Similar to the equi�depth algorithm� the algorithm worked in phases� where
each phase has an upper threshold for triggering equi�depth bucket splits and a
lower threshold for triggering bucket merges� The steps for updating the bucket
boundaries are similar to those for an equi�depth histogram� but must address
several additional concerns�

�� New values added to the data set may be skewed� so that values that did
not warrant singleton buckets before may now belong in singleton buckets�

�� The threshold for singleton buckets grows with N �� the number of items in
equi�depth buckets� Thus values rightfully in singleton buckets for smaller
N � may no longer belong in singleton buckets as N � increases�

�� Because of concerns � and � above� the number of equi�depth buckets�
��
grows and shrinks� and hence we must adjust the equi�depth buckets accord�
ingly�

SYNOPSIS DATA STRUCTURES �	

�� Likewise� the number of items in equi�depth buckets grows and shrinks dra�
matically as sets of items are removed from and added to singleton buckets�
The ideal is to maintain N ��
� items per equi�depth bucket� but both N �

and
� are growing and shrinking�

Brie�y and informally� the algorithm in 	GMP��b
 addressed each of these four
concerns as follows� To address concern �� it used the fact that a large number
of updates to the same value v will suitably increase the count of the equi�depth
bucket containing v so as to cause a bucket split� Whenever a bucket is split� if doing
so creates adjacent bucket boundaries with the same value v� then a new singleton
bucket for v must be created� To address concern �� the algorithm allowed singleton
buckets with relatively small counts to be merged back into the equi�depth buckets�
As for concerns � and �� it used our procedures for splitting and merging buckets
to grow and shrink the number of buckets� while maintaining approximate equi�
depth buckets� until the histogram is recomputed from S� The imbalance between
the equi�depth buckets is controlled by the thresholds T and T� �which depend
on the tunable performance parameters � and ��� as in the equi�depth algorithm��
When an equi�depth bucket is converted into a singleton bucket or vice�versa� the
algorithm ensured that at the time� the bucket is within a constant factor of the
average number of items in an equi�depth bucket �sometimes additional splits and
merges are required�� Thus the average is roughly maintained as such equi�depth
buckets are added or subtracted�

The requirements for when a bucket can be split or when two buckets can
be merged are more involved than in the equi�depth algorithm� A bucket B is a
candidate split bucket if it is an equi�depth bucket whose count is at least ��T����
or a singleton bucket whose count is bounded by ��T���� and T������� A pair of
buckets� Bi and Bj � is a candidate merge pair if ��� either they are adjacent equi�
depth buckets or they are a singleton bucket and the equi�depth bucket in which its
singleton value belongs� and ��� the sum of their counts is less than T � When there
are more than one candidate split bucket �candidate merge pair�� the algorithm
selected the one with the largest �smallest combined� respectively� bucket count�

In 	GMP��b
� we presented analytical and experimental studies of the algo�
rithms discussed above for maintaining equi�depth histograms and for maintaining
compressed histograms in the dynamic scenario�

�� Related work and further results

A concept related to synopsis data structures is that of condensed represen�
tations� presented by Mannila and Toivonen 	MT��
 Man��
� Given a class of
structures D� a data collection d � D� and a class of patterns P � a condensed rep�
resentation for d and P is a data structure that makes it possible to answer queries
of the form �How many times does p � P occur in d� approximately correctly and
more e�ciently than by looking at d itself� Related structures include the data
cube 	GCB���
� pruned or cached data structures considered in machine learn�
ing 	Cat��
 ML��
� and ��nets widely used in computational geometry 	Mul��
�
Mannila and Toivonen also proposed an approximation metric for their structures�
denoted an ��adequate representation�

Approximate data structures that provide fast approximate answers were pro�
posed and studied by Matias et al 	MVN�	
 MVY��
 MSY��
� For exam�
ple� a priority queue data structure supports the operations insert� �ndmin� and

�
 PHILLIP B� GIBBONS AND YOSSI MATIAS

deletemin� their approximate priority queue supports these operations with smaller
overheads while reporting an approximate min in response to �ndmin and deletemin
operations� The data structures considered have linear space footprints� so are not
synopsis data structures� However� they can be adapted to provide a synopsis ap�
proximate priority queue� where the footprint is determined by the approximation
error�

There have been several papers discussing systems and techniques for provid�
ing approximate query answers without the bene�t of precomputed�maintained
synopsis data structures� Hellerstein et al 	HHW��
 proposed a framework for
approximate answers of aggregation queries called online aggregation� in which
the base data is scanned in a certain order at query time and the approximate
answer for an aggregation query is updated as the scan proceeds� Bayardo and
Miranker 	BM��
 devised techniques for �fast��rst� query processing� whose goal
is to quickly provide a few tuples of the query answer from the base data� The
Oracle Rdb system 	AZ��
 also provides support for fast��rst query processing� by
running multiple query plans simultaneously� Vrbsky and Liu 	VL�	
 �see also the
references therein� described a query processor that provides approximate answers
to queries in the form of subsets and supersets that converge to the exact answer�
The query processor uses various class hierarchies to iteratively fetch blocks of the
base data that are relevant to the answer� producing tuples certain to be in the
answer while narrowing the possible classes that contain the answer� Since these
approaches read from the base data at query time� they incur multiple I�O opera�
tions at query time�

A recent survey by Barbar%a et al� 	BDF���
 describes the state of the art
in data reduction techniques� for reducing massive data sets down to a �big pic�
ture� and for providing quick approximate answers to queries� The data reduc�
tion techniques surveyed by the paper are singular value decomposition� wavelets�
regression� log�linear models� histograms� clustering techniques� index trees� and
sampling� Each technique is described brie�y �see the references therein for further
details on these techniques and related work� and then evaluated qualitatively on to
its e�ectiveness and suitability for various data types and distributions� on how well
it can be maintained under insertions and deletions to the data set� and on whether
it supports answers that progressively improve the approximation with time�

The list of data structures work that could be considered synopsis data struc�
tures is extensive� We have described a few of these works in the paper� here we
mention several others� Krishnan et al 	KVI��
 proposed and studied the use of
a compact su�x tree�based structure for estimating the selectivity of an alphanu�
meric predicate with wildcards� Manber 	Man��
 considered the use of concise
�signatures� to �nd similarities among �les� Broder et al 	BCFM��
 studied the
use of �approximate� min�wise independent families of permutations for signatures
in a related context� namely� detecting and �ltering near�duplicate documents� Our
work on synopsis data structures also includes the use of multi�fractals and wavelets
for synopsis data structures 	FMS��
 MVW��
 and join samples for queries on
the join of multiple sets 	GPA���
�

�� Conclusions

This paper considers synopsis data structures as an algorithmic framework
relevant to massive data sets� For such data sets� the available memory is often

SYNOPSIS DATA STRUCTURES ��

substantially smaller than the size of the data� Since synopsis data structures are
too small to maintain a full characterization of the base data sets� the responses
they provide to queries will typically be approximate ones� The challenges are to
determine ��� what synopsis of the data to keep in the limited space in order to
maximize the accuracy and con�dence of its approximate responses� and ��� how
to e�ciently compute the synopsis and maintain it in the presence of updates to
the data set�

The context of synopsis data structures presents many algorithmic challenges�
Problems that may have easy and e�cient solutions using linear space data struc�
tures may be rather di�cult to address when using limited�memory� synopsis data
structures� We discussed three such problems� frequency moments� hot list queries�
and histograms� Di�erent classes of queries may require di�erent synopsis data
structures� While several classes of queries have been recently considered� there
is a need to consider many more classes of queries in the context of synopsis data
structures� and to analyze their e�ectiveness in providing accurate or approximate
answers to queries� We hope that this paper will motivate others in the algorithms
community to study these problems� Due to the increasing prevalence of massive
data sets� improvements in this area will likely �nd immediate applications�

Acknowledgments� We thank Andy Witkowski and Ramesh Bhashyam for dis�
cussions on estimation problems in database systems such as the NCR Teradata
DBS� We also thank those who collaborated on the results surveyed in this pa�
per� The research described in Section � is joint work with Noga Alon and Mario
Szegedy� The research described in Section � is joint work with Vishy Poosala� The
Aqua project� discussed brie�y in Section ���� is joint work with Swarup Acharya�
Vishy Poosala� Sridhar Ramaswamy� and Torsten Suel with additional contribu�
tions by Yair Bartal and S� Muthukrishnan� Other collaborators on the synopsis
data structures research mentioned brie�y in Section � are Christos Faloutsos� Avi
Silberschatz� Je� Vitter� and Min Wang� Finally� we thank Torsten Suel for helpful
comments on an earlier draft of this paper�

References

�AGMS	�� N� Alon� P� B� Gibbons� Y� Matias� and M� Szegedy� Dynamic probabilistic mainte�
nance of self�join sizes in limited storage� Manuscript� February �		��

�AMS	
� N� Alon� Y� Matias� and M� Szegedi� The space complexity of approximating the
frequency moments� Proc� ��th ACM Symp� on the Theory of Computing� May
�		
� Full version to appear in JCSS special issue for STOC�	
� pp� ����	�

�AS	�� R� Agrawal and R� Srikant� Fast algorithms for mining association rules in large
databases� Proc� ��th International Conf� on Very Large Data Bases� September
�		�� pp� �����		�

�AZ	
� G� Antoshenkov and M� Ziauddin� Query processing and optimization in Oracle Rdb�
VLDB Journal � ��		
�� no� �� ��	�����

�BCFM	�� A� Z� Broder� M� Charikar� A� M� Frieze� and M� Mitzenmacher� Min�wise indepen�
dent permutations� Proc� ��th ACM Symp� on the Theory of Computing� May �		��
pp� ������
�

�BDF�	�� D� Barbar�a� W� DuMouchel� C� Faloutsos� P� J� Haas� J� M� Hellerstein� Y� Ioannidis�
H� V� Jagadish� T� Johnson� R� Ng� V� Poosala� K� A� Ross� and K� C� Sevcik� The
New Jersey data reduction report� Bulletin of the Technical Committee on Data

Engineering �� ��		��� no� �� ���
�
�BFS�
� L� Babai� P� Frankl� and J� Simon� Complexity classes in communication complexity

theory� Proc� ��th IEEE Symp� on Foundations of Computer Science� October �	�
�
pp� ��������

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

�BM	
� R� J� Bayardo� Jr� and D� P� Miranker� Processing queries for �rst�few answers�
Proc�
th International Conf� on Information and Knowledge Management� Novem�
ber �		
� pp� �
�
��

�BMUT	�� S� Brin� R� Motwani� J� D� Ullman� and S� Tsur� Dynamic itemset counting and
implication rules for market basket data� Proc� ACM SIGMOD International Conf� on
Management of Data� May �		�� pp� �

��
��

�Cat	�� J� Catlett� Peepholing� Choosing attributes e�ciently for megainduction� Machine
Learning� Proc� 	th International Workshop �ML	��� July �		�� pp� �	�
��

�CMN	�� S� Chaudhuri� R� Motwani� and V� Narasayya� Random sampling for histogram con�
struction� How much is enough�� Proc� ACM SIGMOD International Conf� on Man�
agement of Data� June �		�� pp� ��
�����

�DNSS	�� D� J� DeWitt� J� F� Naughton� D� A� Schneider� and S� Seshadri� Practical skew
handling in parallel joins� Proc� ��th International Conf� on Very Large Data Bases�
August �		�� pp� ������

�FJS	�� C� Faloutsos� H� V� Jagadish� and N� D� Sidiropoulos� Recovering information from
summary data� Proc� ��rd International Conf� on Very Large Data Bases� August
�		�� pp� �
��
�

�FM��� P� Flajolet and G� N� Martin� Probabilistic counting� Proc� ��th IEEE Symp� on
Foundations of Computer Science� November �	��� pp� �
����

�FM�
� P� Flajolet and G� N� Martin� Probabilistic counting algorithms for data base appli�
cations� J� Computer and System Sciences �� ��	�
�� ������	�

�FMS	
� C� Faloutsos� Y� Matias� and A� Silberschatz� Modeling skewed distribution using
multifractals and the ����	�
 law� Proc� ��rd International Conf� on Very Large Data
Bases� September �		
� pp� ��������

�FSGM�	�� M� Fang� N� Shivakumar� H� Garcia�Molina� R� Motwani� and J� D� Ullman� Com�
puting iceberg queries e�ciently� Proc� ��th International Conf� on Very Large Data
Bases� August �		�� pp� �		�����

�GCB�	�� J� Gray� S� Chaudhuri� A� Bosworth� A� Layman� D� Reichart� M� Venkatrao� F� Pel�
low� and H� Pirahesh� Data cube� A relational aggregation operator generalizing
group�by� cross�tabs� and sub�totals� Data Mining and Knowledge Discovery � ��		���
no� �� �	�
��

�GGMS	
� S� Ganguly� P� B� Gibbons� Y� Matias� and A� Silberschatz� Bifocal sampling for
skew�resistant join size estimation� Proc� �		
 ACM SIGMOD International Conf� on
Management of Data� June �		
� pp� ��������

�GM	�� P� B� Gibbons and Y� Matias� New sampling�based summary statistics for improving
approximate query answers� Proc� ACM SIGMOD International Conf� on Manage�
ment of Data� June �		�� pp� ��������

�GMP	�a� P� B� Gibbons� Y� Matias� and V� Poosala� Aqua project white paper� Tech� report�
Bell Laboratories� Murray Hill� New Jersey� December �		��

�GMP	�b� P� B� Gibbons� Y� Matias� and V� Poosala� Fast incremental maintenance of approx�
imate histograms� Proc� ��rd International Conf� on Very Large Data Bases� August
�		�� pp� �

���
�

�Goo�	� I� J� Good� Surprise indexes and p�values� J� Statistical Computation and Simulation
�� ��	�	�� 	��	��

�GPA�	�� P� B� Gibbons� V� Poosala� S� Acharya� Y� Bartal� Y� Matias� S� Muthukrishnan�
S� Ramaswamy� and T� Suel� AQUA� System and techniques for approximate query
answering� Tech� report� Bell Laboratories� Murray Hill� New Jersey� February �		��

�HHW	�� J� M� Hellerstein� P� J� Haas� and H� J� Wang� Online aggregation� Proc� ACM
SIGMOD International Conf� on Management of Data� May �		�� pp� ��������

�HNSS	
� P� J� Haas� J� F� Naughton� S� Seshadri� and L� Stokes� Sampling�based estimation of
the number of distinct values of an attribute� Proc� ��st International Conf� on Very
Large Data Bases� September �		
� pp� ��������

�IC	�� Y� E� Ioannidis and S� Christodoulakis� Optimal histograms for limiting worst�case
error propagation in the size of join results� ACM Transactions on Database Systems
�� ��		��� no� �� ��	�����

�Ioa	�� Y� E� Ioannidis� Universality of serial histograms� Proc� �	th International Conf� on
Very Large Data Bases� August �		�� pp� �

��
��

SYNOPSIS DATA STRUCTURES ��

�IP	
� Y� E� Ioannidis and V� Poosala� Balancing histogram optimality and practicality for
query result size estimation� Proc� ACM SIGMOD International Conf� on Manage�
ment of Data� May �		
� pp� ��������

�JKM�	�� H� V� Jagadish� N� Koudas� S� Muthukrishnan� V� Poosala� K� Sevcik� and T� Suel�
Optimal histograms with quality guarantees� Proc� ��th International Conf� on Very
Large Data Bases� August �		�� pp� ��
���
�

�KS��� B� Kalyanasundaram and G� Schnitger� The probabilistic communication complexity
of set intersection� Proc� �nd Structure in Complexity Theory Conf�� June �	���
pp� ����	�

�KVI	
� P� Krishnan� J� S� Vitter� and B� Iyer� Estimating alphanumeric selectivity in the
presence of wildcards� Proc� ACM SIGMOD International Conf� on Management of
Data� June �		
� pp� �����	��

�Man	�� U� Manber� Finding similar �les in a large �le system� Proc� Usenix Winter �		�
Technical Conf�� January �		�� pp� �����

�Man	�� H� Mannila� Inductive databases and condensed representations for data mining�
Proc� International Logic Programming Symposium� �		�� pp� ������

�ML	�� A� Moore and M� S� Lee� Cached su�cient statistics for e�cient machine learning
with large datasets� Tech� Report CMU�RI�TR�	����� Robotics Institute� Carnegie�
Mellon University� �		�� To appear in J� Arti�cial Intelligence Research�

�Mor��� R� Morris� Counting large numbers of events in small registers� Communications of
the ACM �� ��	���� ��������

�MP��� J� I� Munro and M� S� Paterson� Selection and sorting with limited storage� Theoret�
ical Computer Science �� ��	���� no� �� ��
�����

�MRL	�� G� S� Manku� S� Rajagopalan� and B� G� Lindsley� Approximate medians and other
quantiles in one pass and with limited memory� Proc� ACM SIGMOD International
Conf� on Management of Data� June �		�� pp� ��
���
�

�MSY	
� Y� Matias� S� C� Sahinalp� and N� E� Young� Performance evaluation of approximate
priority queues� Presented at DIMACS Fifth Implementation Challenge� Priority
Queues� Dictionaries� and Point Sets� organized by D� S� Johnson and C� McGeoch�
October �		
�

�MT	
� H� Mannila and H� Toivonen� Multiple uses of frequent sets and condensed represen�
tations� Proc� �nd International Conf� on Knowledge Discovery and Data Mining�
August �		
� pp� ��	��	��

�Mul	�� K� Mulmuley� Computational geometry� An introduction through randomized algo�
rithms� Prentice Hall� Englewood Cli�s� NJ� �		��

�MVN	�� Y� Matias� J� S� Vitter� and W��C� Ni� Dynamic generation of discrete random vari�
ates� Proc� �th ACM�SIAM Symp� on Discrete Algorithms� January �		�� pp� �
��
����

�MVW	�� Y� Matias� J� S� Vitter� and M� Wang� Wavelet�based histograms for selectivity es�
timation� Proc� ACM SIGMOD International Conf� on Management of Data� June
�		�� pp� �����
	�

�MVY	�� Y� Matias� J� S� Vitter� and N� E� Young� Approximate data structures with applica�
tions� Proc�
th ACM�SIAM Symp� on Discrete Algorithms� January �		�� pp� ����
�	��

�Olk	�� F� Olken� Random sampling from databases� Ph�D� thesis� Computer Science� U�C�
Berkeley� April �		��

�PIHS	
� V� Poosala� Y� E� Ioannidis� P� J� Haas� and E� J� Shekita� Improved histograms
for selectivity estimation of range predicates� Proc� ACM SIGMOD International
Conf� on Management of Data� June �		
� pp� �	����
�

�Pre	�� D� Pregibon� Mega�monitoring� Developing and using telecommunications signa�
tures� October �		�� Invited talk at the DIMACS Workshop on Massive Data Sets
in Telecommunications�

�Raz	�� A� A� Razborov� On the distributional complexity of disjointness� Theoretical Com�
puter Science ��� ��		��� no� �� ��
��	��

�SKS	�� A� Silberschatz� H� F� Korth� and S� Sudarshan� Database system concepts� third ed��
McGraw�Hill� New York� �		��

�TPC� TPC�Committee� Transaction processing council �TPC
� http���www�tpc�org �

�� PHILLIP B� GIBBONS AND YOSSI MATIAS

�Vit�
� J� S� Vitter� Random sampling with a reservoir� ACM Transactions on Mathematical
Software �� ��	�
�� no� �� ���
��

�Vit	�� J� S� Vitter� External memory algorithms� Proc� ��th ACM Symp� on Principles of
Database Systems� June �		�� pp� ��	�����

�VL	�� S� V� Vrbsky and J� W� S� Liu� Approximate�a query processor that produces mono�
tonically improving approximate answers� IEEE Trans� on Knowledge and Data En�
gineering � ��		��� no�
� ��

���
��

�VS	�� J� S� Vitter and E� A� M� Shriver� Algorithms for parallel memory I� Two�level
memories� Algorithmica �� ��		��� no� ���� ��������

�Yao��� A� C� Yao� Lower bounds by probabilistic arguments� Proc� ��th IEEE Symp� on
Foundations of Computer Science� November �	��� pp� ��������

Information Sciences Research Center� Bell Laboratories� Room �A����� Lucent

Technologies� ��� Mountain Avenue� Murray Hill� New Jersey �	
	�

E�mail address� gibbons�research�bell�labs�com
URL� http���www�bell�labs�com��pbgibbons�

Department of Computer Science� Tel�Aviv University� Tel�Aviv �

	� Israel� and

Information Sciences Research Center� Bell Laboratories

E�mail address� matias�math�tau�ac�il
URL� http���www�math�tau�ac�il��matias�

