
Triply�Logarithmic Parallel Upper and Lower Bounds for

Minimum and Range Minima over Small Domains �

Omer Berkman y Yossi Matias z Prabhakar Ragde x

Abstract

We consider the problem of computing the minimumof n values� and several well�

known generalizations �pre�x minima� range minima� and all�nearest�smaller�values�

or ansv� for input elements drawn from the integer domain ����s� where s � n� In this

paper we give simple and e	cient algorithms for all of the above problems� These

algorithms all take O�log log log s� time using an optimal number of processors and

O�ns�� space �for constant � � �� on the common crcw pram� The best known

upper bounds for the range minima and ansv problems were previously O�log logn�

�using algorithms for unbounded domains�� For the pre�x minima and for the mini�

mum problems� the improvement is with regard to the model of computation�

We also prove a lower bound of
�log logn� for domain size s � ��
��logn log logn�

�

Since� for s at the lower end of this range� log logn �
�log log log s�� this demon�

strates that any algorithm running in o�log log log s� time must restrict the range of

s on which it works�

�A preliminary version of this paper was presented at the Third Workshop on Algorithms and Data Structures
�WADS�� Montr�eal� Canada� August �����

yTel Aviv Academic College � Antokolsky St�� Tel Aviv ������ Israel� omer�math�tau�ac�ilPart of this work was

carried out at the Dept� of Computer Science� King	s College London� The Strand� London WC
R
LS� England�
zAT�T Bell Laboratories� ��� Mountain Ave�� Murray Hill� NJ �����
����� USA� matias�research�att�com�
xDep� of

Computer Science� University of Waterloo� Waterloo� Ontario� Canada N
L �G�� plragde�plg�uwaterloo�ca�

� Introduction

Let A � �a�� � � � � an	 be an array of input elements� Denote by MIN�i� j	 the minimum over

ai� � � � � aj� We consider the following problems�

� The minimum problem� �nd MIN�
� n	�

� The pre�x minima problem� �nd MIN�
� i	 for all i�
 � i � n�

� The range minima problem� build a data structure that will permit a constant�time answer

to any query MIN�i� j	 for any
 � i � j � n�

� The all nearest smaller values �ansv� problem� �nd for all i�
 � i � n� the maximum j�

j � i� such that aj � ai �the left match! of ai	 and the minimum k� k 	 i� such that ak � ai

�the right match! of ai	�

Clearly� an algorithm for range�minima also solves minimum and pre�x�minima� and a lower bound

for minimum also applies to the other problems in the list�

In this paper we consider the above problems when the elements of A are drawn from the integer

domain �
��s� where s � n� We show�

Theorem � �upper bounds	 Each of the above problems can be solved on the common crcw

pram in O�log log log s	 time using n� log log log s processors and O�ns�	 space �for constant � �
��

Theorem � �lower bounds	 Any n
processor priority crcw pram algorithm for computing

the minimum� and hence any algorithm for the other three problems� takes ��log logn	 time for

any s� s � ��
��logn log logn�

�

Corollary � Any n
processor priority crcw pram algorithm for computing the minimum� and

hence any algorithm for the other three problems� cannot run in o�log log log s	 time for all values

of s�

��� The model of computation

The model of parallel computation used in this paper is the concurrent�read concurrent�write

�crcw	 parallel random access machine �pram	� See �
�� ��� ��� �
� ��� for introductions and

surveys of results concerning pram� The crcw pram model employs synchronous processors� all

having access to a shared memory with concurrent access permitted� There are several variants

of the crcw pram regarding the con#ict resolution rule in case of a concurrent writing� In the

common model� several processors may attempt to write simultaneously at the same location only

if they write the same value� common thus forbids write con#icts� Following �
�� ���� Boppana �
��

gave a lower bound of ��logn� log log n	 for computing the Element Distinctness problem on an

n�processor common� This problem can be solved in constant time on models that allow write

con#icts� Such models include� �i	 tolerant� where if two or more processors attempt to write

to the same cell in a given step then the content of that cell does not change� �ii	 collision�

where a concurrent write results in a special collision! symbol appearing in the target cell� �iii	

arbitrary �stronger than the previous two	� in which a concurrent write results in one arbitrary

processor succeeding� among those wishing to write� and �iii	 the yet stronger priority in which

a write con#ict is resolved by having the processor with highest priority succeed� The results of

�
�� ���
�� indicate that algorithms running on priority or arbitrary might not be transferable

to common without a signi�cant slowdown or loss of e�ciency�

A parallel algorithm is said to be optimal if its time�processor product is �asymptotically	 equal

to the lower bound on the time complexity of any sequential algorithm for the problem� A primary

goal in parallel computation is to design optimal algorithms that also run as fast as possible�

��� Related Work

We review below previous and related results for the four problems considered in this paper�

Sequential algorithms Gabow� Bentley� and Tarjan �
�� gave a linear�time preprocessing al�

gorithm for range minima that results in constant�time query retrieval� The ansv problem has a

simple linear�time algorithm using a stack� Push a� to the stack� For � � i � n� as long as ai is

smaller than the element at the top of the stack� pop an element from the stack and set its right

match to be ai� Finally push ai to the stack and set its left match to be the element at the top of

the stack �unless the stack is empty	� This algorithm is mentioned in ��� but not described�

Bounds for unbounded�domain input Using n processors in the parallel comparison tree

model� the minimum��nding problem� and hence all four problems have an ��log log n	 time lower

bound ����� This lower bound is matched for each of the four problems by optimal common crcw

pram O�log logn	 time using linear space algorithms� ���� for minimum� ���� for pre�x minima�

and ��� for range minima and ansv�

Input from restricted domains �
�� gave an optimal constant�time� linear�space� algorithm on

common for �nding the minimum for integers in the domain �
��nk� for a constant k� ��� gives a

pre�x�minima algorithm on priority �and thus also a minimum �nding algorithm	 that runs in

O�log log log s	 time and O�n	 operations� using O�ns�	 space for input restricted to integers in the

domain �
��s� where s � n� For the case s � n� ��� gives a priority algorithm that takes O�log� n	

time and O�n	 operations� using O�n	 space�

Randomized algorithms Reischuk ���� gave a randomized algorithm for the minimum problem

that takes constant time with high probability� using O�n	 space� on an n�processor arbitrary�

�

Using a parallel hashing algorithm ����
�� ���� the integer�pre�x�minima algorithm of ��� can be

implemented using only linear space� the time then increases by a factor ofO�log� n	 with high prob�

ability �but the number of operations remains linear with high probability	� Recently� a randomized

algorithm for the range�minima problem with unrestricted input �and hence for the pre�x�minima

and the minimum problems	 was given by ���� Its running time is O�log� n	 with high probability�

using O�n	 space on an �n� log� n	�processor tolerant� Comparison�based randomized algorithms

for the ansv problem with unrestricted input cannot do better than ��log logn	 expected time�

as implied by the ��log logn	 expected time lower bound for merging �
�� and the o�log logn	

reduction of merging to the ansv problem ����

Lower bounds The following lower bounds have been proved using Ramsey�theoretic arguments�

���� gave an ��
p
log n	 lower bound on searching in a sorted table of size n with an erew pram�

An ��
p
logn	 lower bound on sorting n items with an n�processor priority crcw pram is given

in ����� This paper also gives an ��log logn	 lower bound for �nding the minimum among n

numbers on priority assuming that the numbers are drawn from a domain of size at least doubly

exponential in n� An ��
p
logn	 lower bound on deciding element distinctness of n items with

an n�processor common crcw pram is given in ����� This was improved in �
�� to the best�

possible result ��logn� log logn	� ���� gave a best�possible ��log log n	 lower bound on merging

two sequences of length n with an n logO���n�processor priority crcw pram�

��� Discussion

����� Upper bounds

Our triply�logarithmic time algorithms for the range�minima and ansv problems should be com�

pared with the doubly�logarithmic time algorithms given in ���� Those algorithms all take O�n	

work on the common� The new algorithms are faster for� say� s � n�logn�
�log log n�O���

� for which

log log log s � O�log log logn	� On the other hand� the new algorithms requite super�linear space�

For the minimum and pre�x�minima problems� the new algorithms improve in that they run on

common� whereas the previous triply�logarithmic algorithms of ��� assume the �stronger	 priority

model�

Applications Our new ansv algorithm implies an optimal O�log log log s	 time� O�ns�	 space

algorithm for triangulating a monotone polygon whose coordinates are taken from the domain

�
��s�� s � n� Previous optimal parallel algorithms for triangulating a monotone polygon are those

of ��� and ����� Their running times are O�log logn	 and O�logn	 using the common crcw pram

and the crew pram respectively� Both assume that coordinates have unrestricted domain�

�

����� Lower bounds

Few techniques exist to show general lower bounds for parallel computation� One of the most useful

ones has been the application of powerful methods from Ramsey theory� Intuitively� a Ramsey�like

theorem states that in some large and possibly complex universe� there exists a subuniverse with

some simpler or more regular structure� To prove a lower bound on the complexity of a problem� it

is often possible to take an arbitrary program which may exhibit complex behavior when considered

over all inputs� and apply Ramsey theory to show that there exists a subdomain of inputs on which

the program behaves in very simple ways� In e�ect� the program is reduced to operating in a

structured fashion� or with a restricted set of operations� Ad�hoc techniques can then be used to

prove a lower bound on the running time of the program on this subdomain� In this fashion� each

of the above mentioned lower bounds were proved�

One of the drawbacks of these uses of Ramsey theory is the fact that� in order to show that the

subdomain exists� the domain size must be a very rapidly growing function of n� The possibility

thus exists that� if inputs are taken from the domain �
��s�� where s may be polynomial or even

singly or doubly exponential in n� then algorithms may exist which beat these lower bounds� As

an analogy� consider the case of sequential sorting� radix sort will� for suitably restricted domains�

give an O�n	 algorithm�

The challenge� then� is to either reduce the domain size required in the lower bounds� or to

produce algorithms with better running times on moderate sized domains� ��� improves both

the asymptotic result and the domain size for the sorting bound mentioned above by proving an

��logn� log logn	 lower bound on computing parity with a priority crcw pram� This implies

the same lower bound for sorting with domain size �� �

� has obtained the same lower bound

as �
�� for element distinctness but with a domain size that is doubly exponential in n�

Our lower bound of Theorem � can be interpreted in two ways� First� as re#ected in Corollary ��

it implies that any algorithm that takes o�log log log s	 time� using an n processor priority� must

assume a restriction on the value of s as a function of n� Second� it extends the ��log logn	 lower

bound for computing the minimum problem� and hence for any of the other problems mentioned

above� on an n�processor priority from the range s � ��
��n�

�as shown by ����	 to the range

s � ��
��logn log logn�

�

The domain�sensitive lower bound implied by Theorem � above cannot be improved without fur�

ther restriction on s� This represents a modest beginning to the search for lower�bound techniques

that work on problems de�ned over small domains�

The rest of this paper is organized as follows� In Section � we present constant�time non�optimal

algorithms for each of the four problems� In Section � we present the optimal algorithms� The

lower bound is given in Section �� Concluding remarks and open problems are given in Section ��

�

� Constant�Time Non�Optimal Algorithms

We begin with a common pram algorithm for �nding the minimum� This algorithm is then used

as a subroutine for an algorithm that solves both the pre�x�minima and ansv problems� Finally�

the pre�x minima algorithm is used to get an algorithm for the range minima problem�

It is assumed that all input elements are distinct� If this is not the case than we can replace

the value of each input element ai� i �
� � � � � n� with the value ai � n� i� In addition� s is assumed

to be a power of �� If this is not the case then s can be modi�ed to be the nearest power of �

greater than s� These modi�cations do not change the complexity of the algorithms by more than

a constant factor�

��� Minimum

The following lemma and algorithm demonstrate a basic step which appears �in di�erent forms	 in

some of the algorithms below�

Lemma ��� Let A � �a�� � � � � an	 be an array of elements drawn from the domain �
��s�� s � n�

The algorithm below �nds the minimum in A in O�
	 time using n log s processors and O�s	 space�

We �rst describe the algorithm and then discuss some implementation details�

Step � �Data Structure�� Build a complete binary tree Ts whose leaves are the numbers �
��s�� We

assume that the space allocated for the tree is initialized to zero� It will be shown at the end

of the algorithm how to get rid of this assumption�

Step 	 �Processor Allocation�� Allocate log s processors to each element ai�
 � i � n� a processor

for each ancestor of the leaf in Ts whose value is ai�

Step � �Marking�� Each processor assigned to the ancestor v of a leaf ai writes $
� in a variable

attached to v� for i �
� � � � � n�

Step � �Information Gathering�� The log s processors of each ai are assigned to the ancestors of

the leaf ai as in Step �� A processor that is assigned to ancestor v of ai which is a right sibling

reads the variable of the left sibling of v� Element ai is the minimum in A if and only if none

of its processors has read a $
�� The minimum can therefore be found in constant time by

simple OR computations�

Implementation� To implement Steps 	�� � it is possible to use an algorithm in ����� which for a

node v in a complete binary tree and some �� computes the ancestor of v in level � of the tree in

constant time� To handle the case that the input is not initialized to zero we add a step between

Step � and Step � that initializes to zero only those locations which are being read in Step �� The

complexity of such a step is the same as that of Step ��

Lemma ��
 follows�

�

Lemma ��� There is an algorithm for �nding the minimum that runs in O�
	 �more precisely�

O��� 	� time using n log s processors and O�ns�	 space for any constant �� � � � �
�

The algorithm that realizes the lemma is based on adding a variant of the radix sort idea� where

the most signi�cant bits are handled �rst� to the algorithm above� Such a variant was given for the

priority algorithm for pre�x minima and can be found in the appendix of ��� or in ���� It uses

only the assumptions of common and can thus be adapted to prove the lemma� �More precisely�

the variant in ��� solves a problem which is shown to be reducible to the pre�x minima problem

within our complexity bounds on the common�	

��� Pre�x Minima and All Nearest Smaller Values

Lemma ��� Let A � �a�� � � � � an	 be an array of elements drawn from the domain �
��s�� s � n�

The algorithm below solves both the pre�x
minima and the ansv problems with respect to A in O�
	

time using n log� s processors and O�ns� log s	 space for any constant �� � � � �
�

Step � �Data Structure�� Build a full binary tree TA whose leaves are the elements of A�

Step 	 �Processor Allocation�� Allocate log� s processors to each leaf ai of TA� log� s processors

for each ancestor of leaf ai in TA �note that ai has logn � log s ancestors	�

Step � �Minima Computation�� Find the minimum over the leaves of the subtree rooted at each

internal node v of TA� using the algorithm of Lemma ���� Given v� let r denote the number

of such leaves� Then this step with respect to v uses r log s processors� which is less than

the number of processors allocated to v� it takes O�
	 time and uses O�rs�	 space� The total

space used is O�ns� log s	�

Step � �Pre�x
 and Su�x
Minima Computation�� For each internal node v compute pre�x minima

and su�x minima over an array L�v	 that contains the leaves of v�

Consider a leaf l of �the subtree rooted at	 v� and the path of nodes from l to v� Let LSv�l	 be

the set of left siblings of the nodes on the path� The leaves in arrays L�u	 of nodes u in LSv�l	�

together with l itself� represent exactly all the leaves in the pre�x of l in L�v	� Therefore�

the minimum over the pre�x of l in L�v	 is the minimum over fmin�L�u		 � u � LSv�l	� lg�
Since jLSv�l	j � log n we can �nd this minimum in constant time with log� n processors �out

of the log� s processors allocated to l at node u	 using the algorithm of ����� The space used

with respect to the leaf l at node u for this log n�size minimum��nding problem is O�logn	�

Over all the leaves and all the levels of the tree the space needed is O�n log� n	 which is

O�ns� log s	�

Note that the pre�x minima computed with respect to the root is actually pre�x minima with

respect to A� This concludes the computation of pre�x minima�

The next steps complete the computation of ansv�

�

Step � �Find the Nodes whose Subtrees Contain the Matches�� Each leaf ai �nds its lowest ancestor

that has the left match of ai among its descendants� Finding the lowest ancestor that has the

right match of ai is similar� For this consider the �at most	 logn nodes which are left siblings

of the ancestors of ai� Among these log n nodes� we �nd the lowest node whose minimum is

smaller than ai� This problem can be restated as the problem of �nding the leftmost $
� in

an array of log n ��s and
�s and can therefore be done in O�
	 time with log n processors

and O�logn	 space using the algorithm of �
��� The parent of this node is the lowest ancestor

of ai that has ai�s left match among its descendants� The overall space used in this step is

O�n logn	 which is O�ns� log s	�

Step � �Merge Left Child�s Su�x Minima with Right Child�s Pre�x Minima�� For each node v

do the following� Let u and w be the left and right children of v� respectively� and let Su

and Pw denote their respective su�x minima and pre�x minima �computed in Step � above	�

We merge Su �which is a non�decreasing array	 with the reverse of array Pw �Pw itself is

non�increasing	 into an array A�u� w	� Denoting by r the number of leaves of the subtree

rooted at v� this can be done in O�
	 time with r log s processors �which is the number of

processors allocated to v	 and O�rs�	 space� using the integer merging algorithm of ���� The

overall space used is O�ns� log s	�

Step � �Find Left and Right Matches for all Elements�� Let v be the lowest ancestor of ai that has

ai�s left match among its descendants� let u and w be its left and right children� respectively�

and let r� be the number of leaves in each of the subtrees rooted at u and w� The element ai

must be a leaf of w since otherwise both ai and its left match are in u and v is not the lowest

ancestor containing them� Let j be the index of ai in Pw �which is also its index in L�w		�

and let k be the index of ai in A�u� w	� Then� out of the �rst k�
 elements of A�u� w	 �these

k�
 elements constitute the elements of L�u	 and P �w	 that are smaller than ai	� r�� j are

elements of w� and thus �k�
	� �r� � j	 � k � r� � j �
 are elements of u� It follows that

the �k � r� � j �
	th element of u is the left match of ai� Finding the right match of ai is

similar�

Lemma ��� follows�

��� Range Minima

Lemma ��� Let A � �a�� � � � � an	 be an array of elements drawn from the domain �
��s�� The

preprocessing algorithm below solves the range minima problem with respect to A in O�
	 time using

n log� s processors and O�ns� log s	 space for any given �� � � � �
� Following this preprocessing�

each range minimum query can be answered in constant time by one processor�

�

����� Preprocessing

Step � �Data Structure�� Build a full binary tree TA whose leaves are the elements of A�

Step 	 �Processor Allocation�� Allocate log� s processors to each leaf ai of TA� log� s processors

for each ancestor of ai in TA �note that ai has logn � log s ancestors	�

Step � �Pre�x
 and Su�x
Minima Computation�� For each internal node v compute pre�x minima

and su�x minima over an array L�v	 that contains the leaves of the subtree rooted at v�

This is done using steps � and � in the algorithm of Lemma ���� The processor and space

complexities are O�n log� s	 and O�ns� log s	 respectively�

����� Query Retrieval

To answer a query MIN�i� j	 we �nd the lowest common ancestor v of ai and aj � MIN�i� j	 is then

the minimum between the following two minima� �
	 the minimum over the su�x of ai in the array

of leaves of the subtree rooted at the left child of v� and ��	 the minimum over the pre�x of aj in the

array of leaves of the subtree rooted at the right child of v� These two minima are computed in the

preprocessing algorithm above� We note that since TA is a full binary tree� the computation of the

lowest common ancestor of ai and aj can be done in O�
	 time using a single processor �see ����	�

Lemma ��� follows�

� Optimal Algorithms

We present optimal algorithms for the ansv problem and the range�minima problem� Since range

minima is a generalization of pre�x minima� this also implies optimal algorithms for the problems

of �nding the minimum and pre�x minima�

��� All Nearest Smaller Values

We divide the input into n� log� s subarrays of size log� s each and apply the optimal doubly loga�

rithmic ansv algorithm of ��� to each subarray� This takes O�log log log s	 time using n� log log log s

processors� We now solve the ansv problem with respect to an array of n� log� s minima� one min�

imum from each subarray� This is done in O�
	 time using n processors and O�ns�� log� s	 space

using Lemma ��� and can thus be implemented in O�log log log s	 time using n� log log log s pro�

cessors and O�ns�	 space� Finally� using this data we reduce� in O�
	 time� the problem of �nding

nearest smaller values for all elements into �at most	 �n� log� s merging problems each of size

� log� s� The details of this reduction are given in ��� �pages ��

���	 and are thus omitted from

this manuscript� �In ��� the subarrays are of size logn� but the same details work also for subar�

rays of size � log� s�	 We solve each such merging problem using the optimal doubly�logarithmic

�

algorithm for merging of ����� This takes O�log log log s	 time using log� s� log log log s processors

for each merging problem and O�log log log s	 time using n� log log log s processors overall�

����� Triangulating a monotone polygon

A mononote polygonal chain consists of a series of vertices Q � �q�� � � � � qm	� so that for all i�

i �
� � � �m�
� there is an edge between qi and qi��� and q�� � � � � qm are in increasing �or decreasing	

order by the x�coordinate� A monotone polygon is a �closed	 non�intersecting polygon composed of

two monotone polygonal chains� the upper and lower chains� We assume without loss of generality

that the upper chain goes from the vertex with minimum x�coordinate to the vertex with maximum

x�coordinate� A one
sided monotone polygon �OSMP	 is a monotone polygon whose upper �or

lower	 chain is a straight line�

In ��� an optimal O�log log n	 time algorithm is given for triangulating a monotone polygon�

The algorithm has two stages�

�I	 Merge the upper and lower chains of the polygon� This reduces the problem to that of trian�

gulating �possibly many	 OSMPs�

�II	 Triangulate each OSMP using an algorithm for ansv�

We perform Stage �I	 using the optimal triply�logarithmic merging algorithm of ���� Stage �II	

is performed using the optimal triply�logarithmic ansv algorithm above�

We conclude�

Theorem � A monotone polygon whose coordinates are taken from the domain �
��s�� s � n� can

be triangulated in O�log log log s	 time using an optimal number of processors and O�ns�	 space�

��� Range Minima

We divide the input into n� log� s subarrays of size log� s each and preprocess each subarray so

that range�minima queries within the subarray can be answered in O�
	 time� This can be done

using the optimal doubly logarithmic range�minima algorithm of ��� and takes O�log log log s	 time

using n� log log log s processors and linear space for all subarrays� Next we apply the algorithm of

Lemma ��� to an array of n� log� s minima� a minimum from each subarray� This takes O�
	 time

using n processors and O�ns�	 space and enables answering a range minimum query with respect

to this array in O�
	 time� It is easy to see that using this data each range minimum query can

be answered in constant time� A range minimum query within a subarray can be answered using

the preprocessing done with respect to the subarray� A range minimum between subarrays can be

answered using the preprocessing done to the n log� s minima�

�

� The Lower Bound

The lower bound given here follows the general outlines of other pram lower bounds �
��
�� �
� ����

The input to a pram will be an n�tuple of positive integers �x�� x�� � � � � xn	� where xi is drawn from

the domain �
��s� and is initially stored in the local memory of processor Pi� �Since memory

is unbounded� this is equivalent to the situation where the input variables are stored in shared

memory� one to a cell�	 The output of the pram will be in the local memory of processor P� at

time T �

One step of a pram consists of a parallel write followed by a parallel read� Each processor of

the pram is an unbounded state machine� the actions �where to write� what to write� where to

read	 of that processor during step t are functions of the state � the processor is in at the beginning

of step t� and the state of the processor at the beginning of step t �
 is a function of � and the

value read�

It is useful to slightly modify the priority pram� We disallow overwriting of memory
 that

is� a cell may be written into only once� To compensate� we allow each processor to simultaneously

read t �
 cells at step t� providing that those cells� if they were written into at all� were written

into at steps
� �� � � � � t �
 respectively� One can prove easily �see �
��	 that for in�nite memory�

this does not decrease the power of the pram� This is a technical convenience that makes the proof

slightly easier�

Theorem � Any n
processor priority crcw pram requires ��log log n	 steps to �nd the maxi

mum of n numbers in the domain �
��s�� when s � ��
c� logn log logn

� for a constant c� speci�ed by the

proof of the theorem�

Proof� Given an n�processor priority crcw pram algorithm that claims to solve the maximum

problem� we proceed to construct a set of allowable! inputs for each step� This set is chosen to

restrict the behavior of the machine so that its state of knowledge can be easily described� As long as

the set of allowable inputs for step t is su�ciently rich� we can show �based on our characterization

of the state of knowledge of the machine	 that there exists an allowable input on which the machine

cannot answer correctly after t steps� In order to fully describe the set of allowable inputs after

step t� we will require some additional sets� which are described below�

� A set Ut of free variables� These are variables to which no �xed value has been assigned� We

denote the total number of variables in Ut as vt� Intuitively� after t steps the algorithm has

succeeded in determining only that the maximum is one of the free variables� In other words�

the free variables are the candidates that the algorithm has to work with �whether or not the

algorithm is explicitly structured in this fashion	�

� A set St of positive integers� In any allowable input� the values given to the free variables

will have distinct values chosen from St�

�

� A set Mt of �xed variables� Any variable that is not free will be �xed� A �xed variable has

the same value in any allowable input� It is set to some value that is smaller than any value

in St� Intuitively� either the algorithm has determined that the variables in Mt are not the

maximum� or we as adversary have given that information away�

Any input for which all the variables inMt have their assigned �xed values and all the variables

in Ut have values in St is an allowable input for step t� We can now state several invariants which

will be shown to hold by construction�

Invariant �� The state of each processor and each memory cell at each step up to and including

step t� considered over the domain of allowable inputs for step t� is a function of at most one

free variable� For a given processor or memory cell� this variable� if it exists� is the same over all

allowable inputs� We say that the processor or memory cell knows that variable�

Because of Invariant
� the choice of which cell processor Pi reads at a given step t �again�

considered over the domain of allowable inputs for step t	 is also a function of the one free variable

that Pi knows� This is called the read access function of Pi� A read access function should be

considered as a function of some variable z that can take on values from St� a processor uses

the read access function by substituting as an argument the value of the free variable it knows�

Similarly� the write access function of Pi �the choice of where the processor writes	 is a function of

that one free variable�

Invariant ���� For every step t� � t and over all allowable inputs� a processor either does not write

at step t� or always writes�

Invariant ���� Any read or write access function at step t�� considered as a function over St� is

either constant or

�

Invariant ���� Any two access functions �read or write	 used before or at step t are either identical�

or have disjoint ranges�

Given these invariants� if at any time there are at least two free variables in Ut and at least

vt �
 values in St� then the algorithm cannot answer after step t� This is because processor

cannot distinguish two cases� the case when the variable it knows is set to the second highest value

in St and all other free variables have lower values and the case when one other free variable is set

to the highest value in St� We must attempt to carry out the construction so as to keep the set of

free variables and the domain size as large as possible� When we can no longer maintain two free

variables� the construction will stop� yielding a lower bound on T � we can then extract an initial

value for s which allows the construction to continue for that many steps�

The proof proceeds by induction on t� For the base case� we set S� � f
� �� � � � � sg� U� � fx�� � � � �
xng� Mo � �� and v� � n� the invariants are trivially satis�ed� For the inductive step� suppose the

situation as described above holds through step t� We describe how to maintain the invariants by

de�ning Ut��� Mt��� and St��� Initially� let St�� � St� we will change St�� by removing values�

based on what the pram algorithm does at step t�
�

We will �nd it useful to borrow a technique from ��
�� Lemmas ��
 and ��� were used there

to restrict the manner in which processors may communicate with each other by restricting the

domain St��� The importance of the lemmas lies in the relatively small reduction in domain size�

Similar lemmas with greater reduction were given in �
���

Lemma ��� If f�� f�� � � � � fk are functions with common domain S� where jSj � k"qk��� then there

exists a subdomain S� of size q such that when f�� � � � � fk are restricted to S�� each function is either

constant or ����

Proof� A theorem of Erd�os and Rado ��
��	 states that in any family of at least �"k��� �not

necessarily di�erent	 sets of size at most �� there is a sun
ower formed by k sets� that is� a collection

of k sets whose pairwise intersection is equal to its intersection� With each element e � S� associate

the set of ordered pairs Ae � f�r� f	jf � ff�� � � � � fkg� f�e	 � rg� There are k"qk�� such sets� and

so there exists a sun#ower of size q among them�

Let the elements corresponding to the sets in the sun#ower be e�� e�� � � �eq� If we set S � �

fe�� e�� � � �eqg� the desired property is obtained� Consider an ordered pair �r� fi	 in the sun#ower�

If this pair is in the center of the sun#ower �that is� in all the sets Ae� e � S�	� it follows that

fi�e	 � r for all e � S �� and fi is constant over S
�� If �r� fi	 is in a petal �that is� it is in the set Aej

and in no other set	� then fi�ej	 � r but for no other ek does fi�ek	 � r� Since there was nothing

special about our choice of r� we conclude that fi is

 over S��

Let us de�ne the value of a write access function to be � if the processor does not wish to write�

and apply Lemma ��
 to the set of all read and write access functions used at step t �
� This

restricts St�� and ensures invariant ��� holds after step t �
� Remember that each processor uses

t read access functions and one write access function at step t �
� this is a total of k � n�t �
	

functions� We overestimate the domain reduction necessitated by Lemma ��
 by assuming an initial

domain size of �kq	k�� reduced to q� Once we have applied Lemma ��
 to a given f � if it is

�

then there is at most one value in St�� on which it does not write� We can remove that value from

St��� thereby ensuring that processors using f always write and that invariant ��
 holds� At this

point� then� the size of St�� is
s
���n�t������
t

n�t�
	
� n�t�
	�

Lemma ��� If f� g are two ��� functions with common domain S� jSj � �q� then there exists a

subdomain S� of size q such that f and g� restricted to S�� are either identical or have disjoint

ranges�

Proof� If f� g have the same value for q elements in S� then let S� be those elements� As a result�

f and g are identical when restricted to S �� Otherwise� remove all such elements from S� Form a

graph whose nodes are the elements of S� there is an edge between a and b if f�a	 � g�b	� This

graph consists of disjoint cycles and thus is ��colourable� choose any independent set of size q and

let S� be this set� It follows that f and g have disjoint ranges when restricted to S��

�

We apply Lemma ��� to all pairs consisting of one read or write access function used before step

t�
 and one function used at step t�
� There are n�t�
	�t��	�� functions in the �rst category

and n�t�
	 functions in the second category� each application reduces the size of St�� by a factor

of �� This ensures that invariant ��� holds after step t�
�

It remains to ensure that invariant
 holds after step t�
� There are two ways in which it can

be violated� if a cell that knows! one free variable �whose state is a non�constant function of that

variable	 is written into by a processor knowing another free variable� the state of that cell after

step t �
 may be a function of two free variables� Also� if a processor knowing one free variable

reads a cell knowing another free variable� the state of that processor may be a function of two free

variables�

Let us construct a graph whose nodes are the free variables� there is an edge between xi and xj

if a processor knowing xj learns something about xi �in the sense described above	� Each processor

can contribute at most t �
 edges to this graph� since it reads at most t cells and writes into at

most one cell at step t �
� Tur�an�s theorem ��� states that in any graph with v vertices and e

edges� there exists an independent set of size
v�

v � �e
� Hence in our graph there is an independent

set of size
v�t

vt � �n�t�
	
� v�t

�n�t�
	
�

If there are j variables not in this independent set� then we choose the j smallest values of St���

�x the variables to those values in an arbitrary fashion� and remove those values from St��� thus

ensuring invariant
� All invariants are now satis�ed� The resulting recurrence equations �slightly

simpli�ed	 are�

vt�� � v�t
�n�t���

st�� � s
��n�t�����
t

n�t�����t�����t���n�
� n�t�
	

It is now not di�cult to obtain the following inequalities by estimation� and to prove them using

induction on t �for n su�ciently large	�

vt � n

���t

st � sn
��t

�n�t

Since the process can continue as long as there are at least two free variables� the bound on vt

ensures T � �
� log logn� If the domain size after step T is to be at least n� then s need only be as

large as �n
� log logn

� ��
��logn log logn�

�

Corollary � No n
processor priority crcw pram algorithm for �nding the minimum of n num

bers drawn from the range �
 � � �s� can run in time less than �
� log log log s for all values of s�

�

Proof� The previous theorem showed a lower bound of T � �
� log logn for s � �n

� log logn
� A

simple calculation shows that T � �
� log log log s for n su�ciently large�

� Conclusions

We have shown that the minima� pre�x�minima� range�minima� and ansv problems� with input

elements taken from the integer domain �
��s�� s � n� can all be solved in O�log log log s	 time using

n� log log log s processors �optimal speedup	 on the common crcw pram� As an application� we

obtain an algorithm with the same bounds for the problem of triangulating a monotone polygon

whose coordinates are taken from the integer domain �
��s�� Our results were recently used by ���

to obtain O�log log log s	 time algorithms for values of s smaller than n�

We also gave a matching lower bound of ��log log log s	 for ��
c� logn log logn � s � ��

logc� n
� where

c� is a speci�c constant and c� an arbitrary constant� Thus� our algorithms cannot be improved

when expressed solely in terms of the domain size� This result is somewhat unsatisfying� however�

since for the given range of s� log log log s � ��log logn	� The lower bound is an advance over the

previously known bounds ����� which required larger domain sizes� but it would be preferable to

show our algorithms are tight for all values of s� particularly those below n� There is evidence�

however� that this is not the case� �
�� gave a technique which could be applied to �nd the minimum

of n integers from the range �
��nk� in O�k	 time on a common crcw pram� ��� gave an O�log� n	

time algorithm on priority for computing the pre�x�minima when s � O�n	� This shows that

t � ��log log log s	 does not give the correct tradeo� between domain size and computation time

for all values of s� More work is needed to discover upper and lower bounds for parallel minimum

computation that are tight for all s�

��� gives an algorithm for merging sorted lists of length n from the domain �
���n� in time ��n	�

where ��n	 is the very slowly growing functional inverse of Ackermann�s function� The technique

presented here does not seem to be powerful enough to deal with the problem of merging� since

�xing values very quickly constrains the adversary� The technique in �

� allows processors to learn

more than one variable� but is only good for moderately large �doubly exponential in n	 domains�

and its applicability to other problems remains unclear�

Acknowledgments

We would like to thank the anonymous referees for their careful reading of the paper and their

many comments� which helped to improve the presentation� We would also like to thank Dany

Breslauer for useful comments on an earlier version of the paper�

�

References

�
� A� Amir� G�M� Landau� and U� Vishkin� E�cient pattern matching with scaling� In Proc� �st

ACM
SIAM Symp� on Discrete Algorithms� pages ���
����
����

��� P� Beame and J� H�astad� Optimal bounds for decision problems on the CRCW PRAM� In

Proc� ��th ACM Symp� on Theory of Computing� pages ��
���
����

��� C� Berge� Graphs and Hypergraphs� North�Holland�
����

��� O� Berkman� Paradigms for very fast parallel algorithms� PhD thesis� Tel Aviv University� Tel

Aviv ������ Israel� August
��
�

��� O� Berkman� J� J�aJ�a� S� Krishnamurthy� R� Thurimella� and U� Vishkin� Top�bottom routing

around a rectangle is as easy as computing pre�x minima� SIAM J� of Computing� ����	����

����
����

��� O� Berkman and Y� Matias� Fast parallel algorithms for minimum and related problems with

small integer inputs� Parallel Processing Letters� ���	����
����
����

��� O� Berkman� Y� Matias� and U� Vishkin� Randomized range�maxima in nearly�constant parallel

time� Computational Complexity �����
����
����

��� O� Berkman� B� Schieber� and U� Vishkin� Optimal doubly logarithmic parallel algorithms

based on �nding all nearest smaller values� Journal of Algorithms�
�����
����
����

��� O� Berkman and U� Vishkin� On parallel integer merging� Information and Computation�

��������
����
����

�
�� R�B� Boppana� Optimal separations between concurrent�write parallel machines� In Proc� 	�st

ACM Symp� on Theory of Computing� pages ���
����
����

�

� J� Edmonds� Lower bounds with smaller domain size on concurrent write parallel machines�

In Proc� �th Annual IEEE Conference on Structure in Complexity Theory�
��
�

�
�� D� Eppstein and Z� Galil� Parallel algorithmic techniques for combinatorial computation� Ann�

Rev� Comput� Sci�� �����
����
����

�
�� P� Erd�os and R� Rado� Intersection theorems for systems of sets� J� London Math� Soc��

�����
���
����

�
�� F�E� Fich� F� Meyer auf der Heide� and A� Wigderson� Lower bounds for parallel random�access

machines with unbounded shared memory� In Advances in Computing Research� JAI Press�

����

�

�
�� F�E� Fich� P�L� Ragde� and A� Wigderson� Relations between concurrent�write models of

parallel computation �preliminary version	� In Proceedings �rd ACM Symp� on Principles of

Distributed Computing� pages
��

���
����

�
�� F�E� Fich� P�L� Ragde� and A� Wigderson� Simulations among concurrent�write PRAMs�

Algorithmica� ����
�
�
����

�
�� H�N� Gabow� J�L� Bentley� and R�E� Tarjan� Scaling and related techniques for geometry

problems� In Proc� ��th ACM Symp� on Theory of Computing� pages
��

���
����

�
�� M� Gereb�Graus and D� Krizanc� The complexity of parallel comparison merging� In Proc�

	�th IEEE Symp� on Foundations of Computer Science� pages
��
��
�
���� Also SIAM J�

Comput�� to appear�

�
�� J� Gil� Y� Matias� and U� Vishkin� Towards a theory of nearly constant time parallel algorithms�

In Proc� �	nd IEEE Symp� on Foundations of Computer Science� pages ���
�
�� October
��
�

���� M�T� Goodrich� Triangulating a polygon in parallel� Journal of Algorithms�
�����
��
�
����

��
� V� Grolmusz and P�L� Ragde� Incomparability in parallel computation� Discrete Applied

Mathematics� �����
���
����

���� D� Harel and R�E� Tarjan� Fast algorithms for �nding nearest common ancestors� SIAM

Journal on Computing�
���	����
����
����

���� J� J�aJ�a� Introduction to Parallel Algorithms� Addison�Wesley Publishing Company� Inc��
����

���� R�M� Karp and V� Ramachandran� Parallel algorithms for shared�memory machines� In J�

van Leeuwen� editor� Handbook of Theoretical Computer Science� volume A� pages ���
��
�

North�Holland� Amsterdam�
����

���� C�P� Kruskal� Searching� merging� and sorting in parallel computation� IEEE Trans� on Comp�

C�������
����
����

���� Y� Matias� Highly Parallel Randomized Algorithmics� PhD thesis� Tel Aviv University� Israel�

����

���� Y� Matias and U� Vishkin� Converting high probability into nearly�constant time�with appli�

cations to parallel hashing� In Proc� 	�rd ACM Symp� on Theory of Computing� pages ���
�
��

May
��
�

���� F� Meyer auf der Heide and A� Wigderson� The complexity of parallel sorting� In Proc� 	�th

IEEE Symp� on Foundations of Computer Science� pages ���
����
����

�

���� P�L� Ragde� W�L� Steiger� E� Szemer�edi� and A� Wigderson� The parallel complexity of element

distinctness is ��
p
logn	� SIAM Journal on Disceret Mathematics�
��	����
�
�� August
����

���� V� Ramachandran and U� Vishkin� E�cient parallel triconnectivity in logarithmic parallel

time� In Proc� �rd Aegean Workshop on Parallel Computing� Springer LNCS ���� pages ��

���
����

��
� J�H� Reif� editor� A Synthesis of Parallel Algorithms� Morgan�Kaufmann� San Mateo� CA�

����

���� R� Reischuk� Probabilistic parallel algorithms for sorting and selection� SIAM Journal on

Computing�
���	����
���� May
����

���� B� Schieber� Design and analysis of some parallel algorithms� PhD thesis� Dept� of Computer

Science� Tel Aviv Univ��
����

���� B� Schieber and U� Vishkin� On �nding lowest common ancestors� simpli�cation and paral�

lelization� SIAM Journal on Computing�
���	�
���

����
����

���� Y� Shiloach and U� Vishkin� Finding the maximum� merging� and sorting in a parallel compu�

tation model� Journal of Algorithms� ����

���
��
�

���� M� Snir� On parallel searching� SIAM Journal on Computing�
�����
����
����

���� L�G� Valiant� Parallelism in comparison problems� SIAM Journal on Computing� �����
����

����

���� U� Vishkin� Structural parallel algorithmics� In Proc� ��th Int� Colloquium on Automata

Languages and Programming� Springer LNCS ���� pages ���
����
��
�

�

