
��
Proceedings WAE���� Saarbr�ucken� Germany� August ������ ����

Ed	 Kurt Mehlhorn� pp	
����

Implementation and Experimental Evaluation of Flexible

Parsing for Dynamic Dictionary Based Data Compression

�extended abstract�

Yossi Matias �

Department of Computer Science� Tel�Aviv University� Tel�Aviv� ������ Israel�
and Bell Labs� Murray Hill� NJ� USA
e�mail� matias�math�tau�ac�il

Nasir Rajpoot �

Department of Computer Science� University of Warwick� Coventry� CV���AL� UK
e�mail� nasir�dcs�warwick�ac�uk

S�uleyman Cenk S� ahinalp
�

Department of Computer Science� University of Warwick� Coventry� CV���AL� UK�
and Center for BioInformatics� University of Pennsylvania� Philadelphia� PA� USA

e�mail� cenk�dcs�warwick�ac�uk

ABSTRACT

We report on the implementation and performance evaluation of greedy parsing with lookaheads

for dynamic dictionary compression� Speci�cally� we consider the greedy parsing with a single

step lookahead which we call Flexible Parsing �FP� as an alternative to the commonly used

greedy parsing �with no�lookaheads� scheme� Greedy parsing is the basis of most popular com�

pression programs including unix compress and gzip� however it does not necessarily achieve

optimality with regard to the dictionary construction scheme in use� Flexible parsing� however�

is optimal� i�e�� partitions any given input to the smallest number of phrases possible� for dictio�

nary construction schemes which satisfy the pre�x property throughout their execution� There

is an on�line linear time and space implementation of the FP scheme via the trie�reverse�trie

pair data structure �MS��	� In this paper� we introduce a more practical� randomized data struc�

ture to implement FP scheme whose expected theoretical performance matches the worst case

performance of the trie�reverse�trie�pair� We then report on the compression ratios achieved by

two FP based compression programs we implemented� We test our programs against compress

and gzip on various types of data on some of which we obtain up to
�� improvement�

�� Introduction

The size of data related to a wide range of applications is growing rapidly� Grand challenges
such as the human genome project involve very�large distributed databases of text documents�
whose e�ective storage and communication requires a major research and development e�ort� From
DNA and protein sequences to medical images �in which any loss of information content can not

�partly supported by Alon Fellowship
�supported by Quaid�e�Azam scholarship from the Government of Pakistan
�partly supported by NATO research grant CRG��
��
� and ESPRIT LTR Project no	 ���

 � ALCOM IT

Flexible Parsing for Dynamic Dictionary Based Data Compression 	

be tolerated� vital data sources that will shape the information infrastructure of the next century
require simple and e�cient tools for lossless data compression�

A �lossless� compression algorithm C reads input string T and computes an output string� T ��
whose representation is smaller than that of T � such that a corresponding decompression algo�
rithm C� can take T � as input and reconstruct T � The most common compression algorithms used
in practice are the dictionary schemes �a�k�a� parsing schemes �BCW�

� or textual substitution
schemes �Sto��
�� Such algorithms are based on maintaining a dictionary of strings that are called
phrases� and replacing substrings of an input text with pointers to identical phrases in the dictionary�
The task of partitioning the text into phrases is called parsing and the pointers replacing the phrases
are called codewords�

A dictionary can be constructed in static or dynamic fashion� In static schemes� the whole
dictionary is constructed before the input is compressed� Most practical compression algorithms�
however� use dynamic schemes� introduced by Ziv and Lempel �ZL��� ZL��
� in which the dictionary
is initially empty and is constructed incrementally� as the input is read� some of its substrings
are chosen as dictionary phrases themselves� The dictionary constructed by most dynamic schemes
�e�g�� �ZL��� ZL��� Wel��� Yok��
� satisfy the pre�x property for any input string� in any execution
step of the algorithm� for any given phrase in the dictionary� all its pre�xes are also phrases in the
dictionary�

In this paper we focus only on the the two most popular dictionary based compression methods�
LZ�� �ZL��
� its LZW variant �Wel��
� and LZ�� �ZL��
� A few interesting facts about LZ�� and
LZ���

� The LZW scheme is the basis for unix compress program� gif image compression format� and
is used in the most popular fax and modem standards �V��bis�� LZ�� algorithm is the basis
for all zip variants�
Both algorithms� ��� are asymptotically optimal in the information theoretic sense� ��� are
e�cient� with O��� processing time per input character� ��� require a single pass over the
input� and ��� can be applied on�line�

� LZ�� �and the LZW� can be implemented by the use of simple trie data structure with space
complexity proportional to the number of codewords in the output� In contrast� a linear time
implementation of the LZ�� builds a more complex su�x tree in an on�line fashion� whose
space complexity is proportional to the size of the input text �RPE��
�

� It is recently shown that LZ�� �as well as LZW� approaches the asymptotic optimality faster
than LZ��� the average number of bits output by LZ�� or LZW� for the �rst n characters of an
input string created by an i�i�d� source is only O��� logn� more than its entropy �JS�	� LS�	
� A
similar result for more general� uni�lar� sources has been obtained by Savari �Sav��
 � for the av�
erage case� For the LZ�� algorithm� this redundancy is as much as O�log logn� logn� �Wyn�	
�
Also� for low entropy strings� the worst case compression ratio obtained by the LZ�� algorithm
is better �by a factor of ���� than that of the LZ�� algorithm �KM��
�

� The practical performances of these algorithms vary however depending on the application�
For example the LZ�� algorithm may perform better for English text� and the LZ�� algorithm
may perform better for binary data� or DNA sequences� �

�A simple counting argument shows that there cannot exist a single dictionary construction scheme that is superior

to other schemes for all inputs	 If a compression algorithm performs well for one set of input strings� it is likely that

it will not perform well for others	 The advantage of one dictionary construction scheme over another can only

apply with regard to restricted classes of input texts	 Indeed� numerous schemes have been proposed in the scienti�c

literature and implemented in software products� and it is expected that many more will be considered in the future	

Flexible Parsing for Dynamic Dictionary Based Data Compression 	�

Almost all dynamic dictionary based algorithms in the literature including the Lempel�Ziv meth�
ods ��ZL��� ZL��� Wel��� MW�	� Yok��
� use greedy parsing� which takes the uncompressed su�x
of the input and parses its longest pre�x� which is a phrase in the dictionary� The next substring to
be parsed starts where the currently parsed substring ends� Greedy parsing is fast and can usually
be applied on�line� and is hence very suitable for communications applications� However� greedy
parsing can be far from optimal for dynamic dictionary construction schemes �MS��
� for the LZW
dictionary method� there are strings T which can be �optimally� parsed to somem phrases� for which
the greedy parsing obtains ��m���� phrases�

For static dictionaries �as well as for the o��line version of the dynamic dictionary compression
problem�� there are a number of linear time algorithms that achieve optimal parsing of an input
string� provided that the dictionary satis�es the pre�x property throughout the execution of the
algorithm �see� for example� �FM�	
�� More recently� in �MS��
� it was shown that it is possible to
implement the one�step lookahead greedy parsing �or shortly �exible parsing �FP� for the on�line�
dynamic problem� in amortized O��� per character� This implementation uses space proportional to
the number of output codewords� It is demonstrated that FP is optimal for dictionaries satisfying the
pre�x property in every execution step of the algorithm� it partitions any input string to minimum
number of phrases possible while constructing the same dictionary� �For instance� the algorithm
using the LZW dictionary together with �exible parsing inserts to the dictionary the exact same
phrases as would the original LZW algorithm with greedy parsing�� The implementation is based
on a rather simple data structure� the trie�reverse�trie�pair� which has similar properties with the
simple trie data structure used for greedy parsing� It is hence expected that FP would improve over
greedy parsing without being penalized for speed or space�

In this study� we report an experimental evaluation of FP in the context of LZW dictionary
construction scheme� We implement compression programs based on FP �the implementations
are available on the WWW �Sou
�� and study to what extent the theoretical expectations hold on
�random� or �real�life� data� In particular� we consider the following questions�

�� Is it possible to obtain a new dictionary construction scheme based on FP� If yes� how would
it perform in comparison to FP with LZW dictionary construction or the LZW algorithm
itself � both asymptotically and in practice� �Note that the general optimality property of FP
does not apply once the dictionary construction is changed��

�� The trie�reverse�trie�pair is a pointer based data structure whose performance is likely to su�er
from pointer jumps in a multi�layer memory hierarchy� Are there alternative data structures to
obtain more e�cient implementations of FP � in particular can we employ hashing to support
dictionary lookups without all the pointer jumps�

�� What are the sizes of random data on which the better average case asymptotic properties of
the LZ�� over LZ�� start to show up�

�� Does the worst case optimality of FP translate into improvement over greedy parsing on the
average case�

	� Do better asymptotic properties of LZW in comparison to LZ��� and FP in comparison to
LZW show up in any practical domain of importance� Speci�cally how well does FP perform
on DNA�protein sequences and medical images�

We address each one of these issues as follows�

�� We consider a data compression algorithm based on FP � which constructs the dictionary by
inserting it the concatenation of each of the substrings parsed with the character following them

Flexible Parsing for Dynamic Dictionary Based Data Compression 	�

� as in the case of LZW algorithm� We will refer this algorithm as the FP�based�alternative�
dictionary�LZW algorithm� or FPA� The dictionary built by FPA on any input still satis�es
the pre�x property in every execution step of the algorithm� In our experiments we consider
the implementation of FPA as well as the implementation of the compression algorithm which
builds the same dictionary as LZW� but uses FP for output generation which we refer as
LZW�FP� We compare the compression ratios obtained by LZW�FP and FPA with that of
unix compress and gzip�

�� We present an on�line data structure based on Karp�Rabin �ngerprints �KR��
� which imple�
ments both LZW�FP and FPA in expected O��� time per character� by using space propor�
tional to the size of the codewords in the output� We are still in the process of improving the
e�ciency of our implementations� we leave to report our timing results to the full version of
this paper� We note� however� that our algorithms run about ��	 times slower than compress

which is the fastest among all algorithms� both during compression and decompression� We
also note that all the software� documentation� and detailed experimental results available on
the WWW �Sou
� The readers are encouraged to check updates to the web site and try our
software package�

�� We �rst demonstrate our tests on pseudorandom �non�uniform� i�i�d� bit strings with a number
of bit probabilities� We observe that the redundancy in the output of each of the four programs
we consider approach to the expected asymptotic behavior very fast � requiring less than �KB
for each of the di�erent distributions� and better asymptotic properties of LZW in comparison
to LZ�� can be very visible� For �les of size � �MB� compress can improve over gzip up
to �
� in compression achieved� A next step in our experiments will involve pseudo�random
sources of limited markovian order�

�� We report on our experimens with several �real�life� data �les as well� those include DNA�protein
sequences� medical images� and �les from the Calgary corpus and Canterbury corpus bench�
mark suites� These results suggest that both LZW�FP and FPA are superior to LZW �unix
compress� in compression attained� up to �
�� We also observe that both LZW�FP and FPA
are superior to gzip for most non�textual data and all types of data of size more than �MB�
For pseudo�random strings and DNA sequences the improvement is up to �	�� On shorter
text �les� gzip is still the champion� which is followed by FPA and LZW�FP�

�� The Compression Algorithms

In this section we describe how each of the algorithms of our consideration� i�e�� ��� the LZ��
algorithm �the basis for gzip�� ��� the LZW variant �the basis for UNIX compress� of the LZ��
algorithm� ��� LZW�FP algorithm and ��� FPA algorithm� work� Each of the algorithms �t in a
general framework that we describe below�

We denote a compression algorithm by C� and its corresponding decompression algorithm by
C�� The input to C is a string T � of n characters� chosen from a constant size alphabet �� in our
experiments � is either ascii or is f
� �g� We denote by T �i
� the ith character of T �� � i � n�� and
by T �i � j
 the substring which begins at T �i
 and ends at T �j
� notice that T � T �� � n
�

The compression algorithm C compresses the input by reading the input characters from left
to right �i�e� from T ��
 to T �n
� and by partitioning it into substrings which are called blocks�
Each block is replaced by a corresponding label that we call a codeword� We denote the jth block
by T �bj � bj�� � �
� or shortly Tj � where b� � �� The output of C� hence� consists of codewords
C��
� C��
� � � � � C�k
 for some k� which are the codewords of blocks T�� T�� � � � � Tk respectively�

Flexible Parsing for Dynamic Dictionary Based Data Compression 	�

The algorithm C maintains a dynamic set of substrings called the dictionary� D� Initially� D con�
sists of all one�character substrings possible� The codewords of such substrings are their characters
themselves� As the input T is read� C adds some of its substrings to D and assigns them unique
codewords� We call such substrings of T phrases of D� Each block Tj is identical to a phrase in D�
hence C achieves compression by replacing substrings of T with pointers to their earlier occurrences
in T �

The decompression algorithm C� that corresponds to C� takes C�� � k
 as input and computes
T �� � n
 by replacing each C�j
 by its corresponding block Tj � Because the codeword C�j
 is a
function of T �� � bj � �
 only� the decompression can be correctly performed in an inductive fashion�

Below� we provide detailed descriptions of each of the compression algorithms�

Description of the LZW Algorithm� The LZW algorithm reads the input characters from left
to right while inserting in D all substrings of the form T �bm � bm��
� Hence the phrases of LZW are
the substrings obtained by concatenating the blocks of T with the next character following them�
together with all possible substrings of size one� The codeword of the phrase T �bm � bm��
 is the
integer j�j�m� where j�j is the size of the alphabet �� Thus� the codewords of substrings do not
change in LZW algorithm� LZW uses greedy parsing as well� the mth block Tm is recursively de�ned
as the longest substring which is in D just before C reads T �bm�� � �
� Hence� no two phrases can
be identical in the LZW algorithm�

Description of the LZW�FP Algorithm� The LZW�FP algorithm reads the input characters
from left to right while inserting in D all substrings of the form T �b�m � b�m��
� where b

�
m denotes the

beginning location of block m if the compression algorithm used were LZW� Hence for dictionary
construction purposes LZW�FP emulates LZW� for any input string LZW and LZW�FP build
identical dictionaries� The output generated by these two algorithms however are quite di�erent�
The codeword of the phrase T �b�m � b�m��
 is the integer j�j�m� where j�j is the size of the alphabet ��
LZW�FP uses �exible parsing� intuitively� the mth block Tm is recursively de�ned as the substring
which results in the longest advancement in iteration m � �� More precisely� let the function f be
de�ned on the characters of T such that f�i� � � where T �i � �
 is the longest substring starting at
T �i
� which is in D just before C reads T ��
� Then� given bm� the integer bm�� is recursively de�ned
as the integer � for which f��� is the maximum among all � such that T �bm � � � �
 is in D just
before C reads T ��� �
�

We demonstrate how the execution of the LZW and LZW�FP algorithms di�er in the �gure
below�

0354210

baaabaabaabababa

a b a b a b a a b a a b a a a b

0 1 2 4 4

LZWFP parsing

LZWFP Output:

Input:

LZW Output:

Input:

LZW parsing

5 2

Figure
� Comparsion of FP and greedy parsing when used together with the LZW dictionary construction
method� on the input string T � a� b� a� b� a� b� a� a� b� a� a� b� a� a� a� b�

Flexible Parsing for Dynamic Dictionary Based Data Compression 	�

Description of the FPA Algorithm� The FPA algorithm reads the input characters from left
to right while inserting in D all substrings of the form T �bm � f�bm� � �
� where the function f is
as described in LZW�FP algorithm� Hence for almost all input strings� FPA constructs an entirely
di�erent dictionary with that of LZW�FP� The codeword of the phrase T �bm � f�bm� � �
 is the
integer j�j�m� where j�j is the size of the alphabet �� FPA again uses �exible parsing� given bm�
the integer bm�� is recursively de�ned as the integer � for which f��� is the maximum among all �
such that T �bm � �� �
 is in D�

Description of the LZ�� Algorithm� The LZ��� algorithm reads the input characters from
left to right while inserting all its substrings in D� In other words� at the instance it reads T �i
� all
possible substrings of the form T �j � �
� j � � � i are in D� together with all substrings of size one�
The codeword of the substring T �j � �
� is the ��tuple� �i� j� �� j ���� where the �rst entry denotes
the relative location of T �j � �
� and the second entry denotes its size� LZ�� uses greedy parsing� the
mth block Tm � T �bm � bm�� � �
 is recursively de�ned as the longest substring which is in D just
before C reads T �bm�� � �
�

�� Data Structures and Implementations of Algorithms

In this section we describe both the trie�reverse�trie data structure� and the new �ngerprints
based data structure for e�cient on�line implementations of the LZW�FP� and FPA methods� The
trie�reverse�trie pair guarantees a worst case linear running time for both algorithms as described
in �MS��
�� The new data structure based on �ngerprints �KR��
� is randomized� and guarantees
expected linear running time for any input�

The two main operations to be supported by these data structures are ��� insert a phrase to D
��� search for a phrase� i�e�� given a substring S� check whether it is in D and return a pointer� The
standard data structure used in many compression algorithms including LZW� the compressed trie
T supports both operations in time proportional to jSj� A compressed trie is a rooted tree with the
following properties� ��� each node with the exception of the root represents a dictionary phrase� ���
each edge is labeled with a substring of characters� ��� the �rst characters of two sibling edges can
not be identical� ��� the concatenation of the substrings on a path of edges from the root to a given
node is the dictionary phrase represented by that node� �	� each node is labeled by the codeword
corresponding to its phrase� Dictionaries with pre�x properties� such as the ones used in LZW and
LZ�� algorithms� build a regular trie rather than a compressed one� The only di�erence is that in a
regular trie the substrings of all edges are one character long�

In our data structures� inserting a phrase S to D takes O�jSj� time as in the case of a trie�
Similarly� searching S takes O�jSj� time if no information about substring S is provided� However�
once it is known that S is in D� searching strings obtained by concatenating or deleting a character
to�from both ends of S takes only O��� time� More precisely� our data structures support two
operations extend and contract in O��� time� Given a phrase S in D� the operation extend�S� a� for
a given character a� �nds out whether the concatenation of S and a is a phrase in D� Similarly� the
operation contract�S�� �nds out whether the su�x S�� � jSj
 is in D� Notice that such operations
can be performed in a su�x tree� if the phrases in D are all the su�xes of a given string as in the
case of the LZ�� algorithm �RPE��
� For arbitrary dictionaries �such as the ones built by LZW� our
data structures are unique in supporting contract and extend operations in O��� time� and insertion
operation in time linear with the size of the phrase� while using O�jDj� space� where jDj is the
number of phrases in D�

Flexible Parsing for Dynamic Dictionary Based Data Compression 		

Trie�reverse�trie�pair data structure� Our �rst data structure builds the trie� T � of phrases
as described above� In addition to T � it also constructs T r� the compressed trie of the reverses
of all phrases inserted in the T � Given a string S � s�� s�� � � � � sn� its reverse Sr is the string
sn� sn��� � � � � s�� s�� Therefore for each node v in T � there is a corresponding node vr in T r which
represents the reverse of the phrase represented by v� As in the case of the T alone� the insertion of
a phrase S to this data structure takes O�jSj� time� Given a dictionary phrase S� and the node u
which represents S in T � one can �nd out whether the substring obtained by concatenating S with
any character a in is D� by checking out if there is an edge from u with corresponding character a�
hence extend operation takes O��� time� Similarly the contract operation takes O��� time by going
from u to u�� the node representing reverse of S in T r� and checking if the parent of u� represents
S�� � jSj
r�

Fingerprints based data structure� Our second data structure is based on building a hash
table H of size p� a suitably large prime number� Given a phrase S � S�� � jSj
� its location in H
is computed by the function h� where h�S� � �s��
j�jjSj � s��
j�jjSj�� � � � �� s�jSj
� mod p� where
s�i
 denotes the lexicographic order of S�i
 in � �KR��
� Clearly� once the values of j�jk mod p are
calculated for all k up to the maximum phrase size� computation of h�S�� takes O�jSj� time� By
taking p su�ciently large� one can decrease the probability of a collision on a hash value to some
arbitrarily small � value� thus the average running time of an insertion would be O�jSj� as well� Given
the hash value h�S� of a string� the hash value of its extension by any character a can be calculated
by h�Sa� � �h�S�j�j � lex�a�� mod p� where lex�a� is the lexicographic order of a in �� Similarly�
the hash value of its su�x S�� � jSj
 can be calculated by h�S�� � jSj
� � �h�S� � s��
j�jjSj� mod p�
Both operations take O��� time�

In order to verify if the hash table entry h�S� includes S in O��� time we ��� give unique labels
to each of the phrases in D� and ��� in each phrase S in H � store the label of the su�x S�� � jSj

and the label of the pre�x S�� � jSj � �
� The label of newly inserted phrase can be jDj� the size of
the dictionary� This enables both extend and contract operations to be performed in O��� expected
time� suppose the hash value of a given string S is hS � and the label of S is �� To extend S with
character a� we �rst compute from hS� the hash value hSa of the string Sa� Among the phrases
whose hash value is hSa� the one whose pre�x label matches the label of S gives the result of the
extend operation� To contract S� we �rst compute the hash value hS� of the string S� � S�� � jSj
�
Among the phrases whose hash value is hS� � the one whose label matches the su�x label of S gives
the result of the extend operation� Therefore� both extend and contract operations take expected
O��� time�

Inserting a phrase in this data structure can be performed as follows� An insert operation is done
only after an extend operation on some phrase S �which is in D� with some character a� Hence�
when inserting the phrase Sa in D its pre�x label is already known� the label of S� Once it is
decided that Sa is going to be inserted� we can spend O�jSj��� time to compute the su�x label of
Sa� In case the su�x S�� � jSj
a is not a phrase in D� we temporarily insert an entry for S�� � jSj
a
in the hash table� This entry is then �lled up when S�� � jSj
 is actually inserted in D� Clearly� the
insertion operation for a phrase R and all its pre�xes takes O�jRj� expected time�

A linear time implementation of LZW�FP� For any input T LZW�FP inserts to D the
same phrases with LZW� The running time for insertion in both LZW and LZW�FP �via the data
structures described above� are the same� hence the total time needed to insert all phrases in LZW�
FP should be identical to that of LZW� which is linear with the input size� Parsing with FP consists
of a series of extend and contract operations� We remind that� ��� the function f on characters of
T is described as f�i� � � where T �i � �
 is the longest substring starting at T �i
� which is in D� ���
given bm� the integer bm�� is inductively de�ned as the integer � for which f��� is the maximum

Flexible Parsing for Dynamic Dictionary Based Data Compression 	

among all � such that T �bm � � � �
 is in D� In order to compute bm��� we inductively assume
that f�bm� is already computed� Clearly S � T �bm � f�bm�
 is in D and S� � T �bm � f�bm� � �

is not in D� We then contract S by i characters� until S� � T �bm � i � f�bm� � �
 is in D� Then
we proceed with extensions to compute f�bm � i�� After subsequent contract and extends we stop
once bm � i � f�bm�� The last value of i at which we started our �nal round of contracts is the
value bm��� Notice that each character in T participates to exactly one extend and one contract
operation� each of which takes O��� time via the data structures described above� Hence the total
running time for the algorithm is O�n��

A linear time implementation of FPA� Parsing in FPA is done identical to LZW�FP and
hence takes O�n� time in total� The phrases inserted in D are of the form T �bm � f�bm� � �
�
Because in parsing step m� the phrase T �bm � f�bm�
 is already searched for� it takes only O��� time
per phrase to extend it via our data structures� Hence the total running time for insertions is O�n�
as well�

Linear time implementations of decompression algorithms for LZW�FP and FPA� The
decompression algorithms for both methods simply emulate their corresponding compression algo�
rithms hence run in O�n� time�

�� The Experiments

In this section we describe in detail the data sets we used� and discuss our test results testing
how well our theoretical expectations were supported�

�	
	 The test programs

We used gzip� compress� LZW�FP and FPA programs for our experiments� The gzip and
compress programs are standard features of unix operating system� In our LZW�FP implemen�
tation we limited the dictionary size to ��� phrases� and reset it when it was full as in the case of
compress� We experimented with two versions of FPA� one whose dictionary was limited to ���

phrases� and the other with ��� phrases�

�	�	 The data sets

Our data sets come from three sources� ��� Data obtained via unix drand���� pseudorandom
number generator� ��� DNA and protein sequences provided by Center for BioInformatics� University
of Pennsylvania and CT and MR scans provided by the St� Thomas Hospital� UK �Sou
� ��� Text
�les from two data compression benchmark suites� the new Canterbury corpus and the commonly
used Calgary corpus �Sou
�

The �rst data set was designed to test the theoretical convergence properties of the redundancy in
the output of the algorithms and measure the constants involved� The second data set was designed
to measure the performance of our algorithms for emerging bio�medical applications where no loss of
information in data can be tolerated� Finally the third data set was chosen to demonstrate whether
our algorithms are competitive with others in compressing text�

Speci�cally� the �rst data set includes three binary �les generated by the unix drand���� func�
tion� The data distribution is i�i�d� with bit probabilities ���
�� �
��� ���
�� �
��� and ���

����
�
�� The second data set includes two sets of human DNA sequences from chromosome ��
�dna
� dna��� one MR �magnetic resonance� image of human �female� breast in uncompressed pgm

format in ASCII �mr	pgm�� and one CT �computerized tomography� scan of a fractured human hip

Flexible Parsing for Dynamic Dictionary Based Data Compression 	�

ct	pgm in uncompressed pgm format in ASCII �Sou
� The third set includes the complete Calgary
corpus� which is the most popular benchmark suite for lossless compression� It includes a bibliog�
raphy �le �bib�� two complete books �book
� book��� two binary �les �geo� pic�� source codes in c�

lisp� pascal �progc� progl� progp�� and the transcript of a login session �trans�� The third set also
also includes all �les of size � �MB from the new Canterbury corpus� a DNA sequence from E�coli
bacteria �E	coli�� the complete bible �bib	txt� � and �world
��	txt��

�	�	 Test results

In summary� we observed that FPA implementation with maximum dictionary size ��� performs
the best on all types of �les with size � �MB and shorter �les with non�textual content� For shorter
�les consisting text� gzip performs the best� Also the theoretical expectations for the convergence
rate in the redundancy of the output for i�i�d� data were consistent with the test results� We observed
that the constants involved in the convergence rate for FPA and LZW�FP were smaller than that
of LZW� and gzip was worse than all�

Our tests on the human DNA sequences with LZW�FP and FPA show similar improvements
over compress and gzip � with a dictionary of maximum size ���� the improvement is about ��	� and
	��� respectively� Some more impressive results were obtained by increasing the dictionary size to
���� which further improved the compression ratio to ��� The performance of LZW�FP and FPA
on mr and ct scans di�er quite a bit� LZW�FP was about ��� � better than compress and was
comparable to gzip� FPA!s improvement was about �	� and �� respectively� As the image �les
were rather short� we didn!t observe any improvement by using a larger dictionary� One interesting
observation is that the percentage improvement achieved by both FPA and LZW�FP increased
consistently with increasing data size� This suggests that we can expect them to perform better in
compressing massive archives as needed in many biomedical applications such as the human genome
project�

Our tests on pseudorandom sequences were consistent our theoretical expectations� the asymp�
totic properties were observed even in strings of a few KB size� In general� all LZW based schemes
performed better than gzip� which is based on LZ��� Our plots show that the redundancy in the
output is indeed proportional to �� logn with the smallest constant achieved by FPA � in both
cases� the constant is very close to ��
� the constant for LZW�FP and LZW are about ��	 and ��

respectively� This suggests that for on�line entropy measurement� FPA may provide a more reliable
alternative to LZ���LZW or LZ�� �see �FNS��	
 for applications of LZW and LZ�� for entropy
measurement in the context of DNA sequence analysis��

Our results on text strings varied depending on the type and size of the �le compressed� For
short �les with long repetitions� gzip is still the champion� However� for all text �les of size � �MB�
the large dictionary implementation of FPA scheme outperforms gzip by ���� � ��	�� similar to
the tests for DNA sequences�

References

�BCW�

 T� Bell� T� Cleary� and I� Witten� Text Compression� Academic Press� ���
�

�FM�	
 M� Farach and S� Muthukrishnan� Optimal parallel dictionary matching and compression�
In ACM Symposium on Parallel Algorithms and Architectures� ���	�

�FNS��	
 M� Farach� M� Noordeweir� S� Savari� L� Shepp� A� J� Wyner� and J� Ziv� The entropy
of DNA� Algorithms and measurements based on memory and rapid convergence� In
ACM�SIAM Symposium on Discrete Algorithms� ���	�

Flexible Parsing for Dynamic Dictionary Based Data Compression 	�

File Size gzip compress LZW�FP FPA FPA���
�KB� �KB� �KB� �g ��� �c ��� �g ��� �c ��� �g ��� �c ���

bib �
� �� �	 �� �
� 	�
� ���� � ���
 ���� � ���

book� �	� �
 ��� ����� ��
� ����� ���� ���� ����
book� 	�� �
� ��	 �� � � ���� ������ ���� ����� �����

geo �

 � � �����
 ��� ���� �� � ���� �� �
pic 	
� 		 � � � � ���	 �	��� ���� �	��� ����

progc �� �� �� �����	 ���	 �����
 ��	� �����
 ��	�
progl �
 � � �	 ��� 	��� ������ �
�	� ������ �
�	�
progp �� �� �� �	���
 �	� �	���	 �
�
� �	���	 �
�
�
trans �� �� �� ������ ���� ����� ��� 	 ����� ��� 	

Table
� Compression evaluation using �les in the Calgary corpus�

The original �le size �with some pre�xes�� compressed �le size by gzip and compress� and the im�
provement ��� made by LZW�FP� FPA� and FPA��� over gzip and compress

File Size gzip compress LZW�FP FPA FPA���
�KB� �KB� �KB� �g ��� �c ��� �g ��� �c ��� �g ��� �c ���

E�coli �	�
 ���
 ��� ���
�	 ���
�
	 ���� ����
bible�txt ��	� �� � �� � ������ ���� ����� ���� �� � ���
�

world����txt ���	 �
� � � �����
 ���� ��
�� ��� � �	� �����

Table �� Compression evaluation using �les in the Canterbury corpus �Large Set�

The original �le size �with some pre�xes�� compressed �le size by gzip and compress� and the im�
provement ��� made by LZW�FP� FPA� and FPA��� over gzip and compress

�JS�	
 P� Jacquet and W� Szpankowski� Asymptotic behavior of the Lempel�Ziv parsing scheme
and digital search trees� Theoretical Computer Science� ������� �"���� ���	�

�KM��
 S� R� Kosaraju and G� Manzini� Some entropic bounds for Lempel�Ziv algorithms� In
Sequences� �����

�KR��
 R� Karp and M� O� Rabin� E�cient randomized pattern matching algorithms� IBM
Journal of Research and Development� ���������"�
� �����

�LS�	
 G� Louchard and W� Szpankowski� Average pro�le and limiting distribution for a phrase
size in the Lempel�Ziv parsing algorithm� IEEE Transactions on Information Theory�
���������"���� March ���	�

�MS��
 Y� Matias and S� C� Sahinalp� On optimality of parsing in dynamic dictionary based data
compression� Unpublished Manuscript� �����

�MW�	
 V�S� Miller and M�N� Wegman� Variations on a theme by Lempel and Ziv� Combinatorial
Algorithms on Words� pages ���"��
� ���	�

�RPE��
 M� Rodeh� V� Pratt� and S� Even� Linear algorithm for data compression via string
matching� Journal of the ACM� ������� "��� January �����

�Sav��
 S� Savari� Redundancy of the Lempel�Ziv incremental parsing rule� In IEEE Data Com�
pression Conference� �����

�Sou
 http���www�dcs�warwick�ac�uk�people�research�Nasir�Rajpoot�work�fp�index�html�

Flexible Parsing for Dynamic Dictionary Based Data Compression 	�

File Size gzip compress LZW�FP FPA FPA���
�KB� �KB� �KB� �g ��� �c ��� �g ��� �c ��� �g ��� �c ���

dna� �
� ��� ��� 	�	� ��	� 	��	 ���
 ���� 	�

dna� ���� �� ��� �� �
��	 ����
��� 	��� ��
	

mr�pgm �
 � �� ����� ��
 ��� �	��� ��� �	���
ct�pgm �
�� ��
 ��
 ���
 �� � ���	 ����� ���	 �����

Table
� Compression evaluation using experimental biological and medical data

The original �le size �with some pre�xes�� compressed �le size by gzip and compress� and the im�
provement ��� made by LZW�FP� FPA� and FPA��� over gzip and compress

File Size gzip compress LZW�FP FPA FPA���
�KB� �B� �B� �g ��� �c ��� �g ��� �c ��� �g ��� �c ���

P
����	� � ��� ��� ���� 	�
� ���� 	�
� ���� 	�
�
P

���	� �
 � �� �		� ���� ���� ���	 �� � ���	 �� �

�

 �	��� ��		� �	��� ��	� ���	� ���� ���	� ����
���� ������ �����	 �	��
 ���� ����� ���� ����� ���

P
����	� � ��� ��� 	� � ��� ��� ��� ��� ���
P

���	
 �
 �
�� ��� ����� ���	 � ��
 ���� � ��
 ����

�

 ���� ���� ����� ���� � �
 �	
 � �
 �	

���� ��	
� ����
 ����	 ���
 �����
��� �����
���

P
����	�� � �� �
� ��
� �
��� ��
� ����� ��
� �����
P

���	�� �
 	
� 	
� 	��� ���� �
��� ���� �
��� ����

�

 � �	 ��	� ����� ���� ���
 ����� ���
 �����
���� �
�
� ����� ����� ���� ����� ����� ����� �����

Table �� Compression evaluation using independent identically distributed random �les containing only zeros

and ones with di�erent probability distributions

The original �le size �with some pre�xes�� compressed �le size by gzip and compress� and the improve�
ment ��� made by LZW�FP� FPA� and FPA��� over gzip and compress� random data generated by
drand�����

�Sto��
 J� A� Storer� Data Compression� Methods and Theory� Computer Science Press� �����

�Wel��
 T�A� Welch� A technique for high�performance data compression� IEEE Computer� pages
�"��� January �����

�Wyn�	
 A� J� Wyner� String Matching Theorems and Applications to Data Compression and
Statistics� Ph�D� dissertation� Stanford University� Stanford� CA� ���	�

�Yok��
 H� Yokoo� Improved variations relating the Ziv�Lempel and welch�type algorithms for
sequential data compression� IEEE Transactions on Information Theory� ��������"���
January �����

�ZL��
 J� Ziv and A� Lempel� A universal algorithm for sequential data compression� IEEE
Transactions on Information Theory� IT����������"���� May �����

�ZL��
 J� Ziv and A� Lempel� Compression of individual sequences via variable�rate coding� IEEE
Transactions on Information Theory� IT����	��	�
"	� � September �����

Flexible Parsing for Dynamic Dictionary Based Data Compression

4

5

6

7

8

9

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

; b
its

 p
er

 b
yt

e)

lg(input size in KB)

Random binary file with P(0)=0.5, P(1)=0.5

gzip
compress

LZW-FP
FPA

FPA-24

Figure �� The compression ratios attained by all �ve programs on random i�i�d� data with bit probabilities
P ��� � P �
� � ���

6

8

10

12

14

16

18

20

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

; b
its

 p
er

 b
yt

e)

lg(input size in KB)

Random binary file with P(0)=0.9, P(1)=0.1

gzip
compress

LZW-FP
FPA

FPA-24

Figure
� The compression ratios attained by all �ve programs on random i�i�d� data with bit probabilities
P ��� � �� and P �
� � �
�

Flexible Parsing for Dynamic Dictionary Based Data Compression �

2

4

6

8

10

12

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

 -
 e

nt
ro

py
)

lg(input size in KB)

Random binary file with P(0)=0.5, P(1)=0.5 (H=1)

gzip
compress

LZW-FP
FPA

FPA-24

Figure �� The
�redundancy of all �ve programs on random i�i�d� data where redundancy is described as
�actual compression ratio���bit�entropy�� The bit probabilities are P ��� � P �
� � ���

5

10

15

20

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

 -
 e

nt
ro

py
)

lg(input size in KB)

Random binary file with P(0)=0.9, P(1)=0.1 (H=0.469)

gzip
compress

LZW-FP
FPA

FPA-24

Figure �� The
�redundancy of all �ve programs on random i�i�d� data where redundancy is described as
�actual compression ratio���bit�entropy�� The bit probabilities are P ��� � �� and P �
� � �
�

