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1 Introduction

Query optimization is an integral part of database systems. Matias, Vitter
and Wang in [1], described a technique based on wavelet transform for build-
ing efficient histograms of the underlying data distribution. It proved to offer
substantial improvement in accuracy over previous approaches.

On the other hand, wavelets are a mathematical tool used in miscellaneous
applications, and most successfully in signal processing, for compression, de-
noizing etc... of a signal (see [2] for details). They provide a hierarchical repre-
sentation of fonctions according to their frequencies and localization in time or
space.

In [1], the authors focused their attention to finalizing this new technique,
and thus used the simpliest wavelet: the Haar wavelet. Our work here consisted
in a systematic study of more sophisticated wavelets in order to understand if
more significant improvements could be obtained. The different of wavelets that
were tested are:

. 8 Orthogonal (Daubechies) Wavelets: the simpliest of the compactly-
supported orthogonal wavelets is the Haar transform, each of the Daubechies
Wavelet is a refienement, providing smoother approximation, avoiding the
“blocking effect” of the haar approximation.

. 4 Coifflet Wavelets : a different kind of orthogonal wavelets

. 10 Biorthogonal Spline Wavelets: those are very elaborated and present
many interesting mathematical properties. They are supposed to provide
good synthesis (interpolation after thresholding) .

. 3 Interpolating (Deslauriers-Dubuc) wavelets: they are very simple wavelets,
also good for interpolation


ymatias
Cross-Out



DRAFT

The tests were performed on synthetic data sets which are indicative of various
real life data. Orthogonal Daubechies wavelets give a good improvement for
several kinds of queries and all error measures. Biorthogonal wavelets are also
interesting although the improvement they provide is not significant for all error
measures. Coifflet and Deslaurier-Dubuc wavelets do not, most of the time, give
significant improvement.

2 Datas, query sets

Asin [1], “ the spread of the value set follows the cusp-maz distribution with Zipf
parameter z = 1, the frequency set follows a Zipf distribution with parameter z”
varying for 0.1 to 1.5, “and frequencies are randomly assigned to the elements
of the value set. The value set size is n = 500, the domain size is N = 4096,
and the relation size is T = 10%”.

Query set 1 is the set of one-sided range queries (it corresponds to query
A according to the notations of the article). Query set 2 is the set of equal
range queries (it corresponds to query G of the article). Query set 3 is the set
of all possible two-sided range queries (it corresponds to query 5 in the code and
query C of the article). Query set 4 is the set of all possible two-sided range
queries with range size A (it corresponds to query 6 in the code and query E of
the article). Query set 5 is the set of all possible two-side range queries with
range size equal to half of the dimension size (it corresponds to query 7 in the
code, and query set E of the article).

We used the same error measures as in [1].

3 Results

Most of the time, the orthogonal Daubechies wavelet with 4 coefficients performs
very satisfyingly. Here is on each query type, the error measures compared to
the haar wavelet for synthetic datas with Zipf distribution 0.5:

. Query set 1
error norm haar Daubechies 4
L1, 1251.091333 227.578981
L2.ps 1496.834787 289.626637
L1, 0.140706 0.012008
mod.L1,.. 0.146397 0.037381

Ll., B =100 11.937757 1.169560
L2, B =100 104.345905  4.206917
Ll.,m B=10 1.407057 0.120084
L2.0m B =10 17.557885 0.470052



. Query set 2
€error norm
L]-abs
L24ps
L1,¢
mod.L1,.¢
Llem B =100
L2uom B =100
Llcom 6 =10
L2.0m B =10

. Query set 3
€error norm
L]-abs
L2 4ps
L1,¢
mod.L1,q
Llem B =100
L2uom B =100
Llom B =10
L2.0m B =10
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haar
48.127489
348.698800
14.763380
38.770321
41.673008
329.606536
18.119517
261.367219

haar
1716.837238
2117.102507
0.244150
91.795916
17.210921
67.261953
1.801908
19.270774

. Query set 4 with A =10

€rror norm
L]-abs

L2abs

L]-rel

mod.L1,.¢
Lleom B =100
L2eom B =100
Llcom 6 =10
L2com 6 =10

. Query set 5
€error norm
L]-abs
L2abs
L1,¢
mod.L1,.¢
Llwm B =100
L2uom B =100
Llcom 6 =10
L2.0m B =10

haar
446.758585
1055.565653
7.027228
234.950665
187.584968
557.361031
25.226143
159.744390

haar
1009.806875
1198.849908
0.020342
0.020668
2.034239
2.413644
0.203424
0.241364

Daubechies 4
36.534931
64.385951
18.571439
19.729223
31.432501
37.209406
20.076329
24.075499

Daubechies 4
322.674478
409.491873
0.174231
0.268182
3.599531
14.108730
0.494316
5.220866

Daubechies 4
145.681979
202.499969
14.349136
17.237898
76.539022
108.372850
21.212737
60.624457

Daubechies 4
355.298044
447.987513
0.007189
0.007225
0.718866
0.910392
0.071887
0.091039

In figure 1 to 5 we show one of the error measures for differents wavelets as
the Zipf distribution changes for z = 0.1 to z = 1.5 on the 5 query sets. The
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wavelets in comparison here are the orthogonal 4 coefficients and 18 coefficients,
the 3rd interpolating wavelet and the biorthogonal 4 and 18 coefficients. All of
them perform better for low values of z, and only the orthogonal wavelets seem
to maintain this performance for high values of z.

In figure 1, the L1 relative error is shown as a function of z for query set 1.
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Figure 1: Query set 1

In figure 2, the L1 absolute error is shown as a function of z for query set 2.

Figure 2: Query set 2

In figure 3, the L1 relative error is shown as a function of z for query set 3.
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Figure 3: Query set 3

In figure 4, the L1 absolute error is shown as a function of z for query set 4.
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Figure 4: Query set 4 with A =10

In figure 5, the modified L1 error is shown as a function of z for query set 5
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Figure 5: Query set 5

In figure 6, we show the L1 relative error measure for query set 1 for haar,
orthogonal 4 and 18 coeeficients, 3rd interpolating and biorthogonal 4,8 wavelets
with storage between 21 and 41 coefficient out of 1024 non void values. Hence
the storage space is a less essential feature for non haar wavelets, the error
measure for those being quite stable contrary to the error corresponding to the
haar approximation which decreases frankly as the storage space increases. We
avoid the so-called blocking effect.
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Figure 6: Influence of the storage space on the approximation

As a conclusion, we can say that some improvement is provided by more
sophisticated wavelets than the Haar transform. Although this improvement is
not as obvious and systematic as desired, a good compromise can be the simple
4 coefficients orthogonal wavelet that turns out to be very effective. Further
improvement should be obtained by a better treatment of the edges of the data
and the use of wavelet packs.
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