
Dynamic Maintenance of Wavelet-Based Histograms

Yossi Matias

Department of Computer Science

Tel Aviv University

Tel Aviv 69978, Israel

matias@math.tau.ac.il

Je�rey Scott Vitter

Center for Geometric Computing

and Department of Computer Science

Duke University

Durham, NC 27708{0129, USA

jsv@cs.duke.edu

Min Wang

Data Management Department

IBM T. J. Watson Research Center

30 Saw Mill River Road

Hawthorne, NY 10532, USA

min@us.ibm.com

Abstract

In this paper, we introduce an e�cient method

for the dynamic maintenance of wavelet-based his-

tograms (and other transform-based histograms).

Previous work has shown that wavelet-based his-

tograms provide more accurate selectivity estima-

tion than traditional histograms, such as equi-depth

histograms. But since wavelet-based histograms

are built by a nontrivial mathematical procedure,

namely, wavelet transform decomposition, it is hard

to maintain the accuracy of the histogram when

the underlying data distribution changes over time.

In particular, simple techniques, such as split and

merge, which works well for equi-depth histograms,

and updating a �xed set of wavelet coe�cients, are

not suitable here.

We propose a novel approach based upon proba-

bilistic counting and sampling to maintain wavelet-

based histograms with very little online time and

space costs. The accuracy of our method is robust

to changing data distributions, and we get a consid-

erable improvement over previous methods for up-

dating transform-based histograms. A very nice fea-

ture of our method is that it can be extended nat-

urally to maintain multidimensional wavelet-based

histograms, while traditional multidimensional his-

tograms can be less accurate and prohibitively ex-

pensive to build and maintain.

1. Introduction

Several important components in a database management

system (DBMS) require accurate estimation of the selectiv-

ity of a given query. For example, query optimizers use the

information to evaluate the costs of di�erent query execution

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or special
permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

plans and choose the preferred one. Histograms are a pop-

ular way to capture the distribution of the data stored in a

database and are used to guide selectivity estimation as well

as approximate query processing, load balancing, etc.

In general, there are three issues to be considered when

judging a histogram:

1. Accuracy of the histogram. Since the accuracy of se-

lectivity estimation depends upon the histograms used,

how to build better histograms that approximate the un-

derlying data distributions more accurately is always im-

portant. A good histogram should characterize the un-

derlying data distribution with a reasonable accuracy.

2. Maintenance e�ciency of the histogram. When the un-

derlying data distribution changes, the old histogram

needs to be updated to reect the new distribution; oth-

erwise, signi�cant estimation error could occur because

of the outdated histogram. One way to do the update is

to recompute and rebuild a new histogram based upon

the new data distribution, from scratch, which is costly

and still used in most commercial DBMSs. It is very

preferable if a histogram can be maintained e�ciently

on-line. This issue has attracted much attention re-

cently [GMP97, AC99, LKC99, DIR99].

3. Extension to multidimensional data. For multidimen-

sional histograms that capture joint distribution of cor-

related attributes, achieving good accuracy and design-

ing e�cient maintenance methods becomes particularly

di�cult [MD88, PI97, MVW98, AC99, VWI98, VW99].

Equi-depth histograms [PSC84, MRL98] are the most pop-

ular histograms and are used in many commercial DBMSs.

They are also easy to implement. In some cases they pro-

vide good guidance in selectivity estimation and other data

processing tasks. Several recent works have dealt with their

maintenance and use [GMP97, AC99].

However, equi-depth histograms have major di�culties

with complex queries, complex data distributions, and es-

pecially multidimensional data. They are built based upon

data partitions and maintained by simple mechanisms to keep

partition structures. It is very di�cult to capture complex

multidimensional data distributions with simple partitions.

If more advanced partition methods are used, the accuracy

becomes better, but the implementation and maintenance be-

come more di�cult.

In [MVW98], we introduce a new type of histogram that

is based upon the powerful mathematical tool of wavelets

and multiresolution analysis. The wavelet-based histogram

is fundamentally di�erent from traditional approaches and

o�ers noticeable improvements in accuracy over traditional

equi-depth histogram and other leading histogram methods,

like the ones in [PIHS96]. A nice feature of the wavelet-

based histogram is that it can be naturally extended to the

multidimensional case.

While wavelet-based histograms have very little CPU and

storage cost at query optimization time, rebuilding a his-

togram when the underlying data distribution changes is usu-

ally very expensive since it involves scanning or sampling the

data and performing the wavelet decomposition from scratch.

To make the wavelet-based histogram the histogram of choice

for future database optimizers, one important step is to de-

sign e�cient dynamic maintenance methods for both one-

dimensional and multidimensional wavelet-based histograms,

and we accomplish that goal in this paper.

The rest of the paper is organized as follows: In the next

two sections we review related work and formalize our prob-

lem. In Section 4, we describe the general ideas of doing

dynamic maintenance for wavelet-based histograms and out-

line our method for one-dimensional case. Our method works

for transform methods in general, although for brevity in this

paper we con�ne ourselves to the case of wavelets. We extend

our method to the dynamic maintenance of multidimensional

wavelet-based histogram in Section 5. We present our experi-

mental results in Section 6 and draw conclusions in Section 7.

2. Previous Work

Histograms are the most widely used form to store succinct

statistical information of the data distribution in a database.

In addition they can give quality guarantees on the approxi-

mations produced. Many di�erent histograms have been pro-

posed in the literature and some of them have been deployed

in commercial DBMSs. However, almost all previous his-

tograms have one thing in common, that is, they use buckets

to partition the data, although in di�erent ways.

The most popular histogram in today's DBMSs is the

equi-depth histogram [PSC84, MRL98]. It partitions the in-

terval between the minimum and maximum attribute value

of an attribute into consecutive subintervals so that the to-

tal frequency of the attribute values for each subinterval is

the same. Poosala et al. [PIHS96, Poo97] give a taxon-

omy of partition-based histogram methods; new histograms

types can be derived by combining e�ective aspects of dif-

ferent histogram methods. Among the histograms discussed

in [PIHS96, Poo97], the MaxDi�(V;A) histogram gives the

best overall performance in terms of an accuracy/time trade-

o�.

When a query involves multiple attributes, its selectivity

depends upon the joint distribution of all involved attributes.

To simplify things, almost all commercial DBMSs make the

attribute value independence assumption. This approach, al-
though e�cient computationally, is very inaccurate and often

leads the query optimizer to generate poor query execution

plans. To solve the multidimensional selectivity estimation

problem in a better way, Muralikrishna and DeWitt [MD88]

propose a spatial index partitioning technique for construct-

ing multidimensional equi-depth histograms. Poosala and

Ioannidis [PI97] give two e�ective alternatives.

All the histograms discussed so far follow the same general

guideline, that is, they partition the underlying data in some

particular fashion. The e�ectiveness and accuracy of various

partition methods highly depend upon the data distributions

and query types. If the data have a simple distribution, the

histograms can capture the data distribution e�ectively. If

the data have a very complex distribution, the construction

becomes more di�cult. In general, using a speci�c partition

method to capture many unpredictable data distributions is

a hard job, especially for multidimensional data. It is desir-

able to study general methods to construct histograms whose

usability is more robust.

In [MVW98] we introduce a new type of histograms

(wavelet-based histograms) based upon a multidimensional

wavelet decomposition. A wavelet decomposition is per-

formed on the underlying data distribution, and the most

signi�cant wavelet coe�cients are chosen to compose the his-

togram. In other words, the original data are \compressed"

into a set of numbers (wavelet coe�cients) via a sophisticated

mathematical transformation. Those coe�cients constitute

the �nal histogram. This approach o�ers more accurate se-

lectivity estimation for range-sum queries than do traditional

partition-based histogram methods, although there are no an-

alytic quality guarantees. The wavelet decomposition can be

extended very naturally to higher-dimensions handle the joint

distribution of multiple attributes. Later, a similar approach

was discussed using a di�erent mathematical transformation

procedure called discrete cosine transform (DCT) [LKC99].

Despite the popularity of histograms, the important is-

sue of their maintenance has attracted attention only re-

cently, and most of the work has been on the maintenance

of the traditional partition-based histograms. Gibbons et

al. [GMP97] propose sampling-based approaches for incre-

mental maintenance of one-dimensional equi-depth and com-

pressed histograms. In [AC99], a novel approach of build-

ing self-tuning histograms is introduced and it can be e�ec-

tively used for maintaining both one-dimensional and multi-

dimensional equi-depth histograms. Basically, the approach

in [AC99] is not about building a new type of histogram, but

about adjusting a given partition-based histogram through a

learning procedure to be more accurate.

While wavelet-based histograms o�er more accuracy than

all traditional partition-based histograms, their maintenance

is much more di�cult because they are built through a non-

trivial mathematical transformation procedure. For equi-

depth histograms, any change of the data distribution can

be easily recorded by updating the summary frequency for

the corresponding bucket. The job of the maintenance is to

balance the size of the buckets over time through simple op-

erations like splitting and merging [GMP97, AC99]. On the

other hand, for wavelet-based histograms, when there is an

update in the underlying data distribution, several wavelet

coe�cients change their values. A signi�cant coe�cient could

become insigni�cant over time, and vice versa. Since the his-

togram should maintain the most signi�cant coe�cients in

order to ensure accuracy in a robust manner, we must keep

track of the most signi�cant coe�cient set, and this is a non-

trivial job.

The DCT-based histogram method discussed by Lee et

al. [LKC99] faces exactly the same problem. The approach

in [LKC99] is to maintain a static set of coe�cients and up-

date their values in response to the data updates. The same

method can be applied to wavelet-based histograms. It is

claimed in [LKC99] that any data change will be reected

immediately in the histogram. However, such a claim is true

only if the updates follow the same or very similar distribu-

tion as the base data. Their method maintains a �xed set of

DCT coe�cients and only keeps track of the value changes

of those coe�cients. It never considers the fact that the set

of signi�cant coe�cients should change over time, and as we

shall see in Section 6, this type of dynamic maintenance of

a static set of coe�cients can introduce very big errors in

estimation.

The method of Lee et al. [LKC99] has another fundamen-

tal problem. The set of DCT coe�cients, which is statically

chosen, is not even chosen with respect to the initial set of

data, but rather is chosen a priori independently of the data
by means of static geometrical zonal sampling. The coe�-

cients chosen using the prede�ned geometrical zonal sampling

method may not be signi�cant coe�cients, thus resulting in

bad histograms.

3. Preliminaries and Problem Formulation

3.1. Wavelet Decomposition

Wavelets are a mathematical tool for the hierarchical decom-

position of functions in a space-e�cient manner. Wavelets

represent a function in terms of a coarse overall shape, plus

details that range from coarse to �ne. Regardless of whether

the function of interest is an image, a curve, or a surface,

wavelets o�er an elegant technique for representing the vari-

ous levels of detail of the function in a space-e�cient manner.

For readers who are not familiar with wavelets, we borrow

a simple example from [VW99] to illustrate the wavelet de-

composition procedure. To start the wavelet decomposition

procedure, we �rst need to choose the wavelet basis func-

tions. Haar wavelets are conceptually the simplest wavelet

basis functions, and for purposes of exposition in this paper,

we focus our discussion on Haar wavelets. They are fastest

to compute and easiest to implement. To illustrate how Haar

wavelets work, we start with a simple example which will be

used throughout the paper. (A detailed treatment of wavelets

can be found in any standard reference on the subject, e.g.,

[JS94, SDS96].) Suppose we have a one-dimensional \signal"

of N = 8 data items:

S = [2, 2, 0, 2, 3, 5, 4, 4]:

We perform a wavelet transform on it. We �rst average the

signal values, pairwise, to get the new lower-resolution signal

with values

[2, 1, 4, 4]:

That is, the �rst two values in the original signal (2 and 2)

average to 2, and the second two values 0 and 2 average to 1,

and so on. Clearly, some information is lost in this averaging

process. To recover the original signal from the four aver-

aged values, we need to store some detail coe�cients, which
capture the missing information. Haar wavelets store the

pairwise di�erences of the original values (divided by 2) as

detail coe�cients. In the above example, the four detail co-

e�cients are (2� 2)=2 = 0, (0� 2)=2 = �1, (3� 5)=2 = �1,

and (4 � 4)=2 = 0. It is easy to see that the original values

can be recovered from the averages and di�erences.

We have succeeded in decomposing the original signal into

a lower-resolution version of half the number of entries and

a corresponding set of detail coe�cients. By repeating this

process recursively on the averages, we get the full decompo-

sition:

Resolution Averages Detail Coe�cients

8 [2, 2, 0, 2, 3, 5, 4, 4]

4 [2, 1, 4, 4] [0, �1, �1, 0]

2 [1
1

2
, 4] [

1

2
, 0]

1 [2
3

4
] [�1

1

4
]

We de�ne the wavelet transform (also called wavelet decom-
position) of the original eight-value signal to be the single

coe�cient representing the overall average of the original sig-

nal, followed by the detail coe�cients in the order of increas-

ing resolution. Thus, for the one-dimensional Haar basis, the

wavelet transform of our original signal is given by

bS = [2
3

4
, �1

1

4
,
1

2
, 0, 0, �1, �1, 0]: (1)

^

Ŝ(7)

S(1)

Ŝ(0)

Ŝ(6)Ŝ(4)

Ŝ(2)

S(0) S(1) S(2) S(3) S(4) S(5) S(6) S(7)

S(3)

S(5)^

^

2.75

-1.25

0.5 0

0 -1 -1 0

2 2 0 3 5 4 42

Figure 1: Error tree for N = 8

The individual entries are called the wavelet coe�cients. The
wavelet decomposition is very e�cient computationally, re-

quiring only O(N) CPU time and O(N=B) I/Os to compute

for a signal of N values.

No information has been gained or lost by this process.

The original signal has eight values, and so does the trans-

form. Given the transform, we can reconstruct the exact

signal by recursively adding and subtracting the detail coef-

�cients from the next-lower resolution.

For compression reasons, the detail coe�cients at each

level of the recursion are often normalized; the coe�cients

at the lower resolutions are weighted more heavily than the

coe�cients at the higher resolutions. One advantage of the

normalized wavelet transform is that in many cases a large

number of the detail coe�cients turn out to be very small

in magnitude. Truncating these small coe�cients from the

representation (i.e., replacing each one by 0) introduces only

small errors in the reconstructed signal. We can approximate

the original signal e�ectively by a process of thresholding,
where we keep only the most signi�cant (normalized) coef-

�cients. Sometimes, especially in high dimensions when the

queries specify only a subset of the dimensions, it helps to use

a hybrid thresholding policy, which favors coe�cients with

large absolute value as well as coe�cients higher up in the

tree. [VW99]. For simplicity in exposition, we assume in this

paper that we threshold by choosing the largest coe�cients

in absolute value. Our dynamic maintenance algorithms can

be adapted easily to work with all known hybrid schemes.

The wavelet decomposition procedure can be represented

by an error tree [MVW98]. The error tree is built based upon

the wavelet transform procedure. Figure 1 is the error tree for

the example in this section. Each internal node is associated

with a wavelet coe�cient value, and each leaf is associated

with an original signal value. (For purposes of exposition, the

wavelet coe�cients are unnormalized, but in the implementa-

tion the values are normalized and the algorithm is modi�ed

appropriately.) Internal nodes and leaves are labeled sepa-

rately. Their labels are in the domain f0; 1; : : : ; N � 1g for

a signal of length N . For example, the root is an internal

node with label 0 and its node value is 2.75 in Figure 1.

For convenience, we shall use \node" and \node value" inter-

changeably.

The construction of the error tree exactly mirrors the

wavelet transform procedure. It is a bottom-up process.

First, leaves are assigned original signal values from left to

right. Then wavelet coe�cients are computed, level by level,

and assigned to internal nodes.

The wavelet decomposition generalizes easily to multiple

dimensions, which we discuss further in Section 5. The fol-

lowing theorem from [VW99] shows that range-sum queries,

which correspond to the sum of the data values within a spec-

i�ed hyperrectangle, can be evaluated extremely quickly:

Theorem 1 ([VW99]) For a given range-sum query in

which the rectangle does not span the entire domain in d0 of
the d dimensions, the approximate query answer can be com-
puted based upon the top m coe�cients using a

�
(d+ 1)k

�
-

space data structure in 2d0 �min

�
m; 2

Q
1�i�d0

log jDij

	
CPU time, where Di represents the domain of the ith speci�ed
dimension in the query rectangle.

3.2. Problem Formulation

In [MVW98], the wavelet-based histogram is built by �rst

performing wavelet decomposition on the extended cumula-
tive data distribution (partial sums) of an attribute, resulting

in a sequence of wavelet coe�cients. Then the top m coe�-

cients with the largest absolute values are chosen to compose

the histogram. (The parameterm depends upon the available

storage space for the histogram.) A similar scenario arises in

the other transform-based methods, such as those based upon

the discrete cosine transform (DCT).

For dynamic maintenance of the wavelet-based histogram,

do we have to consider partial-sum based wavelet decompo-

sition, or should we just do the decomposition using the raw

data distribution? To answer this question, we need to re-

solve two issues. First, what would be the accuracy di�erence

between using partial sums and raw data? If the partial-

sum-based method gives much higher accuracy for selectiv-

ity estimation than the raw-data-based method, we'd better

do dynamic maintenance for the partial-sum-based method.

The �rst issue raises the second, that is, intuitively, it would

be much harder to do maintenance for the partial-sum-based

method because local data changes will propagate globally.

To resolve the �rst issue, we did an extensive experimental

study to compare the accuracy of the two methods using a

large collection of Zipf data sets [Zip49]. We don't include the

detailed results for lack of space. It turns out that the accu-

racy of the two methods varies with data distribution, query

type, and the choice of di�erent error measurements. We can-

not say that one method is always better than another. A

similar observation is made in [VW99] for high-dimensional

sparse data cube approximation. Both methods give good re-

sults, although the partial sum approach tends to work better

for low dimensions and for open-sided queries. In this paper,

we focus on the dynamic maintenance of histograms based

upon raw data distributions, and we do not deal with issues

related to processing partial sums.

We formalize the dynamic maintenance problem using

the error tree structure for one-dimensional case, as follows.

Let T0 be the initial error tree constructed from the initial

data distribution St0 of an attribute at time t0. The wavelet-
based histogram H0 is a subset of internal nodes of T0. Each
element of H0 is of the form

�
j; bS(j)�. Speci�cally, for a

histogram of size m, H0 contains the top m internal nodes

of T0, ranked by the absolute values of the normalized coef-

�cients. (As mentioned in Section 3.1, our techniques that

we will discuss in subsequent sections apply equally well to

hybrid coe�cient thresholding methods, but for simplicity we

will focus our discussion on the simple thresholding policy of

choosing the m largest coe�cients in absolute value.)

Suppose during a time interval from t0 to t1, the data

distribution changes from St0 to St1 . Based upon St1 we can
construct a new error tree T1, and consequently we obtain a

new histogram H1. Our dynamic maintenance problem is the

following: At any time t1, how can we e�ciently maintain a
histogram eH1 that is a good approximation of H1?

There are three possible changes in the distribution of an

attribute: insertion, deletion, and update. Consider a period

from t0 to t1. During this time interval, a sequence of inser-

tions, deletions, and updates occur at the leaves, and we can

represent them by a list:

� = f�(0); : : : ;�(N � 1)g; (2)

where �(i) is the value change at leaf i. The � sequence is

mainly introduced for simplifying our discussions. We only

need to store the non-zero entries in the sequence. (The zero

entries correspond to the leaf values that remain unchanged

from time t0 to time t1.)

4. Dynamic Maintenance of One-

Dimensional Wavelet-Based Histograms

In this section, we describe how to dynamically maintain

wavelet-based histograms for the one-dimensional case. For

convenience in exposition, we give the formulas for the un-

normalized wavelet coe�cients, but in reality the coe�cients

are normalized in an online manner.

4.1. Properties of Wavelet-Based Histograms

A value change at a leaf will a�ect all its ancestors in the

error tree. The problem is how those ancestors are a�ected.

It turns out that the error tree has some nice properties and

we can use them to �gure out the exact changes occurred at

internal nodes upon any leaf change.

Inserting a value i is equivalent to increasing S(i) by one.

Similarly, deleting a value i is equivalent to decreasing S(i)
by one. An update can be considered as one deletion followed

by one insertion. (For simplicity, we restrict our attention in

this paper to individual value changes of +1 and �1, but the

method can be extended naturally to general updates.)

Consider an internal node j that is the parent of a leaf

node i. At time t0, leaf i's value is St0(i). At time t1, its
value changes to St1(i). Letting

�(i) = St1(i)� St0(i); (3)

we have

bSt1(j) =
8><
>:

bSt0(j) + �(i)

2

if leaf i is j's left child;

bSt0(j)� �(i)

2

if leaf i is j's right child:

(4)

From (4) we can see that from time t0 to time t1, the magni-

tude of bS(j) may increase or decrease, depending upon bSt0(j),
�(i), and the relative position of j with respect to i (i.e., if i
is the left or right child of node j).

In the above example, node j's subtree only contains two

leaves, and we are only considering single leaf value change.

Now we look at the more general cases. For any leaf i, we
use path(i) to denote the set of the internal nodes along the

path from i to the root. We use left(j) and right(j) to denote
the left and right child of any node j, and we use leaves(j) to
denote the set of leaves in the subtree rooted at j. For any

internal node j, we de�ne its height as

height(j) =

�
logN � blog jc for 1 � j < N ;

logN for j = 0:
(5)

(By convention, we say that node 0 and 1 have height logN ,

which is the only di�erence with the picture in Figure 1.)

Lemma 1 For any leaf i, we consider the e�ects of the its
value change (3). For each j 2 path(i), we have

bSt1(j) =
8><
>:

bSt0(j) + �(i)

2
height(j)

if i 2 leaves
�
left(j)

�
;

bSt0 (j)� �(i)

2
height(j)

if i 2 leaves
�
right(j)

�
:

(6)

From Lemma 1 we obtain the following:

Theorem 2 From a single leaf value change we can compute
the value change of each of its ancestors in constant time
using a closed-form formula.

We can generalize Lemma 2 to the case when there are

multiple leaf value changes:

Lemma 2 For any internal node j, let �int(j) denote the av-
erage of the value changes �(i) among all leaves i 2 leaves(j).
We have

bSt1(j) = bSt0(j) + �int

�
left(j)

�
��int

�
right(j)

�
2

: (7)

Consider the � sequence (2). It represents all the leaf

value changes from time t0 to t1, and it contains Nz non-zero

elements. Conceptually, using all the entries in (2) as the

leaf values, we may construct a new error tree, and we call

it the � error tree, denoted by T�. The tree T� has the

same structure as the error tree T0, and it contains at most

minfNz logN; Ng non-zero internal nodes. All the non-zero

leaves of T� together with their ancestors compose a partial

error tree. We can do a node-wise tree addition between T0
and T�, that is, we add T0 and T�, as follows: We construct

a new tree with exactly the same structure as T0. For each

node j, its value in the new tree is the sum of the correspond-

ing node values in T0 and T�. We denote this tree addition

by T0 + T�.

Lemma 3 (Additive property) If we construct an error
tree T� from array � (we call T� the � error tree), then we
can add the values of the corresponding nodes in T0 and T�
to obtain T1.

The above lemma summarizes the changes in (2) in a

batch. Equivalently, starting from the initial error tree T0,
we can just apply each leaf node change directly and incre-

mentally using (6) to obtain T1. Alternately, we can also

obtain T1 by updating the internal nodes of T0 using (7).

4.2. The Di�culties in Dynamic Maintenance

From the discussions in Section 4.1, we can see some di�cul-

ties in maintaining wavelet-based histograms. To keep track

of the top m coe�cients exactly, we must keep all the inter-

nal nodes of the error tree, and we must keep their values

up to date all the time. Suppose we have kept the top m
coe�cients at time t0 in H0. For any single insertion after

time t0, there are 1 + logN ancestor coe�cients in the error

tree that will be a�ected. We can easily use (6) to update

those ancestor coe�cients that are among H0. The hard part

is how to deal with the coe�cients that are not in H0. The

only thing we know about those coe�cients is that they were

not signi�cant enough to be include in H0 at time t0. But

when the data distribution changes (i.e., after the insertion),

they may become signi�cant. Although we can use (6) to

compute the value changes at those non-H0 nodes, we still

do not know what to do with them because we have no idea

about their original values.

A naive way to solve the problem is to recompute the

wavelet decomposition from scratch based upon the new data

distribution and to choose the topm coe�cients whenever the

data distribution changes (i.e., when any leaf value changes in

the error tree). This approach is not feasible in practice since

it invokes too much overhead at query optimization time,

even though it maintains the quality of the histogram.

Another approach is to trade accuracy for e�ciency. We

could build the histogram H0 at time t0 and thereafter just

keep the values of the coe�cients in H0 up to date using (6).

This approach would work �ne if the statistics of the un-

derlying data distribution do not change or just have minor

change. This obvious approach is the one used in [LKC99],

although the approach in [LKC99] is less sophisticated in its

initial choice of coe�cients, in that they are chosen indepen-

dently of the data. The problem is that there is no guarantee

that the histogram will still contain the most signi�cant co-

e�cients after the underlying data distribution has changed

even modestly. As we shall see in Section 6, histograms main-

tained using this simple approach often incur very big errors

in estimations.

Our goal in this paper is to maintain the histograms e�-

ciently without sacri�cing accuracy. We want the histograms

to be robust to changing distributions, yet roughly as accu-

rate as a �xed histogram for the case in which the update

data follow the same or similar distribution as the base data.

4.3. Our Method

Let the initial error tree at time t0 be T . We consider the top

m+m0
internal nodes of T , where m+m0

� N . From those

m+m0
nodes, we choose the top m to form the histogram H.

The other m0
nodes are kept as an auxiliary histogram H 0

on

disk. We use an activity log L to log the insert, delete, and

update activities; the log has a maximal size ofMax Log Size.
We shall focus on insertions because deletions are similar

and update is one insertion followed by one deletion (or vice

versa). We consider a sequence of insertions. When an in-

sertion happens to a leaf node i, according to Lemma 2, the

values of all the internal nodes in path(i) change. For any

internal node j in path(i), we characterize it into one of three
types: (a) j 2 H, (b) j 2 H 0

, and (c) j =2 H [H 0
. We will

handle di�erent types of nodes di�erently.

First, we write an entry i into the log L. Then we consider
all the internal nodes j 2 path(i). If j is a type (a) node, we

update its value immediately according to (6). (We have

�(i) = 1 for an insertion and �(i) = �1 for a deletion.) If j
is not a type (a) node, we do nothing.

When the number of entries in log L reaches

Max Log Size, we process the entries in the log. For any

entry i in L, we update all the corresponding type (b) nodes
according to (6). For a type (c) node j, we use a probabilistic
counting technique [FM85]: We ip a coin with probability

p(j) of heads. If the coin ips a head, we set node j's magni-

tude bS(j) to be v(j) (a value to be determined later), and we

replace the smallest node (in magnitude) in H 0
with node j.

When all the entries in the log L have been processed, we

adjust H and H 0
. Whenever the magnitude of the largest

node in H 0
exceeds a threshold value H 0 Thresh (to be de-

termined later), we switch it with the smallest node in H.

Once we are done with the current log L, we can start

to process new insertions and start over to form a new fresh

log L. At any given time, H is the histogram that is used for

selectivity estimation.

Our method is motivated by the following tradeo� between

update time and space:

� By updating the coe�cients in historgram H promptly,

we keep the coe�cient values in H up to date.

� By keeping and updating the coe�cients in H 0
in a

batched fashion, we have reasonable amount of extra in-

formation on the possible candidates that are likely to

gain entrance later to H.

� By using the probabilistic counting technique for all

type (c) nodes, we can detect any \surprising" can-

didates for H that may later become signi�cant even

though they do not appear signi�cant initially.

Let us consider parameters Max Log Size, H 0 Thresh ,
p(j), and v(j). The parameterMax Log Size speci�es how of-

ten we want to check into the situation where we need to do a

shake up to include some new nodes into H and exclude some

old nodes from H when the data distribution changes. The

smaller the Max Log Size value is, the more often the shake-

up will occur, and the more chance H will get to update.

The frequent updating is good for accuracy, but frequent log

processing causes slow performance. In our experiments, we

choose Max Log Size to be 1%{5% of the base data size.

The parameter H 0 Thresh speci�es how aggressive we are

in adjusting H over time. Denote the magnitude of the

minimum coe�cient in H by min(H). A reasonable setting

would be H 0 Thresh = min(H). On the other hand, if the

magnitudes of two coe�cients are very close, it does not re-

ally matter which one is in H, because both would be (ap-

proximately) equally important. In our experiments, we set

H 0 Thresh = c1 �min(H), where c1 is a constant (typically

in the range [1:0; 3:0]).
Now let us consider how we should set p(j) and v(j). Intu-

itively, we want 1=p(j) to correspond to the number of inser-

tions needed at leaf i to bring the magnitude of node j from
its initial value of zero to v(j), so we need to set v(j) �rst.
The parameter v(j) is similar to the parameter H 0 Thresh ,
and we can set v(j) = c2 �min(H), where c2 is a constant,

typically in the range [0:2; 0:8]. The value v(j) is independent
of j and we denote v = c2�min(H). An alternative that also

works well is to de�ne v = c1�min(H 0
). We can easily derive

p(j) =
1

v � 2
height(j)

according to (6). The exact value of node j depends upon

its position. When the coin ips a head for node j, the value
should be set to v if leaf i is in the left subtree of j and �v
otherwise.

The following pseudo code summarizes our algorithm:

Procedure Dynamic Maintenance(H;H 0; L;m;m0;
Max Log Size; c1; c2)
Compute the wavelet decomposition of the base

data distribution;

Compose H by choosing the top m wavelet coe�cients;

Compose H 0
by choosing the (m+ 1)st to (m+m0

)th

coe�cients;

while (insert value i to the relation)
Write i to log L;
log size ++;

path(i) = f j j j is an internal node on the path from

leaf i to the rootg;
for each j 2 path(i) \H
Update bS(j) using (6);

if (log size == Max Log Size)
Process Log(L;H 0; H; log size; c1; c2);
log size = 0;

Procedure Process Log(L;H 0; H; log size; c1; c2)
for k = 1 to log size do
i = kth entry in L;
v = c2 �min coe� magnitude(H);

path(i) = f j j j is an internal node on the path from

leaf i to the rootg;
for each j 2 path(i) \H 0

Update bS(j) using (6);
for each j 2

�
path(i)� (H \H 0

)

�
p =

1

v � 2
height(j)

;

Flip a coin with probability p of head;
if (coin ips a head)

if
�
i 2 leaves(left(j))

� bS(j) = v;
else bS(j) = �v;
Replace the minimum coe�cient in H 0

with�
j; bS(j)�;

while
�
max coe� magnitude(H 0

) >

c1 �min coe� magnitude(H)

�
Switch the maximum coe�cient in H 0

with

the minimum coe�cient in H;

Function min coe� magnitude(X) returns the magnitude

of the smallest coe�cient in coe�cient set X. Similarly, func-

tion max coe� magnitude(X) returns the magnitude of the

largest coe�cient in coe�cient set X.

A sequence of deletions can be handled in a similar way.

For a mixed sequence of deletions and insertions, we may

maintain two separate logs, one for insertions and another

for deletions. When the total size of these two logs reaches

the value of Max Log Size, we start to process them, one by

one. Or, we just maintain one log for both insertions and

deletions. Later, when we need to use the log information to

update H and H 0
, we can either split it into two parts, or we

just process the single log and handle insertion and deletion

di�erently in our algorithm.

The activity log L is a simpli�ed version of the database

transaction log that is used widely in commercial DBMSs.

In the above algorithm, we write the inserted entries to the

log directly. In our implementation, we use a double bu�er

in memory to keep the inserted entries instead of writing

each entry to the log directly. When the double bu�er be-

comes half full, we write all the entries in the bu�er to the

log on disk. The number of disk I/O is hence reduced dra-

matically. (The double-bu�er mechanism is indeed used in

the implementation of the real database transaction log.) To

further facilitate the functions min coe� magnitude(X) and

max coe� magnitude(X), we maintain H and H 0
as priority

queues throughout the process.

The only storage overhead invoked by our method is the

auxiliary histogramH 0
, which is stored on disk. The auxiliary

histogram H 0
is not part of the true histogram used by the

optimizer, and it is needed only when we do batch process-

ing of the activity log. Therefore, we can store H 0
together

with the activity log. As we show in Section 6, the overhead

can be kept low while achieving very good histogram quality.

The time overhead of our method composes two parts: the

time for changing the coe�cient values for the coe�cients in

the present histogram and the time for processing the log.

The �rst part is �xed since we can compute each change in

constant time using the properties of the error tree structure.

Use of random sampling or batch processing of the updates,

as discussed in the previous paragraph, would speed up pro-

cessing even further, at a slight cost in accuracy. The second

part, although taking longer time than the �rst part, is only

invoked in batch mode after a signi�cant number of updates

and can be tuned by the user.

One way to improve the time performance of our algo-

rithm is to preprocess the log whenever it is full before we

invoke the procedure Process Log . We combine multiple in-

sertions of the same value into a single entries of the form

(value; number of insertions). The preprocessing can speed

up Process Log signi�cantly when the number of combined

entries are much smaller than the original log size, which is

likely to happen when Max Log Size is set to a big value.

Another speed improvement is to randomly sample the

events and process only a random sample. The updates done

on the leaves should be adjusted normalized appropriately.

Yet another speed improvement is to process the events,

whether sampled or not, in batch mode, much like the en-

tries in the log, but at more frequent intervals.

Our method is very stable for various update distributions.

The static method in [LKC99] performs reasonably well only

when the distribution of the update sequence is very close
to that of the original base data. Otherwise, the accuracy

of the maintained histogram degrades dramatically since the

histogram does not contain the set of most signi�cant coe�-

cients anymore.

5. Maintenance of Multidimensional

Histograms

The one-dimensional wavelet decomposition and reconstruc-

tion procedure in Section 3.1 can be extended naturally to

the multidimensional case. One way to do a multidimen-

sional wavelet decomposition is by a series of one-dimensional

decompositions. For example, in the two-dimensional case,

we �rst apply the one-dimensional wavelet transform to each

row of the data. Next, we treat these transformed rows as

if they were themselves the original data, and we apply the

one-dimensional transform to each column. We repeat this

procedure for each dimension, and the result is the multidi-

mensional wavelet decomposition.

Our method for maintaining one-dimensional wavelet-

based histograms can also be extended naturally to mul-

tidimensional case. Suppose we want to build a d-
dimensional wavelet-based histogram for d attributes. Let

D = fD1; D2; : : : ; Ddg denote the set of attributes. We

represent the joint distribution of these attributes by a d-
dimensional array S of size jD1j�jD2j�� � ��jDdj, where jDij

is the size of the domain for Di. Without loss of generality, we

assume that each attributeDi has domain f0, 1, . . . , jDij�1g.

An array element S(i1; i2; : : : ; id) is the frequency of the

corresponding value combination (i1; i2; : : : ; id) of the at-

tributes. The wavelet coe�cients obtained by performing a

d-dimensional wavelet decomposition on S can be represented

by a d-dimensional array bS of size jD1j�jD2j�� � ��jDdj. The

following result from [VW99] gives the I/O complexity of the

decomposition as a function of the numberNz of nonzero val-

ues in the original multidimensional array. We assume that

some data values are coarsely pruned in an online manner

so that the number of nonzero coe�cients does not increase

during the course of the decomposition; the �nal threshold-

ing is done on the coe�cients that make it through the initial

�lter.

Theorem 3 ([VW99]) The number of I/Os needed to do a
d-dimensional wavelet decomposition of size N = jD1j�jD2j�

� � ��jDdj with internal memory of size M and block size B is

O
�
Nz

B
min

n
d; logM=B

N

B

o�
;

where Nz is the number of nonzero coe�cients.

To handle dynamic updates, we �rst extend Lemma 1 to

general d-dimensional case.

Lemma 4 For any array element S(i1; i2; : : : ; id), we con-
sider the e�ects of its value change

�(i1; i2; : : : ; id) = St1(i1; i2; : : : ; id)� St0(i1; i2; : : : ; id): (8)

For each bS(j1; j2; : : : ; jd) where jk 2 path(ik) in the error tree
of Dk, for 1 � k � d, we have

bSt1(j1; j2; : : : ; jd) = bSt0(j1; j2; : : : ; jd) +
�(i1; i2; : : : ; id)Qd

k=1
sign(ik; jk)2height(jk)

; (9)

where

sign(ik; jk) =

8><
>:

1 if ik 2 leaves
�
left(jk)

�
in the error tree of Dk;

�1 if i 2 leaves
�
right(jk)

�
in the error tree of Dk.

(10)

The following algorithm that extends our algorithm in Sec-

tion 4 to d-dimensional case follows naturally.

Procedure Multidimensional Dynamic Maintenance(H;H 0
,

L;m;m0;Max Log Size; c1; c2; d)
Compute the wavelet decomposition of the joint data

distribution of the base data;

Compose H by choosing the top m wavelet coe�cients;

Compose H 0
by choosing the (m+ 1)st to (m+m0

)th

coe�cients;

log size = 0;

while
�
insert value (i1; i2; : : : ; id) to the relation

�
Write (i1; i2; : : : ; id) to log L;
log size ++;

for k = 1 to d do
path(ik) = fjk j jk is an internal node on the path

from ik to the root in the error tree of Dkg;

for each (j1; j2; : : : ; jd) 2 H \
Qd

k=1
path(ik)

Update bS(j1; j2; : : : ; jd) using (9);
if (log size == Max Log Size)
Multidimensional Process Log(L;H 0; H;

log size; c1; c2; d);
log size = 0;

Procedure Multidimensional Process Log(L;H 0; H;
log size; c1; c2; d)
for k = 1 to log size do
(i1; i2; : : : ; id) = kth entry in B;
v = c2 �min coe� magnitude(H);

for k = 1 to d do
path(ik) = fjk j jk is an internal node on the path

from ik to the root in the error tree of Dkg;

for each (j1; j2 : : : jd) 2 H 0
\
Qd

k=1
path(ik)

Update bS(j1; j2; : : : ; jd) using (9);
for each (j1; j2; : : : ; jd) 2

Qd

k=1
path(ik)� (H [H 0

)

p = 1=v
Qd

k=1
2
height(jk);

Flip a coin with probability p of head;
if (coin ips a head)bS(j1; j2; : : : ; jd) = v �

Qd

l=1
sign(il; jl);

Replace the minimum coe�cient in H 0
with�

j1; j2; : : : ; jd; bS(j1; j2; : : : ; jd)�;
while

�
max coe� magnitude(H 0

) >

c1 �min coe� magnitude(H)

�
Switch the maximum coe�cient in H 0

with the

minimum coe�cient in H;

6. Experimental Results

6.1. Methods of Comparisons

We implement the following three methods for dynamic main-

tenance of wavelet-based histograms and we compare their

performance.

1. Exact Method. This expensive method corresponds to

recomputing the histogram from scratch whenever any
update happens to the data distribution.

2. Probabilistic Counting Method. This is the method we

introduced in Sections 4 and 5.

3. Static Method. At initial time t0, we compute the exact

histogram H0 for the base data distribution. From then

on, the content (the coe�cients) ofH0 no longer changes.

We only change the values of those coe�cients to make

them up to date.

At any given time, the histogram maintained using the

exact method contains exactly the set of most signi�cant co-

e�cients for the data distribution at that time. Thus, this

method usually provides the best accuracy in selectivity es-

timations. (As mentioned in Section 3.1, our techniques ap-

ply equally well to hybrid coe�cient thresholding methods,

but for simplicity we will focus our discussion on the sim-

ple thresholding policy of choosing the largest coe�cients in

absolute value.)

The static method is similar to that proposed in [LKC99],

except that we start with the \right" set of coe�cients, cho-

sen in a way corresponding to the distribution of the base

data. Its implementation is very simple: After building the

initial histogram H0 based upon the base data distribution

at time t0, in the event of any frequency change for value i,
we just need to update the relevant coe�cient values for the

coe�cients that are in path(i) \ H0 according to (6). For

the multidimensional case, when the frequency changes at

(i1; i2; : : : ; id), we use (9) to update the coe�cient values for
the coe�cients that are in H0 \

�
path(i1) � path(i2) � : : : �

path(id)
�
.

6.2. Error Measures

To de�ne the proper measures for the accuracy of various

methods, we �rst look into the logic in choosing the top m
coe�cients to form the exact wavelet-based histograms.

With proper normalization (which we always do), the Haar

basis is orthonormal. For any orthonormal wavelet basis,

choosing them largest (in absolute value) wavelet coe�cients

is provably optimal in minimizing the 2-norm of the abso-

lute error when considering the reconstruction of the original
signal values [SDS96]. Note that the 2-norm of the abso-

lute error for the reconstructed data values corresponds to

the 2-norm of the absolute error for all the equal queries.

(An equal query is the special case of range-sum queries in

which the range corresponds to a single point.) Thus, a useful

measurement to evaluate the accuracy of a dynamic mainte-

nance method is the 2-norm average absolute error for all

the equal queries using the maintained histogram after a se-

quence of updates. By using this measure, we can clearly see

how \close" a histogram maintained using a certain method

is to that maintained using the (expensive) optimal method.

In our experiments, we also use other error measures

proposed in [VWI98] and we report the results for one-

dimensional case. For the multidimensional case, we only

report the results using the 2-norm absolute error for all equal

queries. For all the experiments in this section, the errors re-

ported for our probabilistic counting method are the averages

of the errors encountered over multiple di�erent runs.

6.3. Data Distributions

The data we used in our experiments are similar to those

of [GMP97]. For one-dimensional data, we model the base

data originally in the database and the update data sequence

using an extensive set of Zipf distributions. The number of

distinct values varies from 128 to 1024. Without loss of gen-

erality, we use the integer value domain. The z value for the
frequency distribution is chosen from 0.0 to 3.0 to vary the

skew. The frequencies are mapped to the values according

to three di�erent types of correlations: positive (the bigger

the value, the higher the frequency), negative (the bigger the

value, the lower the frequency), and random. We refer to a

Zipf distribution with parameter z and correlation X as the

Zipf (z;X) distribution.

We extend Zipf data distributions to the multidimensional

case. To generate a multidimensional data set, we �rst gen-

erate the frequencies for a one-dimensional data set of ap-

propriate size using the Zipf distribution. We then logically

map the one-dimensional values to the multidimensional val-

ues according to certain dimension order. For example, we

can use the row-major ordering to do the mapping between

two-dimensional values and one-dimensional values.

When we model a sequence of insertions, we generate two

data sets, one to represent the base data and another to rep-

resent the insertion sequence. In our experiments, the size of

the insertion sequence varies from the base data size to four

times the base data size.

For deletions, we �rst generate two data sets A and B, as
for the insertion case, and we combine A and B to obtain

the base data set A[B. Then we use the second data set B
as our deletion sequence. In our experiments, the size of the

deletion sequence varies from one quarter of the base data

size to three quarters of the base data size.

6.4. Parameter Settings

Parameters c1 and c2 are two very important parameters for

our algorithm. They de�ne how aggressive we are in shak-

ing up the coe�cients in the maintained histogram. The

smaller c1 and c2 are, the more aggressive we are in shaking

up the histogram. Intuitively, it helps to know the relation-

ship between the distribution of the base data and that of

the update sequence in order to choose the proper c1 and c2
values. For example, if the two distributions are similar, we

should set c1 and c2 to bigger values in order to save time.

In our experiments, we �nd that our algorithm performs

very well and is stable for a variety of update distributions

as long as we choose c1 and c2 from reasonable ranges, and

we do not need any a priori knowledge on the distribution of

the update sequence to guarantee good performance of our

algorithm. The appropriate ranges for c1 and c2 are 1.0{3.0

and 0.2{0.8, respectively. In our experiments, we use the

default values c1 = 1:5 and c2 = 0:5.
The other important parameter is m0

, the size of the aux-

iliary histogram. It is obvious that a bigger m0
value will give

better accuracy but slower performance since we have more

extra information in adjusting the histogram. However, our

experiments show that it is not necessary to keep a very big

auxiliary histogram to achieve good accuracy. For example,

in most cases, setting m0
= m=2 or m0

= 2m will not change

the accuracy signi�cantly. We use m0
= m=2 as the default

value in our experiments.

The parameter Max Log Size is relevant to the size of the
base data. In our experiments, we set Max Log Size to be

between 1% and 5% of the base data size. The default value

for Max Log Size is 1% of the base data size.

6.5. Accuracy for Maintaining One-Dimensional
Histograms

We experimentally study the accuracy of various methods for

a wide range of base data and update data distributions. We

use m = 20 as the size of our wavelet-based histogram for all

the experiments. The size of the value set is 512.

In the �rst set of experiments, we compare the accuracy

of the three methods for the cases when the distribution of

the update sequence is the same or very similar to that of

the base data. For example, the base data and the update

sequence follow the Zipf (1:0; positive) and Zipf (1:2; positive)
distributions, respectively. In this case, the set of signi�cant

coe�cients will either not change or else have some minor

changes. As long as we keep the values up to date for the co-

e�cients in the original histogram H0 (which were built upon

the base data), the histogram maintained using the static

method is almost the same as the exact histogram. On the

other hand, our probabilistic counting method could give less

accurate results since it might unnecessarily shake up the co-

e�cients in the histogram because of the probabilistic nature

of the method.

Error Norm Exact Prob. Counting Static

keabsk1 52.13 52.42 52.13

keabsk2 88.70 88.80 88.70

kerelk1 0.17 0.17 0.17

kecomb
k1, 16.71 16.72 16.71

Table 1: Average errors of various methods for all equal

queries for insertions. The kecomb
k1 error measures uses the

parameter settings � = 1, � = 100.

Error Norm Exact Prob. Counting Static

keabsk1 1679 1696 1679

keabsk2 1982 1991 1982

kerelk1 0.0036 0.0036 0.0036

kecomb
k1, 0.36 0.36 0.36

Table 2: Average errors of various methods for all one-sided

range queries for insertions. The kecomb
k1 error measures

uses the parameter settings � = 1, � = 100.

Error Norm Exact Prob. Counting Static

keabsk1 51.3 55.8 313.9

keabsk2 81.7 103.1 1899.3

kerelk1 0.33 0.37 2.20

kem rel
k1 0.46 0.59 2.55

kecomb
k1, 27.8 29.5 153.0

Table 3: Average errors of various methods for all equal

queries for deletions. The kecomb
k1 error measures uses the

parameter settings � = 1, � = 100.

Error Norm Exact Prob. Counting Static

keabsk1 4162 6776 22242

keabsk2 4829 7772 35633

kerelk1 0.04 0.07 0.21

kem rel
k1 0.04 0.07 0.21

kecomb
k1, 4.6 7.1 21.4

Table 4: Average errors of various methods for all one-sided

range queries for deletions. The kecomb
k1 error measures uses

the parameter settings � = 1, � = 100.

Our results show that our method gives almost the same

accuracy as the exact method even when the distribution of

the update sequence is the same as that of the base data.

Tables 1{2 show the accuracy of the three methods for one

typical case. The base data contain 100K tuples from the

Zipf (1:0; negative) distribution; the update data come from

the Zipf (1:2; negative) distribution. We measure the errors

for di�erent types of range queries|equal queries (which cor-

responds to the evaluation of a single point in the array) and

one-sided queries (in which one of the ends of the range in

each dimension is �1 or +1)|using the error measures

de�ned in [MVW98] after 400K insertions. (Note that the

number of insertions is four times the base data size.)

Now we look into the more interesting cases where the

distribution of the update sequence is di�erent from or unre-

lated to that of the base data. Figure 2 plots the accuracy

of di�erent methods for a typical case. In this case, the base

data contain 100K tuples and follow the Zipf (1:0; negative)
distribution. The insertions follow the Zipf (1:5; random) dis-

tribution. We measure the accuracy of the di�erent methods

200000 400000 600000 800000

Number of updates

0

5000

10000

2-
no

rm
 a

ve
ra

ge
 a

bs
ol

ut
e

er
ro

r Static
Probabilistic Counting
Exact

Figure 3: Accuracy of various methods for all equal queries

for two-dimensional data

when the insertion sequence contains 100K, 200K, 300K, and

400K entries. The results show that the probabilistic count-

ing method is much better than the static method.

We also compare the methods for deletions. Tables 3{4

show a typical case. In this case, we generate the base

data distribution by combining two data sets; one follows

Zipf (1:0; negative) and the other follows Zipf (1:5; positive).
Each data set contains 100K entries. The deletion sequence

follows the same data distribution as the second data set, i.e.,

Zipf (1:5; positive). Tables 3{4 show the accuracy of the three

methods when 100K deletions have been performed.

6.6. Accuracy for Maintenance of Multidimensional
Histograms

Figure 3 and Figure 4 depict the accuracy of di�erent meth-

ods for typical two-dimensional and three-dimensional data,

respectively.

For the two-dimensional case, the value set size is 32 �

32. The base data follows the distribution Zipf (1:0; negative),
and its size is initially 200K. The inserted data follows the

Zipf (1:5; random) distribution. We keep m = 40 coe�cients

in the histogram during the process. Figure 3 plot the 2-norm

absolute errors of di�erent methods for all equal queries when

200K, 400K, 600K, and 800K entries are inserted.

200000 400000 600000 800000

Number of updates

2000

4000

6000

8000

10000

12000

2-
no

rm
 a

ve
ra

ge
 a

bs
ol

ut
e

er
ro

r Static
Probabilistic Counting
Exact

Figure 4: Accuracy of various methods for all equal queries

for three-dimensional data

For the three-dimensional case, the value set size is 16 �

16 � 16. The base data follows the Zipf (1:0; positive) distri-
bution, and its size is initially 200K. The distribution of the

inserted data follows Zipf (1:5; random). We keep m = 80

coe�cients in the histogram during the process. Figure 4

plot the 2-norm absolute error of di�erent methods for all

equal queries when 200K, 400K, 600K, and 800K entries are

inserted.

100000 200000 300000 400000

Number of updates

0

500

1000

1-
no

rm
 a

ve
ra

ge
 a

bs
ol

ut
e

er
ro

r

Static
Prob. Counting
Exact

(a) 1-norm average absolute error for
all equal queries

100000 200000 300000 400000

 Number of updates

0

2000

4000

6000

8000

2-
no

rm
 a

ve
ra

ge
 a

bs
ol

ut
e

er
ro

r

Static
Prob. Counting
Exact

(b) 2-norm average absolute error for
all equal queries

100000 200000 300000 400000

Number of updates

0

1

2

1-
no

rm
 a

ve
ra

ge
 m

od
if

ie
d

re
la

ti
ve

 e
rr

or

Static
Prob. Counting
Exact

(c) 1-norm average modi�ed relative
error for all one-sided range queries

Figure 2: Accuracy of various methods for insertions.

7. Conclusions

In this paper, we present a novel method based upon proba-

bilistic counting to maintain wavelet-based histograms. Ex-

periments show that our method can e�ectively maintain

wavelet-based histograms for a wide variety of update se-

quences with very little online time and space costs. Our

techniques provide much more accurate results than the static

maintenance method [LKC99] used in previous work. The ac-

curacy of the histogram maintained using our method is very

close to that of the optimal histogram obtained by rebuilding

from scratch upon any update.

References

[AC99] A. Aboulnaga and S. Chaudhuri. Self-tuning his-
tograms: Building histograms without looking at data.
In Proceedings of the 1999 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 181{
192, Phildelphia, June 1999.

[DIR99] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan.
Dynamic histograms: Capturing evolving data sets.
Technical report, Department of Computer Science,
University of Wisconsin-Madison, 1999.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic
counting algorithms for data base applications. Jour-
nal of Computer and System Sciences, 31(2):182{209,
October 1985.

[GMP97] P. B. Gibbons, Y. Matias, and V. Poosala. Fast in-
cremental maintenance of approximate histograms. In
Proceedings of the 1997 International Conference on
Very Large Databases, Athens, Greece, August 1997.

[JS94] B. Jawerth and W. Sweldens. An overview of wavelet
based multiresolution analyses. SIAM Rev., 36(3):377{
412, 1994.

[LKC99] J. Lee, D. Kim, and C. Chung. Multi-dimensional se-
lectivity estimation using compressed histogram infor-
mation. In Proceedings of the 1999 ACM SIGMOD In-
ternational Conference on Management of Data, pages
205{214, Phildelphia, June 1999.

[MD88] M. Muralikrishna and D. J. DeWitt. Equi-depth his-
tograms for estimating selectivity factors for multi-
dimensional queries. In Proceedings of the 1988 ACM
SIGMOD International Conference on Management of
Data, pages 28{36, 1988.

[MRL98] Gurmeet Singh Manku, Sridhar Rajagopalan, and
Bruce G. Lindsay. Approximate medians and other
quantiles in one pass and with limited memory. In Pro-
ceedings of the ACM SIGMOD International Confer-
ence on Management of Data, volume 27,2 of ACM

SIGMOD Record, pages 426{435, New York, June 1{4
1998. ACM Press.

[MVW98] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In Proceedings
of the 1998 ACM SIGMOD International Conference
on Management of Data, pages 448{459, Seattle, WA,
June 1998.

[PI97] V. Poosala and Y. E. Ioannidis. Selectivity estimation
without the attribute value independence assumption.
In Proceedings of the 1997 International Conference on
Very Large Databases, Athens, Greece, August 1997.

[PIHS96] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. Shekita.
Improved histograms for selectivity estimation of range
predicates. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data,
Montreal, Canada, May 1996.

[Poo97] V. Poosala. Histogram-Based Estimation Techniques
in Database Systems. Ph. D. dissertation, University of
Wisconsin-Madison, 1997.

[PSC84] G. Piatetsky-Shapiro and C. Connell. Accurate estima-
tion of the number of tuples satisfying a condition. In
Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, pages 256{276,
1984.

[SDS96] E. J. Stollnitz, T. D. Derose, and D. H. Salesin.
Wavelets for Computer Graphics. Morgan Kaufmann,
1996.

[VW99] J. S. Vitter and M. Wang. Approximate computa-
tion of multidimensional aggregates of sparse data using
wavelets. In Proceedings of the 1999 ACM SIGMOD In-
ternational Conference on Management of Data, pages
193{204, Phildelphia, June 1999.

[VWI98] J. S. Vitter, M. Wang, and B. Iyer. Data cube ap-
proximation and histograms via wavelets. In Proceed-
ings of Seventh International Conference on Informa-
tion and Knowledge Management, pages 96{104, Wash-
ington D.C., November 1998.

[Zip49] G. K. Zipf. Human Behaviour and the Principle of
Least E�ort. Addison-Wesley, Reading, MA, 1949.

