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An O ( n )  algorithm is presented for the problem of partitioning a set of n points 
in the plane into four equal parts by means of two straight lines. 19x5 Acadcrn~~ 

P r e s .  Inc 

The following problem was raised in a paper by Dan Willard [ 6 ] :  Given n 
points (a,, b,) ( i  = 1,. . . , n), find two straight lines that partition the plane 
in such a way that each (closed) quadrant contains at least [n/4] points. 
Cole, Sharir, and Yap [I] propose an algorithm which is based on the 
scheme for applying parallel algorithms in the design of serial ones that is 
presented in [3]. Their algorithm runs in O(n log2 n) but the authors argue 
that an O(n log n )  algorithm is possible if the guiding routine is a sorting 
network of depth n with bounded degree. Here we show that the ideas 
presented in [2,4] apply to the two-line partitioning problem as well, so we 
obtain here an O(n) algorithm for the latter. 

2. PRELIMINARIES 
We first argue that a crucial subproblem is a special case of what is called 

the "ham sandwich problem." The special case is the following: Given two 
finite sets of points in the plane, whose convex hulls are disjoint, find a 
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straight line that simultaneously bisects both of the sets. The relation of the 
latter to the original partitioning problem is as follows. Given the set of n 
points, first find any straight line that bisects it. The problem now reduces 
to bisecting the two halves simultaneously by means of a second line. 
Obviously, the convex hulls of the two halves are disjoint if the first line 
does not contain any of the input points. 

Without loss of generality it is sufficient to deal with the following 
problem: Given are two sets of points P = {(a,, b,), . . . , (am,  b,)), where 
b, > 0 (i = 1,. . . , m), and Q = {(c,, d l ) ,  . . . ,(c,, d,)), where d, < 0 (i = 

1, .  . . , n). We have to find an x such that the median of the set P, = {(a, - 
x)/b, : i = 1, . . . , m ) equals the median of the set Q, = {(c, - x)/d, : i = 

1,. . . , n).  It is thus more convenient (at least to the author's taste) to 
consider the problem in the following equivalent form. Given are two sets of 
linear functions. One consists of m increasing linear functions while the 
other consists of n decreasing ones. Find the point where the two point-wise 
median-functions intersect. Obviously, the first median-function is mono- 
tone increasing while the second is monotone decreasing. Thus, we are 
searching for a well-defined point in the plane, namely, the unique intersec- 
tion point of the two median-functions. We will develop a linear-time 
algorithm for this search problem. 

The linear-time search here resembles the search procedure for the 
solution of a three-variable linear programming problem [2,4]. The reader is 
strongly advised to refer to [2,4] for more detail and illustrations. A rough 
description is as follows. A vital subroutine for the algorithm is a procedure 
that determines, for any straight line in the plane, on what side of the line 
lies the intersection point of the two median-functions. The problem is then 
solved by repeatedly discarding lines from the sets. It turns out that by 
testing two special straight lines one can tell the "correct" side of (m' + 
nf)/8 lines, where m' and n' are the cardinalities of the current sets of lines. 
For the reader who is familiar with the technique in [2,4], all we need to 
show is how to implement the line-query and how to select the two lines 
during an iteration of the algorithm. 

In this section we address the following problem. Given are two sets of 
linearfunctionsP,= { y = A , x + B , : i =  l , . . . , m )  and Q,= { y  = C,x+ 
D,: i = 1,. . . , n )  such that all the A,s are positive while all the C,s are 
negative. Also, let k (1 I k I m) and r (1 < r I n) be given. Denote by 
P,(x) the k th largest value in the set { A,x + B, : i = I,. . . , m ) and by 
Q,(x) the r th  largest value in the set {C,x .t D,: i = 1,.  . . , n). Let (x*, y*) 
denote the point at which the two quantile-functions intersect, that is, 
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y *  = P , ( x * )  = Q,(x* ) .  Given any line L, determined by an equation 
y  = a x  + p, we need to decide whether y *  < a x *  + P,  y *  = a x *  + /3 or 
y *  > a x *  + p. For a vertical line of the form x  = x', recognizing whether 
X *  < x' ,  X *  = X' or X *  > X' is easy so we omit the details. Similarly, the 
case of a horizontal line ( a  = 0) is easy. 

We discuss here only the case where a  > 0. The case of a  < 0 is 
analogous. The first step is to find the intersection of the line L with Q r ( x ) .  
Our assumptions imply that there is a unique intersection point whose x  
value, x' ,  is precisely the rth largest of the x  values of the intersection 
points of lines in Q, with L. Thus, x' can be found in linear time. Let 
y' = ax '  + /I. Next, we compute y P  = P , ( x f )  in linear time. Obviously, if 
Y P  < y' then x*  > x ' .  However, since Q r ( x )  is decreasing and L is 
increasing, it follows that y  * < ax*  + P. Analogously, if y P  > y' then 
y  * > a x *  + /3 and if y  = y' then y  * = a x  * + p. We conclude that the 
position of ( x * ,  y * )  relative to any straight line can be determined in linear 
time. 

An iteration of the search algorithm is organized as follows. Consider the 
set of lines which are active at the beginning of the iteration. A line is active 
if we have not determined on which side of the line the point ( x * ,  y * )  lies. 
At the start of the algorithm all the lines are active and each iteration 
deactivates 4 of the active lines. Let N denote the number of active lines at 
the beginning of the current iteration. The first step is to partition the active 
lines according to their slopes into two sets, namely, those with slope larger 
than and smaller than the median slope s. This is accomplished in linear 
time. Second, the active lines are paired so that each pair has a member with 
a larger (than s )  slope and a member with a smaller slope. Now, the x  
values of the intersection points of paired lines are computed and the 
median x,  of these values is found. Next, the line x  = x,  is tested in the 
sense of Section 3. Suppose, for example, we found that x* < x,. We now 
consider only those pairs whose intersection points have x  values greater 
than or equal to x,. There are at least [ N / 4 ]  such pairs. The second line 
that we query is one that has a slope of s and such that it divides the 
intersection points under consideration into two equal sets. Thus, the 
intercept of this line equals the median of the set { y  - s x ) ,  where ( x ,  y )  
runs over the intersection points still under consideration. By testing this 
line we identify a quadrant Q in which ( x * ,  y*) lies; the LN/8 ]  pairs of 
lines associated with the "opposite" quadrant have the property that each 
pair has one member that does not cross through Q. Each such member is a 
line for which we know on which side ( x * ,  y * )  lies. Hence, such a line can 
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be deactivated at this point and the problem is reduced to a similar one 
(with different values for the ranks k and r )  on no more than 7 N / 8  lines. 
This implies that the whole algorithm runs in linear time. 
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