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Abstract: The concept of bounded rationality is not well-defined. Several aspects of bounded 
rationality are discussed. Two different kinds of bounded rationality are distinguished. First, rationality 
may be bounded in the sense that the player cannot perform all the necessary calculations within the 
time frame of the game. This applies not only to numerical calculations but also to any kind of 
information processing, for example, figuring out logical consequences, or self-examination of prefer- 
ences. Recent studies on the effect of bounded rationality concentrate on this type, studying the 
effect of limited computational capability on the set of Nash-equilibria of the game. Some objections 
to the approach taken in these papers in dealing with the question of bounded rationality are presented. 
In the second type, players may simply not accept that Nash-equilibrium is a necessary consequence 
of rationality. Such players challenge the Nash-equilibrium simply because it rules out some desirable 
outcomes. An example is presented followed by a proposed notion of approximate equilibrium (stronger 
than Radner’s) which offers some help in this direction. 
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Introduction 

The term ”bounded rarionality” lSil has been used informally by economists in various contexts. 

However. since the notion of full rationality is usually not well-defined. the concept of bounded rationality 

is not well-defined either. I t  is more o r  less clear what we mean by full rationality if only a single decision 

maker is involved: a fully rational player is one that  maximizes his utility. To do tha t ,  he must have 

some beliefs about the world. He is so smart  tha t  his beliefs are absolutely complete and  consistent and 

he is aware of them ail the time. Thus, a fully rational player (playing in solitude, or  “against na ture”)  

has no computational limits. In particular. he can even decide undecidable problems. The case of a 

single decision maker is simple in this respect just  because there are no indeterminacies. T h a t  is. for 

each possible action a,  the decision maker has a probability distribution over the  states of the  world 

that  may result from the action a. In the presence of other deciders, the future s ta te  may depend on 

actions of others. Rational  players in the traditional theory of games reason about  each other’s actions 

and do not just  form subjective probability distributions with respect to all the  unknowns in the  system. 

I t  has usually been assumed tha t  rational players play some Nash-equilibrium combination of strategies, 

t ha t  is, a combination of strategies such that  no player can benefit by (unilaterally) deviating from the 

strategy assigned to him in the combination. I t  is not clear how rational players reach a Nash-equilibrium, 

especially in games with no communication, or even in games with communication when they fail t o  agree 

on a specific equilibrium. I t  should be mentioned though that  Aumann [A21 has recently shown tha t  

if each player is “Bayesian rational” ( tha t  is, maximizes his utility against what he bel ieves  to be the 

resultant of the actions of the other players) then the distribution of outcomes of the game can be achieved 

as a correlated equi l ibr ium [All.  This result however is based on the assumption tha t  all the players have 

the  same prior probability distribution over the states of the  world. We discuss this assumption later. The 

set of correlated equilibria contains the convex hull of the  set of Nash-equilibria, and this containment 

may be strict. 

* 

This paper was presented a t  t he  Decentralization Workshop on May  16, 1986 in Berkeley, California. 
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We discuss here several aspects of bounded rationality. We distinguish two different kinds of this 

property. First ,  rationality may be bounded in the sense that  the player cannot perform all the necessary 

calculations within the time frame of the game. This applies not only to  numerical calculations but also 

to  any kind of information processing, for example, figuring out logical consequences, or self-examination 

of preferences. Second, we may consider players who are not limited in their computational  ability 

but who simply do not accept tha t  Nash-equilibrium is a necessary consequence of rationality. These 

players challenge the  Nash-equilibrium simply because it rules out some desirable outcomes. The  classical 

example is of course the  finitely repeated prisoners’ dilemma game with a large number of rounds, where 

rational players ( tha t  is, ones tha t  always play a Nash-equilibrium) perform very poorly relative to  

“irrational” ones. This phenomenon occurs in many other games. It  seems that  both kinds of “bounded 

rationality” can ”resolve” the prisoners’ dilemma . However. as we argue later, difficulties similar to  the 

ones present in the finitely repeated prisoners’ dilemma may not always be at tr ibuted to  computational 

complexity alone. 

Let  us informally use the  term “reasonable player” for a player who does not necessarily care so 

much about an  ezacf equilibrium, but rather looks for practical ways to  increase his utility, even a t  the  

expense of disequilibrium. Of course, we are immediately faced with a paradox: if “reasonable” but 

irrational players end up performing bet ter  than rational players, isn’t there something wrong with our 

understanding of rationality? We will later suggest a notion of €-equilibrium (stronger than Radner’s 

[Ral, Ra2[)  which we believe offers some help in this direction. 

Recent studies on the  effect of bounded rationality concentrate on the first type, tha t  is, limited 

computational ability. This direction, beginning with the  papers of Rubinstein [Rul and Neyman IN] 
(and further work [MWl, [KS[, [Zl) studies the  effect of limited computational capability on the set of 

Nash-equilibria of a game. We present below some objections to  the approach taken in these papers in 

dealing with the question of bounded rationality. 

Rational play through bounded machines 

In  this section we consider a model in which strategies are  identified with computing machines or 

computer programs. Our  discussion relates directly to the models considered in [N, MW, ZI. The model is 

roughly as follows. Two players have to  choose computing machines (from a well-defined class) t o  play for 

them a repeated N-round game. In [N] the machines are au tomata  al. a z ,  with no more than 1,  states in 

a ,  ( i  = 1.2),  which are chosen after the number iV is given. In [MW] the players choose Turing machines, 

of bounded number of internal states and unbounded memory, for playing any iV-round repetition of 

a given game, where N is given as input to the  machines a t  the  s tar t  of the game. The  la t ter  can be 



interpreted also as a model in which the  players choose computer programs (under some well-defined 

encoding scheme) of restricted length. A pair of programs ( P I ,  P2) of permissible length is said to  be in 

equilibrium if for every program P (of permissible length) the play of (PI, P2) is a t  least as good, from 

the  point of view of player 1, as the play of (P, P2), and  at least a s  good, from the  point of view of player 

2, as the  play of ( P I , P ) .  

The model can be interpreted in a t  least two different ways: 

(i) Rational play. Under this interpretation. fully rational players voluntarily restrict themselves to  

play the game through computer programs. However, each can optimize the particular choice of hi3 

program subject to  the constraints tha t  were agreed upon. This scenario is somewhat like a limited 

binding agreement. The original game does not allow for such agreements but the players would d o  

better  (in the sense of equilibrium payoffs) if they could commit themselves to play through programs of 

restricted size. Each player must be able to  verify tha t  his opponent does not cheat. 

(ii) Bounded rationality. Under this interpretation. players‘ rationality is bounded in the sense tha t  

they cannot consider strategies other than those that  can be played by programs not longer than 1 bits 

(under some fixed encoding scheme) and the number 1 is common knowledge. For brevity we refer to  

these as I-programs or I-strategies. Here, the  limited capabilities are given ezogenously. 

Under both interpretations the  intricacies of the game are  migrated into a “preprocessing game” 

where the players have to  consider the  space of all possible machines. The  sense of the equilibrium is tha t  

for none of the players there exists (in the  space of possible machines) a bet ter  response to  the  machine 

chosen by the opponent. Thus, if the players find (together) a n  equilibrium pair of machines, they can 

use it.  This makes sense under the first interpretation; there it is implicitly assumed tha t  the  players 

communicate in order to  reach a n  agreement, and are  supposed to  be more “rational”. With regard t o  

the second interpretation one may ask: 

If the players cannot consider strategies tha t  are not playable by 1-programs, are they rational 

enough to find an equilibrium pair of such strategies or even just verijy that  a given pair is in 

equilibrium? 

This question is sharpened considerably if the players are  supposed to  find an  equilibrium pair of 

mixed strategies. that  is, a n  equilibrium pair of probability distributions over the space of s-state au tomata  

or even Turing machines. I t  seems that  (under the bounded rationality interpretation) the  definition of 

equilibrium is justified only in case the players can consider only  /-strategies, and at the same time can 

reason about equilibrium with respect to  the set of all l-strategies. I t  is hard to  accept such a dividing 

line between what a player can and cannot do. 
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In light of the foregoing discussion, let us consider a player as a “program” that  receives a description 

of a game from a certain class as input,  does some preprocessing, and then plays the game. 

Let us consider, as a n  example, the  class of all two-person finitely repeated (2  x 2)-games. Consider 

a “universal* game as follows. Nature  chooses a ( 2  x 2)-game G and a number A’. The players then 

repeatedly play G for N rounds, where both G and h‘ are common knowledge. In  traditional game theory 

the  process by which nature chooses G and A’ is irrelevant. The players have unlimited computational 

resources for analyzing and playing any game so they can postpone the analysis of the game until after 

they have actually been informed of G and N, and then play their “optimal” strategies. Of course, if 

the  game is not zero-sum, optimality of strategies has yet to  be defined. The situation is different when 

the players have to write f i n i t e  programs for playing any pair (G. A‘). Obviously, they cannot submit an  

infinite list of strategies for the instances (G,  A’). Tha t  in itself does not imply that  they cannot play 

optimally. For example, it is easy to  write a short computer program that  plays optimally any pair (G, Ar) 

where G is any (2  x 2)-zero-rarn game. Here, the process by which nature selects G and N is irrelevant 

if the programs may be sufficiently long. In general, when the computational resources are restricted, 

the choice of a program must depend on what is believed to  be the probability distribution of the pairs 

(G, A‘). Intuitively, if the  restrictions imply that  the program cannot play the “best” in all games, then 

the choice of instances in which it will play suboptimally must depend on the probability distribution 

over games. 

In the traditional theory of games, a (complete) strategy for 0. player in a game in extensive form 

is a mapping that  assigns a valid action to  each information set of the  player, t ha t  is, it is a complete 

plan of what exactly to  do in each decision situation that  may arise in the game. It  is not necessary (and 

usually even impossible) for a player to design a complete strategy for the game in advance. Obviously, 

there is no need to  design a complete strategy since during a single play only responses to  the opponent’s 

actions are required. A computer program that  can play a game G (among some other games) does not 

have to  contain (even implicitly) a complete strategy for G, since the actions it would “like” to  take in 

hypothetical situations may change as a result of information or experience gained during actual  play of 

G or other games. This motivates the  following definition. 

Definition. Consider a game G in extensive form. A partial strategy for player i is a mapping 

from a rabsel of the set of information sets of player i into respectively legal actions. In simple words, 

a partial strategy is a plan of what to do in aorne cases. 

We note tha t  the partial strategy of a player may vary during the  play of a game and, in particular, 

be affected by other players’ actions. 
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Consider, for simplicity, a 2-person game in extensive form. Some pairs of partial strategies are 

Ohviously, the decisive in the  sense tha t  they are  sufficient for completing a full play of the game. 

definition of an  equilibrium can be extended to sets of partial strategies. 

Definition. Let A,  denote a set of partial strategies for player i (i = 1.2) .  A decisive pair of 

partial strategies (g1,g2) (gi E A , )  is in equilibrium relative to  ( A l , A 2 )  if there exists no r 1  E A1 such 

that  ( r ' , u z )  is decisive and preferred by player 1 over ( u ' , g * ) ,  and there exists no r2  E A2 satisfying 

similar conditions with respect to  player 2. 

The idea of this concept is tha t  a "de facto" s ta te  of equilibrium may prevail just because players 
are not uwure of better  partial strategies against each other.  Of course. the  play is not well-defined when 

one of the programs does cannot take a legal action. 

Irrational subjective probabilities 

Bayesian decision theory assumes agents have prior probability distributions over the  states of the 

world. This fundamental  assumption typically invokes a debate about how agents pick their priors and 

whether priors can be different for different agents. Subjective probability is, on the  one hand, a n  

expression of the  agent's s ta te  of information about the world. Thus, if a coin has been tossed and the  

agent has not received any clue about the  outcome, then his prior ought to  be  50% for heads and 50% 

for tails. On the  other hand. subjective probability is also a n  expression of the degree of confidence in 

a certain outcome, to the  extent required for taking some action. In  other words, subjective probability 

can be viewed as an  expression of preferences. For example, a n  agent has a subjective probability of a t  

least p tha t  it will rain the following day if he agent prefers betting on this event to  betting on another 

event which has an  objective probability of p. 

The interpretation of subjective probability as an  expression of preferences is often used to  convince 

people tha t  they do have subject probabilities with respect to  almost everything. I t  is easier to convince 

people tha t  they have preferences (including indifferences). Using a "binary search" type of interrogation, 

one can measure subjective probabilities of subjects with respect to  certain events. However, these 

probabilities may not be additive just  like preferences may not be transitive. In  Bayesian theory, agents 

are assumed t o  have complete subjective distributions over the states of a certain world. However, with 

both interpretations of subjective probability it is hard t o  justify this assumption when dealing with real 

people. An agent may be well aware that  his beliefs about the outcome of a coin toss are  50-50, but it 

certainly takes some thought (and t ime) t o  realize tha t  a consequence of this belief is tha t  the probability 

tha t  in 10,000 independent coin tosses less than 5150 will come out heads is more than 98%. Thus, if an 



agent is called upon to  make a decision related to  the lat ter  event, and he does not have enough time to  

analyze the  consequences of his basic lack of information, then he may act  according to  beliefs which do 

not follow from his s ta te  of information. 

Consider the following example. A subject is offered to  choose within a minute between winning a n  

expensive prize with probability p or winning it provided the  number of heads in a random sample of 

10,000 independent coin tosses is less than 5150. For a "reasonable" subject we may assume the  existence 

of a certain threshold p" such that  he would prefer the  lottery if p > p" and the coin experiment if 

p < p". Thus, a reasonable subject may have a n  implicit subjective probability p" for the event of less 

than 5150 heads. but this prohability may depend on the amount of time he has for thinking about the 

offer. Howelrer, the subject does not necessarily know what exactly his subjective probability is. For 

certain values of p the decision may be easy. For such values the subject can make the "right" decision 

without dealing with the  question of what his subjective probability is. On the other hand, in extreme 

cases. the subject may realize what his subjective probability is by coping with the decision problem. 

However. the  implicit suhjective probability depends on the amount of time and the characteristics of 

the individual. If the agent is a computing machine then this implicit subjective probability is actually 

determined by the  program. 

In the lat ter  example the subjective probabilities depended on time due to  the need to  compute. 

However, subjective probabilities may depend on time simply because the  subject needs to  interrogate 

himself and maybe analyze the event under consideration more carefully. I t  is also interesting to observe 

tha t  the implicit subjective probability may depend not only on the event and the time but also on the 

prize. Both the  calculations and general considerations may be different for different values of prizes. 

What do machines know? 

In a discussion of behavior of players in a game or processors in a distributed system, we often use 

phrases like "player i knows that...". or "player i can find out what is...", etc. We tend to at tr ibute to  

processors certain "human* characteristics. Numerous theories of knowledge have been proposed (see 

[HI). A fundamental difficulty is the problem of closure under logical deductions. Agents are  traditionally 

assumed to know all the logical consequences of the things they know, regardless of how hard it is make 

the deductions. However, recently a new theory has been proposed in [GMR], where agents are assumed 

to know only results of polynomial-time computations. 

Knowledge of individuals can be discussed a t  different levels of detail. However, if we model players 

as machines, there is an  implicit notion of knowledge which is, on the one hand, easy to define but,  on 

the  other hand, hard to work with. 

- 
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In our opinion knowledge should always be  related to  time. In any test of an  agent’s knowledge, 

we must specify the  amount of time given to the  agent to  come up with an  answer to  a query or with 

any other form of evidence that  he knows the answer. Knowledge which cannot become evident is as 

interesting a s  as book that  can never be read. Consider, for example, knowledge in the  contest  of 

arithmetic calculations. Almost everybody knows tha t  1 + 1 = 2 but what do we mean when we say 

that  i knows tha t  76982456+ 73967858 = 150950314? I t  certainly takes some time t o  find the answer. 

Thus,  it would be more accurate to  say something like “player i would be able to  tell within 30 seconds 

tha t  76982456f 73967858 = 150950314”. In view of this example, it is clear tha t  one should, a t  least 

implicitly, associate response times with claims about knowledge. For instance, “i knows how to  set the 

Rubic cube in less than three minutes” or “it will take me no more than ten seconds to  recall a certain 

phone number*. On the other hand. one may never be able to come up with the right answer if the lat ter  

requires knowledge of some concealed information. 

We might say that  agent i knows[tl whether proposition Q is true or false if, assuming nothing in the 

environment will change, the agent will tell whether 4 is true or false within t time units from the time the 

query is presented. Of course, there is still the issue of the  language in which the question is presented. 

At the  lowest level, computing machines interact with the  outside world by sending and receiving bits. I t  

also seems that  living creatures work with bits. I t  is easy to  define knowledge in terms of strings of, say, 

0’s and l ’s ,  but the definition is not particularly enlightening. One can think, for example, of a Turing 

machine where the work of the  machine when given a certain query is determined by the  description of 

its control, the current position, and the  query which is fed into it. 

Any query is presented at the  lowest level as a string of bits. This is true not only for computing 

machines but probably also for living creatures. The  query invokes some processing by the  machine which 

then may or may not respond to the query. Let’s assume the existence of a well-defined correspondence 

from query strings to  admissible strings of answers. We might say that  what the machine currently 

knors l t l  is the  set of all the answers to  queries tha t  it would answer correctly (if the  query is presented) 

within t time units from the time the query is presented. I t  is interesting to  observe that  by presenting a 

query we might change the knowledge s t a t e  of the machine altogether. This may happen either because 

the query itself may reveal information or because the  machine may reorganize itself during the  processing 

of the query. Response time to  future queries may depend very heavily on such reorganization. 

Our interest here is limited to finite machines, tha t  is, a finite number of bits always suffices for 

describing the machine and its instantaneous situation. We believe living creatures also fit into this 

framework. Furthermore, we are interested in knowledge about  facts with finite encoding. The  model is 

of course too  detailed. In general, unless we make some assumptions about our computing machines, what 

the machine knows or does not know seems very arbitrary. Thus,  we will not be able to  proceed without 
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further assumptions on the behavior of our machines. In principle, every machine works according to  a 

program, reacting to  input received from the environment. Input from the environment may also include 

programs. This is one way for the main procram to  learn to make better  decisions. To develop a theory 

of decision making and games along these lines, we must have some idea on how our brain works. For 
example, when a mathematician a t tempts  to  prove a certain theorem, his brain is probably guided by 

some &program”. Moreover, different people may have completely different programs for doing that .  

How can we develop a n  axiomatic theory and reason about these different processes without some basic 

understanding of how the brain works? 

The common prior assumption 

In the literature on games with incomplete information, start ing with Harsanyi [Ha], it is usually 

assumed that  the  prior probability distributions of players, with respect to  the  s ta te  of the world. are 

identical. The assumption is justified by the argument tha t  if players have different priors then these are  

not priors but rather posteriors, resulting from different information that  has already been given to the  

players in some form. The discussion in [A21 leads to  the following framework for a game. The players 

may be considered as identical “empty shells“ before the game starts .  Each shell has the same subjective 

prior probability distribution over the states of the world. This distribution is therefore “objective”. The 

shells are then filled, by some random process, with the individual characteristics of the  actual  players. 

Before this process takes place there is no association between any shell and the contents to  be poured 

into it. 

I t  is interesting to  examine this question in a model where the players are identified with computing 

machines. Here, the ”empty shell” concept is quite natural. We can imagine a world where, in the 

beginning, each player is identified with a certain computer and all the computers are identical. Then, 

by some random process. the  computers are loaded with some software and they s tar t  playing. Before 

any software is loaded. the computer is just an  “empty shell”. I t  cannot communicate with the  outside 

world. It may be justified to say tha t ,  from the point of view of this empty shell, the  probability of 

heads or tails in a coin toss is 50%. It  is not clear tha t  we may assume this empty shell has as subjective 

probabilities all the probability-theoretic consequences of this assumption, for example, for many coin 

tosses. .%lthough it is not clear what the right model of priors is. it seems right to  assume that  the 

priors are identical. The empty shell is not called upon to make any decision so it does not really mat ter  

what its priors are. I t  is only later, after the software has been loaded, tha t  the computer may need to 

consider the priors tha t  prevailed earlier, in order to compute its posteriors. I t  takes a certain amount 

of computation t o  construct the  prior from the basic assumption and the way this computation is done 

depends of course on the  software. We arrive a t  the conclusion that ,  since different computers are loaded 
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with different softwares, different players may eventually use d i f je red  priors in their calculations of the 

posteriors. 

We may view the process of loading the software a s  a n  analogue of the scenario in games with 

incomplete information, where in the  beginning nature tells each player what its “type” is ([Ha, hfZI). 

Following [MZ], we may think of states of the  world as ( n  + 1)-tuples tha t  specify the  s ta te  of nature 

and the  “types* of the  n players. A “type” of a player is characterized by its beliefs about nature and 

the types of the other players. In other words, a s ta te  of the world can be “implemented” by fixing 

the  s ta te  of nature and letting each player know its own type. The Bayesian approach says tha t  each 

player’s belief about the s t a t e  of the world constitutes a posterior probability distribution (based on his 

prior distribution), given the information he has received. Suppose each player has a prior  probability 

distribution with respect to  the s ta te  of the world. so t h a t  once the player is informed of his own type. 

this prior is updated into a posterior distribution. It is easy to  see tha t  the  prior of a player is in fact 

determined by his prior distribution with respect to  his own type. since once his type is fixed. the rest of 

his beliefs are  fixed too. Indeed, any distribution with respect to the type of player i can be  used to define 

a prior for i tha t  is consistent with the posteriors associated with the different types. As pointed out in 

[MZ], it is not always true tha t  players’ posteriors are  derived from the  same priors. Some consistency 

about  the types revealed to  the  players has t o  be assumed. In our case, this means tha t  the  different 

pieces of software loaded into different machines have to  be  consistent with some common prior. The 

question of where the  software is coming from is inevitable. Notice tha t  this is not the  the  usual software 

the people develop but rather the  very initial t ha t  is loaded into the empty shells. 

‘Bounded rationality” without complexity 

Games in extensive form and. in particular, repeated games. are inherently complex for computation 

because of the  large number of strategies. When a 2 x 2 two-person game is repeated N times, the  number 

of strategies for each player in the  N-round game is 2* -‘. This means tha t  explicit enumeration of all 

strategies is not feasible in most practical situations. However, implicit enumeration may sometimes be 

feasible. This high computational complexity has motivated the study of play where not all the strategies 

are  playable. Neyman IN] shows that  if the  play is performed through finite au tomata  (with a suitable 

number of states)  then the prisoners’ dilemma is ”resolved”. 

N 

We believe the theoretical difficulties with games like the finitely repeated prisoners’ dilemma are  

due only in part t o  the high computational complexity. Similar difficulties arise in games which are not 

a t  all computationally complex. Consider, for example, the following game which may be called “Share- 

or-Quit”. This is a finitely staged game which is not a repeated one. I t  proceeds a s  follows. First ,  player 
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1 has to choose between (i) taking 1 cent for himself and giving 1 cent to  player 2 (“Share”) ,  and (ii) 

taking 2 cents for himself ( “ Q u i t ” ) ,  in which case the  game ends immediately. If player 1 chooses to  share 

then the game continues. Player 2 is then asked to  choose between (i) sharing 20 cents with player 1 and 

(ii) taking the  20 cents for himself, thereby ending the game. If he chooses to  share then player 1 is asked 

t o  choose between (i) sharing 2 dollars with player 2 and (ii) ending the  game by taking the 2 dollars for 

himself. The game continues in this way, with amounts increasing by a factor of 10 from round to  round 

( tha t  is. playing for 20, 200, 2000, etc.) until either a player chooses to  quit or the  amount has reached 

2 million dollars. 

I t  is easy to  prove by backwards induction tha t .  in any Nash-equilibrium of this game. player 1 must 

quit in the first round. This equilibriuni is also obtained by iterated elimination of (weakly) dominated 

strategies. Moreover. the restrictions of these eliminated strategies to  residual subganies are strictly 

dominated. We believe that  if this game were put into an  experiment, subjects would not play the  Nash- 

equilibrium. It is interesting to note that  the number of strategies in “Share-or-Quit” grows only linearly 

with the number of stages. Thus, with the particular numbers given above it is even easy to write the  

normal form of the  game explicitly. In fact, a strategy in this game amounts to  the  choice of the stage in 

which the player plans to quit if given the chance to. I t  is thus trivial t o  implement here every strategy 

even on a very primitive machine. Note tha t  the only way for a player in this game to convey information 

to the opponent is by continuing to  play. So, in a certain sense, any strategy can be played without 

further computation. 

The Bayesian analysis of “Share-or-Quit” is rather trivial. Each player s tar ts  with a prior probability 

distribution with respect to  the  stage in which the opponent will quit if given the chance to. If the  player 

has already chosen a strategy (possibly a mixed one) then he also has such a prior with respect to  the 

stage in which he himself will quit if given the  chance to. These subjective probabilities are  then updated 

in the obvious way as the  game proceeds. A rather minimal assumption of rationality is t ha t  if a player 

gets to  play the last stage then he “quits”. Furthermore, this property is common knowledge. However, 

if this line of thought is pursued then one reaches a conclusion tha t ,  among “rational” players, it should 

be common knowledge that  whenever in this game a player is called upon to  play, the player must quit. 

Of course, if a player believes with a certain probability tha t  his opponent will not quit then it pays for 

him to  share. 

On the equilibrium hypothesis 

The tradition in game theory has been that  in order for a theory (of how to  play noncooperative 

games) to  be acceptable by all the players, it is necessary tha t  it should lead to a Nash-equilibrium. Let’s 
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call this the equilibriam hypothesis.  The question of what is a good theory arises not only in economics 

but also in computer science. where principles of distributed computer systems have to  be developed. 

Individual processors have to be endowed with some rationality. The equilibrium hypothesis is justified 

as follows. If a theory leads to  a disequilibrium then a t  least one player has a n  incentive t o  deviate 

from what the theory prescribes. Moreover, being aware of this possibility, other players may not be 

willing to follow the theory any more. I t  is very important  to  notice tha t  implicit in this hypothesis 

is a n  assumption that  a t  least one of the players is capable of recognizing a disequilibrium. If a theory 

recommends a disequilibrium, but it is common belief among the  players tha t  it i s  a n  equilibrium then 

the theory may hold. Interestingly, the  players do not have to  believe that  the recommended plan is a n  

equilibrium. I t  is enough to have common belief tha t  no player will be able to figure out a profitahle 

deviation. Of course. it may he  argued that  the actual  play is an  

equilibrium relative to  the  conditions of unawareness of a possibility to deviate profitably, hut we still 

do not have a theory to  deal with what players choose to  know (either by collecting information or by 

processing available information). Obviously. w e  cannot refute a claim that  whatever players do is a n  

equilibrium relative to  an  appropriate framework. In fact, one may learn about the  framework by looking 

a t  the “equilibrium”. For example, we may infer about the  “cost” of calculations for a given individual 

by measuring the  inefficiency of his buying habits. As another example, consider the  situation of users 

of a computer system that  rely on the  security of passwords. Using passwords is not a Nash-equilibrium 

in the usual sense since, in principle, any user can find out any other user‘s password. However, we can 

learn about the relative importance of privacy to  users of a certain system by looking a t  the  security 

arrangements tha t  seem to  work there. 

We will discuss this aspect later. 

Complexity-based equilibrium 

In  this section we examine the difficulties in defining an  equilibrium based on time-complexity. We 

adopt the finitely repeated prisoners’ dilemma game as a generic example. Let’s fix the  following matr ix  

as a stage of the  game: 
C D 

c p  ,la”). 
D 3,-1 

We star t  by examining the  proof tha t  every equilibrium pair in the finitely repeated prisoners’ dilemma 

game results in the steady defection. tha t  is, a play of (D,D). Consider any pair of strategies (E‘ ,E2)  

for the players in an iV-round prisoners’ dilemma game, and suppose this pair does not lead t o  the  steady 

play of (0, D). Assume round i is the last time player 2 is supposed to  play C. If player I is supposed 

to play C in round i, or any round thereafter, then he can make a profit (not only locally but also in the  

N-round game) by switching to  playing D from round i through the  end. If player 1 is supposed to  play 
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D from round i t o  the end then player 2 can make a profit by playing D in round i. However, in order 

for any of the  players to make such a profit, he has to  know when t o  deviate profitably, tha t  is, he must 

recognize the  critical round when it comes. 

Some of the strategies for the N-round game have short descriptions, tha t  is, a player may be  able 

to  write a short computer program that  will play for him even when the number of rounds is huge. 

The actual  play is of course determined when both players submit their computer programs. Thus, 

consider the following scheme for playing the Ar-round game. The players would like to agree on some 

sequence consisting of (C, C)’s an (D,  0 ) ’ s .  For example, they can rely on some pseudo-random number 

generator. Their idea is to play according to the chosen sequence as long as both  have done so. and 

otherwise to  switch to  playing (D. D )  through the end. Obviously. only the sequence of (D. D )  is in 

equilibrium. Howeyer. depending on the way the sequence is generated and described. there may be 

room for improvement by playing relatively complex sequences. Whatever sequence the players choose 

to play, they should be able t o  compute the “next” element of the sequence before the  next round of the  

game takes place, or  else the sequence’ would not be operational a t  all. On the other hand, the players 

should not be able to  recognize the last round in which they are supposed to play (C ,C) ,  before tha t  

round actually takes place. Assuming sequences with uniform cost of computing the  next element, we see 

that  such a scenario may be possible for N sufficiently large. The idea presented here is appropriate only 

for situations in which the rounds of the game take place a t  predetermined times. Suppose the  rounds are 

played a t  times 1,2,3, ... and the  amount of time it takes to  compute the  next element of the sequence is 

r ( r  < 1). This means that  each player must submit his action for round i by time i and he has enough 

time to  compute what this action should be. I t  follows that  the sequence is operational for any number 

of rounds. Assuming none of the players can speed up the  computation. it takes riV time to  compute 

the entire sequence. So, if the  critical round occurs before t ime r N  then it cannot be  recognized by any 

player. The feasibility of this idea depends on the  existence of a sequence a = { u I , a Z ,  ...} ( a k  E {C, D}) 
where it must take a known uniform amount of time t ( n )  = n r  t o  compute a k + , ,  from ak. Then, if r is 

too small. we can select subsequences of the form b k  = u m k  so the nes t  element of the subsequence is 

computed in r’ = m r  time units. Furthermore, a similar idea can be used to increase the frequency of 

playing (C, C ) .  

The preceding discussion leads to  the following abstract  definition of equilibrium based on time- 

complexity. However, the traditional model of games in extensive form has to  be  refined. First ,  we 

have to assume that  each player has a certain computational power. We prefer to  leave this concept in 

a rather abstract  form since it depends not only on availability of hardware and software but also on 

skills, experience and many other factors. Second. we need to introduce lime into the model. Specifically, 

together with every decision position (information se t )  P, for player i we associate a “time limit” r ( P l ) .  

The interpretation is tha t  player i has to  choose a n  action a t  Pi within r ( P , )  time units from the time he 
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is informed the  play reached the  position Pi. A strategy for player i is a procedure (feasible relative to  i ’ s  

computational  power and the time limits) tha t  selects a n  action for each decision position of i .  In certain 

games it may be too  restrictive to  require tha t  a strategy obeys the  time limit in all possible decision 

positions. Alternately, we can talk about a mutually feasible n-tuple of strategies in an  n-person game. 

In this case it is required only that  the resulting play be feasible, t ha t  is, only the  decision positions tha t  

actually occur during the  play are  taken into account. The following definition is only intuitive since it 

uses terms tha t  have not been defined precisely. 

Definition. An n-tuple of mutually feasible strategies is in equilibrium if no player can profitably 

deviate from it ,  tha t  is. no player can change his strategy and increase his own payoff without destroying 

the property of mutual  feasibility. 

I t  seems that  playing according to a suitable sequence (as esplained above) in the N-round prisoners’ 

dilemma game constitutes an  equilibrium in the sense of our definition. More specifically, it is not feasible 

for either player to compute the critical round. Of course, this is not an  equilibrium in the usual sense. 

Although the  sequence is determined by some computational procedure (known to  the players), some 

decisions based on the  sequence are not feasible within the  available computational  power. For example, 

there is not enough time to  compute the critical round. Assume each player has a subjective probability 

distribution with respect to the critical round. This distribution may change during the  play. Players’ 

beliefs give rise to probabilistically critical rounds. We can say that  round j is the critical from the  

point of view of player i if it is the last round to  which i assigns a positive subject probability to be 

the critical round. If player i could modify his strategy to  follows the  sequence up to  round j and then 

play D through the end, then he would make a positive expected profit with respect to his subjective 

distribution, provided the  other player plays according to  the  sequence. 

However, the complexity-based equilibrium is not well-defined and we can prove (even without 

subjective probabilities) tha t  every equilibrium must result in the  steady play of (D, D). I t  is obvious 

that  in equilibrium the players must play D in the last round regardless of what the  sequence prescribes. 

If they do not then a profitable deviation is readily available. Assume, by induction, tha t  in equilibrium 

the  players must play D in the last k rounds regardless of what the sequence prescribes. Obviously, it is 

impossible in equilibrium that  they play C in round k + 1 from the  end since, again, by the induction 

hypothesis a profitable deviation is now readily available. The “paradox” follows from the fact t ha t  

we did not define what it means that  the  player cannot find the critical round that  is determined by 

the sequence. In fact, what we saw is tha t  there cannot be a critical round if the sequence induces 

a n  equilibrium. In  a sense the  traditional definition of equilibrium is too restrictive. The ezistence of 

a profitable deviation suffices for destroying an  equilibrium. I t  does not ma t t e r  how hard it is t o  find 

such a deviation. The player may perform the deviation even without prior computation. I t  seems tha t  
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the right way to  approach these issues is t o  assign probabilities to  the  event tha t  the player does some 

computation that  leads to  the  deviation and to  the event tha t  he discovers the deviation by luck. 

The cost of computation is a w r y  important  factor. Obviously, if the cost of analyzing the pair of 

programs (for example, by running them against each other)  is higher than the anticipated profit from 

a profitable deviation expected t o  be discovered, then a n  equilibrium has been reached. Moreover, when 

the  players actually play the  prisoners' dilemma game, it may become apparent during some round i t ha t  

from round i, and on one of the players will steadily play D. However, such a discovery cannot affect 

what has been accomplished before round i. 

Consider. for example. the finitely repeated prisoners' dilemma game. where payoffs are denominated 

in cents as stated above. Thus, each player receives 2 cents if both players cooperate: each receives 0 

cents if both defect, and if they play differently then the  defector receives 3 cents while the  cooperator 

has to  pay 1 cent. Obviously each player can be secure (by defecting all the time) not to  lose even 1. 

Suppose the number of rounds is very large, say. 10'. Then, there is a potential for winning hundreds of 

thousands of dollars in this game. If both players follow a well-mixed sequence of C's and D's then each 

of them makes a profit of hundreds of thousands of dollars. However, the  pair is not in equilibrium and 

the players may well know this fact. Each player can make a profit of one cent (assuming the other player 

does not do the  same) if he computes the largest i (i 5 l o 8 )  such that  a ,  = C and deviates accordingly. 

The cost of the computation may not worth it.  This suggests an  alternate definition of equilibrium. 

Def in i t ion .  An n-tuple of strategies in a n  n-person game is in equilibrium if for each player, 

the  cost of computing a profitable deviation is larger than the anticipated profit. 

I t  seems tha t  the players are happier when they cannot compute the  critical round in advance since 

this lets them make huge profits! Again, the classical definition of equilibrium does not deal with the  

problem of computing the profitable deviation whose very existence destroys an  equilibrium. 

Approximate e q u i l i b r i u m  

I t  is well-known tha t  Nash-equilibrium points may sometimes be  very inefficient in the sense of 

Pare to .  Moreover, all the equilibria may lie far from the Pareto-optimal set. I t  is interesting to note 

tha t  sometimes there exist "approximate equilibria" lying close to the  Pareto-optimal set whereas, all 

the exact equilibria lie far from that  set. 

We consider again the  finitely repeated prisoners' dilemma game, where payoffs are  denominated in 

cents as above. Suppose the  players contemplate playing some sequence of (C, ( 7 ) ' s  and ( 0 , D ) ' s  (possibly 
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all (C, C ) ' s )  with the provision tha t  if one deviates then they immediately switch to  playing all (D, D). 
Unless the sequence consists only of (D, D ) ' s ,  there is a critical round in which a player may deviate 

profitably. However, it is common knowledge that  if one of the players plays the contemplated strategy 

and the  other one deviates (in the  critical round) then the  "faithful" player is worse-off only by 3 cents. 

Thus,  this is an  "+equilibrium" in the  sense of Radner IRal, Ra21, with which reasonable players may 

feel comfortable since (it the  frequency of C is sufficiently large) it yields profits of hundreds of thousands 

of dollars (as  opposed to  zero in the  unique exact equilibrium), and the only profitable deviation yields 1 

cent to  the deviator. Radner defines an  6-eqailibriurn as a combination of strategies such that  no player 

can gain more than a n  E by (unilaterally) deviating from the  combination. I t  is interesting to note another 

property which is not stated as a condition in Radner's c-equilibrium, tha t  is, the loss to the faithful 

player is also small (only 3 cents). Also, if both players perform the "profitable" deviation then each 

loses 2 cents. 

Radner 's  c-equilibrium may be convincing in the case of the prisoners' dilemma game. However, 

in order to justify play according to  it in general (even in 2-person games),  the players must rely on 

some complicated reasoning as follows. Each player has to  be convinced tha t  the  opponent will not  t ry  

to  gain an additional 6. Also, each player has to  be convinced that  the  opponent is convinced that  he 

himself will not t ry  to  gain an  additional E ,  and t o  be convinced that  the  opponent is convinced tha t  he 

is convinced that  the  opponent would not t ry  ..., and so on. Of course, the  question remains why should 

they be convinced? 

We propose here a stronger definition of an  €-equilibrium for 2-person games. There are various 

ways to  extend the definition to  n-person games but we prefer not to  this in the  present paper. Our  

definition is inspired by the difficulties with the  finitely repeated prisoners' dilemma . We believe tha t ,  

in general. is no reason for players to be convinced that  others would not try to  gain a n  additional E .  

However, in the  prisoners' dilemma game there is no need to  be convinced a t  all. The fact is tha t  the 

each player does not lose much if his opponent is greedy and tries t o  gain a n  additional E .  Thus, why not 

incorporate this property as an  additional condition for an  (-equilibrium? Denote by X , ( a ' , a * )  [i = 1 . 2 )  

the  payoff to  player i when a pair of strategies ( u l , a * )  is played. We give below a revised definition of 

(-equilibrium. We would have called it rdrong €-equilibrium to distinguish it from Radner 's  +equilibrium 

but ,  unfortunately, the concept of strong equilibrium already exists elsewhere in game theory. 

Definition. A pair ( u ' , ~ ' )  of strategies in a 2-person game constitutes an 6-equilibrium if the 

following conditions, as well as ones obtained by interchanging the roles of 1 and 2, hold: 

(i) for any strategy r' of player 1,  
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(ii) if r2  is a strategy of player 2 such that  

then 

H L ( a L , r 2 )  2 ~ l ( a ‘ , a ~ )  - c . 

We could strengthen the  definition with a third condition, tha t  for any profitable deviation of one 

player, the other player best response of the  other player cannot get the  la t ter  more than c profit. This 

would still be valid in repeated games. We could add more complicated conditions of this kind up to  any 

order. For simplicity, let’s not do  that  though. 

Intuitively. our t-equilibrium prevails if unilateral profitable deviations yield only small profits to 

the deviator and cause only small losses to the other player. Obviously, any Nash-equilibrium is a n  

c-equilibrium in our sense, for any 6 2 0. since it allows for no unilateral profitable deviations. Notice 

tha t  we do require the profit t o  the  deviator to  be small; otherwise, one player can be almost sure tha t  

the  other player will  deviate and therefore he may reconsider his own plans. On the  other hand, in 

a n  c-equilibrium each player is satisfied that  his opponent does not have a great incentive to  deviate, 

and even if he does the loss is small. The idea is tha t  if the players have “agreed” to  play a certain 

c-equilibrium, then they only have to  be convinced that  none will perform a lor ing deviation from it. The 

players are not “insured” against such deviations by each other. This is of course also the  case with exact 

equilibrium. I t  is interesting to  note tha t  even with exact equilibria it is sometime difficult t o  argue tha t  

players will not perform losing deviations. Consider. for example, the  following game: 

L R 

1 .  T 1000,1000 a,100 

B ( 100,a 100,100 

Consider the point (1000,lOOO). It is Pareto optimal and also dominates every other equilibrium in the  

sense of Pareto.  I t  is very natural  to expect tha t  if the players can communicate then they would agree 

to  play (T, t). However. if a is small then the risk to  each player is large. After all, even if the players 

agreed to  play (T, L), each may still have some small positive subjective probability tha t  his opponent 

will not fulfill the agreement. If a is sufficiently small, a suspicious player may prefer not to  fulfill the  

agreement. and perform a losing deviation. I t  is interesting that  suspicions may be  “indirect”. h player 

may. for example, suspect that  his opponent suspects tha t  he is going to  defect. or he may suspect tha t  

his opponent suspects tha t  he suspects tha t  the opponent is going to  defect, a n  so on. 

In  view of the  example, the  +equilibrium concept cannot be criticized more than the  exact equilib- 

rium on the  grounds that  it assumes the players do not perform losing deviations. Assuming the  opponent 
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will not perform a losing deviation, the  player knows he is playing within E of his best response and will 

not lose more than 6 if the opponent deviates. One is of course tempted t o  continue the analysis and 

ask why should a player not play his best response. One possibility is as follows. Since c is small, the  

player does not know for sure what the opponent is going to  do. The player may, a t  best ,  have beliefs 

with respect to  the opponent’s action. As suggested earlier, it takes time to  form the  beliefs, and it is 

likely tha t  there is some “cost” (in the form discomfort or fatigue) associated with the thinking about 

what the  opponent is going t o  do, especially when his deviations are  not going to  change much anyway. 

If thinking about  the  problem cannot lead to a change in payoffs by more than 6 then the player may be 

reluctant even t o  s tar t  thinking about it. The 6-equilibrium idea may be criticized with the argument tha t  

theorists should perhaps develop better  models where players do optimize subject to  all the constraints 

they have. Thus.  if it costs to  compute then it the cost should he built into the model. The answer is 

that  the 6-equilibrium is indeed an  exact equilibrium in some a modified game which is much harder to  

describe precisely. Suppose both players have been advised to  play a certain c-equilibrium and the advice 

is common knowledge. If 6 is sufficiently small then perhaps the best thing t o  do is follow the advice and 

not think about  the problem any more, since the cost of thinking is not worth it. There is of course no 

reason not to  go after the additional 6 but it may not be worth it t o  think about what the  opponent is 

going to  do and what he thinks we are going to  do, and so on. The problem is however more complicated 

if the player is a mathematician, a philosopher or a theoretical economist, who actually enjoy3 thinking 

about the  problem. 

The €-equilibrium can also be  looked a t  as a form of a n  illusion that  players prefer to  be in. There is 

a phenomenon in decision making, tha t  people refuse to consider certain possibilities simply because they 

don’t like to  think about them. One example is the way people deal with insurance. People sometimes 

enjoy the  belief tha t  they are fully covered under the  policy they are holding even though they are  actually 

not. Although buying additional insurance would make sense, people sometimes prefer not to study the  

list of exclusions from coverage too carefully because they do not want to be persuaded to buy more 

insurance. 

An obvious question with respect to the c-equilibrium concept is what is the actual  value of e. 

Obviously, any outcome is an  +equilibrium for 6 sufficiently large. However, we can make asymptotic 

statements without a n  exact value for E. For example. in a finitely repeated game with N rounds, for every 

E there is an  ilr for which “good” €-equilibria exist. In  this sense c may be treated as a n  infinitesimal. 

Asymptotically, with large itr and small 6 the set of 6-equilibria approximates the set of individually 

rational payoffs. The proof of the  “folk theorem” is essentially the same as the one given by Radner 

IRa21. 

We should also note tha t  E has to  be given the  meaning of a relatioe loss or gain in utility. Equivalently, 
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we may apply the concept only after the  utility scales have been normalized. 

Conclusion 

We have a t tempted to  show that  bounded rationality is a nontrivial concept. To reason about the 

behavior of bounded rational agents, we have to  know something about  the “operating systems” tha t  

drive them. Computing time is an  important  factor but there are other constraints. For example, it 

is not clear tha t  every agent, with sufficient amount of time, will be able to  set the  Rubic cube. The 

problem of enumeration in a combinatorial system is in itself very challenging. If a player has to  solve a 

complex problem. he might j u s t  get too tired in the process even though there is ample time. 

We do not know whether humans are no more than sophisticated computing machines. We have 

estimates on the  number of brain cells, and we can of course estimate the number of elementary particles. 

but we do not know for sure tha t  the thinking process can be fully described a t  the  elementary particles 

level. In any case, even if humans are indeed sophisticated finite machines, they operate with rules 

tha t  are  still not very well understood. There are emotional and ethical aspects involved in the decision 

making process which, a t  the moment,  we do not know how to  quantify. For example, a person may not 

bother to pick up a penny from the floor but yet get upset if the gas gas stat ion a t tendant  neglects t o  

give him back one penny when he pays 10for9.99 worth of gas. 

Computer programs tha t  people write usually do not modify themselves. I t  is conceivable tha t  the 

brain programs do modify themselves. Moreover, liying creatures reproduce themselves and are subject t o  

evolutionary processes. Information is passed from generation to generation not only genetically but also 

simply by co-existence. This includes not only d a t a  but also skills, opinions and tastes. Thus, although 

individuals are  mortal ,  there is continuity and evolution tha t  sometimes justifies treating a sequence of 

generations as one player. 

Experiments with human subjects often reveal “irrational” behavior. Obviously, experiments and 

questionnaires cannot represent the behavior in real-life situations. The main criticism is tha t  subject do 

not have real incentives to make good decisions. This is t rue  if the rewards are too small. I t  is argued 

that  the  subjects would behave differently if their decisions would have serious consequences. On the 

other hand. unlike machines, humans sometimes get too nervous when they have to  make very serious 

decisions. and this of course affects their performance. 

Theorists a t t empt  to identify simple principles ( “laws of nature”)  tha t  explain, a t  least conceptually, 

how systems work. I t  is not at all clear tha t  human decision making processes can be explained by a 

short list of principles. There exist computer programs tha t  cannot be compressed. I t  may well be tha t  
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the description of what an individual would do in different situations must be as long as a full description 

of his brain. 
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