RJ 10018 (89104) April11, 1996
Math. \& Comp. Sci.

Research Report

FINDING A LINE OF SIGHT THRU BOXES IN d-SPACE IN LINEAR TIME

Nimrod Megiddo

IBM Research Division
Almaden Research Center
650 Harry Road
San Josc. California 95120-6099

LIMITED DISTRIBUTION NOTICE

[^0]
Finding a Line of Sight Thru Boxes in d-Space in Linear Time

Nimrod Mcgiddo
IBM Research Division
Almaden Rescarch Center
650. Harry Road
San Josc, California 95120-6099

Abstract

:

The following problem is addressed. Given a set of rectangular boxes with edges parallel to the axes in a Euclidean space, find a straight line that intersects all the boxes, or conclude that no such line exists. An algorithm is presented which solves the problem in linear time for any fixed dimension of the space.

Finding a Line of Sight Thru Boxes in d-Space in Linear Time

Nimrod Megiddo*

September 24, 1991; revised February 28, 1996^{\dagger}

In this note we address a problem discussed in a paper by Amenta [1], which can be stated as follows. First, given two vectors $\boldsymbol{a}, \boldsymbol{b} \in R^{d}$, define

$$
B(\boldsymbol{a}, \boldsymbol{b})=\left\{\boldsymbol{x} \in R^{d}: \boldsymbol{a} \leq \boldsymbol{x} \leq \boldsymbol{b}\right\}
$$

Problem. Given are n rectangular boxes $B\left(\boldsymbol{a}^{1}, \boldsymbol{b}^{1}\right), \ldots, B\left(\boldsymbol{a}^{n}, \boldsymbol{b}^{n}\right)$ in R^{d}. Find a straight line $\ell \subseteq R^{d}$ such that for every $k(k=1, \ldots, n), \ell \cap B^{k} \neq \emptyset$, or prove that no such line exists. Previous work on the subject can also be found in $[2,3,4,5]$.

Suppose a line ℓ is represented as

$$
\ell=\{\boldsymbol{u}+\boldsymbol{t v}: t \in R\}
$$

where $\boldsymbol{u}=\left(u_{1}, \ldots, u_{d}\right)$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{d}\right) \neq \mathbf{0}$, and $B=B(\boldsymbol{a}, \boldsymbol{b})$ is a box where $\boldsymbol{a}=\left(a_{1}, \ldots, a_{d}\right), \boldsymbol{b}=\left(b_{1}, \ldots, b_{d}\right)$. Obviously, $B \cap \ell \neq \emptyset$ if and only if there exists a real number t such that

$$
a_{i} \leq u_{i}+t v_{i} \leq b_{i} \quad(i=1, \ldots, d)
$$

Denote

$$
I_{-}(\boldsymbol{v})=\left\{i: v_{i}<0\right\}, I_{0}(\boldsymbol{v})=\left\{i: v_{i}=0\right\}, I_{+}(\boldsymbol{v})=\left\{i: v_{i}>0\right\}
$$

Obviously, $B \cap \ell \neq \emptyset$ if and only if

[^1](i) $a_{i} \leq u_{i} \leq b_{i}$ for $i \in I_{0}(\boldsymbol{v})$, and
(ii) there exists a t such that
\[

$$
\begin{array}{ll}
\left(a_{i}-u_{i}\right) / v_{i} \leq t \leq\left(b_{i}-u_{i}\right) / v_{i} & \text { for } i \in I_{+}(\boldsymbol{v}) \quad \text { and } \\
\left(a_{i}-u_{i}\right) / v_{i} \geq t \geq\left(b_{i}-u_{i}\right) / v_{i} & \text { for } i \in I_{-}(\boldsymbol{v}) .
\end{array}
$$
\]

It follows that yet another characterization of $B \cap \ell \neq \emptyset$ is:
(i) For all $i \in I_{0}(\boldsymbol{v}), a_{i} \leq u_{i} \leq b_{i}$.
(ii) For all $i, j \in I_{+}(v)$,

$$
\left(a_{i}-u_{i}\right) / v_{i} \leq\left(b_{j}-u_{j}\right) / v_{j} .
$$

(iii) For all $i, j \in I_{-}(\boldsymbol{v})$,

$$
\left(a_{i}-u_{i}\right) / v_{i} \geq\left(b_{j}-u_{j}\right) / v_{j}
$$

(iv) For all $i \in I_{+}(\boldsymbol{v})$ and $j \in I_{-}(\boldsymbol{v})$,

$$
\begin{aligned}
\left(b_{i}-u_{i}\right) / v_{i} & \geq\left(b_{j}-u_{j}\right) / v_{j} \text { and } \\
\left(a_{j}-u_{j}\right) / v_{j} & \geq\left(a_{i}-u_{i}\right) / v_{i}
\end{aligned}
$$

For every i such that $v_{i} \neq 0$, let

$$
x_{i}=1 / v_{i} \quad \text { and } \quad y_{i}=u_{i} / v_{i}
$$

Thus,

$$
v_{i}=1 / x_{i} \quad \text { and } \quad u_{i}=y_{i} / x_{i}
$$

We can now state the following lemma:
Lemma. If $B^{k}=B\left(\boldsymbol{a}^{k}, \boldsymbol{b}^{k}\right)(k=1, \ldots, n)$ are nonempty boxes, then there exists a straight line ℓ such $B^{k} \cap \ell \neq \emptyset(k=1, \ldots, n)$ if and only if there exists a partition $\{1, \ldots, d\}=I_{-} \cup I_{0} \cup I_{+}$and there exist vectors $\boldsymbol{x}, \boldsymbol{y} \in R^{d}$ such that
(i) For every $i \in I_{0}, \max _{k} a_{i}^{k} \leq \min _{k} b_{i}^{k}$,
(ii) For $i \in I_{+}, x_{i}>0$, and for $i \in I_{-}, x_{i}<0$,
(iii) For all $i, j \in I_{+}$, and for $k=1, \ldots, n$,

$$
a_{i}^{k} x_{i}-y_{i} \leq b_{j}^{k} x_{j}-y_{j} .
$$

(iv) For all $i, j \in I_{-}$, and for $k=1, \ldots, n$,

$$
a_{i}^{k} x_{i}-y_{i} \geq b_{j}^{k} x_{j}-y_{j} .
$$

(v) For every $i \in I_{+}$and $j \in I_{-}$, and for $k=1, \ldots, n$,

$$
b_{i}^{k} x_{i}-y_{i} \geq b_{j}^{k} x_{j}-y_{j} \quad \text { and } \quad a_{j}^{k} x_{j}-y_{j} \geq a_{i}^{k} x_{i}-y_{i}
$$

If such. $I_{-}, I_{0}, I_{+}, \boldsymbol{x}$, and \boldsymbol{y} exist, then a line $\ell=\{\boldsymbol{u}+\boldsymbol{t v}\}$ can be constructed as follows. For $i \in I_{0}$, let u, be any number such that

$$
\max _{k} a_{i}^{k} \leq u_{i} \leq \min _{k} b_{i}^{k}
$$

and let $v_{i}=0$. For any other i, let

$$
v_{i}=1 / x, \quad \text { and } \quad u_{i}=y_{i} / x_{i} .
$$

For every partition, the problem of finding suitable \boldsymbol{x} and \boldsymbol{y} amounts to solving a system of not more than $2 d^{2} n+d$ linear inequalities in at most $2 d$ variables. Note that some of these inequalities are strict. We can, however, solve our problem by solving the linear programming problem of maximizing ξ subject to: (i) for every $i \in I_{+}, \xi \leq x_{i}$, (ii) for every $i \in I_{-}, \xi \leq-x_{i}$, and subject to all the weak inequalities stated in the lemma. This can thus be done in $O(n)$ time for any fixed d. Since the number of partitions is independent of n, we have the following theorem:

Theorem. For any fixed dimension d, the problem of finding a traversal line ℓ for a collection of n rectangular boxes parallel to the coordinate axes can be solved in $O(n)$ time.

References

[1] N. Amenta, "Finding a line traversal of axial objects in three dimensions," Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms (1992), pp. 55-71.
[2] D. Avis and R. Wenger, "Algorithms for line traversals in space," Computational Geometry, 1987.
[3] M. McKenna and J. O'Rourke, "Arrangements of lines in 3-space: A data structure with applications," Computational Geometry, 1988.
[4] M. Hohmeyer and S. Teller, "Stabbing isothetic boxes and rectangles in $O(n \log n)$ time," U.C. Berkeley Tech. Rep. 91/634, 1991.
[5] S. Teller and C. Sequin "Visibility processing for interactive walkthroughs," SIGGraph, 1991.

[^0]: copynght to the curtide putister, ine dimpinution ouxside

 Research Division
 TBY: Yorktown Heights, New York - San Jose, California - Zurich, Switzerland

[^1]: ${ }^{\dagger}$ Publication of this note was delayed due to a lengthy patenting process (see U.S. Patent 5,481,658).
 *IBM Almaden Research Center, 650 Harry Road, San Jose, CA. 95120. Research supported in part by ONR Contract N00014-91-C-0026.

