The Minimum Reservation Rate Problem
in Digital Audio/Video Systems
(Extended Abstract)

David P. Anderson™ Nimrod Megiddof Moni Naor?

April 1993

Abstract. The “Minimum Reservation Rate Problem” arises in distributed
systems for handling digital audio and video data. The problem is to find the
minimum rate at which data must be reserved on a shared storage system in order
to provide continuous buffered playback of a variable-rate output schedule. The
problem is equivalent to the minimum output rate: given input rates during various
time periods, find the minimum output rate under which the buffer never overflows.

We present for these problems an O(nlogn) randomized algorithm and an
O(nlognloglogn) deterministic one.

1. Introduction

In this paper we consider the minimum reservation rate problem which arises in dis-
tributed systems for handling digital audio and video data. This problem is formulated
as follows. Given are consecutive time intervals Ty, Ty, ..., T, and output rates Oy, O3,

., O, (where O; is the output rate during the ith time interval, 7 = 1,...,n). Find the
minimum rate B* at which input can be reserved on a shared storage system such that
the output flows continuously (with no “starvation”).

The minimum output rate problem is very similar. Given are consecutive time in-
tervals Th, Ty, ..., T, and input rates I1, I, ..., I, (where I; is the input rate during the
ith time interval, : = 1,...,n), and a buffer size B. Find the minimum output rate R*
required to assure that the buffer never overflows.

*Internatioanl Computer Science Institute, 1942 Center St., Berkeley, California 94704

'IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, and School of
Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel. Research supported in part by ONR
contract N00014-91-C-0026.

{Deptartment of Applied Mathematics, Weizmann Institute, Rehovot, Israel. Work done while at
IBM Almaden Research Center, San Jose, California

In Section 2 we discuss the background of the minimum reservation rate problem
and explain how it arises. Section 3 shows that the problem is equivalent to finding the
minimum of O(n?) values. In Sections 4 and 5 we develop an O(nlogn) randomized
algorithm and an O(nlognloglogn) deterministic one. These algorithms are based on
the parametric search method of Megiddo [6]. Using this method, we apply a parallel
algorithm for one problem (in this case, the “evaluation” problem) to obtain a fast
sequential algorithm for another “parametric” problem. In Section 4 we describe an
expected constant-time randomized parallel algorithm for the feasibility problem. In
Section 5 we explain how to use this algorithm together with a sequential linear-time
algorithm for feasibility, so as to solve the minimum rate problem efficiently. In Section 6
we describe an extension to the minimum rate problem where the input is cyclic.

2. Background

A “digital audio editing system” allows users to record sound (music, dialog, special
effects, etc.) on magnetic disks (see [7]). The audio encoding has a constant data
rate, typically 88,200 bytes per second for each audio channel. Users can then assemble
segments of these sound files into an “Edit Decision List” (EDL). An EDL has one or
more “output channels,” each consisting of sound segments arranged according to time.
The segments in an output channel may overlap arbitrarily. The EDL can also specify
“fade” functions that attenuate the volume of sound segments near their end points, so
that they blend together smoothly.

The characteristics of EDL’s vary over different types of usage, such as music pro-
duction and dialogue editing. The number of segments in an output channel may vary
from one to several thousands. The segments may be disjoint or overlapping. For exam-
ple, the EDL for a movie soundtrack might have six output channels, with each channel
containing a mixture of music, speech, and ambient sound.

Sound editing (i.e., creating and modifying EDLs) is “non-destructive” in the sense
that no sound files are created or modified during editing. To play an EDL, the system
must read audio data from a disk in real time, “mix” overlapping segments together, apply
the fade functions as needed, and send the result of each output channel to a different
physical output device. This task typically requires the use of one or more digital signal
processing (DSP) chips. Audio data is read from the disk in blocks (typically 64K bytes)
and stored in memory buffers near the DSP’s. Each DSP executes a loop during which
it reads a sample for each active segment, performs the necessary scaling and mixing,
and sends the results to the output interface. From there the sound goes to its final
destination, e.g., a compact-disk writer, a loudspeaker, or a radio transmitter.

Advances in technology allow streams of digital audio data to be sent through net-
works in real time. These advances have led to the development of distributed digital

audio editing systems. In the most common configuration many users share common
disks which they access through the network.

The hardware components of an editing system (e.g., disks, networks, DSP’s) have
bounded performance. If the workload (e.g., the number of overlapping segments in an
EDL) is too high, then “dropouts” (i.e., missing or incorrect output values) will occur.
Dropouts must be avoided at all cost. Hence the system must use a scheme in which
EDL’s can be played only after the needed capacity on each hardware component has
been “reserved.” In a multi-user (distributed) system, this scheme may prevent one user
from playing an EDL while another user is playing one. In a single-user system, the
problem reduces to the question of whether or not an EDL can be played using all
available hardware resources.

We now list our assumptions regarding the system:

(i) Denote by b(t) the amount of “data” held in the buffer at time ¢. Assuming the
buffer size is B, the amount b(t) varies continuously between 0 and B.

(ii) The data storage system (disk plus network) provides constant-rate data streams.
Clients of the system can make reservation requests for fixed rates R; if a request
is granted, the system fills the buffer at rate R, except when the buffer is full.

(iii) A given EDL defines a piecewise-constant “output rate function” f(¢) (i.e., the
rate at which the buffer is drained at time t) whose value is the number of audio
segments active at time ¢ times the audio data rate.

It follows that the function b(%) is piecewise with right derivative b’ such that '(¢) = 0 if
b(t) = B and R > f(t), and b/'(t) = R — f(t) otherwise.

We say that underflow occurs if b(t) < 0 for some t. We say that a rate R is admissible
if underflow never occurs. The following problems present themselves:

(i) Minimum Reservation Rate: Assuming b(0) = B (i.e., the buffer is initially full),
find the least admissible rate R*.

(ii) Minimum Buffer Pre-Load: Given a value R that is admissible with b(0) = B, find
the smallest value b* such that R is admissible with b(0) = b*.

The minimum-rate problem is interesting because with a solution to it we can maximize
the number of EDL’s that can be played concurrently. The minimum pre-load problem is
interesting because the response time for EDL plays (i.e., the time from the user clicking
a “play” button to the beginning of audio output) should be minimized during interactive
editing.

In the rest of the paper we describe an efficient algorithm for the minimum rate
problem. In particular, we present a randomized O(nlogn) algorithm. The algorithm

is developed using the framework of Megiddo [6] of applying parallel algorithms in the
design of efficient sequential ones.

We find it convenient to present a version of the problem where the “complement” of
the buffer should never overflow. This is the way the problem is phrased below.

3. Preliminaries

Henceforth we consider the following problem:

Problem 3.1. Given consecutive time wntervals Ty,T,, ..., T, and input rates Iy, I,
..y I, (where [; is the input rate during the ith time interval, : = 1,...,n), and a
buffer size B. Find the minimum output rate R* required to assure that the buffer does
not overflow.

Lemma 3.2.

R*— CLZ'—I-"'—I-CLJ‘—B‘

R T (1

Proof: Denote by a; = T;1; the total amount of data received during the ¢th interval
(¢=1,...,n). Let R be any feasible output rate, i.e., the buffer never overflows when
the output rate is R. For any pair (¢,7) (1 < ¢ < j < n), the total amount of data
received during the intervals T3, ..., T} is a;+- - - 4+ a;, whereas the total amount output
during these intervals does not exceed (7; + - -- + T;)R. It follows that

(@it +a;)—(Ti+---+T;)R < B

or, equivalently,
a; +---4 a; — B
Ti+---+1;,

R>Tij

Obviously, when the output rate is the minimum feasible one, R*, the buffer must
be full at least once. Moreover, during any interval, the amount in the buffer reaches
its maximum level at one of the end points of the interval. It follows that the buffer
must be full at the end of some interval 7;. Now, since the buffer is empty at the
beginning of 77, there exists a last time before the end of T; when the buffer is empty.
It is easy to see that the buffer is empty during closed time intervals, where the right
end point of any such interval must coincide with an end point of one of the intervals
Ty (k=1,...,n). It follows that the last time before the end of T} such that the buffer
is empty must coincide with the starting point of an interval T; (1 < ¢ < j). During
the intervals T} ..., T}, the buffer is not empty, the output rate is R*, and hence

(@it +a)—(Ti+---+T15)R = B.

This implies our claim. g

Corollary 3.3. The minimum output rate R* (see Problem 3.1) can be computed in
O(n?) time.

4. Feasibility of output rate

In this section we present algorithms for deciding feasibility of a given output rate.
These algorithms turn out to be useful in the design of algorithms for the output rate

minimization problem.
Denote
F(X) :lsr?sz?én(ai—l—---—l—aj)—(Ti—l—---—I—Tj))\.

Obviously, F(+) is strictly monotone decreasing, piecewise linear, and convex. Thus, there
exists a unique A* such that F'(A*) = B. It is easy to see that * = R* (see Megiddo [4]).

In order to compute A*, we will follow the parametric search method with the use
of parallel algorithms as proposed in Megiddo [6]. To that end, we will develop two
algorithms for computing the value of F'(\) at any given A:

(i) A sequential linear-time algorithm.
(ii) A parallel constant-time randomized algorithm employing n log n processors (under
the comparisons model of Valiant [9]).

The problem of evaluating F'(A) can rephrased as follows. Given A, let us first denote

VVZ':ZZ:(ak—Tk)\) (izl,...,n),

k=1

and Wy = 0.

Problem 4.1. Given n real numbers Wy,..., W, find a pair (¢,5) (0 < i < j < n) so
as to maximize W; — W,.

Proposition 4.2. Problem /.1 can be solved in linear time.

Proof: This is quite simple using dynamic programming. For £ = 1,...,n, denote
Vi=max{W; - W, | 0<i<j <k}
my =min{W; | 0 <<k} .

Obviously, Vi = Wi and my; = min{0, W;}. Furthermore, for k =1,...,n — 1,

Vitr = max{ Vi, Wip1 — my}

Mgy = min{myg, Wi} .

Thus, the quantity we are interested in, V,,, can be found in O(n) time. y

Proposition 4.3. Problem J.1 can be solved expected constant time in parallel by nlogn
processors (under the comparisons model).

Proof: We assume, without loss of generality, that n + 1 is a power of 2. For every k

(k=1,...,log,(n+1)—1)and £ ({ =1,...,(n+1)27F = 1), let

My = max{W; | (2% <i < ({+1)2%}
mye = min{W; | ((—1)2F < < (2%} .

It is easy to verify that

0<1r£1<2;;>§n{Wj—m} = max{My—mp | k=1,...,logy(n+1)—1, L=1,...,(n+1)27F =1} .
It is now well known that the maximum of m elements can be found by m processors in
expected constant time, namely, by taking random samples of y/m elements (Reischuck
[8] and Megiddo [5]). Furthermore, there is a constant time parallel algorithm such that
the probability of failure, i.e., that the maximum is not found, is at most % For every
k and (as above, we allocate 2% processors to the problem of computing My, and my,
using the constant time maximum finding algorithm [3]. The total number of processors

1S
log(n+1)—1

Z Zk((n + I)Z_k —1)=0(nlogn) .

k=1
After running the maximum finding algorithm in parallel on all these problems, some
of the My,’s and my,’s may still not be known. We repeat this procedure (only for the
unknown My,’s and my,’s) until

Z {2% | for all k£, ¢ such that either My, or my, is unknown} <nlogn .

When the latter is satisfied, we can allocate 2?* processors to each unknown Mj, or
mys, a number that suffices to find them in one step (by allocating 22 processors to the
respective problem). We argue that the expected number of times we have to repeat
running the maximum finding algorithm is constant. To see this, note that since the
probability of failure on My, (or my) is less than 275, it follows that the expected value

E=¢ [Z {2% | for all k£, ¢ such that either My, or my, is unknown}]

satisfies
log(n+1)

byt
k.l k 2

=1

-27R2% = O(nlogn) .

This implies our claim. Finally, we compute the maximum of the differences My, —my,
in expected constant time. g

5. Finding the minimum rate

The algorithm for finding A* proceeds by simulating the parallel algorithm for evaluating
F(X) at A = A* (without knowing A* in advance). For more detail about the method see

[6].

Proposition 5.1. The minimum rate problem can be solved by a randomized algorithm
in expected O(nlogn) time and bby a deterministic algorithm in O(nlogloglogn) time.

Proof: The parallel algorithm makes comparisons of the form: given: < j,1s W, < W;7
Here, W; and W, are linear functions of A. Thus, there is a breakpoint \;; such that
A* > A if and only it W; < W;, namely,

J
X hmig1 Ok
)\ij = —

; .
k=i+1 Tk

Note that once we have computed (in linear time) all the prefix sum Y%_, a; and
> i1 Ik, we can compute \;; for any given ¢ and j in constant time.

In order to simulate one step of the parallel algorithm for evaluating F'(A*), we need
to recognize for each of the nlogn breakpoints A;; whether it is less than or greater
than A*; these breakpoints are produced by the processors as they attempt to perform
the comparisons they are responsible for. This task can be accomplished in O(nlogn)
time as follows. We first find the median A" of the set of these breakpoints using
the linear-time median-finding algorithm [3]. Next, we check (using the algorithm of
Proposition 4.2) whether A < A* (i.e., whether F/(X') > B). Now we know for half the
breakpoints their positions relative to A*. We continue by finding the median of the
other half of the set of breakpoints, and so on. Altogether, there will be O(logn) calls
to the algorithm for evaluating F'()), so the total time is O(nlogn). The expected
number of steps of the parallel algorithm is constant. After simulating these steps at
a cost of O(nlogn), we know a pair ¢, that maximizes W; — W; at A*. It follows that

J
_ 2g=iy1 @ — B
;)
hit1 L

)*

Deterministically, we run in O(loglogn) phases corresponding to the steps in the
deterministic maximum finding algorithm of Valiant [9], and the rest is essentially the
same. g

We note that by Valiant’s lower bound, there is no constant time deterministic algo-
rithm for evaluating F(\) which employees substantially fewer than n* processors.

6. Extensions

We now describe two extensions of the problem discussed above. The first is when the
buffer is not empty initially, but has an amount of ¢y < B. Based on our previous
analysis, it is easy to see that the value of the optimal rate is obtained by substituting
in (1) ag + a1 for as.

The second extension is when the problem is cyclic, i.e., we have the time intervals
and 11,75, ..., T, and the input rates I, [5,... [, repeating ad infinitum. In this case,
for any feasible R we have

ay+dag+---tay,
(2)
Ty 4+ 1,
since, otherwise, the buffer overflows eventually. Also, from Lemma 3.2 we have that for
any feasible R, for all (¢,7) (1 <4,j <n), and any k > 0,

R >

p > Gt otatklat-ta)tat--+a,—B
T LA A TR A+ T+ A+ T

However, this inequality is implied by

p> Gt fatat---+a-B
- LA A AT AT

and (2). Therefore, the optimal R* for the cyclic problem is the maximum between (2)
and the solution to the (non-cyclic) problem with time intervals Ty,...7T,,T1,...T,, and
input rates Iy,...[,, I1,... [,.

References

[1] D. P. Anderson, “Meta-scheduling for continuous media,” ACM Transactions on
Computing Systems, to appear.

[2] R. L. Cruz, “A calculus for network delay,” IEEE Transactions on Information Theory
37 (1991).

[3] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, “Time bounds
for selection,” J. Computer and System Sciences T (1972) 451-455.

[4] N. Megiddo, “Combinatorial optimization with rational objective functions,” Mathe-
matics of Operations Research 4 (1979) 414-424.

[5] N. Megiddo, “Parallel algorithms for finding the maximum and the median almost
surely in constant-time,” Technical Report, Graduate School of Industrial Adminis-
tration, Carnegie-Mellon University, October 1982.

8

[6] N. Megiddo, “Applying parallel computation algorithms in the design of serial algo-
rithms,” J. ACM 30 (1983) 852-865.

[7] J. A. Moorer, “Hard-disk recording and editing of digital audio,” in: Proceedings of
the 89th Convention of the Audio Engineering Society, Los Angeles, 1990.

[8] R. Reischuk, “A fast probabilistic parallel sorting algorithm,” in: Proceedings of the
22nd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer

Society Press, Los Angeles, 1981, pp. 212-219.
[9] L. G. Valiant, “Parallelism in comparison problems,” SIAM J. Comput. 4 (1975)

348-355.

