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On Solving the Linear Programming 
Problem Approximately 

NIMROD MEGIDDO 

ABSTRACT. This paper studies the complexity of some approximate solutions 
of linear programming problems with real coefficients. 

1. Introduction 

The general linear programming problem is to maximize a linear func- 
tion over a set defined by linear inequalities and equations. There are many 
equivalent ways to represent instances of the linear programming problem. 
For example, consider the symmetric form 

Maximize cTx 
(SyN-4 , b  , c)) subject to Ax 5 b 

x 2 0 .  

The dual is then 

Minimize b  ' y  
subject to A * ~  2 c 

Y  2 0 .  

Intuitively, two representations are equivalent if there is an easy way to 
transform solutions of one to solutions of the other and vice versa. We 
first mention some of the well-known equivalences. First, any set of linear 
inequalities and linear equations can be reduced to a set of linear equations 
with nonnegativity constraints or to a set of inequality and nonnegativity 
constraints. Also, any linear programming problem can be reduced to a linear 
programming problem with a nonempty set of solutions by using artificial 
variables. Moreover, any linear programming problem can be reduced to a 
problem of finding a solution to a system of linear inequalities (by combining 
the constraints of the primal and dual and adding the inequality cTx 2 b T y )  
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or else concluding that the system has no solution. By the duality theorem, if 
we put the problem in the combined primal-dual form, every problem can be 
reduced to a problem that is either infeasible or feasible and bounded (but 
not unbounded). It is interesting to note that over any ordered field, every 
linear programming problem can be reduced to one that is both feasible and 
bounded. This is done as follows. Suppose the problem is given in the 
symmetric form Sym(A , b , c) . Consider the following: 

Minimize cTx - b Ty +t 
subject to Ax - te 5 b 

A ~ Y  + te 2 c 
T c x - b T y 2 0  

x , y , t L O ,  
where e denotes a vector of 1's. It is easy to verify that the optimal value 
of the latter is zero if and only if the former has an optimal solution. In this 
case the latter provides optimal solutions for the former and its dual. 

The equivalences mentioned above are valid as long as exact computation 
is feasible. In practice one usually works with finite precision and hence 
obtains results that are only "approximately true." However, the meaning 
of the last sentence depends on the particular representation of the practical 
problem. Indeed, a good approximate solution for one representation of the 
problem may transform into a very bad approximate solution for another 
"equivalent" representation of the same problem. 

When two people talk about approximate solutions, they often think of 
different notions of approximation. It is quite likely though that they refer 
to one of the following: 

(i) A feasible point (i.e., one that satisfies all of the constraints in the 
exact sense) and is close in a certain metric to an optimal point. 

(ii) A feasible solution whose objective function value is close to the 
optimal value. 

(iii) A point, not necessarily feasible, close to an optimal solution. 
(iv) A point that approximately satisfies every constraint, and whose ob- 

jective function value is close to the optimal value. 
(v) A point close to the feasible domain, whose objective function value 

is close to the optimal value (called the "weak optimization problem" 
in [7]). 

(vi) A basis where the simplex algorithm (using exact arithmetic) termi- 
nates, but the numerical values of variables are only approximate. 

(vii) A basis where the simplex algorithm terminates due to a prescribed 
tolerance. 

The choice of the right definition depends very much on the practical 
situation. In fact, practical considerations dictate which constraints must 
be satisfied and which may be approximately satisfied. In other words, the 
tolerance may be different for different constraints. 
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It is not known whether the m x n linear programming problem with real 
data can be solved in a polynomial number of arithmetic operations and com- 
parisons in terms of m and n . (We will refer to this notion of complexity 
as strongly polynomial time, even though the usual definition of this con- 
cept also requires polynomial time in the usual sense.) Thus, another natural 
question is whether for any E > 0 ,  any of the &-approximation problems 
can be solved in a polynomial number of operations in terms of m , n , and 
-log&. To deal with this question, we first have to define what we mean by 
an "&-approximate" solution. In particular, such a definition should not make 
the second question trivially equivalent to the first one. Consider, for exam- 
ple, the concept suggested in (i) above. Thus, for the problem Maximize cTx 
subject to Ax 5 b (assuming its maximum V* exists) an &-approximate so- 
lution is a point x such that Ax < b and cTx > V* - E . This definition is 
not satisfactory since it is not clear whether an &-approximation algorithm is 
required to decide the existence of an x such that Ax < b , and the bound- 
edness of the function cTx on the feasible domain. If indeed it is required 
to decide these questions, then in the worst-case sense this approximation 
problem is trivially equivalent to the exact problem. 

The consequences of the ellipsoid algorithm with respect to approximation 
problems on convex sets are studied in [7]. It is not clear whether these results 
can be applied to achieve the type of results we seek here. The reason is that 
over the real numbers it seems difficult to obtain estimates of the radii of a 
circumscribing sphere and an inscribed sphere. The main complexity result 
on convex minimization in [7] (Theorem 2.2.15) assumes that the convex set 
is given with estimates of such radii. Our main interest here is the question 
of what is a reasonable sense of approximation when the algorithm fails to 
classify the instance correctly as feasible, unbounded, etc. 

In Section 2 we give some preliminaries and discuss the difficulties involved 
in classifying the problem. In Section 3 we discuss approximate solutions 
based on satisfying a termination criterion within some tolerance. In Section 
4 we discuss a notion of approximation that is based on solving a perturbed 
instance exactly. Section 5 gives an analysis of complexity for various notions 
of complexity. 

2. Preliminaries 

We pointed out in the introduction that the practical situation usually 
dictates the right notion of approximate solution. For a theoretical discus- 
sion it is often convenient to consider the problem in the symmetric form 
Sym(A , b , c) . (See Section 1.) Traditionally, an exact algorithm for this 
problem (for example, the simplex method) is supposed to provide the user 
with information as follows. It has to classify the problem into one of the 
following three categories: 

(i) Infeasible. (The domain X defined by Ax 5 b and x 2 0 is empty.) 
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(ii) Feasible and bounded. (There exists a maximizer of c T x  over X .) 
(iii) Feasible and unbounded. (The function cTx  is unbounded over X .) 

In case (ii) the algorithm has to provide an optimal solution. The algorithm 
may also be required in case (iii) to provide a ray contained in X along 
which c T x  tends to infinity. A nice property of the simplex method is that 
it also solves the dual problem 

Minimize b T y  
subject to > c  

Y  10. 
Thus, besides providing such a ray in case (iii), the algorithm also provides 
in case (ii) an optimal solution to the dual, and in case (i) a "certificate" in 
the form of a ray of a related problem. 

In fact, the (exact) simplex method always computes a basis that provides 
the required information. Specifically, it provides a representation of the 
problem (by a suitable linear transformation of the space) from which the 
classification and the numerical values of both the primal and the dual vari- 
ables are transparent. Thus, the simplex method classifies problems into one 
of four categories (even though the commonly used variants do not distin- 
guish between IF and 11): 

(i) FF: primal feasible, dual feasible. 
(ii) FI: primal feasible, dual infeasible (that is, unbounded primal). 

(iii) IF: primal infeasible, dual feasible (here the dual is unbounded). 
(iv) 11: primal infeasible, dual infeasible. 

It is quite common to include this classification in the requirements from an 
exact algorithm for the general linear programming problem. We refer to it 
later as the classification problem of linear programs. 

An approximation algorithm should be expected sometimes to fail in clas- 
sifying the input into the categories FF, FI, IF, and 11. Interestingly, the 
existence of a strongly polynomial algorithm for the classification problem 
implies the existence of one for the problem itself. (See page 445 in [I].) 

So far we have discussed the subject of approximation under the assump- 
tion that the result should be "close" to the true one. However, a different 
approach can sometimes be useful. We may allow the algorithm to be totally 
wrong in a small number of cases. This approach is approximate when the 
output space of the algorithm is discrete and has no natural metric associated 
with it. For example, consider the following trivial problem: Given two num- 
bers a ,  p , recognize whether a > /3 or a 5 /3. Suppose the comparison 
of a to p can be performed with arbitrary finite precision. Thus, for any 
given E > 0, we can recognize either that 

or that 
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The algorithm reports a 5 P in the first case and a 2 P in the second one. 
Thus, the algorithm gives the correct answer if 

but may fail otherwise. The grey area is the set of pairs ( a ,  P) such that 
la: - PI 5 E . Of course, the smaller E the smaller the grey area. Thus, the 
measure of the grey area reflects the quality of the approximation. 

The problem of the preceding paragraph can be cast as a linear program- 
ming problem 

Maximize x, 
subject to ax, 5 x, 5 f ix, . 

Here the point (0,  0) is feasible for any a and P . The problem is un- 
bounded if and only if a 5 /3 . This suggests that the grey area approach 
would be suitable for the classification problem of linear programs. 

A general linear programming problem in standard form 
Maximize crx 

(SF@, b , c)) subject to Ax = b 
x 1 0  

is determined by A E RmX" , b E Rm , and c E R" . There is a one-to- 
one correspondence between problems of order m x n and points of R = 

R~"+"'+" . The classification corresponds to a partition of R into four sets: 
FF, FI, IF, and 11, as discussed above. For example, IF is the set of triples 
(A, b ,  c) that determine infeasible primal problems whose dual problems 
are feasible (and hence unbounded). 

Let R' denote the union of the boundaries of these four sets. Obviously, 
an approximation algorithm (for the classification problem) may fail if the 
input (A, b , c) is close to R' . For example, if an instance is close to the 
common boundary of FF and FI, but far from the boundaries of IF and 
11, then an approximation algorithm is expected to recognize that the prob- 
lem is feasible, but is expected to fail in deciding whether it is bounded. 
Interestingly, there are more "pathological" cases. In fact, the intersection 
of all four boundaries, which we denote by R, , is not empty. Thus, given 
an instance close to the intersection of the four boundaries, an approxima- 
tion algorithm may not be able to recognize anything in terms of the above 
classification. This observation is obvious in view of the invariance of the 
classification under multiplication of columns and rows by positive scalars. 
Thus, the neighborhood of the origin is obviously pathological in this sense. 
The difficulties with the origin can be avoided by scaling rows and columns. 
However, it is easy to construct other examples with similar characteristics. 

PROPOSITION 2.1. The instance 
Maximize x, - x, 
subject to x,  - X, 5 - 1 

(*I -x,  + X 2 5  - 1  

x , , x 2 2 0 .  
belongs to Q, . 
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PROOF. It is easy to see that (*) itself is in IF. Using small perturbations, 
one can move from (*) to instances in any of the other three classes. More 
precisely, if only c, is slightly increased then we can get instances in 11. If 
only A,, is slightly decreased then we get instances in FF. Finally, if only 
A , ,  is slightly increased then an instance in FI is obtained. 

We note that most of the numerical difficulties in solving linear program- 
ming problems are due to the fact that many such problems are ill posed. It 
is well known in numerical analysis (see, e.g., [3]) that near-singularities in 
the matrix A can cause problems. However, in this paper we also discuss in- 
trinsic aspects of approximate solutions that arise even when exact arithmetic 
is used. For example, if one is interested only in an approximate solution, 
what should be a good termination criterion? Because of such questions we 
have to deal with perturbations of the vectors b and c and not only of the 
matrix A . 

Due to the classification aspect of the problem, we clearly cannot always 
measure the quality of the approximation by the distance between the exact 
solution and the approximate one (neither in terms of the solution vector 
nor in terms of the objective function value). Thus a different approach to 
approximation may be proposed for a general situation, where there is some 
natural metric on the input space, but there does not seem to exist one for 
the output space. The following definition is similar to backward analysis of 
errors in numerical analysis [9 ] .  

DEFINITION 2.2. Let M = (S ,  d )  be a metric space and let f be a map- 
ping from S into some set T that does not necessarily have any metric 
associated with it. A mapping g :  S 4 T is called an E-approximation to 
f if for every x E S ,  there exists an x' E S such that d(x , x') < E and 
g(x) = f (x'). 

In linear programming the output space (including the classification) does 
have a metric structure. Besides the classification information, there are also 
numerical values associated with the variables. One might propose for the 
linear programming problem the following approach to approximation by 
posing the following problem: 

PROBLEM 2.3. Given the problem SF(A , b , c) and E > 0, name a class 
S E {FF, FI , IF, 11) and assign numerical values to the variables so that the 
following condition is satisfied: There exists an instance (A', b' , c') in S 
for which the numerical values are correct within an error of E .  such that 
IIW, b , C )  - ( A ' ,  b' , cl)II, < E - 

The approach represented by Problem 2.3 takes care of pathological cases 
where some other approaches fail. Consider, for comparison, a different 
notion of approximate solution of systems of inequalities reflected in the 
following problem: 

PROBLEM 2.4. Given A ,  b and E > 0, either give an x such that Ax 5 
b + ee or conclude that there is no x such that Ax 5 b - ee . 
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The approach represented by Problem 2.4 seems to be a natural gener- 
alization of the obvious approximate comparison of two real numbers. Its 
weakness is apparent in the following example. Consider the problem 

If a = 1 then, obviously, for every E < 1 the system 

is infeasible. However, for any a # 1 the system is feasible for every & . 
Thus, in order to solve Problem 2.4 we have to know whether a = 1 . This 
example can easily be generalized so that in order to solve Problem 2.4 one 
has to know whether a certain matrix is singular. The latter involves some 
numerical difficulties in practice. 

The weakness of the concept of Problem 2.4 is that it considers pertur- 
bations of the given problem only in a limited and quite arbitrary way. In 
Problem 2.3 we allow perturbations in all directions. We note that for cer- 
tain classes of linear programming problems (e.g., the min-cost flow problem) 
certain coefficients have the values 1 or 0 throughout the class. In such cases 
we would allow only perturbations within the subject class. Thus, if the con- 
cept represented by Problem 2.3 were to apply to a min-cost flow problem 
SF(A , b , c)  then we would require that A' = A . 

3. Tolerance-based approximation 

In this section we discuss the issue of approximation as it arises in the 
context of the simplex method. There are two ways to look at the question. 
First, imagine we run the simplex algorithm using exact arithmetic but have 
to compute only "e-approximate" solutions. Thus, rather than running the 
algorithm to the end, we seek to apply some stopping rule that guarantees our 
output to be &-approximate. The interesting problem is of course to devise 
such stopping rules for various concepts of approximation. Another way to 
look at the question is to realize that on a machine we usually have numerical 
errors, and thus we almost always have to specify some "tolerance" within 
which we accept our results. It is important to know the implications of using 
a certain tolerance with regard to the results. 

Consider the problem SF(A, b , c)  . In the Appendix we review some 
properties of basic solutions and how the simplex method uses them. (See 
the Appendix for the notation.) 

In practice, one usually works with some "tolerance" 6 > 0, so that any 
number a 5 6 is accepted as nonpositive and any a 2 -6 is accepted as 
nonnegative. This suggests another approach to approximation, which may 
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be called the "tolerance" approach: 
DEFINITION 3.1. A basic solution x = x(B) = (x,, x,) (where xB = 

B-' b and xN = 0) is optimal with tolerance 6 for SF(A , b , c)  if for every 
j ,  

T -1 x > -6 and cj <c,B A j + 6 .  
J - 

Obviously, such a solution is not necessarily feasible. It is only "approxi- 
mately feasible" in the sense that the equality constraints are satisfied while 
the nonnegativity constraints are approximately satisfied. Analogously, the 
dual vector y(B) is approximately feasible in the dual problem. Moreover, 
the vectors x(B) and y(B) satisfy the complementary slackness condition 

T 
xj(y A. - c . )  = 0 ,  

I I 

which is necessary for optimality. This implies that both vectors yield the 
same objective function value in their respective problem 

T T -1 T 
c x = c  B b = y  b .  

Note that the problem may also be feasible and unbounded but that an op- 
timal solution with tolerance 6 may still exist. One can also define a notion 
of an unbounded ray with tolerance 6 . 

4. Perturbation-based approximation 

It is interesting to observe that from a solution that is optimal with small 
tolerance we can easily obtain an exact solution to an instance that is close 
to the given one. More precisely, we have the following proposition: 

PROPOSITION 4.1. Suppose x = x(B) is a basic solution that is optimal 
with tolerance 6 .  Let x' be defned by xi = xj  + 6 for j associated with B 
and xj  = 0 otherwise. Also, let c' be defined by c; = cI for j associated with 
B and c: = c, - 6 otherwise, and let b' = b + 6Be. Under these conditions, 
x' is an optimal solution for the problem SF(A , b' , c') , and y = B - ~ c ,  is 
optimal for its dual problem. 

PROOF. We have 
x b = ~ - l b ' = x , + ~ e > O ,  

> c' 

and x' and y satisfy the complementary slackness conditions required in 
SF(A , b' , c') . 0 

In simpler words, we have 

COROLLARY 4.2. If x is optimal with tolerance 6 for SF(A , b , c)  then 
there exist b' and c' and an optimal solution x' for SF(A , b' , c') such that 

lb' - 41, 3 llc' - 4, 5 6 9 

and 
llb' - bll, 5 min{GIIAJI,, m T 6 )  
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where 1 1  All, is the usual operator norm, corresponding to the vector supremum 
norm 1 1  . 1 1 ,  T is the maximum absolute value of any entry in A ,  and m is 
the number of rows of A .  

A analogous proposition can be proven with respect to the unbounded 
case: 

PROPOSITION 4.3. Suppose x = x ( B )  is a basic solution such that 

and for some k not associated with B , 

and 
B-'A,  2 - 6 1 .  

Let c' be the same as e except that cl = c, + d c i e ,  and let b' = b + SBe . 
Also, let A' be the same as A except that A; = A, + 6 B e .  Under these 
conditions, the problem SF(A' , b' , c ' )  is unbounded. 

PROOF. In the new problem the basis B certifies unboundedness since 

and 

COROLLARY 4.4. If SF(A , b , c )  is concluded within tolerance 6 to be 
unbounded, then there exist A' ,  b' , and c' such that SF(A' , b' , c')  is un- 
bounded, 

I IA '  - All, 5 JllAllm 
(where 11~'- All is the operator norm corresponding to the vector norm 1 1 . 1 1  I ) ,  

5. Complexity questions 

We start this section with yet another variant of an approximation prob- 
lem. Again, we consider approximation concepts that avoid the difficulties 
involved in the classification problem. Suppose the exact problem is given in 
the dual form 

Minimize c T x  
subject to Ax 2 b 

where the output has to be one of the following: 

(i) a point x* that minimizes c T x  subject to Ax > b , 
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(ii) a point x* and a scalar t* > 0 that minimize the value of t subject 
to Ax + te 2 b (in which case the problem is infeasible), or 

(iii) vectors x and u such that Ax 2 b , cTu < 0 ,  and Au 2 0 (in 
which case the problem is unbounded). 

The above motivates the definition of the following approximation problem: 
PROBLEM 5.1. Denote the optimal value of a given problem DF(A , b , c)  

by V* (allowing V* = f o o )  and let t* denote the minimum of t subject 
to Ax + te 2 b . Given a number E > 0 ,  output one of the following: 

(i) a point x such that cTx < V* + E and Ax 2 b - ee , 
(ii) apoint x andascalar t ,  -e I t 5 t*+e suchthat Ax+te 2 b-ee, 

or 
(iii) vectors x and u such that Ax 2 b - ee , cTu < E , and Au 2 -ee . 
It is interesting to look at the question of the existence of an algorithm for 

the approximation problem, where the number of operations is expressed in 
terms of E as well. 

PROPOSITION 5.2. Over any ordered jield, if Problem 5.1 can be solved in 
f (m , n , e) field operations (including comparisons) then it can be solved in 
g(m , n) = O( f (m , n , 1)) operations. 

PROOF. Suppose d is an algorithm for Problem 5.1 that runs in 
f (m , n , E )  field operations. Given A ,  b , c and e > 0 ,  let 

- - 
The instance DF(A , b , Z) is equivalent to DF(A , b , c)  . Moreover, a valid - - 
output for DF(A , b , 5) with precision e = 1 is also a valid output for 
DF(A , b , c)  with the prescribed precision e . 

COROLLARY 5.3. If there exists a polynomial f (m , n , c) such that Prob- 
lem 5.1 with rational data can be solved in f (m , n , e) arithmetic operations, 
then the exact problem with rational data can be solved in a polynomial num- 
ber of operations. 

PROOF. For a problem with rational data it is easy to determine a value c 
such that an exact solution can be computed from a solution of Problem 5.1 
in a polynomial number of operations. Thus, the problem can be scaled so 
that e = 1 suffices for determining an exact solution. 0 

In view of Proposition 5.2 it is reasonable to ask whether Problem 5.1 
can be solved in a polynomial number of operations in terms of m , n , and 
log R/e , where R = R(A , b , c)  > 0 is some quantity such that for any 
positive scalar I 

R(IA , Ab , Ic )  = IR(A , b , c)  

(e.g., R equals the maximum absolute value of any input coefficients). 
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Consider first the feasibility problem 
Minimize t 

(FB(A , b ) )  subject to Ax + te L b 
t 2 - 1 ,  

and the associated approximation problem: 
PROBLEM 5.4. Given FB(A , b )  and E > 0 ,  find x and t such that Ax + 

te 2 b and t < t* + E (where t* is the minimum of FB(A, 6 ) ) .  
Before stating the next proposition, recall that the set of solutions of the 

system Ax > b is bounded for every b if and only if the rows of A span 
the space Rn in nonnegative linear combinations. 

PROPOSITION 5.5. If Problem 5.4 is given with real data such that the rows 
of A span the space R" in nonnegative linear combinations, then it can be 
solved in a polynomial number of arithmetic operations in terms of m ,  n ,  
and 

(assuming bmax, the maximal bi , is positive). 
0 0 PROOF. The point x = 0 ,  t = bmax + 1 is in the interior of the feasible 

domain of FB(A , b )  . By our assumption, the set of optimal solutions of 
FB(A , b )  is bounded. Several interior point algorithms are now known (e.g., 
[2], [lo]) that can start from any interior point and reduce the value of the 
objective function to a value not greater than t* + E in a polynomial number 
of iterations in terms m , n , and p , where each iteration takes a polynomial 
number of operations in terms of m and n . 0 

An obvious consequence of Proposition 5.5 is the following: 

COROLLARY 5.6. Suppose the rows of A spanned the whole R" in non- 
negative linear combinations. It takes a polynomial number of operations in 
terms of m ,  n , and p to either compute a vector x such that Ax 2 b or 
conclude that there is no x such that Ax b + ~e . 

PROOF. Run any of the polynomial interior point algorithms for a number 
of iterations that guarantees that t < t* + E . As soon as t becomes nonpos- 
itive, stop. (The current x is feasible.) If at the end t is still positive then 
t* > - E  , and hence there is no x such that Ax - Ee 2 b . 0 

Another consequence with respect to optimal solutions with tolerance can 
be stated conveniently when the problem is in the symmetric form 
Sym(A , b , c)  : 

Maximize cTx 
subject to Ax 5 b 

x LO, 
whose dual is 

Minimize b Ty 
subject to 2 c 

Y 2 0 .  
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Recall that by the duality theorem, a feasible solution x is optimal if and 
only if there exists a dual feasible solution y such that cTx = bTy . On the 
other hand, c 'x 5 bTy for any pair of feasible x and y . This suggests the 
following approximation problem: 

PROBLEM 5.7. Given A,  b , c and E > 0 ,  either find a pair of vectors 
x , y such that 

Ax 5 b +ee ,  
T 

A y Z c - ~ e ,  
T T b y - c  X ~ E ,  

x 2 - & e ,  y > - & e  

or conclude that Sym(A, b , c) does not have an optimal solution. 
The notion of approximation presented in Problem 5.7 is very close to the 

one used in practice, where optimality criteria are applied without knowledge 
of proximity to the value of an optimal solution. 

Note that Problem 5.7 is trivial if c 5 0 I b . Thus, assume 

and denote 

PROPOSITION 5.8. Suppose the rows of the matrix 

r o  ~~1 

span the space R"'" in nonnegative linear combinations. Problem 5.7 can 
be solved in a polynomial number of operations in terms of m , n , and p* . 

PROOF. Consider the problem 
Minimize t 
subject to A x - t e i b  

+ te 2 c 
b T y - c T x - t I O  
x + t e ,  y + t e L O .  

Starting at t = y + 1 , x = 0 ,  and y = 0 ,  run a number of iterations that 
guarantees t 5 t* + E . This number is polynomial in m , n , and p* , and p* 
is trivial to compute. If t 5 E then the current x and y solve Problem 5.7. 
Otherwise, t* > 0 ,  and Sym(A , b , c)  does not have an optimal solution. 

Note that a solution of Problem 5.7 does not guarantee that cTx is close 
to the optimal value V* when the latter exists. It seems much more dif- 
ficult to solve the approximation problem in the latter sense. This diffi- 
culty can be explained by considering the following practical question, which 
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arises when one applies the simplex method to the problem in standard form 
SF(A , b , c)  . Suppose x and y satisfy 

A x = b ,  

x 2 -6e, 

Assuming the problem has an optimum whose value is V* , we are interested 
in finding what should be the value of 6 in order to ensure that 

To answer the question, suppose x* is an optimal solution and we get 

Thus, we have to estimate the quantity eTx* . 
As is known from the analysis of the ellipsoid algorithm, the coordinates 

of a basic solution x* can be bounded as follows: First, x* satisfies an 
equation Bx* = b , where B is a nonsingular square submatrix of A . Thus, 

where B' is the matrix obtained from B by substituting b for the ith 
column. The known analyses do not use this relationship between B' and 
B . In the case of integer coefficients an obvious lower bound on the absolute 
value of a nonzero determinant is 1. Thus, a lower bound can also be obtained 
in the case of rational coefficients. It is not known whether over the reals 
the following problem can be solved in a polynomial number of arithmetic 
operations and comparisons: 

PROBLEM 5.9. Given a real matrix A E R"'" , compute a positive a such 
that for every nonsingular submatrix B E R"'"' of A , Idet(B)I L a . 

A tight upper bound on the absolute value of a determinant in terms of the 
maximum value M of any entry can be obtained over the reals as follows: 
Suppose the columns of B are v '  , . . . , v m  . Obviously, 

At least for values of m for which there exist Hadamard matrices (i.e., ma- 
trices of orthogonal columns consisting of f l's), there exist matrices with 
the determinant ( \ / T i i ~ ) ~  . 

Without exploiting the relationship between B' and B the only claim we 
can prove is that 

* ( f i W r n  xi < rtw 
where q(A) is any positive lower bound on the absolute value of the deter- 
minant of any nonsingular m x m submatrix of A . We note in passing that 
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in the case of integral coefficients the bounds on xf cannot be improved 
dramatically. For example, if 

and b = (1,  0, .. . , 0)' then x i  = l / ( M ( M  + I ) ~ - ' ) .  
Recall that to guarantee an &-approximation in terms of the function value, 

we have to choose 6 such that 

and b = ( M ,  ... , M)' then x i  = zEl M'. Also, if 

Hence we get the estimate 

B = 

Another estimate can be derived by 

- M  M M . . .  M -  
-1 M M . . .  M 

-1 M . . .  M 

. . 
-1 M - 

where Amin denotes the least eigenvalue. Thus, what we would need is a lower 
bound on the least eigenvalue of any matrix of the form BBT where B is a 
basis. Note that our estimates depend on properties of an optimal basis rather 
than one that supports the approximate solution. So, the optimal basis may 
be ill conditioned, this fact being unknown to the user, and the terminal basis 
well conditioned and satisfying the optimality conditions within tolerance. 

Obviously, if any q(A) is known then we can solve the &-approximation 
problem in a polynomial number of operations in terms of m ,  n ,  and 
- log6 . However, in general y is not known. It is interesting to note that 
for a practical solution of problems with thousands of variables, even with 
a sparse and well-structured problem with small integral coefficients, the re- 
quired 6 may be too small to be practical. It is not clear that an approximate 
solution based on tolerance has a value close to the optimal. In fact, the value 
may be far from the optimum even though the duality gap is very small, since 
the vectors x and y are only approximately feasible. 
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The following example illustrates the difficulties described above. Suppose 
we solve a problem in standard form, and the representation using the current 
basis is T Maximize i.,x, - 

subject to x, + N x ,  = e 

where fi E R " ' ~ ( " - ~ )  contains the following m x m submatrix: 

Suppose further that the coordinates of i., are negative except for those 
corresponding to the columns of B' that are all equal to zero except for the 
last one, which equals 1 0-20 . Suppose m = 1000, which is quite common 
in practice. Assuming is considered nonpositive within tolerance, the 
solution x = e is accepted as optimal, with an objective function value of 0. 
However, the basis B' determines a feasible solution x where x,, = 2' - 1 

and the objective function value is greater than . Note that the current 
basis B is very well conditioned. Moreover, the underlying matrix is very 
sparse and well structured. 

Appendix 

We review some known characteristics of the simplex method for problems 
in standard form SF(A , b , c )  . Suppose, for simplicity, we run only "phase 
11" of the algorithm; i.e., we start from a basic feasible solution and attempt 
to find an optimal one or conclude that the problem is unbounded. (It is well 
known that if a problem in standard form has a feasible solution then it has a 
basic feasible one; the "phase I" problem of finding a basic feasible solution, 
or concluding that none exists, can be formulated as a problem in standard 
form with a known basic feasible solution.) Assuming exact arithmetic, the 
algorithm then terminates with a feasible basis. The termination criterion is 
stated in terms of signs of certain entries of the "tableau." As is common, 
let B E RmXm denote the nonsingular submatrix of A whose columns con- 
stitute the current basis, and let N denote the matrix consisting of the other 
columns. Let x, and c, denote the restrictions of the vectors x and c , 
respectively, to the indices corresponding to the columns of B . Let x, and 
c, denote the complementary restrictions of the vectors. The "tableau" is 
essentially a representation of the problem in an equivalent form: 

T T - 1  Maximize (c, - c, B N ) x ,  
subject to X,  + B-' NX, = B-' b 

x, 2 0 ,  x, 2 0 .  
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Given a basis B , the corresponding basic primal solution x = x(B) is given 
by 

x,=B-lb,  x,=O. 

The basic dual vector y = y(B) associated with B is given by the equation 

The dual problem is 
Minimize T b  
subject to y T ~  2 cT  . 

Thus, y(B) is feasible in the dual problem if and only if 

in which case y is optimal for the dual. 
Assuming that the algorithm (namely, the primal simplex method) works 

with exact arithmetic, for every B occurring in the process, 

The algorithm terminates in one of the following cases: 
T T -1 

(i) c, 5 c, B N ,  in which case B is optimal, or 
T -1 (ii) there exists a column N, such that c, > c, B N, and B-' N, 5 0 ,  

in which case the problem is unbounded. 

In either case the basis B is said to be terminal. The termination criterion 
applies to signs of certain entries in the tableau. 
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