
Theoretical Computer Science 19 (1982) 337-341
North-Holland Publishing Company

NOTE

IS BINARY ENCODING APPROPRIATE FOR THE
PROBLEM-LANGUAGE RELATIONSHIP?

Nimrod MEGIDDO
Statistics Department, Tel Aviv University, Tel Aviv , Israel

Communicated by M. Nivat
Received January 1982

Abstract. It is proved that there exist encoding schemes which are arbitrarily as efficient as the
binary encoding (in terms of compactness and arithmetic operations), with respect to which
Khachiyan's algorithm for Linear Programming is exponential. This constitutes an objection to
the standard translation of problems into languages via the binary encoding.

When we speak about the complexity of a problem in which numbers are involved,
we usually think of a formalization as a language recognition problem where the
numbers are encoded in binary. Most of the people believe that the work of
Khachiyan [2] has resolved the question of the complexity of linear programming.
However, if we wish to be precise, Khachiyan has proven that the language of
linear inequalities in binary encoding belongs to the class P. The complexity of
linear programming as a problem (rather than a language) still constitutes an
interesting open question.

A major open question is the following: Is there an algorithm and is there a
polynomial p(m, n) such that every set of rn ~inkar inequalities in n variables can
be solved by the algorithm in less than p(m, n) arithmetic operations? We shall
call such an algorithm genuinely-polynomial. Special linear programming problems
for which genuinely-polynomial algorithms are known are the max-flow problem,
the shortest-path problem and the assignment problem. One may argue that the
distinction between polynomial and genuinely-polynomial is not essential since the
amount of time required for the arithmetic operations is at least proportional to
the logarithms of the numbers. More specifically, let A denote the maximal absolute
value of a coefficient in a given set of rn inequalities in n variables with integral
coefficients. Khachiyan's algorithm works in q(m, n, log A) time where q is a certain
polynomial, whereas a genuinely-polynomial algorithm requires at least
p(m, n) log A time. So, in what sense are the two notions distinct? The answer is
simple. A genuinely-polynomial algorithm runs in polynomial time whenever the
arithmetic operations can be carried out in polynomial time, whereas Khachiyan's

0304-3975/82/0000-0000/$02.75 @ 1982 North-Holland

338 N. Megiddo

algorithm may require exponential time even when the arithmetic operations are
polynomial.

We will enhance the argument of the preceding paragraph by proving the
following:

Theorem. For every E > 0 there exists an encoding scheme (i.e., a one-to-one mapping
E : Z + (0, 1)") such that
(i) For every integer N # 0 the length of E (N) , denoted by l(N), satisfies l (N)
(1 +EN llog21NII + 1).
(ii) Comparisons and arithmetic operations can be carried out in time polynomial in
the l(N)'s (uniformly in E) .

(iii) There are infinitely many numbers N such that l (N) = O(log1og N).

The theorem claims that there exist encoding schemes which are almost as efficient
as the binary encoding (in the sense of (i)) and are also convenient for manipulating
arithmetics. The third property implies that algorithms like Khachiyan's run in
exponential time if such encoding schemes are being used. This is because when
those numbers which are represented compactly (i.e., in O(log1og N) bits) appear
in the set of inequalities then the factor log N which appears in the runtime is
exponential in terms of loglog N.

Proof. We will first prove the claim of the theorem with respect to E = 1 and then
indicate how to extend it for any E > 0.

For simplicity let us work with positive numbers. Let N be any positive integer
and let B(N) = b1b2. . . bk denote its binary representation, i.e., bi E {0,1}

k
(i = 1, . . . , k), bl = 1 and N = xi=, bi2kpi. The binary expansion consists of blocks
of consecutive ones and blocks of consecutive zeros. The sequence of lengths of
these blocks characterizes the number N. In our scheme we will represent these
lengths in binary and separate them by commas. Later, the commas will be
eliminated.' Specifically, the encoding E (N) is recursively defined as follows. If
bi = 1 (i = 1, . . . , k) then we define E (N) = B(k) ; otherwise, let jl = min{i: bi = 0)
andj2=min{i: i>jl,bi=l}anddefineE(N)=B(jl-1),B(j2-jl),E(bj,. . . bk).For
example, the number 6363 1 which is encoded in binary as 11 11 10001 11 11 100
will be encoded in our scheme as 101,11,110,10. An obvious way to eliminate
the commas is as follows. We will utilize only the odd-numbered bits for representing
the block-lengths. The even-numbered bits will represent the commas according
to the convention that a comma exists where an even-numbered bit contains a one.
For example our number 63631 will be encoded without the commas as
1000111011101001100. The number of bits required by this encoding scheme is
less than twice the number of bits required in binary. The worst-cases are numbers

' An efficient method for eliminating the commas is described by Even and Rodeh [I]. Instead of
doubling the number of bits, their method adds to an n-bit number O(log n) more bits to eliminate a
delimiter.

Binary encoding and the problem-language relationship 339

like 170, whose binary expansion is 10101010. In our scheme it is 1 ,1 ,1 , 1,1, 1, 1 , l
or, without the commas, 11 11 11 11 11 11 11 1. It is obvious that claim (i) is true in
our case. Also, claim (iii) is proved by the numbers of the form N = 2K - 1. This
encoded in binary is a string of K ones and in our scheme it requires 2 [log2K1 + 1
bits which is O(log1og N).

We will now show how to perform the arithmetic operations and comparisons
using our encoding scheme. For simplicity of notation we will work with the version
that uses commas.

To compare two positive numbers Nl, N2 we operate as follows. Suppose E(N1) =

Al , . . . , A, and E(N2) = B1, . . . , B, where the Ails and Bi's are binary representa-
tions of block-lengths in the expansion of N1 and N2, respectively. Let A = C A;
and B = C Bi. If A > B (A < B) then N1 > N2 (N1 < N2). Suppose A = B. Now, if
A l > B I (A1 < B1) then N1 > N2 (N1 < N2). If also A1 = B1 then if A 2 > B2 (A2 < B2)
then NI < N2 (N1 > N2) and so on. Obviously, the comparison between two numbers
in our encoding scheme reduces to comparisons in binary of block-lengths. We
conclude that comparisons can be done in linear time.

Additions can also be carried out in linear time. We first note that a number A;
(or Bi) represents a block of ones if i is odd and a block of zeros if i is even. We
start from the blocks represented by A, and B,. Consider, for example, the case
where r is even and s is odd. The last block in the expansion of the number Nl + N2
consists of ones. If A, f B, then the length of that block is equal to min(A, B,). If
A, = B, then we need to compare ArP1 with BSp1 in order to tell the length of the
first block; if A,-1 = B,-l then we need to proceed to and Bs-2 and so on.
However, in any case the addition N1 + N2 amounts to no more than r + s additions
and comparisons between Ai's and Bi's.

Multiplication is naturally more complicated but can also be carried out in
polynomial time. Consider first the case where we need to multiply two numbers
N1, N2 encoded as above, however assuming s = 1. In other words, N2 = 2B1- 1.
In this case we first find E(N1 . (N2+ 1)) and then subtract N1. The multiplication
of N1 by N 2 + 1 is simple: If r is odd then E(Nl (N2+1))=A1, . . . ,A,, B1 and if
r is even then E(Nl - (N 2 + l)) = A l , . . . ,Ar-1, (A,+B1). Thus, in this case
E(Nl N2) is found in linear time. It is easy to see that, in general, E(N1 N2) can
be found by multiplying Nl by the odd-numbered blocks of N2, shifting and adding,
in time which is O((1 log Ai)(C log B;)). There are of course faster ways for multipli-
cation in our scheme which resemble the faster methods for multiplication in binary.

To prove the theorem for an arbitrary E > 0, we modify the encoding as follows.
We select an integer M which is sufficiently large, depending on E . In the encoding
scheme EM(N) which we define below the bits whose locations are at 1 and 2
(mod (M + 2)) play a distinguished role. They indicate how the contents of the
succeeding M bits should be interpreted. This is explained in detail below. An
example is given in the Appendix.

Suppose B(N) = 6162. . . bk. Consider the first block of consecutive ones. If its
length L is less than or equal to M then the first M + 2 bits in EM(N) will be

340 N. Megiddo

Olblb;! . . . bM. The prefix 01 indicates that what follows is copied from the binary
representation of N. Suppose L is greater than M and let a l . . . aiM denote the
binary expansion of L using an integral multiple of M bits (possibly with
leading zeros). The first i (M+2) bits in EM(N) will then be
l l a l . . . ~ ~ l O a ~ + ~ . . . a 2 ~ 1 0 a 2 M + 1 . . . a3M10a(i -~ ,M+1. . . ai~.Theprefix 11 inbits
1 , 2 indicates that at that point we start to describe in binary representation the
length of a block of consecutive ones from B(N). Similarly, we will use the prefix
00 to signify the start of a binary representation of a length of a block of zeros.
The pair 10 indicates continuation of the same interpretation from the preceding
group of M bits. Inductively, suppose we have translated all the bits bl, . . . , bi
from B(N) to EM(N) and we are now at the bit numbered q (M +2)+ 1. We now
consider the bits bi+l,. . . , bi+M+l. If they are identical then we write 00 or 11
(depending on the contents of these identical bits) in the bits q (M + 2) + 1 and
q(M+2)+20fEM(N).WethenlookatthenumberL=min{i: i>j, biZ bi+l}-1-1.
This is the length of the maximal block of identical bits starting at bj+l. Consider
the expansion of L in an integral multiple of M bits (possibly with leading zeros).
We now copy this expansion into EM(N) starting at bit q (M + 2) + 3 , using the
continuation code 10 in (q + l) (M + 2) + 1, (q + l) (M + 2) + 2, (q + 2)(M + 2) + 1,
(q + 2)(M + 2) + 2, etc., if necessary. If, on the other hand, the bits bi+l, . . . , bj+M+l
are not all identical, then we simply copy the bits bj+l, . . . , bj+M into EM(N) starting
at bit q (M + 2) + 3 while the bits q (M + 2) + 1 and q (M + 2) + 2 contain the prefix
01. We then proceed by induction.

We note that the bits copied directly from B(N) contribute on the average
(M +2) /M bits in EM(N) per bit in B(N). On the other hand, a block of length L
(L > M) which is translated into EM(N) via the expansion of its length occupies
[(llogzLJ + 1)/M1 . (M + 2) bits. The ratio of the latter to the number L is maximal
when L = M + 1. That maximal ratio is (M + 2)/(M + 1). Thus, by selecting M large
enough we can make the ratio arbitrarily close to one. The elementary operations
in E M are essentially the same as in E. This in fact completes the proof. 0

It is easy to see that a stronger theorem can be proved if we are willing to
represent lengths of blocks by the lengths of blocks in the binary representation
of the lengths of the blocks, etc. This would enable us to strengthen claim (iii) and
prove that there exist infinitely many numbers N such that l (N) = O(loglog1og N)
or 1(N) =O(loglogloglog N), etc. This demonstrates that an algorithm like
Khachiyan7s looks very poor when we operate with encoding schemes which are
arbitrarily as efficient as the binary encoding, while any genuinely-polynomial
algorithm would remain polynomial in any such encoding scheme. We hope this
will motivate further research in the direction of genuinely-polyi~omial algorithms.
It is conceivable though that a genuinely-polynomial algorithm for linear program-
ming exists only if P = NP. However, for the case of linear inequalities with at most
two variables per inequality a genuinely-polynomial algorithm is known [3]. For
the transportation problem the question is still open to the best of the author's
knowledge, even though the dual has only two variables per inequality.

Binary encoding and the problem-language relationship

Appendix

We show as an example the encoding of the number 1033731 under the scheme
E5. First, the binary representation of the number is 11 11 110001 100000001 1. The
first block is of length 6 and hence we find the binary representation of the number
6 , i.e., 110. With the prefix 11 the first block is encoded 1100110. The following
5 bits are not all identical so they are copied with the prefix 01 i.e., 010001 1.
The following 5 bits are identical and in fact the block is of length 7 . So, with
the prefix 00 it is encoded 0000111. The rest of the bits are encoded with the
prefix 01 again, i.e., 0111. In summary, E5(1033731) =

~ O O I ~ O ~ O O O I I ~ O O I I I ~ I I .

References

[I] S. Even and M. Rodeh, Efficient encoding of commas between strings, Comm. ACM 21 (1978)
315-317.

[2] L.G. Khachiyan, A polynomial algorithm in linear programming, Soviet Math. Dokl. 20 (1979)
191-194.

[3] N. Megiddo, Towards a genuinely polynomial algorithm for linear programming, Discussion Paper
No. 493, The Center for Mathematical Studies in Economics and Management Science, Northwestern
University, Evanston, IL 60201 (1981).

