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Abstract: Two sets of planar points S1 and S2 are circularly separable if there is a circle that encloses 
S1 but excludes S2. We show that deciding whether two sets are circularly separable can be 
accomplished in O(n) time via Megiddo's linear programming algorithm. We also show that a smallest 
separating circle can be found in O(n) time, and largest separating circles can be found in O(n1ogn) 
time. Finally we establish that all these results are optimal. 
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1. Introduction 

We consider the problem of determining whether two sets of planar points 

are circularly separable. More precisely, let S,  and S2 be two sets of points in 

R2 with I S1 I + I S21 =n. We seek to detect whether there is a circle C such that 

each point of S1 is interior to or on the boundary of C, while each point of Sz is 

exterior to or on the boundary of C. If the sets are circularly separable, we 

additionally want to find smallest and largest separating circles. 

This problem has application to pattern recognition and image processing: 

determining whether a collection of pixels is a digital image of a disk can be 

reduced to circular separability. Recently an 0(n2) algorithm for digital disk 

recognition has been offered [KA]; we improve this speed to O ( n ) .  

Our results are as follows: 

Detection of circular separability o(n > 



Finding a smallest separating circle O ( n )  

Finding all largest separating circles O(n1ogn) 

Moreover we show that all these results are optimal, with the consequence that 

it is easier to find a smallest circle than a largest circle. 

Finally, the problem of spherical separability in arbitrary dimensions is dis- 

cussed. 

2. Detection of Circular Separability 

Let S 1 = l ( z i , y i ) : i ~ I l j  and S z = { ( q , y i ) : i ~ / z j .  If either S ,  or Sz is empty, then 

the sets are trivially separable. Assume then that neither is empty. We first 

transform these sets from R2 to R' by the mapping P ( x , ~ ) + ( x , ~ , x ~ + ~ ~ ) .  Call 

the transformed sets S1' and SZt .  The equation of a plane in the transformed 

space is 

a x + b y + ( ~ ~ + ~ ~ )  = c 

which may be rewritten as 

( ~ + a / 2 ) ~ + ( y + b / 2 ) ~  = c + ( a 2 + b 2 ) / 4 .  ( 2 )  

Thus a plane in the transformed space corresponds to a circle in the original 

space centered at  ( - a /  2,-b / 2) as long as 

c + ( a 2 + b 2 ) /  4 r 0 

Similarly, every circle in the original space, 

( X  - A ) ~ + ( Y  - B ) ~  = R ~ ,  

may be expanded to 

The correspondence A=-a/  2, B=-b  / 2, and R2=c +(a2+b2) /  4 demonstrates 

that this is a plane in the transformed space, and the requirement that R'SO 

leads again to condition (3). Thus there is a one-to-one correspondence between 

circles in the original space and planes satisfying equation (3) in the 



transformed space. 

Geometrically, the mapping P raises each point ( z , y )  to the paraboloid 

z =x2+y2 .  Any plane az + b y + z  = c  satisfying ( 3 )  cuts the paraboloid in an ellipse. 

which projects to a circle on the zy-plane. See Figure 1. Since S 1  is non-empty, 

for any ( x l , y l ) ~ S 1 ,  a separating circle must satisfy ( X ~ - A ) ~ + ( ~ ~ - B ) ~  zs R'. This 

assures that R~ is non-negative, which in turn implies that equation (3) is always 

satisfied. In the transformed space, this means that any plane separating S1' 

from S2' must cut the paraboloid. Thus the problem of circular separability in 

the plane reduces to linear separability in three dimensions. 

I t  is well known that linear separability in turn reduces to linear program- 

ming [DR]. Thus we can detect whether two sets are circularly separable, and 

indeed find a separating circle if they are, in O ( n )  time using Megiddo's or 

Dyer's linear-time algorithm [Ml][D 11. 

We can now improve on Kim and Anderson's 0(n2) algorithm for recognition 

of digital disks to O ( n ) ,  where n is the number of pixels on the boundary of the 

given convex region Q [KA]. Let S 1  be the integral coordinate points represent- 

ing the n boundary pixels. Let S2 be the collection of points representing all 

pixels exterior to Q but 8-connected to a point in S 1 ,  that is, adjacent horizon- 

tally, vertically, or diagonally. S z  has at  most 8n points, and can be easily con- 

structed in linear time. Q is a digital disk iff there exists a circle that encloses 

S 1  and strictly excludes Sz.  This does not quite match our definition of separa- 

bility because of the strict exclusion requirement, but we will now show that the 

strict inequalities do not cause special difficulty. 

Let I ,  and I2 be index sets for S 1  and S2 respectively. Then Q is a digital 

disk iff there exist a, b , and c such that 



This problem can be solved as a 4-variable linear programming problem: 

such that 

There is a solution to (6) if and only if the optimal value for the system (7) is 

positive. However, there is no need to solve the 4-variable problem. If there is a 

feasible solution with some positive d then the system has a basic solution with 

some positive d .  The smallest possible positive value of d in a basic solution is 

bounded from below by 

This follows from an upper bound on the absolute value of any determinant of a 

4x4 submatrix of the coefficient matrix, where the coefficients of a, b ,  c ,  and d 

are X i ,  y,, -1, and either 0 or 1, respectively. Thus we may set d to such a lower 

bound and solve the resulting system of weak inequalities in 3 variables using 

the linear-time algorithm, establishing that the digital disk recognition problem 

can be solved in O ( n )  time. 

3. Finding a Smallest Separating Circle 

The problem of finding a smallest 

equations (1) and (2) as follows: 

separating circle may be formulated from 

a2/ 4+b 2/ 4+c 

such that 

This is a convex quadratic minimization problem in R' with linear constraints, 



and again can be solved by Megiddo's techniques in O ( n )  time [MI] .  As in Sec- 

tion 2, we can argue that the minimum of the objective function is non-negative. 

4. Finding Largest Separating Circles 

Megiddo's algorithm only applies to convex quadratic functions; negation of 

the objective function in equation (3) leads to a concave function for the largest 

separating circle problem. Thus another approach is required. We first observe 

that if S1 and Sz are linearly separable, then the largest separating circle has 

infinite radius. In the transformed space, this corresponds to the existence of a 

vertical plane separating S1' and Szl, cutting the paraboloid in a parabola, which 

projects to a straight line in the original space. This case can be dispensed with 

in linear time using the algorithms in [ M 1 ] [ ~ 1 ] .  We base our algorithm for the 

finite radius case on the following lemma. 

Lemma. Any largest separating circle of finite radius for S1 and Sz must either 

pass through three points of Sz, or it must pass through two points of Sz and 

one of S1. 

Proof. Let C be a largest circle of finite radius. Since three points determine a 

circle, if C passes through less than three points of S=SlUS2,  then there is 

freedom to expand it while maintaining its contacts with the points of S, con- 

tradicting maximality. If C passes through just one point p of S2, then it may be 

expanded by moving its center directly away from p while adjusting the radius 

to maintain contact with p . This again contradicts maximality. The only possi- 

bilities remaining are those claimed in the statement of the lemma. 0 

An example of the second possibility is illustrated in Figure 2. S1=(A,C] 

and S2=jB1,B2J, where A is the apex and B1 and B2 the two base vertices of an 

isosceles triangle obtuse at  A ,  and AC is perpendicular to BIBz, with the length 

of AC just smaller than the diameter of the circle determined by BIABz, so that 



angle BICBz is acute. A largest circle that excludes S2 must have its center on 

the line determined by A and C, and this center must either be as far above C 

or as far below A as possible. The upper extreme circle is determined by B1CB2, 

and the lower by BlAB2. The latter circle is larger, since the angle at  A is 

obtuse while that at C is acute. Moreover, we can place C such that it lies 

strictly inside this circle. Thus the largest circle is determined by one point A 

of S1, and two points B1 and B2 of S2. 

Observe now that any plane separating S1' from S2' in the transformed 

space must separate the convex hulls H l  and Hz of S1' and Sz'. It follows from 

the lemma, then, that a separating plane n corresponding to a largest separat- 

ing circle contacts the hulls in one of the following two manners: 

(a) n contains 23 points of Hz. 

(b) n contains 22 points of Hz and 21 point of HI. 

In case (a), IF is determined by a face of Hz, and in case (b), by an edge of Hz 

and a vertex of HI. This taxonomy permits the largest circles to be found by the 

following search algorithm. 

(1) Compute the convex hulls H1 and Hz of S1' and S2'. 

(2) taj for each face F of Hz do 

(3) Determine if n containing F separates Hz from HI. 

(4) [b] for each edge e of Hz do 

(5) Determine the vertex v of HI hit flrst by a plane rotating about e .  

(6) Determine if n containing e and v separates H2 from H1. 

The convex hulls (step 1) can be computed in O(n1ogn) time [PHI. The two 

for loops (steps 2 and 4) each iterate O ( n )  times, since a polyhedron of n ver- 

tices has O(n) edges and faces. Thus the algorithm will have the claimed 

O(n1ogn) complexity if both loop bodies can be executed in O(1ogn) time. But 



each of these is what Edelsbrunner and Maurer call an "extremal query," and for 

which they provide an algorithm that requires O(n logn ) preprocessing time and 

O(n) space, and which can answer each such query in O(1ogn) time [EM]. 

More precisely, they define an extremal query as follows. Let H be a convex 

polyhedron of n vertices in R ~ ,  let n be a plane not intersecting H I  and let 1 be a 

line (possibly at infinity) in sr. An extremal query asks to determine a point of H 

hit first when n is rotated counterclockwise about 1; if 1 is at  infinity, the rota- 

tion degenerates to a translation. Their algorithm employs the logn-height 

heirarchical data structure of nested polyhedra due to Kirkpatrick [K] [DK]. 

stkp 3 can be accomplished with a translation query between sr and H1: Hz 

and H 1  are separable by n iff the point of H1 that would first be hit by translat- 

ing n is on the opposite side of sr from Hz. Step 5 is a rotation query with 1 

determined by e .  Step 6 can then be settled in constant time by examining the 

relationship between sr at e ,  and the two faces of Hz adjacent to e. 

Thus all largest circles can be found in O(n1ogn) time by computing the 

radii of every circle associated with a plane n explored by the search algorithm, 

and saving the maxima. Thus the largest circles can be found in O(n1ogn) time; 

the space requirements for the data structures are O(n) [EM]. 

Note that with a suitable modification of the Lemma and the algorithm, the 

smallest circles could also be found with this technique. Finally we note that if 

S1 is empty, our problem does not become the largest empty circle problem \ 

[Sh][T], since that problem requires the center of the circle to be within the 

convex hull of S2. If S, is empty, the largest separating circle has radius i 

infinity. 

5. Lower Bounds 

I t  is clear that R(n) is a lower bound on the three problems considered, 



since every point of both sets must be examined. This establishes the optimality 

of the detection and smallest circle algorithms. 

We establish an R(nlogn) bound on the largest circle problem by reduction 

from the maximum gap problem [LP]. Let X={xl,xz, . . . , z,j be a given set of 

real numbers for which the maximum gap is to be computed, that is, the pair of 

points consecutive on the real line that determine the largest separation. In 

linear time find the minimum L and maximum R of X. Transform X to X' by 

mapping each point x to x'=(x-L)/(R-L), again in O(n) time. Let 

S1={(l/ 2,1/ 2)j, and let 

Sz = t(xi',O):zl'€X1] (J ~ ( x ~ ' , l ) : ~ ~ ~ ~ X ' j .  

We claim that a largest separating circle for these sets determines the max- 

imum gap of X, as illustrated in Figure 3. 

By the lemma, a largest circle must either be determined by three points of 

Sz or two of S2 and one of S1. If C passes through the point of S1, then it must 

have radius 1/2 and be centered at  (O,l/ 2) or (1, I/ 2) (the dashed circles in Fig- 

ure 3). But neither of these circles is maximal, since they can be enlarged by 

moving their centers towards (I/ 2,1/ 2). Therefore C must pass through 3 or 

more points of Sz. The symmetry of S2 about y = l /  2 implies that C must pass 

through precisely 4 distinct points, and be centered on the line y = l/ 2. I t  is 

clear, then, that a largest circle passes through points determining a maximum 

gap for X'; the unscaled version of these points determine a maximum gap for 

the original set X. 

Since the maximum gap problem is known to require fl(nlogn) operations 

in the decision tree model of computation [LP], the largest separating circle 

problem algorithm in the previous section is asymptotically optimal. We should 

note, however, that the maximum gap problem can be solved in linear time if 

the floor function is permitted [Sh]. 



6. Discussion 

Algorithms for the minimum spanning circle [SH] and the largest empty 

circle [Sh][T] employ the furthest-point and closest-point Voronoi diagrams 

respectively. In some sense a mixture of both diagrams are needed to find 

separating circles. This has recently been made precise by Fisk [F], who 

described an 0(n2) algorithm based on explicit use of both diagrams. The 

recent connections discovered between Voronoi diagrams and the paraboloid 

transformation [ES] show that our search algorithm can be interpreted as using 

the Voronoi diagrams in another guise. The underside of Hz (composed of the 

faces whose outward pointing normals have negative z components) projects to 

the Delaunay triangulation of S2 on the zy-plane, the dual of the closest-point 

Voronoi diagram. The top side of H I  projects to  the dual of the furthest-point 

Voronoi diagram of S1. Thus a plane that supports H z  on the underside and H I  

on the top side can be viewed as being determined by the two Voronoi diagrams. 

Both the problems and the algorithms generalize to spherical separability 

in d-dimensions. Megiddo's linear algorithms still apply to the detection, digital 

disk recognition, and smallest sphere problems, albeit with large dirnension- 

dependent constants [M2]. These constants have recently been improved to 

0(3~') by Clarkson [C] and Dyer [D2]. The largest sphere algorithm must spend 

~ ( n ' / ~ ' )  to compute the convex hulls [Se], and can no longer depend on 

efficient extremal queries. Since the hulls may have as many as ~ ( n l ~ / ~ l )  facets, 

and the queries cost O(n ), the complexity is as listed below: 

Detection of spherical separability 0(3~'n)  

Finding a smallest separating sphere 0(3~'n) 

Finding all largest separating spheres ~ ( n l ~ / ~ l ' ' )  
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Qure Captions 

f i gure  1. Each plane that cuts the paraboloid corresponds to a circle in the 

plane, and vice versa. 

f i gure  2. An example where the largest separating circle is determined by one 



point A of S1 and two points B1 and B2 of S2. 

F5gure 3. Reduction of the maximum gap problem to Anding the largest 

separating circle. 
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