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We consider the computational complexity of linear facility location problems in the plane, i.e., given » demand points, one
wishes to find r lines so as to minimize a certain objective-function reflecting the need of the points to be close to the lines. It is
shown that it is NP-hard to find r lines so as to minimize any isotone function of the distances between given points and their
respective nearest lines. The proofs establish NP-hardness in the strong sense. The results also apply to the situation where the
demand is represented by r lines and the facilities by » single points.

p-line center, p-line median, planar location, NP-complete, strongly NP-complete

Most of the literature on location theory focuses
on models where both the facilities and the users
are represented by points in the appropriate space,
e.g., points in the Euclidean plane, vertices of a
given graph, etc. In this paper we consider a
planar case where the facilities are modeled as
straight lines. For example, we may view the prob-
lems faced by a planner who has to locate r
(linear) segments of a new railroad system so as to
minimize the average cost to the users who have to
reach the tracks from a number of different small
communities. Thus, a straight line or a line seg-
ment is of natural importance in this context.
Sometimes such problems are easier than those
with point facilities. For example, it is much easier
to find a line, so as to minimize the sum of
distances to it from a set of given points, than to
find a single point with the same objective (see [7,
8]). Thus, it is interesting to find out that our
problems are NP-hard. Our proof establishes NP-
hardness of several different problems (e.g., re-
place ‘sum of distances’ by ‘maximum distance’
and also by the point-line duality we obtain more
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prohlems: point facilities and linear demand sets).
We establish a non-trivial reduction from the 3-
satisfiability problem to prove strong NP-hardness
(see [3]). The complexity of the problems with
point facilities and demands was investigated in
[2,5,6,9).

Formally, we consider the following problem of
locating linear facilities. Given p points (x,, y,),
-+ (x,,,) in the plane, find a set of r straight
lines L,,...,L, so as to minimize X2 ,Min,;_,
d(x;, y; L;), where d(x;, y; L;) denotes the dis-
tance between the point (x;, y;) and the line L,
relative to a certain metric on the plane,

A weighted version of the problem when r = 1
was solved in [7] relative to the Euclidean metric in
O(n? log n) time and relative to the rectilinear
metric in O(n log?n) time.

A graphic version of the problem is obtained by
replacing the points by the vertices of a given
graph and the r lines by edges or paths in the
graph. The graphic version is easily verified to be
NP-hard. However, testing whether some set of r
edges ensures a zero value for the objective-func-
tion (i.e., testing whether r edges suffice to cover
all vertices) can be accomplished in polynomial-
time (via matching). In this paper we prove that
the planar analogue (i.e., the question whether r
straight lines suffice for covering p given points) is
strongly NP-hard. In particular, this proves that
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the planar problem formulated above is NP-hard
not only for that specific objective-function but
also for any isotone function of the distances
between points and lines, relative to any non-triv-
ial metric. Using the duality between points and
lines, our proof also yields the NP-hardness of
location problems with point facilities and linear
demand sets.

Henceforth, we will be dealing with the follow-
ing problems:

1. Point Covering (PC). A set of points (x,
Yheoos(Xps ¥,) (X5 Y rationals, i=1,...,p) is
given. Find a collection of straight lines {/;,..., /)
of minimum cardinality, such that (x;, y;) lies on
at least one /.

2. Line Covering (LC). A set of straight lines
L,,...,L, is given. Find a set of points {(x,,

Yiheoes(Xp5 ¥, )) Of minimum cardinality such that
each L; contains at least one (x;, y,)-

In view of the renowned duality between lines
and points (see [4], for example) which is discussed
later, the two problems are obviously very close in
nature.

We first mention briefly the trivial cases. First,
PC is trivial when no three points are colinear, in
which case [ p/2| lines are necessary to cover all
points. Analogously, LC is trivial when every sub-
set of three lines has an empty intersection and
there are no parallel lines.

If there may be parallel lines, but still no inter-
section points of three lines or more, then an
optimal solution for LC can be easily computed as
follows. Partition the set of lines into classes

R,,..., R, such that two lines are parallel if and
only if they belong to the same class R;. Let
rr=|R)i=1,...,s,and assumer > r, > ,..., 1, >

1. Now, select an arbitrary line from R, and an
arbitrary line from R,. The point of intersection of
two selected lines will belong to the final solution.
Next, drop the two selected lines from R, and R,
rename the classes so as to conform with the
requirement r,>r, for i <j and continue in the
same manner. We observe that this is in fact a
particular case of a well-known scheduling prob-
lem, namely minimal-length scheduling of unit-ex-
ecution-time tasks with tree-structured precedence
constraints (see [1, p. 54]), which is solvable by the
‘level strategy’. The embedding of our problem in
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the scheduling problem is by viewing each line as a
task where members of the same R, form a chain
and the different chains are disjoint. The number
of machines is two and the interpretation is that at
each time unit at most two lines can be processed
and this is feasible if they are not parallel. Further-
more, the value of the optimal solution is simply
max(r,, [ 7/2]. This is easily proved by induction,
distinguishing between the case r, > r; (where both
r, and [ r/2] decrease by one after the first time
unit) and the case r, = r, (where only [ r/2] de-
creases but [ r/2] >r, so that max(r,, [r/2])
decreases in any case).

We now turn to the NP-hardness of the prob-
lems in the general case. First it is easily verified
that both problems are in NP.

We now reduce 3-satisfiability to PC. Let E,
A - -+ A E, be an instance of 3-satisfiability, where
Ej =x;VyVz, {xj, Vs zj}C {v;, V4yeeny Uy D)
J=1,...,m. Assume [v;, 03N {x,, y;, z}] < 1. The
general idea of the reduction is as follows. We
shall construct a set of m + nm? points, m corre-
sponding to the clauses E,,..., E, and m? ones
corresponding to each pair of variables (v;, ©v,).
Also, a set of 2nm lines will be constructed with

the following properties (for an example, see
Fig. 1):

1. Each clause E is represented by a point P,.

2. Each pair of variables (v,, v,) is presented by a
grid of m? points P}, (1 < k, I<m).

3. For each i (i=1,...,n) and j (j=1,...,m),
the points P|,..., P, lic on a straight line
denoted by L,; and the points Pj,..., P}, be on
a straight line denoted by L; .

4. Except for the lines L,;, L;; (i=1,....,n; j=
1,...,m), no other straight line of the plane
contains more than two points of the set

(P,i,:i=l,...,n;k= ],_'_’m;l= ],“.,m)
U(P,,..., P.).

5. For every j (j=1,...,m) the point P, lies on
the line L, if and only if j =k and v, €{x,, y;,
z)} and P, lies on L, if and only if j=k and
0, €{x;, ¥ 2}

The above five properties establish the reduc-
tion by the following argument. The points of the
form P;, cannot be covered by less than nm lines,
since no straight line contains more than m of
them and altogether they number nm?. Moreover,
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Fig. 1. Example: E;=v, Vv,V v;, E; =0, Vo,V Ey=0v,Vo3Vou,

to achieve that number, for every i (i=1,...,n),
the points P/, (1 <k, /<m) must be covered
either by the lines L,; (j = 1,..., m) or by the lines
L,j (j=1,...,m). No other collection of m lines
can cover the collection of m? points P}, (1 <k,
I < m) (assuming m >2). We claim that E,
A -+« AE,, is satisfiable if and only if the entire
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collection of points {P,,..., P YU{P}i=1,...,n;
k=1,...,m; I=1,...,m} can be covered by nm
lines. For, the choice between (L, }_ | and (L, e
for a given i simply corresponds to the assignment
of a truth-value to (v;, ;). Specifically, for each i,
v, is true if and only if (L, } is chosen to cover the
m? points P;,.
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Finally, we have to discuss the actual construc-
tion of the points P; and P}, We will construct
points with rational coordinates, maintaining the

numerators and the denominators separately. The -

numerical values of all the numerators and de-
nominators will be bounded by a polynomial in m
and n. First, let P,=(j, j*),j=1,..., m. Thus, no
three of the points P,,..., P, are colinear. The
construction of the points Py, will be carried out
with the aid of the lines L;;, L;; as follows. For
eachi (i=1,...,n), P;,is the point of intersection
of L, with L,. The lines L,;, L, are successively
constructed in the order L ,,.. L,m, Li,....Ly,
Ly,...,L,,, L,,,... s0as to satisfy properties 3,
4, 5. When a specific line L;; has to be constructed
the following conditions should be satisfied:

(i) L, should contain P, if and only if v, € {x;,
Vi 2%

(11) L,; should not contain any previously con-
structed pomt of the form P, (except possibly for
P, as explained before) or Pl

(iii) L,; should not coincide with any previously
constructed line.

When a specific line L has to be constructed the
following conditions should be satisfied:

i) Z,. , should contain P, if and only if v, € {x,
Vi 2%

(11) L should not contain any previously con-
structed pomt (except possibly for P,);

(iii) L,; should not contain a pomt of intersec-
tion of two lines of the form L, L, (in order for
the two points Py, P}, to be distinct);

(iv) L,; should not contain a point of intersec-
tion between some L;, and another line which
contains at least two previously constructed points
(in order to satisfy condition 4; the intersection L, j
with L,, becomes the point P} )

%) L should not be parallel to any L, in
order to ensure the existence of the point P; .

Thus, a typical step is that a line has to be
constructed so as to (possibly) contain one speci-
fied point of the P,’s and not any other point from
a finite collection of ‘forbidden’ points, and also
so as not to parallel any one of a finitely num-
bered lines. Suppose that we always construct the
line whose slope is the integer closest to zero
among the feasible slopes. The number of ‘forbid-
den’ slopes is obviously bounded by some poly-
nomial in m and n and hence the slope of every
constructed line is an integer whose absolute value
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is bounded by that polynomial. If the constructed
line also crosses through one of the P’s (whose
coordinates are of the form ( j, j?)) then the coeffi-
cients of its equation will be polynomially bounded
integers. Similarly, if the line should not cross
through any P;, then we may construct it so as to
cross through an integer point, which is not forbi-
deen, whose distance from the origin is minimal. It
follows that the coordinates of such a point are
polynomially bounded and hence all our con-
structed lines will have polynomially bounded in-
tegers as their coefficients. This implies that all the
points P}, will have coordinates which are ration-
als with polynomially bounded numerators and
denominators. This establishes that PC is strongly
NP-hard (see [3]).

To establish that LC is strongly NP-hard we
reduce PC to LC by using the point-line duality
argument. Specifically, given the points (a,,
b),...,(a,, b,), we first find a translation (a,,
b,)=(a;+ a, b;+ b) that will assure that no two
points are colinear with the origin. Next, we repre-
sent the point (a;, b;) by aline a,x + b,y +1=0.
Thus, two lines corresponding to two distinct
points are not parallel and the main property is
that points are colinear if and only if their corre-
sponding lines all interesect at a single point.
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