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Abstract. The cyclic ordering problem is to recognize whether a collection of cyclically ordered 
triples of elements of a set T is derived from an arrangement of all the elements of T on a circle. 
This problem is shown to be NP-complete. 

A cyclic ordering of a set T = {l,.  . ., t )  is essentially an arrangement of the 
elements of T on a circle. A specific definition is as follows (see [4]). Two linear 
orders, (a, ,  . . . , a , )  and (b,, . . ., b,), on T are called cyclically equivalent if there 
exists a number q, 1 S q S t, such that ,u - 1 = (v - 1 -k q )  (mod t )  implies a, = b,. A 
cyclic ordering of T is an equivalence class of linear orders on T modulo cyclic 
equivalence; the equivalence class containing (a , ,  . . ., a,) will be denoted by 
a , a 2 .  - . a,. 

Cyclic ordering is the following recognition problem. The input is a set A of 
cyclically ordered triples (abbreviated COT's) out of T. The property to be 
recognized is: There is a cyclic ordering of T from which all the COT's in A are 
derived; A is called consistent if it has this property. 

Evidence for the hardness of cyclic ordering was given in r4]. On the other hand, 
the linear analogue of this problem is known to be easy. Specifically, the property 
that a set of ordered pairs out of T is derived from a linear order on T, is 
recognizable in linear time (see [3, Section 2.2.31). 

Our goal here is to prove that cyclic ordering is NP-complete'. Our problem is 
obviously in NP since it requires not more than polynomial time to verify that a set 
of COT's is derived from a certain cyclic ordering. In the remainder of the paper we 
shall show that satisfiability with at most 3 literals per clause (abbreviated ST3) is 

*The  first author was partially supported by Bath Sheva Fund. 

' The reader is assumed to be familiar with NP-completeness and related topics (see [1,2]); the 
notation for satisfiability is taken from (21. 
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reducible to cyclic ordering. This will imply, by definition, that cyclic ordering is 
NP-complete. 

The input of ST3 consists of clauses x, v y, v z ,  ( v  = I , .  . ., p) where {xu, y,, z,} C 

U = { u , ,  . . ., u,, u l , .  . ., u,}. Without loss of generality assume that if x, E {u,, fi,), 
y, E {u,, i i , }  and zV € {uk,  i lk} then i < j < k .  With each u, (7 = 1,. . ., r )  we 
associate a COTa&y,, and with ii, we associate the reverse COTa,y$,. Let 
A = {a , ,  p , ,  y,,  . . . ,a, ,  pr, y,}. It is assumed that the set A has exactly 3r distinct 
elements. With each clause x v y v z ({x ,  y, z }  C U) we associate a set A "  of COT's 
as follows. Suppose that abc, def, ghi, are the COT's associated with x, y, 2, 
respectively ({a ,  b, c, d, e, f ,  g, h, i }  C A ) .  Let B = { j ,  k ,  I ,  m ,  n }  be such that A fl B = 

0 and assume that the B,-s that correspond to the various clauses x,, v y, v z ,  are 

I 
pairwise disjoint. Let 

A" = {acj, bjk, ckl, dfj, ejl, flm, gik, hkm,  imn, n m l } .  

Lemma 1. Let S C U be such that u, E S if and only if u,e S. Let x v y v z be any 
clause. Let A be a set of COT's defined as follows. Every element of A' (the set of 
COT's associated with x v y v z )  belongs to A ; the COT's associated with the 
elements of { x ,  y, z} \  S belong to A ; if a p y  is a COT associated with an element of 
{ x ,  y,z} fl S then a y p  belongs to A. Then, S f l  { x ,  y , z } #  0 if and only if A is 
consistent. 

Proof. (Only if) The following table proves that A is consistent whenever 
s ~ { X , Y , Z I Z P ) .  

s ~ ( X , Y , Z )  A Every element of A is derived from 

{ x }  A" U {acb, def, ghi}  

{Y A" U {abc, dfe, ghi)  

( 2  1 A" U {abc, def, gih)  

{x, Y 1 A" U {acb, dfe, ghi}  

{x, 21 A" U {acb, def, gih)  

{Y, 2 )  A" U {abc, dfe, gih} 

{x, Y ,  2 1  A" U {acb, dfe, gih} 

ackmbdefjlnghi 

abcjkdmflneghi 

abcdefjklngimh 

ackmbdfejlnghi 

ackmbdefjlngih 

abcjkdmflnegih 

acbjkdmflnegih 

(If) Notice that if S f l  { x ,  y, z )  = 0 then A = A " U  {abc, def, ghi}. Thus, it is 
sufficient to show that A '  U {abc, def, ghi} is inconsistent which would be a 
contradiction. To that end, consider the following chains of implications: 
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acl hl k  ckl  

abc - bcj - cjk - jkl, 

gik h k m  8mn 

ghi - hik - ikm - kmn, 

llm k m n  

jkl--+ klm + lmn. 

These are interpreted as follows. Let C be any cyclic ordering of {a,  b, c, . . ., n )  from 
which all the elements of A are derived. Thus, if abc is also derived from C then 
necessarily (since acj is derived from C )  bcj is derived from C, and this implies that 
cjk is derived from C (since bjk is derived from C ) ,  etc. It can be observed that if 
every element in A U {abc, def, ghi) is derived from C, then lmn is derived from C. 
However, this is absurd since nml E A ' .  Thus, A0 U {abc, def, ghi} is inconsistent 
and the proof is complete. 

Corollary 2. Let S be as in Lemma 1.  For every v (v = 1, .  . ., p )  let A, denote the set 
A that corresponds to the clause x, v y ,  v 2,. Under these conditions, S n 
{x,, y,, 2,) 0 for v = 1 ,  . . ., p if and only if A U . . . U A, is consistent. 

Proof. The "if" part is immediate from Lemma 1. We shall prove the "only if" 
part. It follows from the "only if" part of Lemma 1 that each A, is derived from a 
cyclic ordering C, of the set of elements appearing in the COT'S of A,. We claim 
that there is a cyclic ordering Ctr of the set A such that the restriction of each C, to 
elements of A is derived from C,,. Specifically, this cyclic ordering of A is 
8162 . . . S3, where ( L 2 ,  L l ,  S3r) = (ar, &, 7,)  if UT E S and ( L 2 ,  &- , ,  S3,) = 
(a,, A,, p,) if u, E S. This follows from our choice of the ordering of variables in 
each clause, the specific orderings shown in our table, and the fact that u, E S 
&Sf S. Since the B,-s are pairwise disjoint and none of them intersects A,  it follows 
that Co can be extended to a cyclic ordering C of A U B 1  U . . . U B, such that every 
COT of A U . . . U A, is derived from C. 

Theorem 3. Let A 0, denote the set A associated with the clause x, v y, v z ,  
(V = 1,.  . . ,p ) .  Then the conjunction (xl v y, v 2,) A .  . . A  (x, v y, A z,) is satisfiable if 
and only if the set A U . . . U A o, is consistent. 

. Proof. (Only if) If the conjunction is satisfiable then, by definition, there exists an 
S C U such that u, E S U,Sf S and S n {x,, y,,, z y }  # 0 for v = 1, .  . . , p .  Corol- 
lary 2 implies that A :' U . . . U A is consistent. 

(If) Suppose that A: U . . . U A is consistent and let C be an appropriate cyclic 
ordering of A U B ,  U . . . U B,. Let S C U be the set of all x E U such that the C O T  
which is associated with x is not derived from C. Obviously, u, E S eJ U,ff S. 
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Furthermore, it follows from Lemma 1 that for every v ( v  = 1,. . . , p )  S fl 
{x,, y,, 2 , )  # 8, since not all the COT's associated with x,, y,, z ,  are derived from C. 
This proves that the conjunction is satisfiable. 0 

We have thus reduced ST3 to cyclic ordering. Note that for ST3 with p clauses the 
corresponding cyclic ordering has not more than lop COT's. 
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