CYCLIC ORDERING IS NP-COMPLETE

Zvi GALIL*
Department of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
Nimrod MEGIDDO
Department of Statistics, Tel Aviv University, Tel Aviv, Israel
Communicated by Richard Karp
Received January 1977
Revised April 1977

Abstract

The cyclic ordering problem is to recognize whether a collection of cyclically ordered triples of elements of a set T is derived from an arrangement of all the elements of T on a circle. This problem is shown to be NP-complete.

A cyclic ordering of a set $T=\{1, \ldots, t\}$ is essentially an arrangement of the elements of T on a circle. A specific definition is as follows (see [4]). Two linear orders, $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$, on T are called cyclically equivalent if there exists a number $q, 1 \leqslant q \leqslant t$, such that $\mu-1 \equiv(\nu-1+q)(\bmod t)$ implies $a_{\nu}=b_{\mu}$. A cyclic ordering of T is an equivalence class of linear orders on T modulo cyclic equivalence; the equivalence class containing $\left(a_{1}, \ldots, a_{t}\right)$ will be denoted by $a_{1} a_{2} \cdots a_{1}$.

Cyclic ordering is the following recognition problem. The input is a set Δ of cyclically ordered triples (abbreviated COT's) out of T. The property to be recognized is: There is a cyclic ordering of T from which all the COT's in Δ are derived; Δ is called consistent if it has this property.

Evidence for the hardness of cyclic ordering was given in [4]. On the other hand, the linear analogue of this problem is known to be easy. Specifically, the property that a set of ordered pairs out of T is derived from a linear order on T, is recognizable in linear time (see [3, Section 2.2.3]).

Our goal here is to prove that cyclic ordering is NP-complete ${ }^{1}$. Our problem is obviously in NP since it requires not more than polynomial time to verify that a set of COT's is derived from a certain cyclic ordering. In the remainder of the paper we shall show that satisfiability with at most 3 literals per clause (abbreviated ST3) is

[^0]reducible to cyclic ordering. This will imply, by definition, that cyclic ordering is NP-complete.

The input of ST3 consists of clauses $x_{\nu} \vee y_{\nu} \vee z_{\nu}(\nu=1, \ldots, p)$ where $\left\{x_{\nu}, y_{\nu}, z_{\nu}\right\} \subset$ $U=\left\{u_{1}, \ldots, u_{r}, \bar{u}_{1}, \ldots, \bar{u}_{r}\right\}$. Without loss of generality assume that if $x_{\nu} \in\left\{u_{i}, \bar{u}_{i}\right\}$, $y_{\nu} \in\left\{u_{i}, \bar{u}_{j}\right\}$ and $z_{\nu} \in\left\{u_{k}, \bar{u}_{k}\right\}$ then $i<j<k$. With each $u_{\tau}(\tau=1, \ldots, r)$ we associate a COT $\alpha_{\tau} \beta_{\tau} \gamma_{\tau}$, and with \bar{u}_{τ} we associate the reverse COT $\alpha_{\tau} \gamma_{\tau} \beta_{\tau}$. Let $A=\left\{\alpha_{1}, \beta_{1}, \gamma_{1}, \ldots, \alpha_{r}, \beta_{r}, \gamma_{r}\right\}$. It is assumed that the set A has exactly $3 r$ distinct elements. With each clause $x \vee y \vee z(\{x, y, z\} \subset U)$ we associate a set Δ^{0} of COT's as follows. Suppose that $a b c$, def, ghi, are the COT's associated with x, y, z, respectively ($\{a, b, c, d, e, f, g, h, i\} \subset A$). Let $B=\{j, k, l, m, n\}$ be such that $A \cap B=$ \emptyset and assume that the B_{ν}-s that correspond to the various clauses $x_{\nu} \vee y_{\nu} \vee z_{\nu}$ are pairwise disjoint. Let

$$
\Delta^{0}=\{a c j, b j k, c k l, d f j, e j l, f l m, g i k, h k m, i m n, n m l\}
$$

Lemma 1. Let $S \subset U$ be such that $u_{\tau} \in S$ if and only if $\bar{u}_{\tau} \notin S$. Let $x \vee y \vee z$ be any clause. Let Δ be a set of COT's defined as follows. Every element of Δ° (the set of COT's associated with $x \vee y \vee z$) belongs to Δ; the COT's associated with the elements of $\{x, y, z\} \backslash S$ belong to Δ; if $\alpha \beta \gamma$ is a COT associated with an element of $\{x, y, z\} \cap S$ then $\alpha \gamma \beta$ belongs to Δ. Then, $S \cap\{x, y, z\} \neq \emptyset$ if and only if Δ is consistent.

Proof. (Only if) The following table proves that Δ is consistent whenever $S \cap\{x, y, z\} \neq \emptyset$.

$S \cap\{x, y, z\}$	Δ	Every element of Δ is derived from
$\{x\}$	$\Delta^{0} \cup\{a c b, d e f, g h i\}$	ackmbdefjlnghi
$\{y\}$	$\Delta^{0} \cup\{a b c, d f e, g h i\}$	$a b c j k d m f l n e g h i$
$\{z\}$	$\Delta^{0} \cup\{a b c, d e f, g i h\}$	$a b c d e f j k \operatorname{lng} \operatorname{limh}$
$\{x, y\}$	$\Delta^{0} \cup\{a c b, d f e, g h i\}$	$a c k m b d f e j \operatorname{lnghi}$
$\{x, z\}$	$\Delta^{0} \cup\{a c b, d e f, g i h\}$	$a c k m b d e f j l n g i h$
$\{y, z\}$	$\Delta^{0} \cup\{a b c, d f e, g i h\}$	$a b c j k d m f l n e g i h$
$\{x, y, z\}$	$\Delta^{0} \cup\{a c b, d f e, g i h\}$	$a c b j k d m f l n e g i h$

(If) Notice that if $S \cap\{x, y, z\}=\emptyset$ then $\Delta=\Delta^{n} \cup\{a b c, d e f, g h i\}$. Thus, it is sufficient to show that $\Delta^{n} \cup\{a b c, d e f, g h i\}$ is inconsistent which would be a contradiction. To that end, consider the following chains of implications:

$$
\begin{aligned}
& a b c \xrightarrow{a c i} b c j \xrightarrow{{ }^{b j k}} c j k \xrightarrow{c k l} j k l, \\
& d e f \xrightarrow{d f j} e f j \xrightarrow{e j l} f j l \xrightarrow{f l m} j l m, \\
& g h i \xrightarrow{g^{g i k}} h i k \xrightarrow{n k m} i k m \xrightarrow{i m n} k m n, \\
& j k l \xrightarrow{j l m} k l m \xrightarrow{k m n} l m n .
\end{aligned}
$$

These are interpreted as follows. Let C be any cyclic ordering of $\{a, b, c, \ldots, n\}$ from which all the elements of Δ^{0} are derived. Thus, if $a b c$ is also derived from C then necessarily (since $a c j$ is derived from C) $b c j$ is derived from C, and this implies that $c j k$ is derived from C (since $b j k$ is derived from C), etc. It can be observed that if every element in $\Delta^{0} \cup\{a b c, d e f, g h i\}$ is derived from C, then $l m n$ is derived from C. However, this is absurd since $n m l \in \Delta^{\circ}$. Thus, $\Delta^{0} \cup\{a b c$, def, ghi $\}$ is inconsistent and the proof is complete.

Corollary 2. Let S be as in Lemma 1 . For every $\nu(\nu=1, \ldots, p)$ let Δ_{ν} denote the set Δ that corresponds to the clause $x_{\nu} \vee y_{\nu} \vee z_{\nu}$. Under these conditions, $S \cap$ $\left\{x_{v}, y_{\nu}, z_{\nu}\right\} \neq \emptyset$ for $\nu=1, \ldots, p$ if and only if $\Delta_{1} \cup \cdots \cup \Delta_{p}$ is consistent.

Proof. The "if" part is immediate from Lemma 1. We shall prove the "only if" part. It follows from the "only if" part of Lemma 1 that each Δ_{ν} is derived from a cyclic ordering C_{ν} of the set of elements appearing in the COT's of Δ_{ν}. We claim that there is a cyclic ordering C_{0} of the set A such that the restriction of each C_{ν} to elements of A is derived from C_{0}. Specifically, this cyclic ordering of A is $\delta_{1} \delta_{2} \cdots \delta_{3 r}$ where $\left(\delta_{3 \tau-2}, \delta_{3 \tau-1}, \delta_{3 \tau}\right)=\left(\alpha_{\tau}, \beta_{\tau}, \gamma_{\tau}\right)$ if $\bar{u}_{\tau} \in S$ and $\left(\delta_{3 \tau-2}, \delta_{3 \tau-1}, \delta_{3 \tau}\right)=$ ($\alpha_{\tau}, \lambda_{\tau}, \beta_{\tau}$) if $u_{\tau} \in S$. This follows from our choice of the ordering of variables in each clause, the specific orderings shown in our table, and the fact that $u_{\tau} \in S \Longleftrightarrow$ $\bar{u}_{\tau} \notin S$. Since the B_{ν}-s are pairwise disjoint and none of them intersects A, it follows that C_{0} can be extended to a cyclic ordering C of $A \cup B_{1} \cup \cdots \cup B_{P}$ such that every COT of $\Delta_{1} \cup \cdots \cup \Delta_{p}$ is derived from C.

Theorem 3. Let Δ_{ν}^{0} denote the set Δ^{0} associated with the clause $x_{\nu} \vee y_{\nu} \vee z_{\nu}$ $(\nu=1, \ldots, p)$. Then the conjunction $\left(x_{1} \vee y_{1} \vee z_{1}\right) \wedge \cdots \wedge\left(x_{p} \vee y_{p} \wedge z_{p}\right)$ is satisfiable if and only if the set $\Delta_{1}^{0} \cup \cdots \cup \Delta_{p}^{0}$ is consistent.

Proof. (Only if) If the conjunction is satisfiable then, by definition, there exists an $S \subset U$ such that $u_{\tau} \in S \Longleftrightarrow \bar{u}_{\tau} \notin S$ and $S \cap\left\{x_{\nu}, y_{\nu}, z_{\nu}\right\} \neq \emptyset$ for $\nu=1, \ldots, p$. Corollary 2 implies that $\Delta_{1}^{0} \cup \cdots \cup \Delta_{p}^{0}$ is consistent.
(If) Suppose that $\Delta_{i}^{0} \cup \cdots \cup \Delta_{p}^{0}$ is consistent and let C be an appropriate cyclic ordering of $A \cup B_{1} \cup \cdots \cup B_{p}$. Let $S \subset U$ be the set of all $x \in U$ such that the COT which is associated with x is not derived from C. Obviously, $u_{\tau} \in S \Longleftrightarrow \bar{u}_{\tau} \notin S$.

Furthermore, it follows from Lemma 1 that for every $\nu(\nu=1, \ldots, p) S \cap$ $\left\{x_{\nu}, y_{\nu}, z_{\nu}\right\} \neq \emptyset$, since not all the COT's associated with $x_{\nu}, y_{\nu}, z_{\nu}$ are derived from C. This proves that the conjunction is satisfiable.

We have thus reduced ST3 to cyclic ordering. Note that for ST3 with p clauses the corresponding cyclic ordering has not more than $10 p$ COT's.

References

[1] S.A. Cook, The complexity of theorem proving procedures, Proc. 3rd Ann. ACM Symp. on Theor. Comput. (1971) 151-158.
[2] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Tatcher, eds., Complexity of Computer Computations (Plenum Press, New York, 1972).
[3] D.E. Knuth, The Art of Computer Programming Vol. 1 (Addison-Wesley, Reading, MA, 1968).
[4] N. Meggido, Partial and complete cyclic orders, Bull. Am. Math. Soc. 82 (1976) 274-276.

[^0]: * The first author was partially supported by Bath Sheva Fund.
 ${ }^{1}$ The reader is assumed to be familiar with NP-completeness and related topics (see [1,2]); the notation for satisfiability is taken from [2].

