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We show that, in contrast t o  a famous theorem on linear orders, not every 

partial cyclic order on M = ( 1 ,  . . . , m }  can be extended to a complete cyclic 

order. In fact, the complexity, in a certain sense, of sufficient conditions for 

such an extendability increases rapidly with m. 
DEFINITION 1. (i) TWO linear orders, (a , ,  . . . ,a,) and ( b l ,  . . . , b,), 

on M a r e  called cyclically equivalent if there exists k E M such that [ j  - 1 - 
(i - 1 + k )  (mod m)]  ai = bi . 

(ii) A complete cyclic order (CCO) on M is an equivalence class C of Iin- 
ear orders modulo cyclic equivalence; denote ala2 . . . a,  for the equivalence 
class containing (a, ,  a,, . . . , a,). 

DEFINITION 2. A partrh.1 cyclic order (PCO) on M is a set A of cyclically 
ordered triples (COTs) out of M such that: 

(i) xyz E A * zyx 4 A ("antisymmetry"), 

(ii) { xyz,  xzw}  C A * xyw E A ("transitivity "); 
since xyz = zxy ,  etc., also yzw E A is implied. 

THEOREM 3. (i) If C is a CCO then the set A of all COTs derived from C 

is a PCO. (ii) If A is a saturated PCO, i.e., {x ,  y, z )  E ( y )  & xyz 4 A .;, zyx 
E A, then there exists a CCO from which all of A's COTs are derived; A is then 
said to  be extendable to  a CCO. 

COROLLARY 4. A PC0 is extendable to a CCO if and only if it is con- 

tained in a saturated PCO. 

It is natural to  ask whether every PC0 is extendable to a CCO (or, equiva- 

lently, is contained in a saturated PCO). In view of the following example, the 

answer is in the negative. 

EXAMPLE 5. Let M = {a, b,  . . . , m )  be the set of the first thirteen letters, 

and let A = {acd, bde, cef, dfg, egh, F a ,  gac, hcb, abi, cij, bjk, ikl, jlm, kma, 
lab, mbc, hcm, bhm}. Obviously, A is a PCO. Suppose that A* 3 A is a satur- 

ated PCO. If abc E A* then, since acd E A*, also bcd E A*. Then, also cde E 

A*, and successive applications of transivity finally yield acb E A*, which contra- 
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dicts antisymmetry. Thus, abc $A* and, therefore, by saturatedness, acb E A*. 
Analogously, since ab i  E A*],  also cbi E A*, and successive applications of 
transivity finally yield abc E A*. Thus, antisymmetry is contradicted again. It 
follows that there is no saturated PC0 that contains A. 

The unextendability of A in Example 5 followed essentially from the fact 

that neither abc nor cbu belongs to any PC0 that contains A. That gives rise t o  
the following definition. 

DEFINITION 6. If T = (i, j, k) ,  1 < i < j < k < m,  denote T +  = ijk and 
T- = kji for the two possible cyclic orderings of T .  A PC0 A is said to  satisfy 
the nth order conditon if for every T , ,  . . . , T ,  E ( y )  there exists a PC0 A* 3 

A and e i E  { f ,  -} (i = 1, . . . , n), such that { r I 1 ,  . . . , 7 2 )  c A*. 
Obviously, all the nth order conditions (n = 0 ,  1, . . . ) are necessary for 

extendability to  a CCO and, as n increases, the nth order condition becomes 
stronger. The conjunction of all the nth order conditions (n = 0 ,  1, . . . ) is a 

sufficient condition for every m .  It is natural to  ask whether there exists an n 
such that the nth order condition suffices for every PC0 A on a finite set M to 
be extendable at a CCO. Unfortunately, the answer to this question also is in the 
negative. A sequence of PCOs that prove this is constructed as follows. 

EXAMPLE 7. Let mo = 13  and let A. be the PC0 on Mo = (1, . . . , 13) 
defined in Example 5 (identify a with' 1, b with 2, etc.). As we have already 

seen, 4 is not extendable to  a CCO. However, since it is a PCO, it satisfies the 
0th order condition. For the purpose of later use in induction, note that 
A,\ {egh} is extendable to  the following complete cyclic ordering: afbhcgde$klm. 
Suppose, by induction, that A, is a PC0 on Mn = {I ,  . . . , m,) ,  An satisfies the 
the nth order condition but is not extendable to  a CCO. Suppose also that xyz 

E An is such that An\ {xyz) is extendable to a CCO. We construct An+ as 
follows. Define m,+ = m, + 15 and M,+ = {I, . . . , m,  + ) and denote 
( u , ,  . . . , u s ,  u t ,  . . . , u5,  w , ,  . . . , w S )  = (m, + 1, . . . , m n + ] ) .  Let 

Let A,,+] be the transitive closure of A', i.e., A,,,, is the intersection of all the 
transitive classes of  COTS that contain A' (see Definition 2). It turns out that 

A,, , is a PCO, but is not extendable to  a CCO. Also, An+,  \ {w3w5u5)  is ex- 
tendible t o  a CCO. The proof of these facts follows from the analogous proper- 

ties of A,. The important property of A,,, is that it satisfies the (n + 1)st 
order condition. A detailed proof will be given elsewhere. Here, we indicate that 
two cases are distinguished when a set of 3element subsets of M,+, is given. 
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First, when lri n Mn+l 1 > 2 for i = I ,  . . . , n + 1, the ei - s are determined 

essentially by the CCO on M, t o  which A,\ { x y z )  is extendible. Otherwise, the 

induction hypothesis is applied and the ei - s are determined essentially by a 
PC0 A* that contains A, and n of the ri - s. 

In view of Example 7, an algorithm for extending a PC0 t o  a CCO which 

is based on successive addings of COTS, cannot be polynomial. We conjecture 

that there is no polynomial algorithm for this problem; note that there seems to 

be an equivalence between our problem and that of the Hamiltonian path, from 

the point of view of complexity of con~putations. 

DEPARTMENT O F  STATISTICS, TEL AVIV UNIVERSITY, TE1. AVIV, ISRAEL 




